1
|
Panda M, Markaki M, Tavernarakis N. Mitostasis in age-associated neurodegeneration. Biochim Biophys Acta Mol Basis Dis 2024; 1871:167547. [PMID: 39437856 DOI: 10.1016/j.bbadis.2024.167547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 10/06/2024] [Accepted: 10/15/2024] [Indexed: 10/25/2024]
Abstract
Mitochondria are essential organelles that play crucial roles in various metabolic and signalling pathways. Proper neuronal function is highly dependent on the health of these organelles. Of note, the intricate structure of neurons poses a critical challenge for the transport and distribution of mitochondria to specific energy-intensive domains, such as synapses and dendritic appendages. When faced with chronic metabolic challenges and bioenergetic deficits, neurons undergo degeneration. Unsurprisingly, disruption of mitostasis, the process of maintaining cellular mitochondrial content and function within physiological limits, has been implicated in the pathogenesis of several age-associated neurodegenerative disorders. Indeed, compromised integrity and metabolic activity of mitochondria is a principal hallmark of neurodegeneration. In this review, we survey recent findings elucidating the role of impaired mitochondrial homeostasis and metabolism in the onset and progression of age-related neurodegenerative disorders. We also discuss the importance of neuronal mitostasis, with an emphasis on the major mitochondrial homeostatic and metabolic pathways that contribute to the proper functioning of neurons. A comprehensive delineation of these pathways is crucial for the development of early diagnostic and intervention approaches against neurodegeneration.
Collapse
Affiliation(s)
- Mrutyunjaya Panda
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion 70013, Crete, Greece; Department of Medicine, University of Verona, Verona 37134, Italy; Faculdade de Farmácia, University of Lisbon, Lisbon 1649-003, Portugal
| | - Maria Markaki
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion 70013, Crete, Greece
| | - Nektarios Tavernarakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion 70013, Crete, Greece; Division of Basic Sciences, School of Medicine, University of Crete, Heraklion 71003, Crete, Greece.
| |
Collapse
|
2
|
Moawad MHED, Serag I, Alkhawaldeh IM, Abbas A, Sharaf A, Alsalah S, Sadeq MA, Shalaby MMM, Hefnawy MT, Abouzid M, Meshref M. Exploring the Mechanisms and Therapeutic Approaches of Mitochondrial Dysfunction in Alzheimer's Disease: An Educational Literature Review. Mol Neurobiol 2024:10.1007/s12035-024-04468-y. [PMID: 39254911 DOI: 10.1007/s12035-024-04468-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 08/30/2024] [Indexed: 09/11/2024]
Abstract
Alzheimer's disease (AD) presents a significant challenge to global health. It is characterized by progressive cognitive deterioration and increased rates of morbidity and mortality among older adults. Among the various pathophysiologies of AD, mitochondrial dysfunction, encompassing conditions such as increased reactive oxygen production, dysregulated calcium homeostasis, and impaired mitochondrial dynamics, plays a pivotal role. This review comprehensively investigates the mechanisms of mitochondrial dysfunction in AD, focusing on aspects such as glucose metabolism impairment, mitochondrial bioenergetics, calcium signaling, protein tau and amyloid-beta-associated synapse dysfunction, mitophagy, aging, inflammation, mitochondrial DNA, mitochondria-localized microRNAs, genetics, hormones, and the electron transport chain and Krebs cycle. While lecanemab is the only FDA-approved medication to treat AD, we explore various therapeutic modalities for mitigating mitochondrial dysfunction in AD, including antioxidant drugs, antidiabetic agents, acetylcholinesterase inhibitors (FDA-approved to manage symptoms), nutritional supplements, natural products, phenylpropanoids, vaccines, exercise, and other potential treatments.
Collapse
Affiliation(s)
- Mostafa Hossam El Din Moawad
- Faculty of Pharmacy, Clinical Department, Alexandria Main University Hospital, Alexandria, Egypt
- Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Ibrahim Serag
- Faculty of Medicine, Mansoura University, Mansoura, Egypt.
| | | | - Abdallah Abbas
- Faculty of Medicine, Al-Azhar University, Damietta, Egypt
| | - Abdulrahman Sharaf
- Department of Clinical Pharmacy, Salmaniya Medical Complex, Government Hospital, Manama, Bahrain
| | - Sumaya Alsalah
- Ministry of Health, Primary Care, Governmental Health Centers, Manama, Bahrain
| | | | | | | | - Mohamed Abouzid
- Department of Physical Pharmacy and Pharmacokinetics, Faculty of Pharmacy, Poznan University of Medical Sciences, Rokietnicka 3 St., 60-806, Poznan, Poland.
- Doctoral School, Poznan University of Medical Sciences, 60-812, Poznan, Poland.
| | - Mostafa Meshref
- Department of Neurology, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| |
Collapse
|
3
|
Xu P, Swain S, Novorolsky RJ, Garcia E, Huang Z, Snutch TP, Wilson JJ, Robertson GS, Renden RB. The mitochondrial calcium uniporter inhibitor Ru265 increases neuronal excitability and reduces neurotransmission via off-target effects. Br J Pharmacol 2024; 181:3503-3526. [PMID: 38779706 PMCID: PMC11309911 DOI: 10.1111/bph.16425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND AND PURPOSE Excitotoxicity due to mitochondrial calcium (Ca2+) overloading can trigger neuronal cell death in a variety of pathologies. Inhibiting the mitochondrial calcium uniporter (MCU) has been proposed as a therapeutic avenue to prevent calcium overloading. Ru265 (ClRu(NH3)4(μ-N)Ru(NH3)4Cl]Cl3) is a cell-permeable inhibitor of the mitochondrial calcium uniporter (MCU) with nanomolar affinity. Ru265 reduces sensorimotor deficits and neuronal death in models of ischemic stroke. However, the therapeutic use of Ru265 is limited by the induction of seizure-like behaviours. EXPERIMENTAL APPROACH We examined the effect of Ru265 on synaptic and neuronal function in acute brain slices and hippocampal neuron cultures derived from mice, in control and where MCU expression was genetically abrogated. KEY RESULTS Ru265 decreased evoked responses from calyx terminals and induced spontaneous action potential firing of both the terminal and postsynaptic principal cell. Recordings of presynaptic Ca2+ currents suggested that Ru265 blocks the P/Q type channel, confirmed by the inhibition of currents in cells exogenously expressing the P/Q type channel. Measurements of presynaptic K+ currents further revealed that Ru265 blocked a KCNQ current, leading to increased membrane excitability, underlying spontaneous spiking. Ca2+ imaging of hippocampal neurons showed that Ru265 increased synchronized, high-amplitude events, recapitulating seizure-like activity seen in vivo. Importantly, MCU ablation did not suppress Ru265-induced increases in neuronal activity and seizures. CONCLUSIONS AND IMPLICATIONS Our findings provide a mechanistic explanation for the pro-convulsant effects of Ru265 and suggest counter screening assays based on the measurement of P/Q and KCNQ channel currents to identify safe MCU inhibitors.
Collapse
Affiliation(s)
- Peng Xu
- Department of Physiology and Cell Biology, University of Nevada, Reno, Reno, Nevada, USA
| | - Sarpras Swain
- Department of Physiology and Cell Biology, University of Nevada, Reno, Reno, Nevada, USA
| | - Robyn J Novorolsky
- Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada
- Department of Psychiatry, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Esperanza Garcia
- Michael Smith Laboratories and Djavad Mowafaghian Centre for Brain Health University of British Columbia, Vancouver, British Columbia, Canada
| | - Zhouyang Huang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, USA
| | - Terrance P Snutch
- Michael Smith Laboratories and Djavad Mowafaghian Centre for Brain Health University of British Columbia, Vancouver, British Columbia, Canada
| | - Justin J Wilson
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, USA
| | - George S Robertson
- Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada
- Department of Psychiatry, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Robert B Renden
- Department of Physiology and Cell Biology, University of Nevada, Reno, Reno, Nevada, USA
| |
Collapse
|
4
|
Di Leo V, Bernardino Gomes TM, Vincent AE. Interactions of mitochondrial and skeletal muscle biology in mitochondrial myopathy. Biochem J 2023; 480:1767-1789. [PMID: 37965929 PMCID: PMC10657187 DOI: 10.1042/bcj20220233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/24/2023] [Accepted: 10/26/2023] [Indexed: 11/16/2023]
Abstract
Mitochondrial dysfunction in skeletal muscle fibres occurs with both healthy aging and a range of neuromuscular diseases. The impact of mitochondrial dysfunction in skeletal muscle and the way muscle fibres adapt to this dysfunction is important to understand disease mechanisms and to develop therapeutic interventions. Furthermore, interactions between mitochondrial dysfunction and skeletal muscle biology, in mitochondrial myopathy, likely have important implications for normal muscle function and physiology. In this review, we will try to give an overview of what is known to date about these interactions including metabolic remodelling, mitochondrial morphology, mitochondrial turnover, cellular processes and muscle cell structure and function. Each of these topics is at a different stage of understanding, with some being well researched and understood, and others in their infancy. Furthermore, some of what we know comes from disease models. Whilst some findings are confirmed in humans, where this is not yet the case, we must be cautious in interpreting findings in the context of human muscle and disease. Here, our goal is to discuss what is known, highlight what is unknown and give a perspective on the future direction of research in this area.
Collapse
Affiliation(s)
- Valeria Di Leo
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle NE2 4HH, U.K
- NIHR Newcastle Biomedical Research Centre, Biomedical Research Building, Campus for Ageing and Vitality, Newcastle upon Tyne NE4 5PL, U.K
| | - Tiago M. Bernardino Gomes
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle NE2 4HH, U.K
- NIHR Newcastle Biomedical Research Centre, Biomedical Research Building, Campus for Ageing and Vitality, Newcastle upon Tyne NE4 5PL, U.K
- NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne NE2 4HH, U.K
| | - Amy E. Vincent
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle NE2 4HH, U.K
- NIHR Newcastle Biomedical Research Centre, Biomedical Research Building, Campus for Ageing and Vitality, Newcastle upon Tyne NE4 5PL, U.K
- John Walton Muscular Dystrophy Research Centre, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle NE2 4HH, U.K
| |
Collapse
|
5
|
D’Angelo D, Rizzuto R. The Mitochondrial Calcium Uniporter (MCU): Molecular Identity and Role in Human Diseases. Biomolecules 2023; 13:1304. [PMID: 37759703 PMCID: PMC10526485 DOI: 10.3390/biom13091304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/22/2023] [Accepted: 08/22/2023] [Indexed: 09/29/2023] Open
Abstract
Calcium (Ca2+) ions act as a second messenger, regulating several cell functions. Mitochondria are critical organelles for the regulation of intracellular Ca2+. Mitochondrial calcium (mtCa2+) uptake is ensured by the presence in the inner mitochondrial membrane (IMM) of the mitochondrial calcium uniporter (MCU) complex, a macromolecular structure composed of pore-forming and regulatory subunits. MtCa2+ uptake plays a crucial role in the regulation of oxidative metabolism and cell death. A lot of evidence demonstrates that the dysregulation of mtCa2+ homeostasis can have serious pathological outcomes. In this review, we briefly discuss the molecular structure and the function of the MCU complex and then we focus our attention on human diseases in which a dysfunction in mtCa2+ has been shown.
Collapse
Affiliation(s)
- Donato D’Angelo
- Department of Biomedical Sciences, University of Padua, 35131 Padua, Italy;
| | - Rosario Rizzuto
- Department of Biomedical Sciences, University of Padua, 35131 Padua, Italy;
- National Center on Gene Therapy and RNA-Based Drugs, 35131 Padua, Italy
| |
Collapse
|
6
|
Wong HTC, Lukasz D, Drerup CM, Kindt KS. In vivo investigation of mitochondria in lateral line afferent neurons and hair cells. Hear Res 2023; 431:108740. [PMID: 36948126 PMCID: PMC10079644 DOI: 10.1016/j.heares.2023.108740] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 02/17/2023] [Accepted: 03/12/2023] [Indexed: 03/16/2023]
Abstract
To process sensory stimuli, intense energy demands are placed on hair cells and primary afferents. Hair cells must both mechanotransduce and maintain pools of synaptic vesicles for neurotransmission. Furthermore, both hair cells and afferent neurons must continually maintain a polarized membrane to propagate sensory information. These processes are energy demanding and therefore both cell types are critically reliant on mitochondrial health and function for their activity and maintenance. Based on these demands, it is not surprising that deficits in mitochondrial health can negatively impact the auditory and vestibular systems. In this review, we reflect on how mitochondrial function and dysfunction are implicated in hair cell-mediated sensory system biology. Specifically, we focus on live imaging approaches that have been applied to study mitochondria using the zebrafish lateral-line system. We highlight the fluorescent dyes and genetically encoded biosensors that have been used to study mitochondria in lateral-line hair cells and afferent neurons. We then describe the impact this in vivo work has had on the field of mitochondrial biology as well as the relationship between mitochondria and sensory system development, function, and survival. Finally, we delineate the areas in need of further exploration. This includes in vivo analyses of mitochondrial dynamics and biogenesis, which will round out our understanding of mitochondrial biology in this sensitive sensory system.
Collapse
Affiliation(s)
- Hiu-Tung C Wong
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Daria Lukasz
- Section on Sensory Cell Development and Function, National Institute of Deafness and other Communication Disorders, National Institutes of Health, Bethesda, MD 20892, USA
| | - Catherine M Drerup
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI 53706, USA.
| | - Katie S Kindt
- Section on Sensory Cell Development and Function, National Institute of Deafness and other Communication Disorders, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
7
|
Jadiya P, Cohen HM, Kolmetzky DW, Kadam AA, Tomar D, Elrod JW. Neuronal loss of NCLX-dependent mitochondrial calcium efflux mediates age-associated cognitive decline. iScience 2023; 26:106296. [PMID: 36936788 PMCID: PMC10014305 DOI: 10.1016/j.isci.2023.106296] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/12/2022] [Accepted: 02/20/2023] [Indexed: 03/05/2023] Open
Abstract
Mitochondrial calcium overload contributes to neurodegenerative disease development and progression. We recently reported that loss of the mitochondrial sodium/calcium exchanger (NCLX), the primary mechanism of mCa2+ efflux, promotes mCa2+ overload, metabolic derangement, redox stress, and cognitive decline in models of Alzheimer's disease (AD). However, whether disrupted mCa2+ signaling contributes to neuronal pathology and cognitive decline independent of pre-existing amyloid or tau pathology remains unknown. Here, we generated mice with neuronal deletion of the mitochondrial sodium/calcium exchanger (NCLX, Slc8b1 gene), and evaluated age-associated changes in cognitive function and neuropathology. Neuronal loss of NCLX resulted in an age-dependent decline in spatial and cued recall memory, moderate amyloid deposition, mild tau pathology, synaptic remodeling, and indications of cell death. These results demonstrate that loss of NCLX-dependent mCa2+ efflux alone is sufficient to induce an Alzheimer's disease-like pathology and highlights the promise of therapies targeting mCa2+ exchange.
Collapse
Affiliation(s)
- Pooja Jadiya
- Cardiovascular Research Center, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
- Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA
| | - Henry M. Cohen
- Cardiovascular Research Center, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Devin W. Kolmetzky
- Cardiovascular Research Center, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Ashlesha A. Kadam
- Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA
| | - Dhanendra Tomar
- Cardiovascular Research Center, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
- Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA
| | - John W. Elrod
- Cardiovascular Research Center, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| |
Collapse
|
8
|
Zajac M, Modi S, Krishnan Y. The evolution of organellar calcium mapping technologies. Cell Calcium 2022; 108:102658. [PMID: 36274564 PMCID: PMC10224794 DOI: 10.1016/j.ceca.2022.102658] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 10/05/2022] [Accepted: 10/08/2022] [Indexed: 01/25/2023]
Abstract
Intracellular Ca2+ fluxes are dynamically controlled by the co-involvement of multiple organellar pools of stored Ca2+. Endolysosomes are emerging as physiologically critical, yet underexplored, sources and sinks of intracellular Ca2+. Delineating the role of organelles in Ca2+ signaling has relied on chemical fluorescent probes and electrophysiological strategies. However, the acidic endolysosomal environment presents unique issues, which preclude the use of traditional chemical reporter strategies to map lumenal Ca2+. Here, we broadly address the current state of knowledge about organellar Ca2+ pools. We then outline the application of traditional probes, and their sensing paradigms. We then discuss how a new generation of probes overcomes the limitations of traditional Ca2+probes, emphasizing their ability to offer critical insights into endolysosomal Ca2+, and its feedback with other organellar pools.
Collapse
Affiliation(s)
- Matthew Zajac
- Department of Chemistry, The University of Chicago, Chicago, Illinois, 60637, USA; Neuroscience Institute, The University of Chicago, Chicago, IL, 60637, USA
| | - Souvik Modi
- Esya Labs, Translation and Innovation Hub, Imperial College White City Campus, 84 Wood Lane, London, W12 0BZ, UK
| | - Yamuna Krishnan
- Department of Chemistry, The University of Chicago, Chicago, Illinois, 60637, USA; Neuroscience Institute, The University of Chicago, Chicago, IL, 60637, USA; Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois, 60637, USA.
| |
Collapse
|
9
|
Bernardi P, Carraro M, Lippe G. The mitochondrial permeability transition: Recent progress and open questions. FEBS J 2022; 289:7051-7074. [PMID: 34710270 PMCID: PMC9787756 DOI: 10.1111/febs.16254] [Citation(s) in RCA: 71] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 10/27/2021] [Indexed: 01/13/2023]
Abstract
Major progress has been made in defining the basis of the mitochondrial permeability transition, a Ca2+ -dependent permeability increase of the inner membrane that has puzzled mitochondrial research for almost 70 years. Initially considered an artefact of limited biological interest by most, over the years the permeability transition has raised to the status of regulator of mitochondrial ion homeostasis and of druggable effector mechanism of cell death. The permeability transition is mediated by opening of channel(s) modulated by matrix cyclophilin D, the permeability transition pore(s) (PTP). The field has received new impulse (a) from the hypothesis that the PTP may originate from a Ca2+ -dependent conformational change of F-ATP synthase and (b) from the reevaluation of the long-standing hypothesis that it originates from the adenine nucleotide translocator (ANT). Here, we provide a synthetic account of the structure of ANT and F-ATP synthase to discuss potential and controversial mechanisms through which they may form high-conductance channels; and review some intriguing findings from the wealth of early studies of PTP modulation that still await an explanation. We hope that this review will stimulate new experiments addressing the many outstanding problems, and thus contribute to the eventual solution of the puzzle of the permeability transition.
Collapse
Affiliation(s)
- Paolo Bernardi
- Department of Biomedical Sciences and CNR Neuroscience InstituteUniversity of PadovaItaly
| | - Michela Carraro
- Department of Biomedical Sciences and CNR Neuroscience InstituteUniversity of PadovaItaly
| | | |
Collapse
|
10
|
Rodrigues T, Piccirillo S, Magi S, Preziuso A, Dos Santos Ramos V, Serfilippi T, Orciani M, Maciel Palacio Alvarez M, Luis Dos Santos Tersariol I, Amoroso S, Lariccia V. Control of Ca 2+ and metabolic homeostasis by the Na +/Ca 2+ exchangers (NCXs) in health and disease. Biochem Pharmacol 2022; 203:115163. [PMID: 35803319 DOI: 10.1016/j.bcp.2022.115163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/30/2022] [Accepted: 07/01/2022] [Indexed: 11/16/2022]
Abstract
Spatial and temporal control of calcium (Ca2+) levels is essential for the background rhythms and responses of living cells to environmental stimuli. Whatever other regulators a given cellular activity may have, localized and wider scale Ca2+ events (sparks, transients, and waves) are hierarchical determinants of fundamental processes such as cell contraction, excitability, growth, metabolism and survival. Different cell types express specific channels, pumps and exchangers to efficiently generate and adapt Ca2+ patterns to cell requirements. The Na+/Ca2+ exchangers (NCXs) in particular contribute to Ca2+ homeostasis by buffering intracellular Ca2+ loads according to the electrochemical gradients of substrate ions - i.e., Ca2+ and sodium (Na+) - and under a dynamic control of redundant regulatory processes. An interesting feature of NCX emerges from the strict relationship that connects transporter activity with cell metabolism: on the one hand NCX operates under constant control of ATP-dependent regulatory processes, on the other hand the ion fluxes generated through NCX provide mechanistic support for the Na+-driven uptake of glutamate and Ca2+ influx to fuel mitochondrial respiration. Proof of concept evidence highlights therapeutic potential of preserving a timed and balanced NCX activity in a growing rate of diseases (including excitability, neurodegenerative, and proliferative disorders) because of an improved ability of stressed cells to safely maintain ion gradients and mitochondrial bioenergetics. Here, we will summarize and review recent works that have focused on the pathophysiological roles of NCXs in balancing the two-way relationship between Ca2+ signals and metabolism.
Collapse
Affiliation(s)
- Tiago Rodrigues
- Center for Natural and Human Sciences (CCNH), Federal University of ABC (UFABC), Santo André, SP, Brazil.
| | - Silvia Piccirillo
- Department of Biomedical Sciences and Public Health, School of Medicine, University "Politecnica delle Marche", Ancona, Italy.
| | - Simona Magi
- Department of Biomedical Sciences and Public Health, School of Medicine, University "Politecnica delle Marche", Ancona, Italy.
| | - Alessandra Preziuso
- Department of Biomedical Sciences and Public Health, School of Medicine, University "Politecnica delle Marche", Ancona, Italy.
| | - Vyctória Dos Santos Ramos
- Interdisciplinary Center for Biochemistry Investigation (CIIB), University of Mogi das Cruzes (UMC), Mogi das Cruzes, SP, Brazil
| | - Tiziano Serfilippi
- Department of Biomedical Sciences and Public Health, School of Medicine, University "Politecnica delle Marche", Ancona, Italy.
| | - Monia Orciani
- Department of Clinical and Molecular Sciences, Histology, University "Politecnica delle Marche", Ancona, Italy.
| | - Marcela Maciel Palacio Alvarez
- Department of Biochemistry, São Paulo School of Medicine, Federal University of São Paulo (Unifesp) São Paulo, SP, Brazil
| | | | - Salvatore Amoroso
- Department of Biomedical Sciences and Public Health, School of Medicine, University "Politecnica delle Marche", Ancona, Italy.
| | - Vincenzo Lariccia
- Department of Biomedical Sciences and Public Health, School of Medicine, University "Politecnica delle Marche", Ancona, Italy.
| |
Collapse
|
11
|
Biological Potential, Gastrointestinal Digestion, Absorption, and Bioavailability of Algae-Derived Compounds with Neuroprotective Activity: A Comprehensive Review. Mar Drugs 2022; 20:md20060362. [PMID: 35736165 PMCID: PMC9227170 DOI: 10.3390/md20060362] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 12/04/2022] Open
Abstract
Currently, there is no known cure for neurodegenerative disease. However, the available therapies aim to manage some of the symptoms of the disease. Human neurodegenerative diseases are a heterogeneous group of illnesses characterized by progressive loss of neuronal cells and nervous system dysfunction related to several mechanisms such as protein aggregation, neuroinflammation, oxidative stress, and neurotransmission dysfunction. Neuroprotective compounds are essential in the prevention and management of neurodegenerative diseases. This review will focus on the neurodegeneration mechanisms and the compounds (proteins, polyunsaturated fatty acids (PUFAs), polysaccharides, carotenoids, phycobiliproteins, phenolic compounds, among others) present in seaweeds that have shown in vivo and in vitro neuroprotective activity. Additionally, it will cover the recent findings on the neuroprotective effects of bioactive compounds from macroalgae, with a focus on their biological potential and possible mechanism of action, including microbiota modulation. Furthermore, gastrointestinal digestion, absorption, and bioavailability will be discussed. Moreover, the clinical trials using seaweed-based drugs or extracts to treat neurodegenerative disorders will be presented, showing the real potential and limitations that a specific metabolite or extract may have as a new therapeutic agent considering the recent approval of a seaweed-based drug to treat Alzheimer’s disease.
Collapse
|
12
|
Sobolczyk M, Boczek T. Astrocytic Calcium and cAMP in Neurodegenerative Diseases. Front Cell Neurosci 2022; 16:889939. [PMID: 35663426 PMCID: PMC9161693 DOI: 10.3389/fncel.2022.889939] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 05/05/2022] [Indexed: 12/18/2022] Open
Abstract
It is commonly accepted that the role of astrocytes exceeds far beyond neuronal scaffold and energy supply. Their unique morphological and functional features have recently brough much attention as it became evident that they play a fundamental role in neurotransmission and interact with synapses. Synaptic transmission is a highly orchestrated process, which triggers local and transient elevations in intracellular Ca2+, a phenomenon with specific temporal and spatial properties. Presynaptic activation of Ca2+-dependent adenylyl cyclases represents an important mechanism of synaptic transmission modulation. This involves activation of the cAMP-PKA pathway to regulate neurotransmitter synthesis, release and storage, and to increase neuroprotection. This aspect is of paramount importance for the preservation of neuronal survival and functionality in several pathological states occurring with progressive neuronal loss. Hence, the aim of this review is to discuss mutual relationships between cAMP and Ca2+ signaling and emphasize those alterations at the Ca2+/cAMP crosstalk that have been identified in neurodegenerative disorders, such as Alzheimer's and Parkinson's disease.
Collapse
|
13
|
Matuz-Mares D, González-Andrade M, Araiza-Villanueva MG, Vilchis-Landeros MM, Vázquez-Meza H. Mitochondrial Calcium: Effects of Its Imbalance in Disease. Antioxidants (Basel) 2022; 11:antiox11050801. [PMID: 35624667 PMCID: PMC9138001 DOI: 10.3390/antiox11050801] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/17/2022] [Accepted: 04/19/2022] [Indexed: 02/06/2023] Open
Abstract
Calcium is used in many cellular processes and is maintained within the cell as free calcium at low concentrations (approximately 100 nM), compared with extracellular (millimolar) concentrations, to avoid adverse effects such as phosphate precipitation. For this reason, cells have adapted buffering strategies by compartmentalizing calcium into mitochondria and the endoplasmic reticulum (ER). In mitochondria, the calcium concentration is in the millimolar range, as it is in the ER. Mitochondria actively contribute to buffering cellular calcium, but if matrix calcium increases beyond physiological demands, it can promote the opening of the mitochondrial permeability transition pore (mPTP) and, consequently, trigger apoptotic or necrotic cell death. The pathophysiological implications of mPTP opening in ischemia-reperfusion, liver, muscle, and lysosomal storage diseases, as well as those affecting the central nervous system, for example, Parkinson’s disease (PD), Alzheimer’s disease (AD), Huntington’s disease (HD), and amyotrophic lateral sclerosis (ALS) have been reported. In this review, we present an updated overview of the main cellular mechanisms of mitochondrial calcium regulation. We specially focus on neurodegenerative diseases related to imbalances in calcium homeostasis and summarize some proposed therapies studied to attenuate these diseases.
Collapse
Affiliation(s)
- Deyamira Matuz-Mares
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Cd. Universitaria, Coyoacán, Ciudad de México 04510, Mexico; (D.M.-M.); (M.G.-A.); (M.M.V.-L.)
| | - Martin González-Andrade
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Cd. Universitaria, Coyoacán, Ciudad de México 04510, Mexico; (D.M.-M.); (M.G.-A.); (M.M.V.-L.)
| | | | - María Magdalena Vilchis-Landeros
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Cd. Universitaria, Coyoacán, Ciudad de México 04510, Mexico; (D.M.-M.); (M.G.-A.); (M.M.V.-L.)
| | - Héctor Vázquez-Meza
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Cd. Universitaria, Coyoacán, Ciudad de México 04510, Mexico; (D.M.-M.); (M.G.-A.); (M.M.V.-L.)
- Correspondence: ; Tel.: +52-55-5623-2168
| |
Collapse
|
14
|
Serrat R, Oliveira-Pinto A, Marsicano G, Pouvreau S. Imaging mitochondrial calcium dynamics in the central nervous system. J Neurosci Methods 2022; 373:109560. [PMID: 35320763 DOI: 10.1016/j.jneumeth.2022.109560] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 03/04/2022] [Accepted: 03/06/2022] [Indexed: 12/28/2022]
Abstract
Mitochondrial calcium handling is a particularly active research area in the neuroscience field, as it plays key roles in the regulation of several functions of the central nervous system, such as synaptic transmission and plasticity, astrocyte calcium signaling, neuronal activity… In the last few decades, a panel of techniques have been developed to measure mitochondrial calcium dynamics, relying mostly on photonic microscopy, and including synthetic sensors, hybrid sensors and genetically encoded calcium sensors. The goal of this review is to endow the reader with a deep knowledge of the historical and latest tools to monitor mitochondrial calcium events in the brain, as well as a comprehensive overview of the current state of the art in brain mitochondrial calcium signaling. We will discuss the main calcium probes used in the field, their mitochondrial targeting strategies, their key properties and major drawbacks. In addition, we will detail the main roles of mitochondrial calcium handling in neuronal tissues through an extended report of the recent studies using mitochondrial targeted calcium sensors in neuronal and astroglial cells, in vitro and in vivo.
Collapse
Affiliation(s)
- Roman Serrat
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1215 NeuroCentre Magendie, France; University of Bordeaux, Bordeaux 33077, France
| | - Alexandre Oliveira-Pinto
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1215 NeuroCentre Magendie, France; University of Bordeaux, Bordeaux 33077, France
| | - Giovanni Marsicano
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1215 NeuroCentre Magendie, France; University of Bordeaux, Bordeaux 33077, France
| | - Sandrine Pouvreau
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1215 NeuroCentre Magendie, France; University of Bordeaux, Bordeaux 33077, France.
| |
Collapse
|
15
|
Gowda P, Reddy PH, Kumar S. Deregulated mitochondrial microRNAs in Alzheimer's disease: Focus on synapse and mitochondria. Ageing Res Rev 2022; 73:101529. [PMID: 34813976 PMCID: PMC8692431 DOI: 10.1016/j.arr.2021.101529] [Citation(s) in RCA: 69] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 10/17/2021] [Accepted: 11/16/2021] [Indexed: 01/03/2023]
Abstract
Alzheimer's disease (AD) is the most common cause of dementia and is currently one of the biggest public health concerns in the world. Mitochondrial dysfunction in neurons is one of the major hallmarks of AD. Emerging evidence suggests that mitochondrial miRNAs potentially play important roles in the mitochondrial dysfunctions, focusing on synapse in AD progression. In this meta-analysis paper, a comprehensive literature review was conducted to identify and discuss the (1) role of mitochondrial miRNAs that regulate mitochondrial and synaptic functions; (2) the role of various factors such as mitochondrial dynamics, biogenesis, calcium signaling, biological sex, and aging on synapse and mitochondrial function; (3) how synapse damage and mitochondrial dysfunctions contribute to AD; (4) the structure and function of synapse and mitochondria in the disease process; (5) latest research developments in synapse and mitochondria in healthy and disease states; and (6) therapeutic strategies that improve synaptic and mitochondrial functions in AD. Specifically, we discussed how differences in the expression of mitochondrial miRNAs affect ATP production, oxidative stress, mitophagy, bioenergetics, mitochondrial dynamics, synaptic activity, synaptic plasticity, neurotransmission, and synaptotoxicity in neurons observed during AD. However, more research is needed to confirm the locations and roles of individual mitochondrial miRNAs in the development of AD.
Collapse
Affiliation(s)
- Prashanth Gowda
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Neuroscience & Pharmacology, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Neurology, Departments of School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Public Health Department of Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - P Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Neuroscience & Pharmacology, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Neurology, Departments of School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Public Health Department of Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Department of Speech, Language and Hearing Sciences, School Health Professions, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
| | - Subodh Kumar
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
| |
Collapse
|
16
|
Jadiya P, Garbincius JF, Elrod JW. Reappraisal of metabolic dysfunction in neurodegeneration: Focus on mitochondrial function and calcium signaling. Acta Neuropathol Commun 2021; 9:124. [PMID: 34233766 PMCID: PMC8262011 DOI: 10.1186/s40478-021-01224-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 06/27/2021] [Indexed: 02/06/2023] Open
Abstract
The cellular and molecular mechanisms that drive neurodegeneration remain poorly defined. Recent clinical trial failures, difficult diagnosis, uncertain etiology, and lack of curative therapies prompted us to re-examine other hypotheses of neurodegenerative pathogenesis. Recent reports establish that mitochondrial and calcium dysregulation occur early in many neurodegenerative diseases (NDDs), including Alzheimer's disease, Parkinson's disease, Huntington's disease, and others. However, causal molecular evidence of mitochondrial and metabolic contributions to pathogenesis remains insufficient. Here we summarize the data supporting the hypothesis that mitochondrial and metabolic dysfunction result from diverse etiologies of neuropathology. We provide a current and comprehensive review of the literature and interpret that defective mitochondrial metabolism is upstream and primary to protein aggregation and other dogmatic hypotheses of NDDs. Finally, we identify gaps in knowledge and propose therapeutic modulation of mCa2+ exchange and mitochondrial function to alleviate metabolic impairments and treat NDDs.
Collapse
Affiliation(s)
- Pooja Jadiya
- Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, 3500 N Broad St, MERB 949, Philadelphia, PA, 19140, USA
| | - Joanne F Garbincius
- Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, 3500 N Broad St, MERB 949, Philadelphia, PA, 19140, USA
| | - John W Elrod
- Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, 3500 N Broad St, MERB 949, Philadelphia, PA, 19140, USA.
| |
Collapse
|
17
|
Morciano G, Naumova N, Koprowski P, Valente S, Sardão VA, Potes Y, Rimessi A, Wieckowski MR, Oliveira PJ. The mitochondrial permeability transition pore: an evolving concept critical for cell life and death. Biol Rev Camb Philos Soc 2021; 96:2489-2521. [PMID: 34155777 DOI: 10.1111/brv.12764] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 05/28/2021] [Accepted: 06/04/2021] [Indexed: 02/06/2023]
Abstract
In this review, we summarize current knowledge of perhaps one of the most intriguing phenomena in cell biology: the mitochondrial permeability transition pore (mPTP). This phenomenon, which was initially observed as a sudden loss of inner mitochondrial membrane impermeability caused by excessive calcium, has been studied for almost 50 years, and still no definitive answer has been provided regarding its mechanisms. From its initial consideration as an in vitro artifact to the current notion that the mPTP is a phenomenon with physiological and pathological implications, a long road has been travelled. We here summarize the role of mitochondria in cytosolic calcium control and the evolving concepts regarding the mitochondrial permeability transition (mPT) and the mPTP. We show how the evolving mPTP models and mechanisms, which involve many proposed mitochondrial protein components, have arisen from methodological advances and more complex biological models. We describe how scientific progress and methodological advances have allowed milestone discoveries on mPTP regulation and composition and its recognition as a valid target for drug development and a critical component of mitochondrial biology.
Collapse
Affiliation(s)
- Giampaolo Morciano
- Maria Cecilia Hospital, GVM Care & Research, Via Corriera 1, Cotignola, Ravenna, 48033, Italy.,Department of Medical Sciences, Section of Experimental Medicine, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Via Fossato di Mortara 70, Ferrara, 44121, Italy
| | - Natalia Naumova
- Department of Cardiac Thoracic and Vascular Sciences and Public Health, University of Padua Medical School, Via Giustiniani 2, Padova, 35128, Italy
| | - Piotr Koprowski
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, Warsaw, 02-093, Poland
| | - Sara Valente
- CNC - Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, UC Biotech, Biocant Park, Cantanhede, 3060-197, Portugal
| | - Vilma A Sardão
- CNC - Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, UC Biotech, Biocant Park, Cantanhede, 3060-197, Portugal
| | - Yaiza Potes
- Laboratory of Mitochondrial Biology and Metabolism, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, Warsaw, 02-093, Poland
| | - Alessandro Rimessi
- Department of Medical Sciences, Section of Experimental Medicine, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Via Fossato di Mortara 70, Ferrara, 44121, Italy
| | - Mariusz R Wieckowski
- Laboratory of Mitochondrial Biology and Metabolism, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, Warsaw, 02-093, Poland
| | - Paulo J Oliveira
- CNC - Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, UC Biotech, Biocant Park, Cantanhede, 3060-197, Portugal
| |
Collapse
|
18
|
Stavsky A, Stoler O, Kostic M, Katoshevsky T, Assali EA, Savic I, Amitai Y, Prokisch H, Leiz S, Daumer-Haas C, Fleidervish I, Perocchi F, Gitler D, Sekler I. Aberrant activity of mitochondrial NCLX is linked to impaired synaptic transmission and is associated with mental retardation. Commun Biol 2021; 4:666. [PMID: 34079053 PMCID: PMC8172942 DOI: 10.1038/s42003-021-02114-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 03/22/2021] [Indexed: 02/04/2023] Open
Abstract
Calcium dynamics control synaptic transmission. Calcium triggers synaptic vesicle fusion, determines release probability, modulates vesicle recycling, participates in long-term plasticity and regulates cellular metabolism. Mitochondria, the main source of cellular energy, serve as calcium signaling hubs. Mitochondrial calcium transients are primarily determined by the balance between calcium influx, mediated by the mitochondrial calcium uniporter (MCU), and calcium efflux through the sodium/lithium/calcium exchanger (NCLX). We identified a human recessive missense SLC8B1 variant that impairs NCLX activity and is associated with severe mental retardation. On this basis, we examined the effect of deleting NCLX in mice on mitochondrial and synaptic calcium homeostasis, synaptic activity, and plasticity. Neuronal mitochondria exhibited basal calcium overload, membrane depolarization, and a reduction in the amplitude and rate of calcium influx and efflux. We observed smaller cytoplasmic calcium transients in the presynaptic terminals of NCLX-KO neurons, leading to a lower probability of release and weaker transmission. In agreement, synaptic facilitation in NCLX-KO hippocampal slices was enhanced. Importantly, deletion of NCLX abolished long term potentiation of Schaffer collateral synapses. Our results show that NCLX controls presynaptic calcium transients that are crucial for defining synaptic strength as well as short- and long-term plasticity, key elements of learning and memory processes.
Collapse
Affiliation(s)
- Alexandra Stavsky
- Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Ohad Stoler
- Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Marko Kostic
- Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Tomer Katoshevsky
- Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Essam A Assali
- Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Ivana Savic
- Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Yael Amitai
- Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Holger Prokisch
- Institute of Human Genetics, School of Medicine, Technische Universität München, Munich, Germany
- Institute of Neurogenomics, Helmholtz Zentrum München, Munich, Germany
| | - Steffen Leiz
- Department of Pediatrics, Klinikum Dritter Orden, Munich, Germany
| | | | - Ilya Fleidervish
- Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Fabiana Perocchi
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center (HDC), Helmholtz Zentrum München, Munich, Germany
- Munich Cluster for Systems Neurology, Munich, Germany
| | - Daniel Gitler
- Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
- Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
| | - Israel Sekler
- Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
- Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
| |
Collapse
|
19
|
Modesti L, Danese A, Angela Maria Vitto V, Ramaccini D, Aguiari G, Gafà R, Lanza G, Giorgi C, Pinton P. Mitochondrial Ca 2+ Signaling in Health, Disease and Therapy. Cells 2021; 10:cells10061317. [PMID: 34070562 PMCID: PMC8230075 DOI: 10.3390/cells10061317] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 05/21/2021] [Accepted: 05/22/2021] [Indexed: 12/12/2022] Open
Abstract
The divalent cation calcium (Ca2+) is considered one of the main second messengers inside cells and acts as the most prominent signal in a plethora of biological processes. Its homeostasis is guaranteed by an intricate and complex system of channels, pumps, and exchangers. In this context, by regulating cellular Ca2+ levels, mitochondria control both the uptake and release of Ca2+. Therefore, at the mitochondrial level, Ca2+ plays a dual role, participating in both vital physiological processes (ATP production and regulation of mitochondrial metabolism) and pathophysiological processes (cell death, cancer progression and metastasis). Hence, it is not surprising that alterations in mitochondrial Ca2+ (mCa2+) pathways or mutations in Ca2+ transporters affect the activities and functions of the entire cell. Indeed, it is widely recognized that dysregulation of mCa2+ signaling leads to various pathological scenarios, including cancer, neurological defects and cardiovascular diseases (CVDs). This review summarizes the current knowledge on the regulation of mCa2+ homeostasis, the related mechanisms and the significance of this regulation in physiology and human diseases. We also highlight strategies aimed at remedying mCa2+ dysregulation as promising therapeutical approaches.
Collapse
Affiliation(s)
- Lorenzo Modesti
- Laboratory for Technologies of Advanced Therapies (LTTA), Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (L.M.); (A.D.); (V.A.M.V.); (D.R.); (C.G.)
| | - Alberto Danese
- Laboratory for Technologies of Advanced Therapies (LTTA), Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (L.M.); (A.D.); (V.A.M.V.); (D.R.); (C.G.)
| | - Veronica Angela Maria Vitto
- Laboratory for Technologies of Advanced Therapies (LTTA), Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (L.M.); (A.D.); (V.A.M.V.); (D.R.); (C.G.)
| | - Daniela Ramaccini
- Laboratory for Technologies of Advanced Therapies (LTTA), Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (L.M.); (A.D.); (V.A.M.V.); (D.R.); (C.G.)
| | - Gianluca Aguiari
- Department of Neuroscience and Rehabilitation, University of Ferrara, 44121 Ferrara, Italy;
| | - Roberta Gafà
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (R.G.); (G.L.)
| | - Giovanni Lanza
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (R.G.); (G.L.)
| | - Carlotta Giorgi
- Laboratory for Technologies of Advanced Therapies (LTTA), Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (L.M.); (A.D.); (V.A.M.V.); (D.R.); (C.G.)
| | - Paolo Pinton
- Laboratory for Technologies of Advanced Therapies (LTTA), Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (L.M.); (A.D.); (V.A.M.V.); (D.R.); (C.G.)
- Correspondence: ; Tel.: +39-0532-455802
| |
Collapse
|
20
|
Assali EA, Sekler I. Sprinkling salt on mitochondria: The metabolic and pathophysiological roles of mitochondrial Na + signaling mediated by NCLX. Cell Calcium 2021; 97:102416. [PMID: 34062329 DOI: 10.1016/j.ceca.2021.102416] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/25/2021] [Accepted: 04/26/2021] [Indexed: 11/25/2022]
Abstract
NCLX, the mitochondrial Na+/Ca2+ transporter is a key player in Ca2+ signaling. However, its role in Na+ signaling is poorly understood. In this review we focus on Na+ signaling by NCLX, and discuss recent physiological and pathophysiological roles attributed to the Na+ influx into mitochondria.
Collapse
Affiliation(s)
- Essam A Assali
- Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University, Beer-Sheva, 84105, Israel
| | - Israel Sekler
- Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University, Beer-Sheva, 84105, Israel.
| |
Collapse
|
21
|
Woodley SB, Mould RR, Sahuri-Arisoylu M, Kalampouka I, Booker A, Bell JD. Mitochondrial Function as a Potential Tool for Assessing Function, Quality and Adulteration in Medicinal Herbal Teas. Front Pharmacol 2021; 12:660938. [PMID: 33981240 PMCID: PMC8107435 DOI: 10.3389/fphar.2021.660938] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 03/29/2021] [Indexed: 11/13/2022] Open
Abstract
Quality control has been a significant issue in herbal medicine since herbs became widely used to heal. Modern technologies have improved the methods of evaluating the quality of medicinal herbs but the methods of adulterating them have also grown in sophistication. In this paper we undertook a comprehensive literature search to identify the key analytical techniques used in the quality control of herbal medicine, reviewing their uses and limitations. We also present a new tool, based on mitochondrial profiling, that can be used to measure medicinal herbal quality. Besides being fundamental to the energy metabolism required for most cellular activities, mitochondria play a direct role in cellular signalling, apoptosis, stress responses, inflammation, cancer, ageing, and neurological function, mirroring some of the most common reasons people take herbal medicines. A fingerprint of the specific mitochondrial effects of medicinal herbs can be documented in order to assess their potential efficacy, detect adulterations that modulate these effects and determine the relative potency of batches. Furthermore, through this method it will be possible to assess whole herbs or complex formulas thus avoiding the issues inherent in identifying active ingredients which may be complex or unknown. Thus, while current analytical methods focus on determining the chemical quality of herbal medicines, including adulteration and contamination, mitochondrial functional analysis offers a new way of determining the quality of plant derived products that is more closely linked to the biological activity of a product and its potential clinical effectiveness.
Collapse
Affiliation(s)
- Steven B Woodley
- Research Centre for Optimal Health, School of Life Sciences, College of Liberal Arts and Sciences, University of Westminster, London, United Kingdom
| | - Rhys R Mould
- Research Centre for Optimal Health, School of Life Sciences, College of Liberal Arts and Sciences, University of Westminster, London, United Kingdom
| | - Meliz Sahuri-Arisoylu
- Research Centre for Optimal Health, School of Life Sciences, College of Liberal Arts and Sciences, University of Westminster, London, United Kingdom.,Health Innovation Ecosystem, University of Westminster, London, United Kingdom
| | - Ifigeneia Kalampouka
- Research Centre for Optimal Health, School of Life Sciences, College of Liberal Arts and Sciences, University of Westminster, London, United Kingdom
| | - Anthony Booker
- Research Centre for Optimal Health, School of Life Sciences, College of Liberal Arts and Sciences, University of Westminster, London, United Kingdom.,Research Group 'Pharmacognosy and Phytotherapy', UCL School of Pharmacy, London, United Kingdom
| | - Jimmy D Bell
- Research Centre for Optimal Health, School of Life Sciences, College of Liberal Arts and Sciences, University of Westminster, London, United Kingdom
| |
Collapse
|
22
|
Tamarit J, Britti E, Delaspre F, Medina-Carbonero M, Sanz-Alcázar A, Cabiscol E, Ros J. Mitochondrial iron and calcium homeostasis in Friedreich ataxia. IUBMB Life 2021; 73:543-553. [PMID: 33675183 DOI: 10.1002/iub.2457] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/08/2021] [Accepted: 02/08/2021] [Indexed: 12/13/2022]
Abstract
Friedreich Ataxia is a neuro-cardiodegenerative disease caused by the deficiency of frataxin, a mitochondrial protein. Many evidences indicate that frataxin deficiency causes an unbalance of iron homeostasis. Nevertheless, in the last decade many results also highlighted the importance of calcium unbalance in the deleterious downstream effects caused by frataxin deficiency. In this review, the role of these two metals has been gathered to give a whole view of how iron and calcium dyshomeostasys impacts on cellular functions and, as a result, which strategies can be followed to find an effective therapy for the disease.
Collapse
Affiliation(s)
- Jordi Tamarit
- Dept. Ciències Mèdiques Bàsiques, Universitat de Lleida, IRBLleida, Lleida, Spain
| | - Elena Britti
- Dept. Ciències Mèdiques Bàsiques, Universitat de Lleida, IRBLleida, Lleida, Spain
| | - Fabien Delaspre
- Dept. Ciències Mèdiques Bàsiques, Universitat de Lleida, IRBLleida, Lleida, Spain
| | | | - Arabela Sanz-Alcázar
- Dept. Ciències Mèdiques Bàsiques, Universitat de Lleida, IRBLleida, Lleida, Spain
| | - Elisa Cabiscol
- Dept. Ciències Mèdiques Bàsiques, Universitat de Lleida, IRBLleida, Lleida, Spain
| | - Joaquim Ros
- Dept. Ciències Mèdiques Bàsiques, Universitat de Lleida, IRBLleida, Lleida, Spain
| |
Collapse
|
23
|
Redolfi N, Greotti E, Zanetti G, Hochepied T, Fasolato C, Pendin D, Pozzan T. A New Transgenic Mouse Line for Imaging Mitochondrial Calcium Signals. FUNCTION 2021; 2:zqab012. [PMID: 35330679 PMCID: PMC8788866 DOI: 10.1093/function/zqab012] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/19/2021] [Accepted: 02/24/2021] [Indexed: 01/06/2023] Open
Abstract
Mitochondria play a key role in cellular calcium (Ca2+) homeostasis. Dysfunction in the organelle Ca2+ handling appears to be involved in several pathological conditions, ranging from neurodegenerative diseases, cardiac failure and malignant transformation. In the past years, several targeted green fluorescent protein (GFP)-based genetically encoded Ca2+ indicators (GECIs) have been developed to study Ca2+ dynamics inside mitochondria of living cells. Surprisingly, while there is a number of transgenic mice expressing different types of cytosolic GECIs, few examples are available expressing mitochondria-localized GECIs, and none of them exhibits adequate spatial resolution. Here we report the generation and characterization of a transgenic mouse line (hereafter called mt-Cam) for the controlled expression of a mitochondria-targeted, Förster resonance energy transfer (FRET)-based Cameleon, 4mtD3cpv. To achieve this goal, we engineered the mouse ROSA26 genomic locus by inserting the optimized sequence of 4mtD3cpv, preceded by a loxP-STOP-loxP sequence. The probe can be readily expressed in a tissue-specific manner upon Cre recombinase-mediated excision, obtainable with a single cross. Upon ubiquitous Cre expression, the Cameleon is specifically localized in the mitochondrial matrix of cells in all the organs and tissues analyzed, from embryos to aged animals. Ca2+ imaging experiments performed in vitro and ex vivo in brain slices confirmed the functionality of the probe in isolated cells and live tissues. This new transgenic mouse line allows the study of mitochondrial Ca2+ dynamics in different tissues with no invasive intervention (such as viral infection or electroporation), potentially allowing simple calibration of the fluorescent signals in terms of mitochondrial Ca2+ concentration ([Ca2+]).
Collapse
Affiliation(s)
- Nelly Redolfi
- Department of Biomedical Sciences, University of Padua, Via U. Bassi 58/B, 35131 Padua, Italy
| | - Elisa Greotti
- Department of Biomedical Sciences, University of Padua, Via U. Bassi 58/B, 35131 Padua, Italy
- Neuroscience Institute, Italian National Research Council (CNR), Via U. Bassi 58/B, 35131 Padua, Italy
| | - Giulia Zanetti
- Department of Biomedical Sciences, University of Padua, Via U. Bassi 58/B, 35131 Padua, Italy
| | - Tino Hochepied
- VIB Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Cristina Fasolato
- Department of Biomedical Sciences, University of Padua, Via U. Bassi 58/B, 35131 Padua, Italy
| | - Diana Pendin
- Department of Biomedical Sciences, University of Padua, Via U. Bassi 58/B, 35131 Padua, Italy
- Neuroscience Institute, Italian National Research Council (CNR), Via U. Bassi 58/B, 35131 Padua, Italy
| | - Tullio Pozzan
- Department of Biomedical Sciences, University of Padua, Via U. Bassi 58/B, 35131 Padua, Italy
- Neuroscience Institute, Italian National Research Council (CNR), Via U. Bassi 58/B, 35131 Padua, Italy
- Veneto Institute of Molecular Medicine (VIMM), Via G. Orus 2, 35129 Padua, Italy
| |
Collapse
|
24
|
Neuronal Signaling: A reflection on the Biochemical Society's newest journal and an exciting outlook on its next steps. Neuronal Signal 2021; 5:NS20210007. [PMID: 33585040 PMCID: PMC7871031 DOI: 10.1042/ns20210007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 01/29/2021] [Accepted: 02/01/2021] [Indexed: 11/17/2022] Open
Abstract
The inaugural Editor-in-Chief of Neuronal Signaling, Aideen M. Sullivan, reflects on the journal's journey so far and welcomes the new Editor-in-Chief, Clare Stanford, as she shares some of the exciting initiatives and plans for its future.
Collapse
|
25
|
Singh S, Mabalirajan U. Mitochondrial calcium in command of juggling myriads of cellular functions. Mitochondrion 2021; 57:108-118. [PMID: 33412334 DOI: 10.1016/j.mito.2020.12.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 12/14/2020] [Accepted: 12/30/2020] [Indexed: 02/07/2023]
Abstract
The puzzling traits related to the evolutionary aspect of mitochondria, still positions the mitochondrion at the center of the research. The theory of endosymbiosis popularized by Lynn Margulis in 1967 gained prominence wherein the mitochondrion is believed to have emerged as a prokaryote and later integrated into the eukaryotic system. This semi-autonomous organelle has bagged two responsible but perilous cellular functions: a) energy metabolism, and b) calcium buffering, though both are interdependent. While most of the mitochondrial functions are saliently regulated by calcium ions, the calcium buffering role of mitochondria decides the cellular fate. Though calcium overload in few mitochondria makes them dysfunctional at the early stage of cellular stress, this doesn't lead to sudden cell death due to critical checkpoints like mitophagy, mitochondrial fusion, etc. Thus, mitochondrion juggles with multiple crucial cellular functions with its calcium buffering skill.
Collapse
Affiliation(s)
- Sabita Singh
- Molecular Pathobiology Of Respiratory Diseases, Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Ulaganathan Mabalirajan
- Molecular Pathobiology Of Respiratory Diseases, Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India.
| |
Collapse
|
26
|
Ali M, Boosi Narayana Rao K, Majumder P, Sarkar R, Mapa K. Alterations in inter-organelle crosstalk and Ca 2+ signaling through mitochondria during proteotoxic stresses. Mitochondrion 2020; 57:37-46. [PMID: 33340711 DOI: 10.1016/j.mito.2020.12.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 11/25/2020] [Accepted: 12/10/2020] [Indexed: 01/06/2023]
Abstract
BACKGROUND Biogenesis and function of mitochondria is profoundly dependent on cytosolic translation of mitochondrial pre-proteins and its subsequent translocation and folding inside the organelle. Continuous exposure of non-native precursor proteins, exposure to damaging by-products of oxidative phosphorylation, load of mis-targeted or misfolded proteins from neighbouring compartments and unremitting demand of communication between mitochondrial and nuclear genomes, continuously pose proteotoxic threats to the organelle. Our knowledge of cellular mechanisms to cope up with such impending threat of proteotoxicity to mitochondria, is currently evolving. In recent years, several unique response and survival pathways have been discovered shedding light on cellular strategies to cope with stressed and dysfunctional mitochondria. As mitochondria compulsorily communicate with nucleus, cytosol and endoplasmic reticulum (ER) for its own biogenesis and function and in turn maintain critical cellular processes for survival, any impairment in communication by stressed or dysfunctional mitochondria may end up with fatal consequences. DISCUSSION AND IMPLICATION In this review, we have discussed about possible sources of mitochondrial proteotoxicity and the recent developments regarding cellular strategies to counter such stress to overcome dysfunctions of the organelle. Mitochondrial communication with neighbouring subcellular compartments like ER and cytosol during proteotoxic stress have been explored. In the context of mitochondrial proteotoxicity, alterations of crucial inter-organelle connections like ER-mitochondria contact sites and its implication on mitochondrial signaling activity like Ca2+ signaling have been dissected. Furthermore, an overview of pathological conditions, mainly neurodegenerative disorders that are known to be associated with mitochondrial proteotoxicity and Ca2+ dysregulation has been presented.
Collapse
Affiliation(s)
- Mudassar Ali
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, Greater Noida, Gautam Buddha Nagar, Uttar Pradesh 201314, India
| | - Kannan Boosi Narayana Rao
- Proteomics and Structural Biology Unit, CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi 110025, India; Academy of Scientific and Innovative Research, CSIR-HRDG, Ghaziabad, Uttar Pradesh 201002, India
| | - Priyanka Majumder
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, Greater Noida, Gautam Buddha Nagar, Uttar Pradesh 201314, India
| | - Rajasri Sarkar
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, Greater Noida, Gautam Buddha Nagar, Uttar Pradesh 201314, India
| | - Koyeli Mapa
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, Greater Noida, Gautam Buddha Nagar, Uttar Pradesh 201314, India; Academy of Scientific and Innovative Research, CSIR-HRDG, Ghaziabad, Uttar Pradesh 201002, India.
| |
Collapse
|
27
|
Naumova N, Šachl R. Regulation of Cell Death by Mitochondrial Transport Systems of Calcium and Bcl-2 Proteins. MEMBRANES 2020; 10:E299. [PMID: 33096926 PMCID: PMC7590060 DOI: 10.3390/membranes10100299] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/16/2020] [Accepted: 10/19/2020] [Indexed: 12/13/2022]
Abstract
Mitochondria represent the fundamental system for cellular energy metabolism, by not only supplying energy in the form of ATP, but also by affecting physiology and cell death via the regulation of calcium homeostasis and the activity of Bcl-2 proteins. A lot of research has recently been devoted to understanding the interplay between Bcl-2 proteins, the regulation of these interactions within the cell, and how these interactions lead to the changes in calcium homeostasis. However, the role of Bcl-2 proteins in the mediation of mitochondrial calcium homeostasis, and therefore the induction of cell death pathways, remain underestimated and are still not well understood. In this review, we first summarize our knowledge about calcium transport systems in mitochondria, which, when miss-regulated, can induce necrosis. We continue by reviewing and analyzing the functions of Bcl-2 proteins in apoptosis. Finally, we link these two regulatory mechanisms together, exploring the interactions between the mitochondrial Ca2+ transport systems and Bcl-2 proteins, both capable of inducing cell death, with the potential to determine the cell death pathway-either the apoptotic or the necrotic one.
Collapse
Affiliation(s)
| | - Radek Šachl
- J. Heyrovský Institute of Physical Chemistry, Czech Academy of Sciences, 182 23 Prague, Czech Republic;
| |
Collapse
|
28
|
Rodríguez LR, Calap-Quintana P, Lapeña-Luzón T, Pallardó FV, Schneuwly S, Navarro JA, Gonzalez-Cabo P. Oxidative stress modulates rearrangement of endoplasmic reticulum-mitochondria contacts and calcium dysregulation in a Friedreich's ataxia model. Redox Biol 2020; 37:101762. [PMID: 33128998 PMCID: PMC7585950 DOI: 10.1016/j.redox.2020.101762] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 10/07/2020] [Accepted: 10/12/2020] [Indexed: 12/13/2022] Open
Abstract
Friedreich ataxia (FRDA) is a neurodegenerative disorder characterized by neuromuscular and neurological manifestations. It is caused by mutations in the FXN gene, which results in loss of the mitochondrial protein frataxin. Endoplasmic Reticulum-mitochondria associated membranes (MAMs) are inter-organelle structures involved in the regulation of essential cellular processes, including lipid metabolism and calcium signaling. In the present study, we have analyzed in both, unicellular and multicellular models of FRDA, calcium management and integrity of MAMs. We observed that function of MAMs is compromised in our cellular model of FRDA, which was improved upon treatment with antioxidants. In agreement, promoting mitochondrial calcium uptake was sufficient to restore several defects caused by frataxin deficiency in Drosophila Melanogaster. Remarkably, our findings describe for the first time frataxin as a member of the protein network of MAMs, where interacts with two of the main proteins implicated in endoplasmic reticulum-mitochondria communication. These results suggest a new role of frataxin, indicate that FRDA goes beyond mitochondrial defects and highlight MAMs as novel therapeutic candidates to improve patient's conditions.
Collapse
Affiliation(s)
- Laura R Rodríguez
- Department of Physiology, Faculty of Medicine and Dentistry. University of Valencia-INCLIVA, Valencia, 46010, Spain; Associated Unit for Rare Diseases INCLIVA-CIPF, Valencia, Spain
| | - Pablo Calap-Quintana
- Department of Physiology, Faculty of Medicine and Dentistry. University of Valencia-INCLIVA, Valencia, 46010, Spain; Associated Unit for Rare Diseases INCLIVA-CIPF, Valencia, Spain; CIBER de Enfermedades Raras (CIBERER), Valencia, Spain
| | - Tamara Lapeña-Luzón
- Department of Physiology, Faculty of Medicine and Dentistry. University of Valencia-INCLIVA, Valencia, 46010, Spain; Associated Unit for Rare Diseases INCLIVA-CIPF, Valencia, Spain; CIBER de Enfermedades Raras (CIBERER), Valencia, Spain
| | - Federico V Pallardó
- Department of Physiology, Faculty of Medicine and Dentistry. University of Valencia-INCLIVA, Valencia, 46010, Spain; Associated Unit for Rare Diseases INCLIVA-CIPF, Valencia, Spain; CIBER de Enfermedades Raras (CIBERER), Valencia, Spain
| | - Stephan Schneuwly
- Institute of Zoology, Universitaetsstrasse 31, University of Regensburg, 93040, Regensburg, Germany
| | - Juan A Navarro
- Institute of Zoology, Universitaetsstrasse 31, University of Regensburg, 93040, Regensburg, Germany; INCLIVA Biomedial Research Institute, Valencia, Spain
| | - Pilar Gonzalez-Cabo
- Department of Physiology, Faculty of Medicine and Dentistry. University of Valencia-INCLIVA, Valencia, 46010, Spain; Associated Unit for Rare Diseases INCLIVA-CIPF, Valencia, Spain; CIBER de Enfermedades Raras (CIBERER), Valencia, Spain.
| |
Collapse
|
29
|
Mitochondrial Calcium Deregulation in the Mechanism of Beta-Amyloid and Tau Pathology. Cells 2020; 9:cells9092135. [PMID: 32967303 PMCID: PMC7564294 DOI: 10.3390/cells9092135] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/18/2020] [Accepted: 09/19/2020] [Indexed: 02/06/2023] Open
Abstract
Aggregation and deposition of β-amyloid and/or tau protein are the key neuropathological features in neurodegenerative disorders such as Alzheimer's disease (AD) and other tauopathies including frontotemporal dementia (FTD). The interaction between oxidative stress, mitochondrial dysfunction and the impairment of calcium ions (Ca2+) homeostasis induced by misfolded tau and β-amyloid plays an important role in the progressive neuronal loss occurring in specific areas of the brain. In addition to the control of bioenergetics and ROS production, mitochondria are fine regulators of the cytosolic Ca2+ homeostasis that induce vital signalling mechanisms in excitable cells such as neurons. Impairment in the mitochondrial Ca2+ uptake through the mitochondrial Ca2+ uniporter (MCU) or release through the Na+/Ca2+ exchanger may lead to mitochondrial Ca2+ overload and opening of the permeability transition pore inducing neuronal death. Recent evidence suggests an important role for these mechanisms as the underlying causes for neuronal death in β-amyloid and tau pathology. The present review will focus on the mechanisms that lead to cytosolic and especially mitochondrial Ca2+ disturbances occurring in AD and tau-induced FTD, and propose possible therapeutic interventions for these disorders.
Collapse
|
30
|
Rodríguez LR, Lapeña T, Calap-Quintana P, Moltó MD, Gonzalez-Cabo P, Navarro Langa JA. Antioxidant Therapies and Oxidative Stress in Friedreich´s Ataxia: The Right Path or Just a Diversion? Antioxidants (Basel) 2020; 9:E664. [PMID: 32722309 PMCID: PMC7465446 DOI: 10.3390/antiox9080664] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 07/17/2020] [Accepted: 07/19/2020] [Indexed: 12/12/2022] Open
Abstract
Friedreich´s ataxia is the commonest autosomal recessive ataxia among population of European descent. Despite the huge advances performed in the last decades, a cure still remains elusive. One of the most studied hallmarks of the disease is the increased production of oxidative stress markers in patients and models. This feature has been the motivation to develop treatments that aim to counteract such boost of free radicals and to enhance the production of antioxidant defenses. In this work, we present and critically review those "antioxidant" drugs that went beyond the disease´s models and were approved for its application in clinical trials. The evaluation of these trials highlights some crucial aspects of the FRDA research. On the one hand, the analysis contributes to elucidate whether oxidative stress plays a central role or whether it is only an epiphenomenon. On the other hand, it comments on some limitations in the current trials that complicate the analysis and interpretation of their outcome. We also include some suggestions that will be interesting to implement in future studies and clinical trials.
Collapse
Affiliation(s)
- Laura R. Rodríguez
- Department of Physiology, Faculty of Medicine and Dentistry, Universitat de València-INCLIVA, 46010 Valencia, Spain; (L.R.R.); (T.L.); (P.C.-Q.)
- Associated Unit for Rare Diseases INCLIVA-CIPF, 46010 Valencia, Spain
| | - Tamara Lapeña
- Department of Physiology, Faculty of Medicine and Dentistry, Universitat de València-INCLIVA, 46010 Valencia, Spain; (L.R.R.); (T.L.); (P.C.-Q.)
- Associated Unit for Rare Diseases INCLIVA-CIPF, 46010 Valencia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 46010 Valencia, Spain
| | - Pablo Calap-Quintana
- Department of Physiology, Faculty of Medicine and Dentistry, Universitat de València-INCLIVA, 46010 Valencia, Spain; (L.R.R.); (T.L.); (P.C.-Q.)
- Associated Unit for Rare Diseases INCLIVA-CIPF, 46010 Valencia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 46010 Valencia, Spain
| | - María Dolores Moltó
- Department of Genetics, Universitat de València-INCLIVA, 46100 Valencia, Spain;
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), 46100 Valencia, Spain
| | - Pilar Gonzalez-Cabo
- Department of Physiology, Faculty of Medicine and Dentistry, Universitat de València-INCLIVA, 46010 Valencia, Spain; (L.R.R.); (T.L.); (P.C.-Q.)
- Associated Unit for Rare Diseases INCLIVA-CIPF, 46010 Valencia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 46010 Valencia, Spain
| | | |
Collapse
|
31
|
Öztürk Z, O’Kane CJ, Pérez-Moreno JJ. Axonal Endoplasmic Reticulum Dynamics and Its Roles in Neurodegeneration. Front Neurosci 2020; 14:48. [PMID: 32116502 PMCID: PMC7025499 DOI: 10.3389/fnins.2020.00048] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 01/13/2020] [Indexed: 12/13/2022] Open
Abstract
The physical continuity of axons over long cellular distances poses challenges for their maintenance. One organelle that faces this challenge is endoplasmic reticulum (ER); unlike other intracellular organelles, this forms a physically continuous network throughout the cell, with a single membrane and a single lumen. In axons, ER is mainly smooth, forming a tubular network with occasional sheets or cisternae and low amounts of rough ER. It has many potential roles: lipid biosynthesis, glucose homeostasis, a Ca2+ store, protein export, and contacting and regulating other organelles. This tubular network structure is determined by ER-shaping proteins, mutations in some of which are causative for neurodegenerative disorders such as hereditary spastic paraplegia (HSP). While axonal ER shares many features with the tubular ER network in other contexts, these features must be adapted to the long and narrow dimensions of axons. ER appears to be physically continuous throughout axons, over distances that are enormous on a subcellular scale. It is therefore a potential channel for long-distance or regional communication within neurons, independent of action potentials or physical transport of cargos, but involving its physiological roles such as Ca2+ or organelle homeostasis. Despite its apparent stability, axonal ER is highly dynamic, showing features like anterograde and retrograde transport, potentially reflecting continuous fusion and breakage of the network. Here we discuss the transport processes that must contribute to this dynamic behavior of ER. We also discuss the model that these processes underpin a homeostatic process that ensures both enough ER to maintain continuity of the network and repair breaks in it, but not too much ER that might disrupt local cellular physiology. Finally, we discuss how failure of ER organization in axons could lead to axon degenerative diseases, and how a requirement for ER continuity could make distal axons most susceptible to degeneration in conditions that disrupt ER continuity.
Collapse
Affiliation(s)
| | - Cahir J. O’Kane
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | | |
Collapse
|
32
|
Waldeck-Weiermair M, Gottschalk B, Madreiter-Sokolowski CT, Ramadani-Muja J, Ziomek G, Klec C, Burgstaller S, Bischof H, Depaoli MR, Eroglu E, Malli R, Graier WF. Development and Application of Sub-Mitochondrial Targeted Ca 2 + Biosensors. Front Cell Neurosci 2019; 13:449. [PMID: 31636543 PMCID: PMC6788349 DOI: 10.3389/fncel.2019.00449] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 09/20/2019] [Indexed: 12/20/2022] Open
Abstract
Mitochondrial Ca2+ uptake into the mitochondrial matrix is a well-established mechanism. However, the sub-organellar Ca2+ kinetics remain elusive. In the present work we identified novel site-specific targeting sequences for the intermembrane space (IMS) and the cristae lumen (CL). We used these novel targeting peptides to develop green- and red- Ca2+ biosensors targeted to the IMS and to the CL. Based on their distinctive spectral properties, and comparable sensitivities these novel constructs were suitable to visualize Ca2+-levels in various (sub) compartments in a multi-chromatic manner. Functional studies that applied these new biosensors revealed that knockdown of MCU and EMRE yielded elevated Ca2+ levels inside the CL but not the IMS in response to IP3-generating agonists. Knockdown of VDAC1, however, strongly impeded the transfer of Ca2+ through the OMM while the cytosolic Ca2+ signal remained unchanged. The novel sub-mitochondrially targeted Ca2+ biosensors proved to be suitable for Ca2+ imaging with high spatial and temporal resolution in a multi-chromatic manner allowing simultaneous measurements. These informative biosensors will facilitate efforts to dissect the complex sub-mitochondrial Ca2+ signaling under (patho)physiological conditions.
Collapse
Affiliation(s)
- Markus Waldeck-Weiermair
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| | - Benjamin Gottschalk
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| | - Corina T. Madreiter-Sokolowski
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
- Energy Metabolism Laboratory, Institute of Translational Medicine, D-HEST, Swiss Federal Institute of Technology (ETH), Zurich, Switzerland
| | - Jeta Ramadani-Muja
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| | - Gabriela Ziomek
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| | - Christiane Klec
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
- Department of Internal Medicine, Division of Oncology, Medical University of Graz, Graz, Austria
| | - Sandra Burgstaller
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| | - Helmut Bischof
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| | - Maria R. Depaoli
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| | - Emrah Eroglu
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Roland Malli
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - Wolfgang F. Graier
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| |
Collapse
|