1
|
Rubi-Fessen I, Gerbershagen K, Stenneken P, Willmes K. Early Boost of Linguistic Skills? Individualized Non-Invasive Brain Stimulation in Early Postacute Aphasia. Brain Sci 2024; 14:789. [PMID: 39199482 PMCID: PMC11353206 DOI: 10.3390/brainsci14080789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 07/26/2024] [Accepted: 07/29/2024] [Indexed: 09/01/2024] Open
Abstract
Non-invasive brain stimulation, such as transcranial direct current stimulation (tDCS), has been shown to increase the outcome of speech and language therapy (SLT) in chronic aphasia. Only a few studies have investigated the effect of add-on tDCS on SLT in the early stage of aphasia; this may be due to methodological reasons, in particular the influence of spontaneous remission and the difficulty of establishing stimulation protocols in clinical routines. Thirty-seven participants with subacute aphasia (PwA) after stroke (23 men, 14 women; mean age 62 ± 12 years; mean duration 49 ± 28 days) were included in two consecutive periods of treatment lasting two weeks each. During the first period (P1) the participants received 10 sessions of SLT, during the second period (P2) the aphasia therapy was supplemented by anodal left hemispheric 2 mA tDCS over the left hemisphere. Severity-specific language tests (Aachen Aphasia Test (AAT), n = 27 and Bielefeld Aphasia Screening-Reha (BIAS-R), n = 10) were administered before P1, between P1 and P2, and after P2. Where information was available, the results were corrected for spontaneous remission (AAT sample), and the therapy outcomes of P1 and P2 were compared. Participants' overall language abilities improved significantly during P1 and P2. However, improvement-as measured by the AAT profile level or the BIAS-R mean percentage value-during P2 (with tDCS) was significantly higher than during P1 (p < 0.001; AAT sample and p = 0.005; BIAS-R sample). Thus, tDCS protocols can be implemented in early aphasia rehabilitation. Despite the limitations of the research design, which are also discussed from an implementation science perspective, this is preliminary evidence that an individually tailored anodal tDCS can have a significant add-on effect on the outcome of behavioral aphasia therapy in subacute aphasia.
Collapse
Affiliation(s)
- Ilona Rubi-Fessen
- Neurological Rehabilitation Hospital, RehaNova Köln, 51109 Cologne, Germany;
- Department of Rehabilitation and Special Education, Faculty of Human Sciences, University of Cologne, 50931 Cologne, Germany;
| | | | - Prisca Stenneken
- Department of Rehabilitation and Special Education, Faculty of Human Sciences, University of Cologne, 50931 Cologne, Germany;
| | - Klaus Willmes
- Department of Neurology, Medical Faculty, RWTH Aachen University, 52074 Aachen, Germany;
| |
Collapse
|
2
|
Ashaie SA, Hernandez-Pavon JC, Houldin E, Cherney LR. Behavioral, Functional Imaging, and Neurophysiological Outcomes of Transcranial Direct Current Stimulation and Speech-Language Therapy in an Individual with Aphasia. Brain Sci 2024; 14:714. [PMID: 39061454 PMCID: PMC11274865 DOI: 10.3390/brainsci14070714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 07/11/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
Speech-language therapy (SLT) is the most effective technique to improve language performance in persons with aphasia. However, residual language impairments remain even after intensive SLT. Recent studies suggest that combining transcranial direct current stimulation (tDCS) with SLT may improve language performance in persons with aphasia. However, our understanding of how tDCS and SLT impact brain and behavioral relation in aphasia is poorly understood. We investigated the impact of tDCS and SLT on a behavioral measure of scripted conversation and on functional connectivity assessed with multiple methods, both resting-state functional magnetic resonance imaging (rs-fMRI) and resting-state electroencephalography (rs-EEG). An individual with aphasia received 15 sessions of 20-min cathodal tDCS to the right angular gyrus concurrent with 40 min of SLT. Performance during scripted conversation was measured three times at baseline, twice immediately post-treatment, and at 4- and 8-weeks post-treatment. rs-fMRI was measured pre-and post-3-weeks of treatment. rs-EEG was measured on treatment days 1, 5, 10, and 15. Results show that both communication performance and left hemisphere functional connectivity may improve after concurrent tDCS and SLT. Results are in line with aphasia models of language recovery that posit a beneficial role of left hemisphere perilesional areas in language recovery.
Collapse
Affiliation(s)
- Sameer A. Ashaie
- Think and Speak, Shirley Ryan AbilityLab, Chicago, IL 60611, USA; (S.A.A.); (E.H.)
- Physical Medicine and Rehabilitation, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | | | - Evan Houldin
- Think and Speak, Shirley Ryan AbilityLab, Chicago, IL 60611, USA; (S.A.A.); (E.H.)
- Physical Medicine and Rehabilitation, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Leora R. Cherney
- Think and Speak, Shirley Ryan AbilityLab, Chicago, IL 60611, USA; (S.A.A.); (E.H.)
- Physical Medicine and Rehabilitation, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
3
|
Han Y, Jing Y, Shi Y, Mo H, Wan Y, Zhou H, Deng F. The role of language-related functional brain regions and white matter tracts in network plasticity of post-stroke aphasia. J Neurol 2024; 271:3095-3115. [PMID: 38607432 DOI: 10.1007/s00415-024-12358-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/26/2024] [Accepted: 03/27/2024] [Indexed: 04/13/2024]
Abstract
The neural mechanisms underlying language recovery after a stroke remain controversial. This review aimed to summarize the plasticity and reorganization mechanisms of the language network through neuroimaging studies. Initially, we discussed the involvement of right language homologues, perilesional tissue, and domain-general networks. Subsequently, we summarized the white matter functional mapping and remodeling mechanisms associated with language subskills. Finally, we explored how non-invasive brain stimulation (NIBS) promoted language recovery by inducing neural network plasticity. It was observed that the recruitment of right hemisphere language area homologues played a pivotal role in the early stages of frontal post-stroke aphasia (PSA), particularly in patients with larger lesions. Perilesional plasticity correlated with improved speech performance and prognosis. The domain-general networks could respond to increased "effort" in a task-dependent manner from the top-down when the downstream language network was impaired. Fluency, repetition, comprehension, naming, and reading skills exhibited overlapping and unique dual-pathway functional mapping models. In the acute phase, the structural remodeling of white matter tracts became challenging, with recovery predominantly dependent on cortical activation. Similar to the pattern of cortical activation, during the subacute and chronic phases, improvements in language functions depended, respectively, on the remodeling of right white matter tracts and the restoration of left-lateralized language structural network patterns. Moreover, the midline superior frontal gyrus/dorsal anterior cingulate cortex emerged as a promising target for NIBS. These findings offered theoretical insights for the early personalized treatment of aphasia after stroke.
Collapse
Affiliation(s)
- Yue Han
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Yuanyuan Jing
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Yanmin Shi
- Health Management (Physical Examination) Center, The Second Norman Bethune Hospital of Jilin University, Changchun, China
| | - Hongbin Mo
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Yafei Wan
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Hongwei Zhou
- Department of Radiology, The First Hospital of Jilin University, Changchun, China.
| | - Fang Deng
- Department of Neurology, The First Hospital of Jilin University, Changchun, China.
| |
Collapse
|
4
|
Cui Y, Ma N, Liu X, Lian Y, Li Y, Xu G, Zhang J, Li Z. Progress in the clinical application of constraint-induced therapy following stroke since 2014. Front Neurol 2023; 14:1170420. [PMID: 37273704 PMCID: PMC10235632 DOI: 10.3389/fneur.2023.1170420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 05/02/2023] [Indexed: 06/06/2023] Open
Abstract
Stroke is a group of cerebrovascular diseases with high prevalence and mortality rate. Stroke can induce many impairments, including motor and cognitive dysfunction, aphasia/dysarthria, dysphagia, and mood disorders, which may reduce the quality of life among the patients. Constraint-induced therapy has been proven to be an effective treatment method for stroke rehabilitation. It has been widely used in the recovery of limb motor dysfunction, aphasia, and other impairment like unilateral neglect after stroke. In recent years, constraint-induced therapy can also combine with telehealth and home rehabilitation. In addition, constraint-induced therapy produces significant neuroplastic changes in the central nervous system. Functional magnetic resonance imaging, diffusion tensor imaging, and other imaging/electrophysiology methods have been used to clarify the mechanism and neuroplasticity. However, constraint-induced therapy has some limitations. It can only be used under certain conditions, and the treatment time and effectiveness are controversial. Further research is needed to clarify the mechanism and effectiveness of CI therapy.
Collapse
|
5
|
Kernbach JM, Hartwigsen G, Lim JS, Bae HJ, Yu KH, Schlaug G, Bonkhoff A, Rost NS, Bzdok D. Bayesian stroke modeling details sex biases in the white matter substrates of aphasia. Commun Biol 2023; 6:354. [PMID: 37002267 PMCID: PMC10066402 DOI: 10.1038/s42003-023-04733-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 03/20/2023] [Indexed: 04/03/2023] Open
Abstract
Ischemic cerebrovascular events often lead to aphasia. Previous work provided hints that such strokes may affect women and men in distinct ways. Women tend to suffer strokes with more disabling language impairment, even if the lesion size is comparable to men. In 1401 patients, we isolate data-led representations of anatomical lesion patterns and hand-tailor a Bayesian analytical solution to carefully model the degree of sex divergence in predicting language outcomes ~3 months after stroke. We locate lesion-outcome effects in the left-dominant language network that highlight the ventral pathway as a core lesion focus across different tests of language performance. We provide detailed evidence for sex-specific brain-behavior associations in the domain-general networks associated with cortico-subcortical pathways, with unique contributions of the fornix in women and cingular fiber bundles in men. Our collective findings suggest diverging white matter substrates in how stroke causes language deficits in women and men. Clinically acknowledging such sex disparities has the potential to improve personalized treatment for stroke patients worldwide.
Collapse
Affiliation(s)
- Julius M Kernbach
- Neurosurgical Artificial Intelligence Laboratory Aachen (NAILA), RWTH Aachen University Hospital, Aachen, Germany
- Department of Neurosurgery, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
- Music, Neuroimaging, and Stroke Recovery Laboratory, Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, 02215, USA
| | - Gesa Hartwigsen
- Max Planck Institute for Human Cognitive and Brain Sciences, Lise Meitner Research Group Cognition and Plasticity, Leipzig, Germany
| | - Jae-Sung Lim
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Hee-Joon Bae
- Department of Neurology, Cerebrovascular Center, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Republic of Korea
| | - Kyung-Ho Yu
- Department of Neurology, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang, Republic of Korea
| | - Gottfried Schlaug
- Music, Neuroimaging, and Stroke Recovery Laboratory, Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, 02215, USA
| | - Anna Bonkhoff
- J. Philip Kistler Stroke Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Natalia S Rost
- J. Philip Kistler Stroke Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Danilo Bzdok
- Department of Biomedical Engineering, McConnell Brain Imaging Centre, Montreal Neurological Institute, Faculty of Medicine, School of Computer Science, McGill University, Montreal, QC, Canada.
- Mila - Quebec Artificial Intelligence Institute, Montreal, QC, Canada.
| |
Collapse
|
6
|
Bayram M, Palluel-Germain R, Lebon F, Durand E, Harquel S, Perrone-Bertolotti M. Motor imagery training to improve language processing: What are the arguments? Front Hum Neurosci 2023; 17:982849. [PMID: 36816506 PMCID: PMC9929469 DOI: 10.3389/fnhum.2023.982849] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 01/09/2023] [Indexed: 02/04/2023] Open
Abstract
Studies showed that motor expertise was found to induce improvement in language processing. Grounded and situated approaches attributed this effect to an underlying automatic simulation of the motor experience elicited by action words, similar to motor imagery (MI), and suggest shared representations of action conceptualization. Interestingly, recent results also suggest that the mental simulation of action by MI training induces motor-system modifications and improves motor performance. Consequently, we hypothesize that, since MI training can induce motor-system modifications, it could be used to reinforce the functional connections between motor and language system, and could thus lead to improved language performance. Here, we explore these potential interactions by reviewing recent fundamental and clinical literature in the action-language and MI domains. We suggested that exploiting the link between action language and MI could open new avenues for complementary language improvement programs. We summarize the current literature to evaluate the rationale behind this novel training and to explore the mechanisms underlying MI and its impact on language performance.
Collapse
Affiliation(s)
- Mariam Bayram
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LPNC, 38000 Grenoble, France
| | | | - Florent Lebon
- Laboratoire INSERM U1093 Cognition, Action, et Plasticité Sensorimotrice, Université de Bourgogne, Faculté des Sciences du Sport (UFR STAPS), Dijon, France,Institut Universitaire de France (IUF), Paris, France
| | - Edith Durand
- Département d’Orthophonie, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada
| | - Sylvain Harquel
- Defitech Chair of Clinical Neuroengineering, Center for Neuroprosthetics (CNP) and Brain Mind Institute (BMI), École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
| | - Marcela Perrone-Bertolotti
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LPNC, 38000 Grenoble, France,Institut Universitaire de France (IUF), Paris, France,*Correspondence: Marcela Perrone-Bertolotti,
| |
Collapse
|
7
|
Shah-Basak P, Boukrina O, Li XR, Jebahi F, Kielar A. Targeted neurorehabilitation strategies in post-stroke aphasia. Restor Neurol Neurosci 2023; 41:129-191. [PMID: 37980575 PMCID: PMC10741339 DOI: 10.3233/rnn-231344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
BACKGROUND Aphasia is a debilitating language impairment, affecting millions of people worldwide. About 40% of stroke survivors develop chronic aphasia, resulting in life-long disability. OBJECTIVE This review examines extrinsic and intrinsic neuromodulation techniques, aimed at enhancing the effects of speech and language therapies in stroke survivors with aphasia. METHODS We discuss the available evidence supporting the use of transcranial direct current stimulation (tDCS), repetitive transcranial magnetic stimulation, and functional MRI (fMRI) real-time neurofeedback in aphasia rehabilitation. RESULTS This review systematically evaluates studies focusing on efficacy and implementation of specialized methods for post-treatment outcome optimization and transfer to functional skills. It considers stimulation target determination and various targeting approaches. The translation of neuromodulation interventions to clinical practice is explored, emphasizing generalization and functional communication. The review also covers real-time fMRI neurofeedback, discussing current evidence for efficacy and essential implementation parameters. Finally, we address future directions for neuromodulation research in aphasia. CONCLUSIONS This comprehensive review aims to serve as a resource for a broad audience of researchers and clinicians interested in incorporating neuromodulation for advancing aphasia care.
Collapse
Affiliation(s)
| | - Olga Boukrina
- Kessler Foundation, Center for Stroke Rehabilitation Research, West Orange, NJ, USA
| | - Xin Ran Li
- School of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Fatima Jebahi
- Department of Speech, Languageand Hearing Sciences, University of Arizona, Tucson, AZ, USA
| | - Aneta Kielar
- Department of Speech, Languageand Hearing Sciences, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
8
|
Berthier ML, Edelkraut L, López-González FJ, López-Barroso D, Mohr B, Pulvermüller F, Starkstein SE, Jorge RE, Torres-Prioris MJ, Dávila G. Donepezil alone and combined with intensive language-action therapy on depression and apathy in chronic post-stroke aphasia: A feasibility study. BRAIN AND LANGUAGE 2023; 236:105205. [PMID: 36495749 DOI: 10.1016/j.bandl.2022.105205] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 10/17/2022] [Accepted: 11/18/2022] [Indexed: 06/17/2023]
Abstract
This study explored the feasibility and effectiveness of a short-term (10-week) intervention trial using Donepezil administered alone and combined with intensive language action therapy (ILAT) for the treatment of apathy and depression in ten people with chronic post-stroke aphasia. Outcome measures were the Western Aphasia Battery and the Stroke Aphasia Depression Questionnaire-21. Structural magnetic resonance imaging and 18fluorodeoxyglucose positron emission tomography were acquired at baseline and after two endpoints (Donepezil alone and Donepezil-ILAT). The intervention was found to be feasible to implement. Large treatment effects were found. Donepezil alone and combined with ILAT reduced aphasia severity, while apathy and depression only improved with Donepezil-ILAT. Structural and functional neuroimaging data did not show conclusive results but provide hints for future research. Given these overall positive findings on feasibility, language and behavioral benefits, further studies in larger sample sizes and including a placebo-control group are indicated.
Collapse
Affiliation(s)
- Marcelo L Berthier
- Cognitive Neurology and Aphasia Unit, Centro de Investigaciones Médico-Sanitarias, University of Malaga, Malaga, Spain; Instituto de Investigación Biomédica de Málaga - IBIMA, Malaga, Spain
| | - Lisa Edelkraut
- Cognitive Neurology and Aphasia Unit, Centro de Investigaciones Médico-Sanitarias, University of Malaga, Malaga, Spain; Instituto de Investigación Biomédica de Málaga - IBIMA, Malaga, Spain; Area of Psychobiology, Faculty of Psychology and Speech Therapy, University of Malaga, Malaga, Spain
| | - Francisco J López-González
- Molecular Imaging Unit, Centro de Investigaciones Médico-Sanitarias, General Foundation of the University of Malaga, Malaga, Spain; Molecular Imaging Group, Radiology Department, Faculty of Medicine, University of Santiago de Compostela, Galicia, Spain
| | - Diana López-Barroso
- Cognitive Neurology and Aphasia Unit, Centro de Investigaciones Médico-Sanitarias, University of Malaga, Malaga, Spain; Instituto de Investigación Biomédica de Málaga - IBIMA, Malaga, Spain; Area of Psychobiology, Faculty of Psychology and Speech Therapy, University of Malaga, Malaga, Spain
| | - Bettina Mohr
- Zentrum für Neuropsychologie und Intensive Sprachtherapie - ZeNIS, Berlin, Germany
| | - Friedemann Pulvermüller
- Brain Language Laboratory, Department of Philosophy and Humanities, WE4, Freie Universität Berlin, Germany; Berlin School of Mind and Brain, Humboldt Universität zu Berlin, Germany
| | - Sergio E Starkstein
- Faculty of Health and Medical Sciences, The University of Western Australia (M704), Perth, Australia
| | - Ricardo E Jorge
- Department of Psychiatry and Behavioural Sciences, Baylor College of Medicine, Houston, TX, United States
| | - María José Torres-Prioris
- Cognitive Neurology and Aphasia Unit, Centro de Investigaciones Médico-Sanitarias, University of Malaga, Malaga, Spain; Instituto de Investigación Biomédica de Málaga - IBIMA, Malaga, Spain; Area of Psychobiology, Faculty of Psychology and Speech Therapy, University of Malaga, Malaga, Spain
| | - Guadalupe Dávila
- Cognitive Neurology and Aphasia Unit, Centro de Investigaciones Médico-Sanitarias, University of Malaga, Malaga, Spain; Instituto de Investigación Biomédica de Málaga - IBIMA, Malaga, Spain; Area of Psychobiology, Faculty of Psychology and Speech Therapy, University of Malaga, Malaga, Spain.
| |
Collapse
|