1
|
Müller A, Meng J, Kuijpers R, Mäkelä MR, de Vries RP. Exploring the complexity of xylitol production in the fungal cell factory Aspergillus niger. Enzyme Microb Technol 2025; 183:110550. [PMID: 39591728 DOI: 10.1016/j.enzmictec.2024.110550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 10/08/2024] [Accepted: 11/20/2024] [Indexed: 11/28/2024]
Abstract
Production of xylitol from agricultural by-products offers a promising approach for the circular bioeconomy. This study investigates the roles of transcription factors XlnR and CreA in xylitol production from wheat bran in Aspergillus niger by generating strains with a constitutively active XlnR (XlnRc, V756F mutation) and/or deletion of creA, in a previously generated xylitol-producing strain. The XlnRc mutation increased the initial rate of xylitol production but lowered the overall accumulation. Deletion of creA in this strain significantly improved both the onset and rate of xylitol production, indicating an inhibitory role of CreA in the PCP. These results demonstrate the complexity of metabolic engineering to generate fungal cell factories for valuable biochemicals, such as xylitol, as not only metabolic but also multiple gene regulation aspects need to be considered.
Collapse
Affiliation(s)
- Astrid Müller
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, Utrecht 3584 CT, the Netherlands
| | - Jiali Meng
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, Utrecht 3584 CT, the Netherlands
| | - Robin Kuijpers
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, Utrecht 3584 CT, the Netherlands
| | - Miia R Mäkelä
- Department of Bioproducts and Biosystems, Aalto University, P.O. Box 16300, Aalto FI-00076, Finland
| | - Ronald P de Vries
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, Utrecht 3584 CT, the Netherlands.
| |
Collapse
|
2
|
Adamczyk PA, Coradetti ST, Gladden JM. Non-canonical D-xylose and L-arabinose metabolism via D-arabitol in the oleaginous yeast Rhodosporidium toruloides. Microb Cell Fact 2023; 22:145. [PMID: 37537595 PMCID: PMC10398940 DOI: 10.1186/s12934-023-02126-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 06/17/2023] [Indexed: 08/05/2023] Open
Abstract
R. toruloides is an oleaginous yeast, with diverse metabolic capacities and high tolerance for inhibitory compounds abundant in plant biomass hydrolysates. While R. toruloides grows on several pentose sugars and alcohols, further engineering of the native pathway is required for efficient conversion of biomass-derived sugars to higher value bioproducts. A previous high-throughput study inferred that R. toruloides possesses a non-canonical L-arabinose and D-xylose metabolism proceeding through D-arabitol and D-ribulose. In this study, we present a combination of genetic and metabolite data that refine and extend that model. Chiral separations definitively illustrate that D-arabitol is the enantiomer that accumulates under pentose metabolism. Deletion of putative D-arabitol-2-dehydrogenase (RTO4_9990) results in > 75% conversion of D-xylose to D-arabitol, and is growth-complemented on pentoses by heterologous xylulose kinase expression. Deletion of putative D-ribulose kinase (RTO4_14368) arrests all growth on any pentose tested. Analysis of several pentose dehydrogenase mutants elucidates a complex pathway with multiple enzymes mediating multiple different reactions in differing combinations, from which we also inferred a putative L-ribulose utilization pathway. Our results suggest that we have identified enzymes responsible for the majority of pathway flux, with additional unknown enzymes providing accessory activity at multiple steps. Further biochemical characterization of the enzymes described here will enable a more complete and quantitative understanding of R. toruloides pentose metabolism. These findings add to a growing understanding of the diversity and complexity of microbial pentose metabolism.
Collapse
Affiliation(s)
- Paul A Adamczyk
- Agile Biofoundry, Emeryville, CA, USA
- Sandia National Laboratories, Livermore, CA, USA
| | - Samuel T Coradetti
- Agile Biofoundry, Emeryville, CA, USA
- Sandia National Laboratories, Livermore, CA, USA
- United States Department of Agriculture, Agricultural Research Service, Ithaca, NY, USA
| | - John M Gladden
- Agile Biofoundry, Emeryville, CA, USA.
- Sandia National Laboratories, Livermore, CA, USA.
- Joint BioEnergy Institute, Emeryville, CA, USA.
- Sandia National Laboratories, DOE Agile Biofoundry, 5885 Hollis Street, Fourth Floor, Emeryville, CA, 94608, USA.
| |
Collapse
|
3
|
Chroumpi T, Peng M, Aguilar‐Pontes MV, Müller A, Wang M, Yan J, Lipzen A, Ng V, Grigoriev IV, Mäkelä MR, de Vries RP. Revisiting a 'simple' fungal metabolic pathway reveals redundancy, complexity and diversity. Microb Biotechnol 2021; 14:2525-2537. [PMID: 33666344 PMCID: PMC8601170 DOI: 10.1111/1751-7915.13790] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 02/17/2021] [Accepted: 02/17/2021] [Indexed: 01/29/2023] Open
Abstract
Next to d-glucose, the pentoses l-arabinose and d-xylose are the main monosaccharide components of plant cell wall polysaccharides and are therefore of major importance in biotechnological applications that use plant biomass as a substrate. Pentose catabolism is one of the best-studied pathways of primary metabolism of Aspergillus niger, and an initial outline of this pathway with individual enzymes covering each step of the pathway has been previously established. However, although growth on l-arabinose and/or d-xylose of most pentose catabolic pathway (PCP) single deletion mutants of A. niger has been shown to be negatively affected, it was not abolished, suggesting the involvement of additional enzymes. Detailed analysis of the single deletion mutants of the known A. niger PCP genes led to the identification of additional genes involved in the pathway. These results reveal a high level of complexity and redundancy in this pathway, emphasizing the need for a comprehensive understanding of metabolic pathways before entering metabolic engineering of such pathways for the generation of more efficient fungal cell factories.
Collapse
Affiliation(s)
- Tania Chroumpi
- Fungal PhysiologyWesterdijk Fungal Biodiversity Institute & Fungal Molecular PhysiologyUtrecht UniversityUppsalalaan 8Utrecht3584 CTThe Netherlands
| | - Mao Peng
- Fungal PhysiologyWesterdijk Fungal Biodiversity Institute & Fungal Molecular PhysiologyUtrecht UniversityUppsalalaan 8Utrecht3584 CTThe Netherlands
| | - Maria Victoria Aguilar‐Pontes
- Fungal PhysiologyWesterdijk Fungal Biodiversity Institute & Fungal Molecular PhysiologyUtrecht UniversityUppsalalaan 8Utrecht3584 CTThe Netherlands
- Present address:
Centre for Structural and Functional GenomicsConcordia University7141 Sherbrooke Street WestMontrealQCH4B1R6Canada
| | - Astrid Müller
- Fungal PhysiologyWesterdijk Fungal Biodiversity Institute & Fungal Molecular PhysiologyUtrecht UniversityUppsalalaan 8Utrecht3584 CTThe Netherlands
| | - Mei Wang
- US Department of Energy Joint Genome InstituteLawrence Berkeley National Laboratory1 Cyclotron RoadBerkeleyCA94720USA
| | - Juying Yan
- US Department of Energy Joint Genome InstituteLawrence Berkeley National Laboratory1 Cyclotron RoadBerkeleyCA94720USA
| | - Anna Lipzen
- US Department of Energy Joint Genome InstituteLawrence Berkeley National Laboratory1 Cyclotron RoadBerkeleyCA94720USA
| | - Vivian Ng
- US Department of Energy Joint Genome InstituteLawrence Berkeley National Laboratory1 Cyclotron RoadBerkeleyCA94720USA
| | - Igor V. Grigoriev
- US Department of Energy Joint Genome InstituteLawrence Berkeley National Laboratory1 Cyclotron RoadBerkeleyCA94720USA
- Department of Plant and Microbial BiologyUniversity of CaliforniaBerkeleyCA94720USA
| | - Miia R. Mäkelä
- Department of MicrobiologyUniversity of HelsinkiP.O. Box 56Viikinkaari 9HelsinkiFinland
| | - Ronald P. de Vries
- Fungal PhysiologyWesterdijk Fungal Biodiversity Institute & Fungal Molecular PhysiologyUtrecht UniversityUppsalalaan 8Utrecht3584 CTThe Netherlands
| |
Collapse
|
4
|
Chahed A, Lazazzara V, Moretto M, Nesler A, Corneo PE, Barka EA, Pertot I, Puopolo G, Perazzolli M. The Differential Growth Inhibition of Phytophthora spp. Caused by the Rare Sugar Tagatose Is Associated With Species-Specific Metabolic and Transcriptional Changes. Front Microbiol 2021; 12:711545. [PMID: 34305881 PMCID: PMC8292896 DOI: 10.3389/fmicb.2021.711545] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 06/16/2021] [Indexed: 12/03/2022] Open
Abstract
Tagatose is a rare sugar with no negative impacts on human health and selective inhibitory effects on plant-associated microorganisms. Tagatose inhibited mycelial growth and negatively affected mitochondrial processes in Phytophthora infestans, but not in Phytophthora cinnamomi. The aim of this study was to elucidate metabolic changes and transcriptional reprogramming activated by P. infestans and P. cinnamomi in response to tagatose, in order to clarify the differential inhibitory mechanisms of tagatose and the species-specific reactions to this rare sugar. Phytophthora infestans and P. cinnamomi activated distinct metabolic and transcriptional changes in response to the rare sugar. Tagatose negatively affected mycelial growth, sugar content and amino acid content in P. infestans with a severe transcriptional reprogramming that included the downregulation of genes involved in transport, sugar metabolism, signal transduction, and growth-related process. Conversely, tagatose incubation upregulated genes related to transport, energy metabolism, sugar metabolism and oxidative stress in P. cinnamomi with no negative effects on mycelial growth, sugar content and amino acid content. Differential inhibitory effects of tagatose on Phytophthora spp. were associated with an attempted reaction of P. infestans, which was not sufficient to attenuate the negative impacts of the rare sugar and with an efficient response of P. cinnamomi with the reprogramming of multiple metabolic processes, such as genes related to glucose transport, pentose metabolism, tricarboxylic acid cycle, reactive oxygen species detoxification, mitochondrial and alternative respiration processes. Knowledge on the differential response of Phytophthora spp. to tagatose represent a step forward in the understanding functional roles of rare sugars.
Collapse
Affiliation(s)
- Abdessalem Chahed
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy.,Bi-PA nv, Londerzeel, Belgium.,Department of Induced Resistance and Plant Bioprotection, University of Reims, Reims, France
| | - Valentina Lazazzara
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
| | - Marco Moretto
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
| | - Andrea Nesler
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy.,Bi-PA nv, Londerzeel, Belgium
| | - Paola Elisa Corneo
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy.,Center Agriculture Food Environment (C3A), University of Trento, San Michele all'Adige, Italy
| | - Essaid Ait Barka
- Department of Induced Resistance and Plant Bioprotection, University of Reims, Reims, France
| | - Ilaria Pertot
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy.,Center Agriculture Food Environment (C3A), University of Trento, San Michele all'Adige, Italy
| | - Gerardo Puopolo
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy.,Center Agriculture Food Environment (C3A), University of Trento, San Michele all'Adige, Italy
| | - Michele Perazzolli
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy.,Center Agriculture Food Environment (C3A), University of Trento, San Michele all'Adige, Italy
| |
Collapse
|
5
|
Zan X, Sun J, Chu L, Cui F, Huo S, Song Y, Koffas MAG. Improved glucose and xylose co-utilization by overexpression of xylose isomerase and/or xylulokinase genes in oleaginous fungus Mucor circinelloides. Appl Microbiol Biotechnol 2021; 105:5565-5575. [PMID: 34215904 DOI: 10.1007/s00253-021-11392-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 04/28/2021] [Accepted: 06/07/2021] [Indexed: 12/17/2022]
Abstract
Most of the oleaginous microorganisms cannot assimilate xylose in the presence of glucose, which is the major bottleneck in the bioconversion of lignocellulose to biodiesel. Our present study revealed that overexpression of xylose isomerase (XI) gene xylA or xylulokinase (XK) gene xks1 increased the xylose consumption by 25 to 37% and enhanced the lipid content by 8 to 28% during co-fermentation of glucose and xylose. In xylA overexpressing strain Mc-XI, the activity of XI was 1.8-fold higher and the mRNA level of xylA at 24 h and 48 h was 11- and 13-fold higher than that of the control, respectively. In xks1 overexpressing strain Mc-XK, the mRNA level of xks1 was 4- to 11-fold of that of the control strain and the highest XK activity of 950 nmol min-1 mg-1 at 72 h which was 2-fold higher than that of the control. Additionally, expression of a translational fusion of xylA and xks1 further enhanced the xylose utilization rate by 45%. Our results indicated that overexpression of xylA and/or xks1 is a promising strategy to improve the xylose and glucose co-utilization, alleviate the glucose repression, and produce lipid from lignocellulosic biomass in the oleaginous fungus M. circinelloides. KEY POINTS: • Overexpressing xylA or xks1 increased the xylose consumption and the lipid content. • The xylose isomerase activity and the xylA mRNA level were enhanced in strain Mc-XI. • Co-expression of xylA and xks1 further enhanced the xylose utilization rate by 45%.
Collapse
Affiliation(s)
- Xinyi Zan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Jianing Sun
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Linfang Chu
- School of Food Science and Technology, Jiang University, Wuxi, 214000, People's Republic of China
| | - Fengjie Cui
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Shuhao Huo
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Yuanda Song
- Colin Ratledge Center for Microbial Lipids, School of Agriculture Engineering and Food Science, Shandong University of Technology, Zibo, 255049, People's Republic of China.
| | - Mattheos A G Koffas
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| |
Collapse
|
6
|
Chroumpi T, Mäkelä MR, de Vries RP. Engineering of primary carbon metabolism in filamentous fungi. Biotechnol Adv 2020; 43:107551. [DOI: 10.1016/j.biotechadv.2020.107551] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 04/28/2020] [Accepted: 04/29/2020] [Indexed: 10/24/2022]
|
7
|
Feltracco M, Barbaro E, Tedeschi S, Spolaor A, Turetta C, Vecchiato M, Morabito E, Zangrando R, Barbante C, Gambaro A. Interannual variability of sugars in Arctic aerosol: Biomass burning and biogenic inputs. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 706:136089. [PMID: 31864999 DOI: 10.1016/j.scitotenv.2019.136089] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 12/09/2019] [Accepted: 12/10/2019] [Indexed: 06/10/2023]
Abstract
The concentrations and particle-size distribution of sugars in Arctic aerosol samples were studied to investigate their potential sources and transport. Sugars are constituents of the water-soluble organic compounds (WSOC) fraction in aerosol particles where some saccharides are used as tracers of Primary Biological Aerosol Particles (PBAPs). Monosaccharides (arabinose, fructose, galactose, glucose, mannose, ribose, xylose), disaccharides (sucrose, lactose, maltose, lactulose), alcohol-sugars (erythritol, mannitol, ribitol, sorbitol, xylitol, maltitol, galactitol) and anhydrosugars (levoglucosan, mannosan and galactosan) were quantified in aerosol samples collected during three different sampling campaigns (spring and summer 2013, spring 2014 and 2015). The mean total concentrations of sugars were 0.4 ± 0.3, 0.6 ± 0.5 and 0.5 ± 0.6 ng m-3 for 2013, 2014 and 2015 spring campaigns, while the mean concentration increased to 3 ± 3 ng m-3 in the summer of 2013. This work identified a reproducibility in the sugars trend during spring, while the summer data in 2013 allowed to us to demonstrate strong local inputs when the ground was free of snow and ice. Furthermore, the study aims to show that the two specific ratios of sorbitol & galactiol to arabinose were diagnostic for the type of biomass that was burnt. This study demonstrates that not only is long-range atmospheric transport significant. But depending on seasonality, local inputs can also play an important role in the chemical composition of sugars in Arctic aerosol.
Collapse
Affiliation(s)
- Matteo Feltracco
- Department of Environmental Sciences, Informatics and Statistics, Ca'Foscari University of Venice, Via Torino 155, 30172 Venice, Italy.
| | - Elena Barbaro
- Institute of Polar Sciences CNR, Via Torino 155, 30172 Venice, Italy
| | - Silvia Tedeschi
- Department of Environmental Sciences, Informatics and Statistics, Ca'Foscari University of Venice, Via Torino 155, 30172 Venice, Italy
| | - Andrea Spolaor
- Institute of Polar Sciences CNR, Via Torino 155, 30172 Venice, Italy
| | - Clara Turetta
- Institute of Polar Sciences CNR, Via Torino 155, 30172 Venice, Italy
| | - Marco Vecchiato
- Institute of Polar Sciences CNR, Via Torino 155, 30172 Venice, Italy
| | - Elisa Morabito
- Department of Environmental Sciences, Informatics and Statistics, Ca'Foscari University of Venice, Via Torino 155, 30172 Venice, Italy
| | - Roberta Zangrando
- Institute of Polar Sciences CNR, Via Torino 155, 30172 Venice, Italy
| | - Carlo Barbante
- Department of Environmental Sciences, Informatics and Statistics, Ca'Foscari University of Venice, Via Torino 155, 30172 Venice, Italy; Institute of Polar Sciences CNR, Via Torino 155, 30172 Venice, Italy
| | - Andrea Gambaro
- Department of Environmental Sciences, Informatics and Statistics, Ca'Foscari University of Venice, Via Torino 155, 30172 Venice, Italy; Institute of Polar Sciences CNR, Via Torino 155, 30172 Venice, Italy
| |
Collapse
|
8
|
Francois JM, Alkim C, Morin N. Engineering microbial pathways for production of bio-based chemicals from lignocellulosic sugars: current status and perspectives. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:118. [PMID: 32670405 PMCID: PMC7341569 DOI: 10.1186/s13068-020-01744-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 06/01/2020] [Indexed: 05/08/2023]
Abstract
Lignocellulose is the most abundant biomass on earth with an annual production of about 2 × 1011 tons. It is an inedible renewable carbonaceous resource that is very rich in pentose and hexose sugars. The ability of microorganisms to use lignocellulosic sugars can be exploited for the production of biofuels and chemicals, and their concurrent biotechnological processes could advantageously replace petrochemicals' processes in a medium to long term, sustaining the emerging of a new economy based on bio-based products from renewable carbon sources. One of the major issues to reach this objective is to rewire the microbial metabolism to optimally configure conversion of these lignocellulosic-derived sugars into bio-based products in a sustainable and competitive manner. Systems' metabolic engineering encompassing synthetic biology and evolutionary engineering appears to be the most promising scientific and technological approaches to meet this challenge. In this review, we examine the most recent advances and strategies to redesign natural and to implement non-natural pathways in microbial metabolic framework for the assimilation and conversion of pentose and hexose sugars derived from lignocellulosic material into industrial relevant chemical compounds leading to maximal yield, titer and productivity. These include glycolic, glutaric, mesaconic and 3,4-dihydroxybutyric acid as organic acids, monoethylene glycol, 1,4-butanediol and 1,2,4-butanetriol, as alcohols. We also discuss the big challenges that still remain to enable microbial processes to become industrially attractive and economically profitable.
Collapse
Affiliation(s)
- Jean Marie Francois
- Toulouse Biotechnology Institute, CNRS, INRA, LISBP INSA, 135 Avenue de Rangueil, Toulouse Cedex 04, 31077 France
- Toulouse White Biotechnology (TWB, UMS INRA/INSA/CNRS), NAPA CENTER Bât B, 3 Rue Ariane 31520, Ramonville Saint-Agnes, France
| | - Ceren Alkim
- Toulouse Biotechnology Institute, CNRS, INRA, LISBP INSA, 135 Avenue de Rangueil, Toulouse Cedex 04, 31077 France
- Toulouse White Biotechnology (TWB, UMS INRA/INSA/CNRS), NAPA CENTER Bât B, 3 Rue Ariane 31520, Ramonville Saint-Agnes, France
| | - Nicolas Morin
- Toulouse Biotechnology Institute, CNRS, INRA, LISBP INSA, 135 Avenue de Rangueil, Toulouse Cedex 04, 31077 France
- Toulouse White Biotechnology (TWB, UMS INRA/INSA/CNRS), NAPA CENTER Bât B, 3 Rue Ariane 31520, Ramonville Saint-Agnes, France
| |
Collapse
|
9
|
Khosravi C, Kowalczyk JE, Chroumpi T, Battaglia E, Aguilar Pontes MV, Peng M, Wiebenga A, Ng V, Lipzen A, He G, Bauer D, Grigoriev IV, de Vries RP. Transcriptome analysis of Aspergillus niger xlnR and xkiA mutants grown on corn Stover and soybean hulls reveals a highly complex regulatory network. BMC Genomics 2019; 20:853. [PMID: 31726994 PMCID: PMC6854810 DOI: 10.1186/s12864-019-6235-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 10/28/2019] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Enzymatic plant biomass degradation by fungi is a highly complex process and one of the leading challenges in developing a biobased economy. Some industrial fungi (e.g. Aspergillus niger) have a long history of use with respect to plant biomass degradation and for that reason have become 'model' species for this topic. A. niger is a major industrial enzyme producer that has a broad ability to degrade plant based polysaccharides. A. niger wild-type, the (hemi-)cellulolytic regulator (xlnR) and xylulokinase (xkiA1) mutant strains were grown on a monocot (corn stover, CS) and dicot (soybean hulls, SBH) substrate. The xkiA1 mutant is unable to utilize the pentoses D-xylose and L-arabinose and the polysaccharide xylan, and was previously shown to accumulate inducers for the (hemi-)cellulolytic transcriptional activator XlnR and the arabinanolytic transcriptional activator AraR in the presence of pentoses, resulting in overexpression of their target genes. The xlnR mutant has reduced growth on xylan and down-regulation of its target genes. The mutants therefore have a similar phenotype on xylan, but an opposite transcriptional effect. D-xylose and L-arabinose are the most abundant monosaccharides after D-glucose in nearly all plant-derived biomass materials. In this study we evaluated the effect of the xlnR and xkiA1 mutation during growth on two pentose-rich substrates by transcriptome analysis. RESULTS Particular attention was given to CAZymes, metabolic pathways and transcription factors related to the plant biomass degradation. Genes coding for the main enzymes involved in plant biomass degradation were down-regulated at the beginning of the growth on CS and SBH. However, at a later time point, significant differences were found in the expression profiles of both mutants on CS compared to SBH. CONCLUSION This study demonstrates the high complexity of the plant biomass degradation process by fungi, by showing that mutant strains with fairly straightforward phenotypes on pure mono- and polysaccharides, have much less clear-cut phenotypes and transcriptomes on crude plant biomass.
Collapse
Affiliation(s)
- Claire Khosravi
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Utrecht, the Netherlands
| | - Joanna E. Kowalczyk
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Utrecht, the Netherlands
| | - Tania Chroumpi
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Utrecht, the Netherlands
| | - Evy Battaglia
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Utrecht, the Netherlands
| | - Maria-Victoria Aguilar Pontes
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Utrecht, the Netherlands
| | - Mao Peng
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Utrecht, the Netherlands
| | - Ad Wiebenga
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Utrecht, the Netherlands
| | - Vivian Ng
- US Department of Energy Joint Genome Institute, Walnut Creek, CA USA
| | - Anna Lipzen
- US Department of Energy Joint Genome Institute, Walnut Creek, CA USA
| | - Guifen He
- US Department of Energy Joint Genome Institute, Walnut Creek, CA USA
| | - Diane Bauer
- US Department of Energy Joint Genome Institute, Walnut Creek, CA USA
| | - Igor V. Grigoriev
- US Department of Energy Joint Genome Institute, Walnut Creek, CA USA
- Department of Plant and Microbial Biology, University of California, Berkeley, CA USA
| | - Ronald P. de Vries
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
10
|
Goulet KM, Storfie ERM, Saville BJ. Exploring links between antisense RNAs and pathogenesis in Ustilago maydis through transcript and gene characterization. Fungal Genet Biol 2019; 134:103283. [PMID: 31629082 DOI: 10.1016/j.fgb.2019.103283] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 10/02/2019] [Accepted: 10/14/2019] [Indexed: 10/25/2022]
Abstract
Biotrophic basidiomycete plant pathogens cause billions of dollars in losses to cereal crops annually. The model for this group of fungi is the corn smut pathogen Ustilago maydis. Annotation of its genome identified antisense RNAs (asRNAs) complementary to over half of the coded mRNAs, some of which are present at high levels in teliospores but detected at very low levels or not at all in other cell types, suggesting they have a function in the teliospore or during teliospore formation. Expression of three such asRNAs (as-UMAG_02150, ncRNA1, and as-UMAG_02151) is controlled by two adjacent genomic regions. Deletion of these regions increased transcript levels of all three asRNAs and attenuated pathogenesis. This study investigated the reason for this marked reduction in pathogenesis by: (1) using deletion analyses to assess the involvement of genes, complementary to the asRNAs, in pathogenesis; (2) determining that one of the linked genes encodes a putative xylitol dehydrogenase; and (3) identifying and functionally characterizing asRNAs that could influence expression of protein-coding genes. The results presented suggest that the influence of the asRNAs on pathogenesis occurs through their action at unlinked loci.
Collapse
Affiliation(s)
- Kristi M Goulet
- Environmental and Life Sciences Graduate Program, Trent University, Peterborough, ON K9J 7B8, Canada; Ontario Forensic Pathology Service, Toronto, ON M3M 0B1, Canada.
| | - Emilee R M Storfie
- Environmental and Life Sciences Graduate Program, Trent University, Peterborough, ON K9J 7B8, Canada; Forensic Science Program, Trent University, Peterborough, ON K9J 7B8, Canada.
| | - Barry J Saville
- Environmental and Life Sciences Graduate Program, Trent University, Peterborough, ON K9J 7B8, Canada; Forensic Science Program, Trent University, Peterborough, ON K9J 7B8, Canada.
| |
Collapse
|
11
|
dos Santos Gomes AC, Falkoski D, Battaglia E, Peng M, Nicolau de Almeida M, Coconi Linares N, Meijnen JP, Visser J, de Vries RP. Myceliophthora thermophila Xyr1 is predominantly involved in xylan degradation and xylose catabolism. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:220. [PMID: 31534479 PMCID: PMC6745793 DOI: 10.1186/s13068-019-1556-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 08/31/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Myceliophthora thermophila is a thermophilic ascomycete fungus that is used as a producer of enzyme cocktails used in plant biomass saccharification. Further development of this species as an industrial enzyme factory requires a detailed understanding of its regulatory systems driving the production of plant biomass-degrading enzymes. In this study, we analyzed the function of MtXlr1, an ortholog of the (hemi-)cellulolytic regulator XlnR first identified in another industrially relevant fungus, Aspergillus niger. RESULTS The Mtxlr1 gene was deleted and the resulting strain was compared to the wild type using growth profiling and transcriptomics. The deletion strain was unable to grow on xylan and d-xylose, but showed only a small growth reduction on l-arabinose, and grew similar to the wild type on Avicel and cellulose. These results were supported by the transcriptome analyses which revealed reduction of genes encoding xylan-degrading enzymes, enzymes of the pentose catabolic pathway and putative pentose transporters. In contrast, no or minimal effects were observed for the expression of cellulolytic genes. CONCLUSIONS Myceliophthora thermophila MtXlr1 controls the expression of xylanolytic genes and genes involved in pentose transport and catabolism, but has no significant effects on the production of cellulases. It therefore resembles more the role of its ortholog in Neurospora crassa, rather than the broader role described for this regulator in A. niger and Trichoderma reesei. By revealing the range of genes controlled by MtXlr1, our results provide the basic knowledge for targeted strain improvement by overproducing or constitutively activating this regulator, to further improve the biotechnological value of M. thermophila.
Collapse
Affiliation(s)
- Ana Carolina dos Santos Gomes
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - Daniel Falkoski
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
- Present Address: Novozymes Latin America, Professor Francisco Ribeiro Street 683, Araucária, PR 83707-660 Brazil
| | - Evy Battaglia
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - Mao Peng
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - Maira Nicolau de Almeida
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
- DuPont Industrial Biosciences, Archimedesweg 30, 2333 CN Leiden, The Netherlands
- Present Address: Federal University of São João del Rei, Praça Dom Helvécio, 74, São João del Rei, Minas Gerais Brazil
| | - Nancy Coconi Linares
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - Jean-Paul Meijnen
- DuPont Industrial Biosciences, Archimedesweg 30, 2333 CN Leiden, The Netherlands
- Present Address: Dutch DNA Biotech BV, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Jaap Visser
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - Ronald P. de Vries
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| |
Collapse
|
12
|
Hardt N, Kind S, Schoenenberger B, Eggert T, Obkircher M, Wohlgemuth R. Facile synthesis of D-xylulose-5-phosphate and L-xylulose-5-phosphate by xylulokinase-catalyzed phosphorylation. BIOCATAL BIOTRANSFOR 2019. [DOI: 10.1080/10242422.2019.1630385] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
| | | | | | | | | | - Roland Wohlgemuth
- Sigma-Aldrich/Merck KGaA, Buchs, Switzerland
- Institute of Technical Biochemistry, Technical University Lodz, Lodz, Poland
| |
Collapse
|
13
|
Monitoring of in planta gene expression for xylan degradation and assimilation in the maize pathogen Bipolaris maydis. MYCOSCIENCE 2019. [DOI: 10.1016/j.myc.2018.10.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
14
|
Zhang Y, Zhao C, Ni Z, Shao M, Han M, Huang D, Liu F. Heterologous expression and biochemical characterization of a thermostable xylulose kinase from Bacillus coagulans IPE22. J Basic Microbiol 2019; 59:542-551. [PMID: 30747439 DOI: 10.1002/jobm.201800482] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 01/02/2019] [Accepted: 01/13/2019] [Indexed: 12/28/2022]
Abstract
Xylulose kinase is an important enzyme involved in xylose metabolism, which is considered as essential biocatalyst for sustainable lignocellulosic-derived pentose utilization. Bacillus coagulans IPE22 is an ideal bacterium for refinery due to its strong ability to ferment xylose at high temperature. However, the B. coagulans xylose utilization mechanism remains unclear and the related promising enzymes need to be developed. In the present study, the gene coding for xylulose kinase from B. coagulans IPE22 (Bc-XK) was expressed in Escherichia coli BL21 (DE3). Bc-XK has a 1536 bp open reading frame, encoding a protein of 511 amino acids (56.15 kDa). Multiple sequence alignments were performed and a phylogenetic tree was built to evaluate differences among Bc-XK and other bacteria homologs. Bc-XK showed a broad adaptability to high temperature and the enzyme displayed its best performance at pH 8.0 and 60 °C. Bc-XK was activated by Mg2+ , Mn2+ , and Co2+ . Meanwhile, the enzyme could keep activity at 60 °C for at least 180 min. KM values of Bc-XK for xylulose and ATP were 1.29 mM and 0.76 mM, respectively. The high temperature stability of Bc-XK implied that it was an attractive candidate for industrial application.
Collapse
Affiliation(s)
- Yuming Zhang
- College of Life Sciences, Hebei University, Baoding, China
| | | | - Zhihua Ni
- College of Life Sciences, Hebei University, Baoding, China
| | - Menghua Shao
- College of Life Sciences, Hebei University, Baoding, China
| | - Mengying Han
- College of Life Sciences, Hebei University, Baoding, China
| | - Dawei Huang
- College of Life Sciences, Hebei University, Baoding, China
| | - Fengsong Liu
- College of Life Sciences, Hebei University, Baoding, China
| |
Collapse
|
15
|
l-Arabinose induces d-galactose catabolism via the Leloir pathway in Aspergillus nidulans. Fungal Genet Biol 2018; 123:53-59. [PMID: 30496805 DOI: 10.1016/j.fgb.2018.11.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 11/03/2018] [Accepted: 11/25/2018] [Indexed: 11/22/2022]
Abstract
l-Arabinose and d-galactose are the principal constituents of l-arabinogalactan, and also co-occur in other hemicelluloses and pectins. In this work we hypothesized that similar to the induction of relevant glycoside hydrolases by monomers liberated from these plant heteropolymers, their respective catabolisms in saprophytic and phytopathogenic fungi may respond to the presence of the other sugar to promote synergistic use of the complex growth substrate. We showed that these two sugars are indeed consumed simultaneously by Aspergillus nidulans, while l-arabinose is utilised faster in the presence than in the absence of d-galactose. Furthermore, the first two genes of the Leloir pathway for d-galactose catabolism - encoding d-galactose 1-epimerase and galactokinase - are induced more rapidly by l-arabinose than by d-galactose eventhough deletion mutants thereof grow as well as a wild type strain on the pentose. d-Galactose 1-epimerase is hyperinduced by l-arabinose, d-xylose and l-arabitol but not by xylitol. The results suggest that in A. nidulans, l-arabinose and d-xylose - both requiring NADPH for their catabolisation - actively promote the enzyme infrastructure necessary to convert β-d-galactopyranose via the Leloir pathway with its α-anomer specific enzymes, into β-d-glucose-6-phosphate (the starting substrate of the oxidative part of the pentose phosphate pathway) even in the absence of d-galactose.
Collapse
|
16
|
Targeting Mycobacterium tuberculosis Tumor Necrosis Factor Alpha-Downregulating Genes for the Development of Antituberculous Vaccines. mBio 2016; 7:mBio.01023-15. [PMID: 27247233 PMCID: PMC4895118 DOI: 10.1128/mbio.01023-15] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Tumor necrosis factor alpha (TNF) plays a critical role in the control of Mycobacterium tuberculosis, in part by augmenting T cell responses through promoting macrophage phagolysosomal fusion (thereby optimizing CD4+ T cell immunity by enhancing antigen presentation) and apoptosis (a process that can lead to cross-priming of CD8+ T cells). M. tuberculosis can evade antituberculosis (anti-TB) immunity by inhibiting host cell TNF production via expression of specific mycobacterial components. We hypothesized that M. tuberculosis mutants with an increased capacity to induce host cell TNF production (TNF-enhancing mutants) and thus with enhanced immunogenicity can be useful for vaccine development. To identify mycobacterial genes that regulate host cell TNF production, we used a TNF reporter macrophage clone to screen an H37Rv M. tuberculosis cosmid library constructed in M. smegmatis. The screen has identified a set of TNF-downregulating mycobacterial genes that, when deleted in H37Rv, generate TNF-enhancing mutants. Analysis of mutants disrupted for a subset of TNF-downregulating genes, annotated to code for triacylglycerol synthases and fatty acyl-coenzyme A (acyl-CoA) synthetase, enzymes that concern lipid biosynthesis and metabolism, has revealed that these strains can promote macrophage phagolysosomal fusion and apoptosis better than wild-type (WT) bacilli. Immunization of mice with the TNF-enhancing M. tuberculosis mutants elicits CD4+ and CD8+ T cell responses that are superior to those engendered by WT H37Rv. The results suggest that TNF-upregulating M. tuberculosis genes can be targeted to enhance the immunogenicity of mycobacterial strains that can serve as the substrates for the development of novel anti-TB vaccines. One way to control tuberculosis (TB), which remains a major global public health burden, is by immunization with an effective vaccine. The efficacy of Mycobacterium bovis BCG, the only currently approved TB vaccine, is inconsistent. Tumor necrosis factor alpha (TNF) is a cytokine that plays an important role in controlling TB. M. tuberculosis, the causative agent of TB, can counter this TNF-based defense by decreasing host cell TNF production. This study identified M. tuberculosis genes that can mediate inhibition of TNF production by macrophage (an immune cell critical to the control of TB). We have knocked out a number of these genes to generate M. tuberculosis mutants that can enhance macrophage TNF production. Immunization with these mutants in mice triggered a T cell response stronger than that elicited by the parental bacillus. Since T cell immunity is pivotal in controlling M. tuberculosis, the TNF-enhancing mutants can be used to develop novel TB vaccines.
Collapse
|
17
|
Zheng Z, Lin X, Jiang T, Ye W, Ouyang J. Genomic analysis of a xylose operon and characterization of novel xylose isomerase and xylulokinase from Bacillus coagulans NL01. Biotechnol Lett 2016; 38:1331-9. [PMID: 27206341 DOI: 10.1007/s10529-016-2109-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 04/28/2016] [Indexed: 10/21/2022]
Abstract
OBJECTIVE To investigate the xylose operon and properties of xylose isomerase and xylulokinase in Bacillus coagulans that can effectively ferment xylose to lactic acid. RESULTS The xylose operon is widely present in B. coagulans. It is composed of four putative ORFs. Novel xylA and xylB from B. coagulans NL01 were cloned and expressed in Escherichia coli. Sequence of xylose isomerase was more conserved than that of xylulokinase. Both the enzymes exhibited maximum activities at pH 7-8 but with a high temperature maximum of 80-85 °C, divalent metal ion was prerequisite for their activation. Xylose isomerase and xylulokinase were most effectively activated by Ni(2+) and Co(2+), respectively. CONCLUSIONS Genomic analysis of xylose operon has contributed to understanding xylose metabolism in B. coagulans and the novel xylose isomerase and xylulokinase might provide new alternatives for metabolic engineering of other strains to improve their fermentation performance on xylose.
Collapse
Affiliation(s)
- Zhaojuan Zheng
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, People's Republic of China.,Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, Nanjing, 210037, People's Republic of China
| | - Xi Lin
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
| | - Ting Jiang
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
| | - Weihua Ye
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
| | - Jia Ouyang
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, People's Republic of China. .,Key Laboratory of Forest Genetics and Biotechnology of the Ministry of Education, Nanjing, 210037, People's Republic of China.
| |
Collapse
|
18
|
Kowalczyk JE, Gruben BS, Battaglia E, Wiebenga A, Majoor E, de Vries RP. Genetic Interaction of Aspergillus nidulans galR, xlnR and araR in Regulating D-Galactose and L-Arabinose Release and Catabolism Gene Expression. PLoS One 2015; 10:e0143200. [PMID: 26580075 PMCID: PMC4651341 DOI: 10.1371/journal.pone.0143200] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 11/02/2015] [Indexed: 11/29/2022] Open
Abstract
In Aspergillus nidulans, the xylanolytic regulator XlnR and the arabinanolytic regulator AraR co-regulate pentose catabolism. In nature, the pentose sugars D-xylose and L-arabinose are both main building blocks of the polysaccharide arabinoxylan. In pectin and arabinogalactan, these two monosaccharides are found in combination with D-galactose. GalR, the regulator that responds to the presence of D-galactose, regulates the D-galactose catabolic pathway. In this study we investigated the possible interaction between XlnR, AraR and GalR in pentose and/or D-galactose catabolism in A. nidulans. Growth phenotypes and metabolic gene expression profiles were studied in single, double and triple disruptant A. nidulans strains of the genes encoding these paralogous transcription factors. Our results demonstrate that AraR and XlnR not only control pentose catabolic pathway genes, but also genes of the oxido-reductive D-galactose catabolic pathway. This suggests an interaction between three transcriptional regulators in D-galactose catabolism. Conversely, GalR is not involved in regulation of pentose catabolism, but controls only genes of the oxido-reductive D-galactose catabolic pathway.
Collapse
Affiliation(s)
- Joanna E. Kowalczyk
- Fungal Physiology, CBS-KNAW Fungal Biodiversity Centre & Fungal Molecular Physiology, Utrecht University, Utrecht, the Netherlands
| | - Birgit S. Gruben
- Fungal Physiology, CBS-KNAW Fungal Biodiversity Centre & Fungal Molecular Physiology, Utrecht University, Utrecht, the Netherlands
- Microbiology, Utrecht University, Utrecht, the Netherlands
| | - Evy Battaglia
- Fungal Physiology, CBS-KNAW Fungal Biodiversity Centre & Fungal Molecular Physiology, Utrecht University, Utrecht, the Netherlands
- Microbiology, Utrecht University, Utrecht, the Netherlands
| | - Ad Wiebenga
- Fungal Physiology, CBS-KNAW Fungal Biodiversity Centre & Fungal Molecular Physiology, Utrecht University, Utrecht, the Netherlands
| | - Eline Majoor
- Fungal Physiology, CBS-KNAW Fungal Biodiversity Centre & Fungal Molecular Physiology, Utrecht University, Utrecht, the Netherlands
| | - Ronald P. de Vries
- Fungal Physiology, CBS-KNAW Fungal Biodiversity Centre & Fungal Molecular Physiology, Utrecht University, Utrecht, the Netherlands
- * E-mail:
| |
Collapse
|
19
|
Khosravi C, Benocci T, Battaglia E, Benoit I, de Vries RP. Sugar catabolism in Aspergillus and other fungi related to the utilization of plant biomass. ADVANCES IN APPLIED MICROBIOLOGY 2015; 90:1-28. [PMID: 25596028 DOI: 10.1016/bs.aambs.2014.09.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Fungi are found in all natural and artificial biotopes and can use highly diverse carbon sources. They play a major role in the global carbon cycle by decomposing plant biomass and this biomass is the main carbon source for many fungi. Plant biomass is composed of cell wall polysaccharides (cellulose, hemicellulose, pectin) and lignin. To degrade cell wall polysaccharides to different monosaccharides, fungi produce a broad range of enzymes with a large variety in activities. Through a series of enzymatic reactions, sugar-specific and central metabolic pathways convert these monosaccharides into energy or metabolic precursors needed for the biosynthesis of biomolecules. This chapter describes the carbon catabolic pathways that are required to efficiently use plant biomass as a carbon source. It will give an overview of the known metabolic pathways in fungi, their interconnections, and the differences between fungal species.
Collapse
|
20
|
Komeda H, Yamasaki-Yashiki S, Hoshino K, Asano Y. Identification and characterization of D-xylulokinase from the D-xylose-fermenting fungus, Mucor circinelloides. FEMS Microbiol Lett 2014; 360:51-61. [PMID: 25163569 DOI: 10.1111/1574-6968.12589] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 08/18/2014] [Accepted: 08/18/2014] [Indexed: 11/29/2022] Open
Abstract
D-Xylulokinase catalyzes the phosphorylation of D-xylulose in the final step of the pentose catabolic pathway to form d-xylulose-5-phosphate. The D-xylulokinase activity was found to be induced by both D-xylose and L-arabinose, as well as some of the other enzymes involved in the pentose catabolism, in the D-xylose-fermenting zygomycetous fungus, Mucor circinelloides NBRC 4572. The putative gene, xyl3, which may encode D-xylulokinase, was detected in the genome sequence of this strain. The amino acid sequence deduced from the gene was more similar to D-xylulokinases from an animal origin than from other fungi. The recombinant enzyme was purified from the E. coli transformant expressing xyl3 and then characterized. The ATP-dependent phosphorylative activity of the enzyme was the highest toward D-xylulose. Its kinetic parameters were determined as Km (D-xylulose) = 0.29 mM and Km (ATP) = 0.51 mM, indicating that the xyl3 gene encoded D-xylulokinase (McXK). Western blot analysis revealed that McXK was induced by L-arabinose as well as D-xylose and the induction was repressed in the presence of D-glucose, suggesting that the enzyme may be involved in the catabolism of D-xylose and L-arabinose and is subject to carbon catabolite repression in this fungus. This is the first study on D-xylulokinase from zygomycetous fungi.
Collapse
Affiliation(s)
- Hidenobu Komeda
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, Imizu, Toyama, Japan
| | | | | | | |
Collapse
|
21
|
Battaglia E, Zhou M, de Vries RP. The transcriptional activators AraR and XlnR from Aspergillus niger regulate expression of pentose catabolic and pentose phosphate pathway genes. Res Microbiol 2014; 165:531-40. [PMID: 25086261 DOI: 10.1016/j.resmic.2014.07.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 07/08/2014] [Accepted: 07/21/2014] [Indexed: 11/26/2022]
Abstract
The pentose catabolic pathway (PCP) and the pentose phosphate pathway (PPP) are required for the conversion of pentose sugars in fungi and are linked via d-xylulose-5-phosphate. Previously, it was shown that the PCP is regulated by the transcriptional activators XlnR and AraR in Aspergillus niger. Here we assessed whether XlnR and AraR also regulate the PPP. Expression of two genes, rpiA and talB, was reduced in the ΔaraR/ΔxlnR strain and increased in the xylulokinase negative strain (xkiA1) on d-xylose and/or l-arabinose. Bioinformatic analysis of the 1 kb promoter regions of rpiA and talB showed the presence of putative XlnR binding sites. Combining all results in this study, it strongly suggests that these two PPP genes are under regulation of XlnR in A. niger.
Collapse
Affiliation(s)
- Evy Battaglia
- Microbiology & Kluyver Centre for Genomics of Industrial Fermentation, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands; CBS Fungal Biodiversity Centre, Uppsalalaan 8, 3584 CY, Utrecht, The Netherlands.
| | - Miaomiao Zhou
- CBS Fungal Biodiversity Centre, Uppsalalaan 8, 3584 CY, Utrecht, The Netherlands.
| | - Ronald P de Vries
- Microbiology & Kluyver Centre for Genomics of Industrial Fermentation, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands; CBS Fungal Biodiversity Centre, Uppsalalaan 8, 3584 CY, Utrecht, The Netherlands.
| |
Collapse
|
22
|
Abstract
BACKGROUND The tropical ascomycete Trichoderma reesei (Hypocrea jecorina) represents one of the most efficient plant cell wall degraders. Regulation of the enzymes required for this process is affected by nutritional signals as well as other environmental signals including light. RESULTS Our transcriptome analysis of strains lacking the photoreceptors BLR1 and BLR2 as well as ENV1 revealed a considerable increase in the number of genes showing significantly different transcript levels in light and darkness compared to wild-type. We show that members of all glycoside hydrolase families can be subject to light dependent regulation, hence confirming nutrient utilization including plant cell wall degradation as a major output pathway of light signalling. In contrast to N. crassa, photoreceptor mediated regulation of carbon metabolism in T. reesei occurs primarily by BLR1 and BLR2 via their positive effect on induction of env1 transcription, rather than by a presumed negative effect of ENV1 on the function of the BLR complex. Nevertheless, genes consistently regulated by photoreceptors in N. crassa and T. reesei are significantly enriched in carbon metabolic functions. Hence, different regulatory mechanisms are operative in these two fungi, while the light dependent regulation of plant cell wall degradation appears to be conserved.Analysis of growth on different carbon sources revealed that the oxidoreductive D-galactose and pentose catabolism is influenced by light and ENV1. Transcriptional regulation of the target enzymes in these pathways is enhanced by light and influenced by ENV1, BLR1 and/or BLR2. Additionally we detected an ENV1-regulated genomic cluster of 9 genes including the D-mannitol dehydrogenase gene lxr1, with two genes of this cluster showing consistent regulation in N. crassa. CONCLUSIONS We show that one major output pathway of light signalling in Trichoderma reesei is regulation of glycoside hydrolase genes and the degradation of hemicellulose building blocks. Targets of ENV1 and BLR1/BLR2 are for the most part distinct and indicate individual functions for ENV1 and the BLR complex besides their postulated regulatory interrelationship.
Collapse
Affiliation(s)
- Doris Tisch
- Research Area of Gene Technology and Applied Biochemistry, Institute for Chemical Engineering, Vienna University of Technology, Gumpendorferstraße 1a, Wien A-1060, Austria
| | - Monika Schmoll
- Department Health and Environment – Bioresources, AIT Austrian Institute of Technology, Konrad-Lorenz Strasse 24, Tulln 3430, Austria
| |
Collapse
|
23
|
The influence of Aspergillus niger transcription factors AraR and XlnR in the gene expression during growth in D-xylose, L-arabinose and steam-exploded sugarcane bagasse. Fungal Genet Biol 2013; 60:29-45. [PMID: 23892063 DOI: 10.1016/j.fgb.2013.07.007] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Revised: 07/03/2013] [Accepted: 07/17/2013] [Indexed: 12/29/2022]
Abstract
The interest in the conversion of plant biomass to renewable fuels such as bioethanol has led to an increased investigation into the processes regulating biomass saccharification. The filamentous fungus Aspergillus niger is an important microorganism capable of producing a wide variety of plant biomass degrading enzymes. In A. niger the transcriptional activator XlnR and its close homolog, AraR, controls the main (hemi-)cellulolytic system responsible for plant polysaccharide degradation. Sugarcane is used worldwide as a feedstock for sugar and ethanol production, while the lignocellulosic residual bagasse can be used in different industrial applications, including ethanol production. The use of pentose sugars from hemicelluloses represents an opportunity to further increase production efficiencies. In the present study, we describe a global gene expression analysis of A. niger XlnR- and AraR-deficient mutant strains, grown on a D-xylose/L-arabinose monosaccharide mixture and steam-exploded sugarcane bagasse. Different gene sets of CAZy enzymes and sugar transporters were shown to be individually or dually regulated by XlnR and AraR, with XlnR appearing to be the major regulator on complex polysaccharides. Our study contributes to understanding of the complex regulatory mechanisms responsible for plant polysaccharide-degrading gene expression, and opens new possibilities for the engineering of fungi able to produce more efficient enzymatic cocktails to be used in biofuel production.
Collapse
|
24
|
Battaglia E, Klaubauf S, Vallet J, Ribot C, Lebrun MH, de Vries RP. Xlr1 is involved in the transcriptional control of the pentose catabolic pathway, but not hemi-cellulolytic enzymes in Magnaporthe oryzae. Fungal Genet Biol 2013; 57:76-84. [PMID: 23810898 DOI: 10.1016/j.fgb.2013.06.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Revised: 06/14/2013] [Accepted: 06/15/2013] [Indexed: 10/26/2022]
Abstract
Magnaporthe oryzae is a fungal plant pathogen of many grasses including rice. Since arabinoxylan is one of the major components of the plant cell wall of grasses, M. oryzae is likely to degrade this polysaccharide for supporting its growth in infected leaves. D-Xylose is released from arabinoxylan by fungal depolymerising enzymes and catabolized through the pentose pathway. The expression of genes involved in these pathways is under control of the transcriptional activator XlnR/Xlr1, conserved among filamentous ascomycetes. In this study, we identified M. oryzae genes involved in the pentose catabolic pathway (PCP) and their function during infection, including the XlnR homolog, XLR1, through the phenotypic analysis of targeted null mutants. Growth of the Δxlr1 strain was reduced on D-xylose and xylan, but unaffected on L-arabinose and arabinan. A strong reduction of PCP gene expression was observed in the Δxlr1 strain on D-xylose and L-arabinose. However, there was no significant difference in xylanolytic and cellulolytic enzyme activities between the Δxlr1 mutant and the reference strain. These data demonstrate that XLR1 encodes the transcriptional activator of the PCP in M. oryzae, but does not appear to play a role in the regulation of the (hemi-) cellulolytic system in this fungus. This indicates only partial similarity in function between Xlr1 and A. niger XlnR. The deletion mutant of D-xylulose kinase encoding gene (XKI1) is clearly unable to grow on either D-xylose or L-arabinose and showed reduced growth on xylitol, L-arabitol and xylan. Δxki1 displayed an interesting molecular phenotype as it over-expressed other PCP genes as well as genes encoding (hemi-) cellulolytic enzymes. However, neither Δxlr1 nor Δxki1 showed significant differences in their pathogeny on rice and barley compared to the wild type, suggesting that D-xylose catabolism is not required for fungal growth in infected leaves.
Collapse
Affiliation(s)
- Evy Battaglia
- Microbiology and Kluyver Centre for Genomics of Industrial Fermentation, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | | | | | | | | | | |
Collapse
|
25
|
Culleton H, McKie V, de Vries RP. Physiological and molecular aspects of degradation of plant polysaccharides by fungi: What have we learned fromAspergillus? Biotechnol J 2013; 8:884-94. [DOI: 10.1002/biot.201200382] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2012] [Revised: 02/12/2013] [Accepted: 04/03/2013] [Indexed: 11/09/2022]
|
26
|
Martín del Campo JS, Chun Y, Kim JE, Patiño R, Zhang YHP. Discovery and characterization of a novel ATP/polyphosphate xylulokinase from a hyperthermophilic bacterium Thermotoga maritima. J Ind Microbiol Biotechnol 2013; 40:661-9. [PMID: 23584458 DOI: 10.1007/s10295-013-1265-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Accepted: 03/30/2013] [Indexed: 01/11/2023]
Abstract
Xylulokinase (XK, E.C. 2.7.1.17) is one of the key enzymes in xylose metabolism and it is essential for the activation of pentoses for the sustainable production of biocommodities from biomass sugars. The open reading frame (TM0116) from the hyperthermophilic bacterium Thermotoga maritima MSB8 encoding a putative xylulokinase were cloned and expressed in Escherichia coli BL21 Star (DE3) in the Luria-Bertani and auto-inducing high-cell-density media. The basic biochemical properties of this thermophilic XK were characterized. This XK has the optimal temperature of 85 °C. Under a suboptimal condition of 60 °C, the k cat was 83 s⁻¹, and the K(m) values for xylulose and ATP were 1.24 and 0.71 mM, respectively. We hypothesized that this XK could work on polyphosphate possibly because this ancestral thermophilic microorganism utilizes polyphosphate to regulate the Embden-Meyerhof pathway and its substrate-binding residues are somewhat similar to those of other ATP/polyphosphate-dependent kinases. This XK was found to work on low-cost polyphosphate, exhibiting 41 % of its specific activity on ATP. This first ATP/polyphosphate XK could have a great potential for xylose utilization in thermophilic ethanol-producing microorganisms and cell-free biosystems for low-cost biomanufacturing without the use of ATP.
Collapse
Affiliation(s)
- Julia S Martín del Campo
- Biological Systems Engineering Department, Virginia Tech, 304 Seitz Hall, Blacksburg, VA 24061, USA
| | | | | | | | | |
Collapse
|
27
|
Metz B, Mojzita D, Herold S, Kubicek CP, Richard P, Seiboth B. A novel L-xylulose reductase essential for L-arabinose catabolism in Trichoderma reesei. Biochemistry 2013; 52:2453-60. [PMID: 23506391 PMCID: PMC3623455 DOI: 10.1021/bi301583u] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
l-Xylulose reductases belong
to the superfamily of short
chain dehydrogenases and reductases (SDRs) and catalyze the NAD(P)H-dependent
reduction of l-xylulose to xylitol in l-arabinose
and glucuronic acid catabolism. Here we report the identification
of a novel l-xylulose reductase LXR3 in the fungus Trichoderma reesei by a bioinformatic approach in combination
with a functional analysis. LXR3, a 31 kDa protein, catalyzes the
reduction of l-xylulose to xylitol via NADPH and is also
able to convert d-xylulose, d-ribulose, l-sorbose, and d-fructose to their corresponding polyols.
Transcription of lxr3 is specifically induced by l-arabinose and l-arabitol. Deletion of lxr3 affects growth on l-arabinose and l-arabitol and
reduces total NADPH-dependent LXR activity in cell free extracts.
A phylogenetic analysis of known l-xylulose reductases shows
that LXR3 is phylogenetically different from the Aspergillus
nigerl-xylulose reductase LxrA and, moreover, that
all identified true l-xylulose reductases belong to different
clades within the superfamily of SDRs. This indicates that the enzymes
responsible for the reduction of l-xylulose in l-arabinose and glucuronic acid catabolic pathways have evolved independently
and that even the fungal LXRs of the l-arabinose catabolic
pathway have evolved in different clades of the superfamily of SDRs.
Collapse
Affiliation(s)
- Benjamin Metz
- Research Division Biotechnology and Microbiology, Institute of Chemical Engineering, Vienna University of Technology, Vienna, Austria
| | | | | | | | | | | |
Collapse
|
28
|
Klaubauf S, Ribot C, Melayah D, Lagorce A, Lebrun MH, de Vries RP. The pentose catabolic pathway of the rice-blast fungus Magnaporthe oryzae
involves a novel pentose reductase restricted to few fungal species. FEBS Lett 2013; 587:1346-52. [DOI: 10.1016/j.febslet.2013.03.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Accepted: 03/02/2013] [Indexed: 11/26/2022]
|
29
|
d-Xylose concentration-dependent hydrolase expression profiles and the function of CreA and XlnR in Aspergillus niger. Appl Environ Microbiol 2012; 78:3145-55. [PMID: 22344641 DOI: 10.1128/aem.07772-11] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Aspergillus niger is an important organism for the production of industrial enzymes such as hemicellulases and pectinases. The xylan-backbone monomer, d-xylose, is an inducing substance for the coordinate expression of a large number of polysaccharide-degrading enzymes. In this study, the responses of 22 genes to low (1 mM) and high (50 mM) d-xylose concentrations were investigated. These 22 genes encode enzymes that function as xylan backbone-degrading enzymes, accessory enzymes, cellulose-degrading enzymes, or enzymes involved in the pentose catabolic pathway in A. niger. Notably, genes encoding enzymes that have a similar function (e.g., xylan backbone degradation) respond in a similar manner to different concentrations of d-xylose. Although low d-xylose concentrations provoke the greatest change in transcript levels, in particular, for hemicellulase-encoding genes, transcript formation in the presence of high concentrations of d-xylose was also observed. Interestingly, a high d-xylose concentration is favorable for certain groups of genes. Furthermore, the repressing influence of CreA on the transcription and transcript levels of a subset of these genes was observed regardless of whether a low or high concentration of d-xylose was used. Interestingly, the decrease in transcript levels of certain genes on high d-xylose concentrations is not reflected by the transcript level of their activator, XlnR. Regardless of the d-xylose concentration applied and whether CreA was functional, xlnR was constitutively expressed at a low level.
Collapse
|
30
|
Battaglia E, Visser L, Nijssen A, van Veluw G, Wösten H, de Vries R. Analysis of regulation of pentose utilisation in Aspergillus niger reveals evolutionary adaptations in Eurotiales. Stud Mycol 2011; 69:31-8. [PMID: 21892241 PMCID: PMC3161754 DOI: 10.3114/sim.2011.69.03] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Aspergilli are commonly found in soil and on decaying plant material. D-xylose and L-arabinose are highly abundant components of plant biomass. They are released from polysaccharides by fungi using a set of extracellular enzymes and subsequently converted intracellularly through the pentose catabolic pathway (PCP). In this study, the L-arabinose responsive transcriptional activator (AraR) is identified in Aspergillus niger and was shown to control the L-arabinose catabolic pathway as well as expression of genes encoding extracellular L-arabinose releasing enzymes. AraR interacts with the D-xylose-responsive transcriptional activator XlnR in the regulation of the pentose catabolic pathway, but not with respect to release of L-arabinose and D-xylose. AraR was only identified in the Eurotiales, more specifically in the family Trichocomaceae and appears to have originated from a gene duplication event (from XlnR) after this order or family split from the other filamentous ascomycetes. XlnR is present in all filamentous ascomycetes with the exception of members of the Onygenales. Since the Onygenales and Eurotiales are both part of the subclass Eurotiomycetidae, this indicates that strong adaptation of the regulation of pentose utilisation has occurred at this evolutionary node. In Eurotiales a unique two-component regulatory system for pentose release and metabolism has evolved, while the regulatory system was lost in the Onygenales. The observed evolutionary changes (in Eurotiomycetidae) mainly affect the regulatory system as in contrast, homologues for most genes of the L-arabinose/D-xylose catabolic pathway are present in all the filamentous fungi, irrespective of the presence of XlnR and/or AraR.
Collapse
Affiliation(s)
- E. Battaglia
- Microbiology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - L. Visser
- Microbiology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - A. Nijssen
- Microbiology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - G.J. van Veluw
- Microbiology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - H.A.B. Wösten
- Microbiology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - R.P. de Vries
- Microbiology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
- CBS-KNAW, Fungal Biodiversity Centre, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
- Correspondence: Ronald P. de Vries,
| |
Collapse
|
31
|
L-arabitol is the actual inducer of xylanase expression in Hypocrea jecorina (Trichoderma reesei). Appl Environ Microbiol 2011; 77:5988-94. [PMID: 21742908 DOI: 10.1128/aem.05427-11] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The saprophytic fungus Hypocrea jecorina (anamorph, Trichoderma reesei) is an important native producer of hydrolytic enzymes, including xylanases. Regarding principles of sustainability, cheap and renewable raw materials, such as d-xylose (the backbone monomer of xylan), have been receiving increasing attention from industries. Recently, it was demonstrated that small (0.5 to 1 mM) amounts of d-xylose induce the highest expression of xylanase in H. jecorina. However, it was also reported that active metabolism of d-xylose is necessary for induction. In this report, we demonstrate that xylitol, the next intermediate in the pentose pathway after d-xylose, does not trigger transcription of xylanase-encoding genes in H. jecorina QM9414. The highest level of transcription of xylanolytic enzyme-encoding genes occurred in an xdh1 (encoding a xylitol dehydrogenase) deletion strain cultured in the presence of 0.5 mM d-xylose, suggesting that a metabolite upstream of xylitol is the inducer. The expression levels of xylanases in an xdh1-lad1 double-deletion strain were lower than that of an xdh1 deletion strain. This observation suggested that l-xylulose is not an inducer and led to the hypothesis that l-arabitol is the actual inducer of xylanase expression. A direct comparison of transcript levels following the incubation of the H. jecorina parental strain with various metabolites of the pentose pathway confirmed this hypothesis. In addition, we demonstrate that xyr1, the activator gene, is not induced in the presence of pentose sugars and polyols, regardless of the concentration used; instead, we observed low constitutive expression of xyr1.
Collapse
|
32
|
Xylose triggers reversible phosphorylation of XlnR, the fungal transcriptional activator of xylanolytic and cellulolytic genes in Aspergillus oryzae. Biosci Biotechnol Biochem 2011; 75:953-9. [PMID: 21597200 DOI: 10.1271/bbb.100923] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
XlnR is a transcription factor that mediates D-xylose-triggered induction of xylanolytic and cellulolytic genes in Aspergillus. In order to clarify the molecular mechanisms underlying XlnR-mediated induction, Aspergillus oryzae XlnR was fused with the c-myc tag and examined by Western blotting. Phosphate-affinity SDS-PAGE revealed that XlnR was present as a mixture of variously phosphorylated forms in the absence of D-xylose, and that D-xylose triggered additional phosphorylation of the protein. D-Xylose-triggered phosphorylation was a rapid process occurring within 5 min prior to the accumulation of xynG2 mRNA, and removal of D-xylose caused slow dephosphorylation, leading to less-phosphorylated forms. At 30 min after removal, the phosphorylation status was almost identical to that in the absence of D-xylose, and the level of xynG2 mRNA started to decrease. These results indicate that XlnR is highly phosphorylated when it is active in transactivation, implying that D-xylose-triggered reversible phosphorylation controls XlnR activity.
Collapse
|
33
|
Battaglia E, Hansen SF, Leendertse A, Madrid S, Mulder H, Nikolaev I, de Vries RP. Regulation of pentose utilisation by AraR, but not XlnR, differs in Aspergillus nidulans and Aspergillus niger. Appl Microbiol Biotechnol 2011; 91:387-97. [PMID: 21484208 PMCID: PMC3125510 DOI: 10.1007/s00253-011-3242-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Revised: 03/15/2011] [Accepted: 03/15/2011] [Indexed: 12/01/2022]
Abstract
Filamentous fungi are important producers of plant polysaccharide degrading enzymes that are used in many industrial applications. These enzymes are produced by the fungus to liberate monomeric sugars that are used as carbon source. Two of the main components of plant polysaccharides are l-arabinose and d-xylose, which are metabolized through the pentose catabolic pathway (PCP) in these fungi. In Aspergillus niger, the regulation of pentose release from polysaccharides and the PCP involves the transcriptional activators AraR and XlnR, which are also present in other Aspergilli such as Aspergillus nidulans. The comparative analysis revealed that the regulation of the PCP by AraR differs in A. nidulans and A. niger, whereas the regulation of the PCP by XlnR was similar in both species. This was demonstrated by the growth differences on l-arabinose between disruptant strains for araR and xlnR in A. nidulans and A. niger. In addition, the expression profiles of genes encoding l-arabinose reductase (larA), l-arabitol dehydrogenase (ladA) and xylitol dehydrogenase (xdhA) differed in these strains. This data suggests evolutionary changes in these two species that affect pentose utilisation. This study also implies that manipulating regulatory systems to improve the production of polysaccharide degrading enzymes, may give different results in different industrial fungi.
Collapse
Affiliation(s)
- Evy Battaglia
- Department of Microbiology and Kluyver Centre for Genomics of Industrial Fermentation, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
34
|
Seiboth B, Metz B. Fungal arabinan and L-arabinose metabolism. Appl Microbiol Biotechnol 2011; 89:1665-73. [PMID: 21212945 PMCID: PMC3044236 DOI: 10.1007/s00253-010-3071-8] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2010] [Revised: 12/08/2010] [Accepted: 12/08/2010] [Indexed: 12/04/2022]
Abstract
l-Arabinose is the second most abundant pentose beside d-xylose and is found in the plant polysaccharides, hemicellulose and pectin. The need to find renewable carbon and energy sources has accelerated research to investigate the potential of l-arabinose for the development and production of biofuels and other bioproducts. Fungi produce a number of extracellular arabinanases, including α-l-arabinofuranosidases and endo-arabinanases, to specifically release l-arabinose from the plant polymers. Following uptake of l-arabinose, its intracellular catabolism follows a four-step alternating reduction and oxidation path, which is concluded by a phosphorylation, resulting in d-xylulose 5-phosphate, an intermediate of the pentose phosphate pathway. The genes and encoding enzymes l-arabinose reductase, l-arabinitol dehydrogenase, l-xylulose reductase, xylitol dehydrogenase, and xylulokinase of this pathway were mainly characterized in the two biotechnological important fungi Aspergillus niger and Trichoderma reesei. Analysis of the components of the l-arabinose pathway revealed a number of specific adaptations in the enzymatic and regulatory machinery towards the utilization of l-arabinose. Further genetic and biochemical analysis provided evidence that l-arabinose and the interconnected d-xylose pathway are also involved in the oxidoreductive degradation of the hexose d-galactose.
Collapse
Affiliation(s)
- Bernhard Seiboth
- Research Area Gene Technology and Applied Biochemistry, Institute of Chemical Engineering, Vienna University of Technology, Wien, Austria.
| | | |
Collapse
|
35
|
Mojzita D, Penttilä M, Richard P. Identification of an L-arabinose reductase gene in Aspergillus niger and its role in L-arabinose catabolism. J Biol Chem 2010; 285:23622-8. [PMID: 20511228 PMCID: PMC2911281 DOI: 10.1074/jbc.m110.113399] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2010] [Revised: 05/06/2010] [Indexed: 11/06/2022] Open
Abstract
The first enzyme in the pathway for l-arabinose catabolism in eukaryotic microorganisms is a reductase, reducing l-arabinose to l-arabitol. The enzymes catalyzing this reduction are in general nonspecific and would also reduce d-xylose to xylitol, the first step in eukaryotic d-xylose catabolism. It is not clear whether microorganisms use different enzymes depending on the carbon source. Here we show that Aspergillus niger makes use of two different enzymes. We identified, cloned, and characterized an l-arabinose reductase, larA, that is different from the d-xylose reductase, xyrA. The larA is up-regulated on l-arabinose, while the xyrA is up-regulated on d-xylose. There is however an initial up-regulation of larA also on d-xylose but that fades away after about 4 h. The deletion of the larA gene in A. niger results in a slow growth phenotype on l-arabinose, whereas the growth on d-xylose is unaffected. The l-arabinose reductase can convert l-arabinose and d-xylose to their corresponding sugar alcohols but has a higher affinity for l-arabinose. The K(m) for l-arabinose is 54 + or - 6 mm and for d-xylose 155 + or - 15 mm.
Collapse
Affiliation(s)
- Dominik Mojzita
- From the VTT Technical Research Centre of Finland, Espoo, 02044 VTT, Finland
| | - Merja Penttilä
- From the VTT Technical Research Centre of Finland, Espoo, 02044 VTT, Finland
| | - Peter Richard
- From the VTT Technical Research Centre of Finland, Espoo, 02044 VTT, Finland
| |
Collapse
|
36
|
Fernandes S, Tuohy MG, Murray PG. Xylose reductase from the thermophilic fungus Talaromyces emersonii: cloning and heterologous expression of the native gene (Texr) and a double mutant (TexrK271R + N273D) with altered coenzyme specificity. J Biosci 2010; 34:881-90. [PMID: 20093741 DOI: 10.1007/s12038-009-0102-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Xylose reductase is involved in the first step of the fungal pentose catabolic pathway. The gene encoding xylose reductase (Texr) was isolated from the thermophilic fungus Talaromyces emersonii, expressed in Escherichia coli and purified to homogeneity. Texr encodes a 320 amino acid protein with a molecular weight of 36 kDa, which exhibited high sequence identity with other xylose reductase sequences and was shown to be a member of the aldoketoreductase (AKR) superfamily with a preference for reduced nicotinamide adenine dinucleotide phosphate (NADPH) as coenzyme. Given the potential application of xylose reductase enzymes that preferentially utilize the reduced form of nicotinamide adenine dinucleotide (NADH) rather than NADPH in the fermentation of five carbon sugars by genetically engineered microorganisms, the coenzyme selectivity of TeXR was altered by site-directed mutagenesis. The TeXR K271R+N273D double mutant displayed an altered coenzyme preference with a 16-fold improvement in NADH utilization relative to the wild type and therefore has the potential to reduce redox imbalance of xylose fermentation in recombinant S. cerevisiae strains. Expression of Texr was shown to be inducible by the same carbon sources responsible for the induction of genes encoding enzymes relevant to lignocellulose hydrolysis, suggesting a coordinated expression of intracellular and extracellular enzymes relevant to hydrolysis and metabolism of pentose sugars in T. emersonii in adaptation to its natural habitat. This indicates a potential advantage in survival and response to a nutrient-poor environment.
Collapse
Affiliation(s)
- Sara Fernandes
- Molecular Glycobiotechnology Group, Biochemistry, School of Natural Sciences, National University of Ireland, Galway, University Road, Galway, Ireland
| | | | | |
Collapse
|
37
|
Genes regulated by AoXlnR, the xylanolytic and cellulolytic transcriptional regulator, in Aspergillus oryzae. Appl Microbiol Biotechnol 2009; 85:141-54. [DOI: 10.1007/s00253-009-2236-9] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2009] [Revised: 08/24/2009] [Accepted: 08/31/2009] [Indexed: 10/20/2022]
|
38
|
Rutten L, Ribot C, Trejo-Aguilar B, Wösten HAB, de Vries RP. A single amino acid change (Y318F) in the L-arabitol dehydrogenase (LadA) from Aspergillus niger results in a significant increase in affinity for D-sorbitol. BMC Microbiol 2009; 9:166. [PMID: 19674460 PMCID: PMC2731777 DOI: 10.1186/1471-2180-9-166] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2008] [Accepted: 08/12/2009] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND L-arabitol dehydrogenase (LAD) and xylitol dehydrogenase (XDH) are involved in the degradation of L-arabinose and D-xylose, which are among the most abundant monosaccharides on earth. Previous data demonstrated that LAD and XDH not only differ in the activity on their biological substrate, but also that only XDH has significant activity on D-sorbitol and may therefore be more closely related to D-sorbitol dehydrogenases (SDH). In this study we aimed to identify residues involved in the difference in substrate specificity. RESULTS Phylogenetic analysis demonstrated that LAD, XDH and SDH form 3 distinct groups of the family of dehydrogenases containing an Alcohol dehydrogenase GroES-like domain (pfam08240) and likely have evolved from a common ancestor. Modelling of LadA and XdhA of the saprobic fungus Aspergillus niger on human SDH identified two residues in LadA (M70 and Y318), that may explain the absence of activity on D-sorbitol. While introduction of the mutation M70F in LadA of A. niger resulted in a nearly complete enzyme inactivation, the Y318F resulted in increased activity for L-arabitol and xylitol. Moreover, the affinity for D-sorbitol was increased in this mutant. CONCLUSION These data demonstrates that Y318 of LadA contributes significantly to the substrate specificity difference between LAD and XDH/SDH.
Collapse
Affiliation(s)
- Lucy Rutten
- Department of Crystal and Structural Chemistry, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | - Cecile Ribot
- Microbiology, Department of Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
- Functional Genomics of Plant Pathogenic Fungi UMR 5240 CNRS-UCB-INSA-Bayer CropScience Microbiology, 14-20 Rue Pierre Baizet B.P. 9163, 69263 Lyon cedex 09 France
- UMR BGPI, Equipe "Interactions riz-parasites", Campus International de Baillarguet, Montpellier, France
| | - Blanca Trejo-Aguilar
- Microbiology, Department of Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | - Han AB Wösten
- Microbiology, Department of Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | - Ronald P de Vries
- Microbiology, Department of Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
- Fungal Physiology, CBS Fungal Biodiversity Centre, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands
| |
Collapse
|
39
|
Metz B, de Vries RP, Polak S, Seidl V, Seiboth B. TheHypocrea jecorina(syn.Trichoderma reesei)lxr1gene encodes ad-mannitol dehydrogenase and is not involved inl-arabinose catabolism. FEBS Lett 2009; 583:1309-13. [DOI: 10.1016/j.febslet.2009.03.027] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2009] [Revised: 03/05/2009] [Accepted: 03/13/2009] [Indexed: 11/24/2022]
|
40
|
Analysis of variance components reveals the contribution of sample processing to transcript variation. Appl Environ Microbiol 2009; 75:2414-22. [PMID: 19233957 DOI: 10.1128/aem.02270-08] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The proper design of DNA microarray experiments requires knowledge of biological and technical variation of the studied biological model. For the filamentous fungus Aspergillus niger, a fast, quantitative real-time PCR (qPCR)-based hierarchical experimental design was used to determine this variation. Analysis of variance components determined the contribution of each processing step to total variation: 68% is due to differences in day-to-day handling and processing, while the fermentor vessel, cDNA synthesis, and qPCR measurement each contributed equally to the remainder of variation. The global transcriptional response to d-xylose was analyzed using Affymetrix microarrays. Twenty-four statistically differentially expressed genes were identified. These encode enzymes required to degrade and metabolize D-xylose-containing polysaccharides, as well as complementary enzymes required to metabolize complex polymers likely present in the vicinity of D-xylose-containing substrates. These results confirm previous findings that the d-xylose signal is interpreted by the fungus as the availability of a multitude of complex polysaccharides. Measurement of a limited number of transcripts in a defined experimental setup followed by analysis of variance components is a fast and reliable method to determine biological and technical variation present in qPCR and microarray studies. This approach provides important parameters for the experimental design of batch-grown filamentous cultures and facilitates the evaluation and interpretation of microarray data.
Collapse
|
41
|
A trispecies Aspergillus microarray: comparative transcriptomics of three Aspergillus species. Proc Natl Acad Sci U S A 2008; 105:4387-92. [PMID: 18332432 DOI: 10.1073/pnas.0709964105] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The full-genome sequencing of the filamentous fungi Aspergillus nidulans, Aspergillus niger, and Aspergillus oryzae has opened possibilities for studying the cellular physiology of these fungi on a systemic level. As a tool to explore this, we are making available an Affymetrix GeneChip developed for transcriptome analysis of any of the three above-mentioned aspergilli. Transcriptome analysis of triplicate batch cultivations of all three aspergilli on glucose and xylose media was used to validate the performance of the microarray. Gene comparisons of all three species and cross-analysis with the expression data identified 23 genes to be a conserved response across Aspergillus sp., including the xylose transcriptional activator XlnR. A promoter analysis of the up-regulated genes in all three species indicates the conserved XlnR-binding site to be 5'-GGNTAAA-3'. The composition of the conserved gene-set suggests that xylose acts as a molecule, indicating the presence of complex carbohydrates such as hemicellulose, and triggers an array of degrading enzymes. With this case example, we present a validated tool for transcriptome analysis of three Aspergillus species and a methodology for conducting cross-species evolutionary studies within a genus using comparative transcriptomics.
Collapse
|
42
|
Seiboth B, Gamauf C, Pail M, Hartl L, Kubicek CP. The d-xylose reductase of Hypocrea jecorina is the major aldose reductase in pentose and d-galactose catabolism and necessary for β-galactosidase and cellulase induction by lactose. Mol Microbiol 2007; 66:890-900. [DOI: 10.1111/j.1365-2958.2007.05953.x] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
43
|
Effects of Gene Orientation and Use of Multiple Promoters on the Expression of XYL1 and XYL2 in Saccharomyces cerevisiae. Appl Biochem Biotechnol 2007; 145:69-78. [DOI: 10.1007/s12010-007-8076-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2007] [Accepted: 10/02/2007] [Indexed: 11/27/2022]
|
44
|
Hahn-Hägerdal B, Karhumaa K, Fonseca C, Spencer-Martins I, Gorwa-Grauslund MF. Towards industrial pentose-fermenting yeast strains. Appl Microbiol Biotechnol 2007; 74:937-53. [PMID: 17294186 DOI: 10.1007/s00253-006-0827-2] [Citation(s) in RCA: 368] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2006] [Revised: 12/21/2006] [Accepted: 12/25/2006] [Indexed: 10/23/2022]
Abstract
Production of bioethanol from forest and agricultural products requires a fermenting organism that converts all types of sugars in the raw material to ethanol in high yield and with a high rate. This review summarizes recent research aiming at developing industrial strains of Saccharomyces cerevisiae with the ability to ferment all lignocellulose-derived sugars. The properties required from the industrial yeast strains are discussed in relation to four benchmarks: (1) process water economy, (2) inhibitor tolerance, (3) ethanol yield, and (4) specific ethanol productivity. Of particular importance is the tolerance of the fermenting organism to fermentation inhibitors formed during fractionation/pretreatment and hydrolysis of the raw material, which necessitates the use of robust industrial strain background. While numerous metabolic engineering strategies have been developed in laboratory yeast strains, only a few approaches have been realized in industrial strains. The fermentation performance of the existing industrial pentose-fermenting S. cerevisiae strains in lignocellulose hydrolysate is reviewed. Ethanol yields of more than 0.4 g ethanol/g sugar have been achieved with several xylose-fermenting industrial strains such as TMB 3400, TMB 3006, and 424A(LNF-ST), carrying the heterologous xylose utilization pathway consisting of xylose reductase and xylitol dehydrogenase, which demonstrates the potential of pentose fermentation in improving lignocellulosic ethanol production.
Collapse
Affiliation(s)
- Bärbel Hahn-Hägerdal
- Department of Applied Microbiology, Lund University, PO Box 124, Lund 22100, Sweden.
| | | | | | | | | |
Collapse
|
45
|
Fonseca C, Spencer-Martins I, Hahn-Hägerdal B. L-Arabinose metabolism in Candida arabinofermentans PYCC 5603T and Pichia guilliermondii PYCC 3012: influence of sugar and oxygen on product formation. Appl Microbiol Biotechnol 2007; 75:303-10. [PMID: 17262211 DOI: 10.1007/s00253-006-0830-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2006] [Revised: 12/22/2006] [Accepted: 12/25/2006] [Indexed: 10/23/2022]
Abstract
L-Arabinose utilization by the yeasts Candida arabinofermentans PYCC 5603(T) and Pichia guilliermondii PYCC 3012 was investigated in aerobic batch cultures and compared, under similar conditions, to D-glucose and D-xylose metabolism. At high aeration levels, only biomass was formed from all the three sugars. When oxygen became limited, ethanol was produced from D-glucose, demonstrating a fermentative pathway in these yeasts. However, pentoses were essentially respired and, under oxygen limitation, the respective polyols accumulated--arabitol from L-arabinose and xylitol from D-xylose. Different L-arabinose concentrations and oxygen conditions were tested to better understand L-arabinose metabolism. P. guilliermondii PYCC 3012 excreted considerably more arabitol from L-arabinose (and also xylitol from D-xylose) than C. arabinofermentans PYCC 5603(T). In contrast to the latter, P. guilliermondii PYCC 3012 did not produce any traces of ethanol in complex L-arabinose (80 g/l) medium under oxygen-limited conditions. Neither sustained growth nor active metabolism was observed under anaerobiosis. This study demonstrates, for the first time, the oxygen dependence of metabolite and product formation in L-arabinose-assimilating yeasts.
Collapse
Affiliation(s)
- César Fonseca
- Centro de Recursos Microbiológicos (CREM), Faculty of Sciences and Technology, New University of Lisbon, 2829-516, Caparica, Portugal
| | | | | |
Collapse
|
46
|
Hahn-Hägerdal B, Karhumaa K, Jeppsson M, Gorwa-Grauslund MF. Metabolic engineering for pentose utilization in Saccharomyces cerevisiae. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2007; 108:147-77. [PMID: 17846723 DOI: 10.1007/10_2007_062] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The introduction of pentose utilization pathways in baker's yeast Saccharomyces cerevisiae is summarized together with metabolic engineering strategies to improve ethanolic pentose fermentation. Bacterial and fungal xylose and arabinose pathways have been expressed in S. cerevisiae but do not generally convey significant ethanolic fermentation traits to this yeast. A large number of rational metabolic engineering strategies directed among others toward sugar transport, initial pentose conversion, the pentose phosphate pathway, and the cellular redox metabolism have been exploited. The directed metabolic engineering approach has often been combined with random approaches including adaptation, mutagenesis, and hybridization. The knowledge gained about pentose fermentation in S. cerevisiae is primarily limited to genetically and physiologically well-characterized laboratory strains. The translation of this knowledge to strains performing in an industrial context is discussed.
Collapse
|
47
|
Guo C, He P, Lu D, Shen A, Jiang N. Cloning and molecular characterization of a gene coding D-xylulokinase (CmXYL3) from Candida maltosa. J Appl Microbiol 2006; 101:139-50. [PMID: 16834601 DOI: 10.1111/j.1365-2672.2006.02915.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AIMS To clone and identify a gene (CmXYL3) coding D-xylulokinase from Candida maltosa Xu316 and understand its physiological function. METHODS AND RESULTS Based on the conserved regions of the known D-xylulokinase-encoding genes, a pair of degenerate primers was designed to clone the CmXYL3 gene from C. maltosa Xu316. The coding region and sequences flanking the CmXYL3 gene were obtained by PCR-based DNA walking method. Southern blotting analysis suggested that there is a single copy of the CmXYL3 gene in the genome. The open reading frame starting from ATG and ending with TAG stop codon encoded 616 amino acids with a calculated molecular mass of 68889.743 Da. The CmXYL3 gene under the control of the GPD1 promoter was heterologously expressed in Saccharomyces cerevisiae deficient in D-xylulokinase (deltaScXKS1::LEU2) activity, and restored growth on D-xylulose. The specific activity of D-xylulokinase varied during xylose fermentation and was correlated with aeration level. After growth on different pentoses and pentitols as sole carbon sources, the highest specific activity of D-xylulokinase was observed on D-xylose. CONCLUSIONS The CmXYL3 gene isolated from C. maltosa Xu316 encodes a novel D-xylulokinase that plays a pivotal role in xylulose metabolism. SIGNIFICANCE AND IMPACT OF THE STUDY This is the first report that describes the isolation and cloning of D-xylulokinase gene (CmXYL3) from C. maltosa Xu316. D-xylulokinase is pivotal for growth and product formation during xylose metabolism. Better understanding of the biochemical properties and the physiological function of D-xylulokinase will contribute to optimizing fermentation conditions and determining the strategies for metabolic engineering of C. maltosa Xu316 for further improvement of xylitol yield and productivity.
Collapse
Affiliation(s)
- C Guo
- Centre of Microbial Biotechnology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, PR China
| | | | | | | | | |
Collapse
|
48
|
Aro N, Pakula T, Penttilä M. Transcriptional regulation of plant cell wall degradation by filamentous fungi. FEMS Microbiol Rev 2004; 29:719-39. [PMID: 16102600 DOI: 10.1016/j.femsre.2004.11.006] [Citation(s) in RCA: 286] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2004] [Revised: 10/29/2004] [Accepted: 11/01/2004] [Indexed: 11/22/2022] Open
Abstract
Plant cell wall consists mainly of the large biopolymers cellulose, hemicellulose, lignin and pectin. These biopolymers are degraded by many microorganisms, in particular filamentous fungi, with the aid of extracellular enzymes. Filamentous fungi have a key role in degradation of the most abundant biopolymers found in nature, cellulose and hemicelluloses, and therefore are essential for the maintenance of the global carbon cycle. The production of plant cell wall degrading enzymes, cellulases, hemicellulases, ligninases and pectinases, is regulated mainly at the transcriptional level in filamentous fungi. The genes are induced in the presence of the polymers or molecules derived from the polymers and repressed under growth conditions where the production of these enzymes is not necessary, such as on glucose. The expression of the genes encoding the enzymes is regulated by various environmental and cellular factors, some of which are common while others are more unique to either a certain fungus or a class of enzymes. This review summarises our current knowledge on the transcriptional regulation, focusing on the recently characterized transcription factors that regulate genes coding for enzymes involved in the breakdown of plant cell wall biopolymers.
Collapse
Affiliation(s)
- Nina Aro
- VTT Biotechnology, Espoo, Finland.
| | | | | |
Collapse
|
49
|
Tritsch D, Hemmerlin A, Rohmer M, Bach TJ. A sensitive radiometric assay to measure D-xylulose kinase activity. ACTA ACUST UNITED AC 2004; 58:75-83. [PMID: 14597191 DOI: 10.1016/j.jbbm.2003.08.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
A radiometric test system for D-xylulose kinase (XK) was developed for the measurement of enzyme activity in crude cell extracts and to minimize the volume of reaction mixtures besides increasing the sensitivity. [U-14C]xylulose 5-phosphate was produced from commercially available [U-14C]xylose in a coupled assay system containing D-xylose isomerase, which yields [U-14C]xylulose, the substrate of ATP-dependent D-xylulose kinase. Separation of products and substrates was achieved by thin layer chromatography, identification of radioactive spots by radioscanning followed by quantitative scintillation counting. The protocol was validated through determination of kinetic constants of a purified His-tagged enzyme from Escherichia coli and comparison with the spectrophotometric method. The radiometric assay was applied to determine xylulose kinase activity in crude cell extracts from a variety of eukaryotic and prokaryotic organisms.
Collapse
Affiliation(s)
- Denis Tritsch
- Institut Le Bel, Université Louis Pasteur/CNRS UMR 7123, 4 rue Blaise Pascal, 67070 Strasbourg Cedex, France.
| | | | | | | |
Collapse
|
50
|
David H, Akesson M, Nielsen J. Reconstruction of the central carbon metabolism ofAspergillus niger. ACTA ACUST UNITED AC 2003; 270:4243-53. [PMID: 14622289 DOI: 10.1046/j.1432-1033.2003.03798.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The topology of central carbon metabolism of Aspergillus niger was identified and the metabolic network reconstructed, by integrating genomic, biochemical and physiological information available for this microorganism and other related fungi. The reconstructed network may serve as a valuable database for annotation of genes identified in future genome sequencing projects on aspergilli. Based on the metabolic reconstruction, a stoichiometric model was set up that includes 284 metabolites and 335 reactions, of which 268 represent biochemical conversions and 67 represent transport processes between the different intracellular compartments and between the cell and the extracellular medium. The stoichiometry of the metabolic reactions was used in combination with biosynthetic requirements for growth and pseudo-steady state mass balances over intracellular metabolites for the quantification of metabolic fluxes using metabolite balancing. This framework was employed to perform an in silico characterisation of the phenotypic behaviour of A. niger grown on different carbon sources. The effects on growth of single reaction deletions were assessed and essential biochemical reactions were identified for different carbon sources. Furthermore, application of the stoichiometric model for assessing the metabolic capabilities of A. niger to produce metabolites was evaluated by using succinate production as a case study.
Collapse
Affiliation(s)
- Helga David
- Center for Process Biotechnology, BioCentrum-DTU, Building 223, Technical University of Denmark, DK-2800 Kgs Lyngby, Denmark
| | | | | |
Collapse
|