1
|
Wang L, Zhang X, Zhang Z, Qin Q, Wang S. Rab32, a novel Rab small GTPase from orange-spotted grouper, Epinephelus coioides involved in SGIV infection. FISH & SHELLFISH IMMUNOLOGY 2023; 143:109229. [PMID: 37972745 DOI: 10.1016/j.fsi.2023.109229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/08/2023] [Accepted: 11/11/2023] [Indexed: 11/19/2023]
Abstract
Rab32 is a member of the Rab GTPase family that is involved in membrane trafficking and immune response, which are crucial for controlling pathogen infection. However, the role of Rab32 in virus infection is not well understood. In this study, we focused on the regulation of Rab32 on virus infection and the host immunity in orange-spotted grouper, Epinephelus coioides. EcRab32 encoded a 213-amino acid polypeptide, which shared a high sequence identity with other Rab32 proteins from fishes to mammals. In healthy orange-spotted grouper, the mRNA of EcRab32 was expressed in all the detected tissues, with the more expression levels in the head kidney, liver and gill. Upon SGIV infection, the expression of EcRab32 was significantly up-regulated in vitro, indicating its potential role in viral infection. EcRab32 was observed to be distributed in the cytoplasm as punctate and vesicle-like structures. EcRab32 overexpression was found to notably inhibit SGIV infection, while the interruption of EcRab32 significantly promoted SGIV infection. In addition, using single particle imaging analysis, we found that EcRab32 overexpression prominently reduced the attachment and internalization of SGIV particles. Furthermore, the results demonstrated that EcRab32 played a positive role in regulating the interferon immune and inflammatory responses. Taken together, these findings indicated that EcRab32 influenced SGIV infection by regulating the host immune response, providing an overall understanding of the interplay between the Rab32 and innate immunity.
Collapse
Affiliation(s)
- Liqun Wang
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China; Henry Fok School of Biology and Agriculture, Shaoguan University, Shaoguan, 512005, China
| | - Xinyue Zhang
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Zihan Zhang
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Qiwei Qin
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China; Nansha-South China Agricultural University Fishery Research Institute, Guangzhou, 511464, China.
| | - Shaowen Wang
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China; Nansha-South China Agricultural University Fishery Research Institute, Guangzhou, 511464, China.
| |
Collapse
|
2
|
Defective RAB31-mediated megakaryocytic early endosomal trafficking of VWF, EGFR, and M6PR in RUNX1 deficiency. Blood Adv 2022; 6:5100-5112. [PMID: 35839075 PMCID: PMC9631641 DOI: 10.1182/bloodadvances.2021006945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 06/13/2022] [Indexed: 11/20/2022] Open
Abstract
RAB31 is a RUNX1 target; regulates VWF, epidermal growth factor receptor, and mannose-6-phosphate trafficking; and is downregulated in RHD. EE and vesicle trafficking defects induced by RAB31 downregulation likely contribute to α-granule defects with RUNX1 mutation.
Transcription factor RUNX1 is a master regulator of hematopoiesis and megakaryopoiesis. RUNX1 haplodeficiency (RHD) is associated with thrombocytopenia and platelet granule deficiencies and dysfunction. Platelet profiling of our study patient with RHD showed decreased expression of RAB31, a small GTPase whose cell biology in megakaryocytes (MKs)/platelets is unknown. Platelet RAB31 messenger RNA was decreased in the index patient and in 2 additional patients with RHD. Promoter-reporter studies using phorbol 12-myristate 13-acetate–treated megakaryocytic human erythroleukemia cells revealed that RUNX1 regulates RAB31 via binding to its promoter. We investigated RUNX1 and RAB31 roles in endosomal dynamics using immunofluorescence staining for markers of early endosomes (EEs; early endosomal autoantigen 1) and late endosomes (CD63)/multivesicular bodies. Downregulation of RUNX1 or RAB31 (by small interfering RNA or CRISPR/Cas9) showed a striking enlargement of EEs, partially reversed by RAB31 reconstitution. This EE defect was observed in MKs differentiated from a patient-derived induced pluripotent stem cell line (RHD-iMKs). Studies using immunofluorescence staining showed that trafficking of 3 proteins with distinct roles (von Willebrand factor [VWF], a protein trafficked to α-granules; epidermal growth factor receptor; and mannose-6-phosphate) was impaired at the level of EE on downregulation of RAB31 or RUNX1. There was loss of plasma membrane VWF in RUNX1- and RAB31-deficient megakaryocytic human erythroleukemia cells and RHD-iMKs. These studies provide evidence that RAB31 is downregulated in RHD and regulates megakaryocytic vesicle trafficking of 3 major proteins with diverse biological roles. EE defect and impaired vesicle trafficking is a potential mechanism for the α-granule defects observed in RUNX1 deficiency.
Collapse
|
3
|
Soelch S, Beaufort N, Loessner D, Kotzsch M, Reuning U, Luther T, Kirchner T, Magdolen V. Rab31-dependent regulation of transforming growth factor ß expression in breast cancer cells. Mol Med 2021; 27:158. [PMID: 34906074 PMCID: PMC8670132 DOI: 10.1186/s10020-021-00419-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 12/01/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The small GTP-binding protein Rab31 plays an important role in the modulation of tumor biological-relevant processes, including cell proliferation, adhesion, and invasion. As an underlying mechanism, Rab31 is presumed to act as a molecular switch between a more proliferative and an invasive phenotype. This prompted us to analyze whether Rab31 overexpression in breast cancer cells affects expression of genes involved in epithelial-to-mesenchymal transition (EMT)-like processes when compared to Rab31 low-expressing cells. METHODS Commercially available profiler PCR arrays were applied to search for differentially expressed genes in Rab31 high- and low-expressing CAMA-1 breast cancer cells. Differential expression of selected candidate genes in response to Rab31 overexpression in CAMA-1 cells was validated by independent qPCR and protein assays. RESULTS Gene expression profiling of key genes involved in EMT, or its reciprocal process MET, identified 9 genes being significantly up- or down-regulated in Rab31 overexpressing CAMA-1 cells, with the strongest effects seen for TGFB1, encoding TGF-ß1 (> 25-fold down-regulation in Rab31 overexpressing cells). Subsequent validation analyses by qPCR revealed a strong down-regulation of TGFB1 mRNA levels in response to increased Rab31 expression not only in CAMA-1 cells, but also in another breast cancer cell line, MDA-MB-231. Using ELISA and Western blot analysis, a considerable reduction of both intracellular and secreted TGF-ß1 antigen levels was determined in Rab31 overexpressing cells compared to vector control cells. Furthermore, reduced TGF-ß activity was observed upon Rab31 overexpression in CAMA-1 cells using a sensitive TGF-ß bioassay. Finally, the relationship between Rab31 expression and the TGF-ß axis was analyzed by another profiler PCR array focusing on genes involved in TGF-ß signaling. We found 12 out of 84 mRNAs significantly reduced and 7 mRNAs significantly increased upon Rab31 overexpression. CONCLUSIONS Our results demonstrate that Rab31 is a potent modulator of the expression of TGF-ß and other components of the TGF-ß signaling pathway in breast cancer cells.
Collapse
Affiliation(s)
- Susanne Soelch
- Clinical Research Unit, Department of Obstetrics and Gynecology, Technische Universität München, Ismaninger Str. 22, 81576, Munich, Germany
| | - Nathalie Beaufort
- Institute for Stroke and Dementia Research, Klinikum Der Universität München, Munich, Germany
| | - Daniela Loessner
- Leibniz-Institut für Polymerforschung Dresden e.V, Dresden, Germany.,Faculty of Engineering and Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC, Australia
| | | | - Ute Reuning
- Clinical Research Unit, Department of Obstetrics and Gynecology, Technische Universität München, Ismaninger Str. 22, 81576, Munich, Germany
| | | | | | - Viktor Magdolen
- Clinical Research Unit, Department of Obstetrics and Gynecology, Technische Universität München, Ismaninger Str. 22, 81576, Munich, Germany.
| |
Collapse
|
4
|
Graham LC, Kline RA, Lamont DJ, Gillingwater TH, Mabbott NA, Skehel PA, Wishart TM. Temporal Profiling of the Cortical Synaptic Mitochondrial Proteome Identifies Ageing Associated Regulators of Stability. Cells 2021; 10:cells10123403. [PMID: 34943911 PMCID: PMC8700124 DOI: 10.3390/cells10123403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/15/2021] [Accepted: 11/25/2021] [Indexed: 11/16/2022] Open
Abstract
Synapses are particularly susceptible to the effects of advancing age, and mitochondria have long been implicated as organelles contributing to this compartmental vulnerability. Despite this, the mitochondrial molecular cascades promoting age-dependent synaptic demise remain to be elucidated. Here, we sought to examine how the synaptic mitochondrial proteome (including strongly mitochondrial associated proteins) was dynamically and temporally regulated throughout ageing to determine whether alterations in the expression of individual candidates can influence synaptic stability/morphology. Proteomic profiling of wild-type mouse cortical synaptic and non-synaptic mitochondria across the lifespan revealed significant age-dependent heterogeneity between mitochondrial subpopulations, with aged organelles exhibiting unique protein expression profiles. Recapitulation of aged synaptic mitochondrial protein expression at the Drosophila neuromuscular junction has the propensity to perturb the synaptic architecture, demonstrating that temporal regulation of the mitochondrial proteome may directly modulate the stability of the synapse in vivo.
Collapse
Affiliation(s)
- Laura C. Graham
- The Roslin Institute, University of Edinburgh, Easter Bush Campus, Midlothian EH25 9RG, UK; (L.C.G.); (R.A.K.); (N.A.M.)
- Euan MacDonald Centre, Chancellor’s Building, University of Edinburgh, 49 Little France Crescent, Edinburgh EH16 4SB, UK; (T.H.G.); (P.A.S.)
| | - Rachel A. Kline
- The Roslin Institute, University of Edinburgh, Easter Bush Campus, Midlothian EH25 9RG, UK; (L.C.G.); (R.A.K.); (N.A.M.)
- Euan MacDonald Centre, Chancellor’s Building, University of Edinburgh, 49 Little France Crescent, Edinburgh EH16 4SB, UK; (T.H.G.); (P.A.S.)
| | - Douglas J. Lamont
- FingerPrints Proteomic Facility, College of Life Sciences, University of Dundee, Dow Street DD1 5EH, UK;
| | - Thomas H. Gillingwater
- Euan MacDonald Centre, Chancellor’s Building, University of Edinburgh, 49 Little France Crescent, Edinburgh EH16 4SB, UK; (T.H.G.); (P.A.S.)
- Centre for Discovery Brain Sciences, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK
| | - Neil A. Mabbott
- The Roslin Institute, University of Edinburgh, Easter Bush Campus, Midlothian EH25 9RG, UK; (L.C.G.); (R.A.K.); (N.A.M.)
| | - Paul A. Skehel
- Euan MacDonald Centre, Chancellor’s Building, University of Edinburgh, 49 Little France Crescent, Edinburgh EH16 4SB, UK; (T.H.G.); (P.A.S.)
- Centre for Discovery Brain Sciences, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK
| | - Thomas M. Wishart
- The Roslin Institute, University of Edinburgh, Easter Bush Campus, Midlothian EH25 9RG, UK; (L.C.G.); (R.A.K.); (N.A.M.)
- Euan MacDonald Centre, Chancellor’s Building, University of Edinburgh, 49 Little France Crescent, Edinburgh EH16 4SB, UK; (T.H.G.); (P.A.S.)
- Centre for Dementia Prevention, The University of Edinburgh, 9A Bioquarter, 9 Little France Road, Edinburgh EH16 4UX, UK
- Correspondence:
| |
Collapse
|
5
|
Wu Q, Feng Q, Xiong Y, Liu X. RAB31 is targeted by miR-26b and serves a role in the promotion of osteosarcoma. Oncol Lett 2020; 20:244. [PMID: 32973957 DOI: 10.3892/ol.2020.12106] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 05/08/2019] [Indexed: 12/31/2022] Open
Abstract
Ras-related protein Rab-31 (RAB31), a small guanosine 5'-triphosphate-binding protein, is a member of the Rab family and has been demonstrated to serve an oncogenic role in several common types of human cancer. However, the function of RAB31 in osteosarcoma (OS) has not been previously studied. The present study identified that the expression levels of RAB31 were significantly higher in OS tissue samples compared with matched adjacent non-tumor tissue samples, and high RAB31 expression was associated with malignant progression and a poor prognosis for patients with OS. Furthermore, it was identified that the expression levels of RAB31 were increased in OS cell lines compared with normal osteoblast cells. Silencing of RAB31 expression significantly inhibited OS cell proliferation, cell cycle progression, migration and invasion, and significantly increased the rate of cell apoptosis. In addition, the present study used a luciferase reporter assay to demonstrate that RAB31 was a direct target gene of microRNA-26b (miR-26b), which is a known tumor suppressor in OS. The expression levels of RAB31 were negatively associated with miR-26b expression in OS cells. Finally, miR-26b was demonstrated to be significantly decreased in OS tissues compared with adjacent non-tumor tissues, and an inverse correlation was observed between the expression levels of RAB31 and miR-26b in OS tissues. In summary, to the best of our knowledge, the present study is the first to report that RAB31 is a target gene of miR-26b, and silencing of RAB31 may inhibit OS growth and progression.
Collapse
Affiliation(s)
- Qing Wu
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Qiong Feng
- Nursing School, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Yanfei Xiong
- Department of Orthopedics, Jing An Hospital, Yichun, Jiangxi 330600, P.R. China
| | - Xing Liu
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
6
|
Combined deficiency of RAB32 and RAB38 in the mouse mimics Hermansky-Pudlak syndrome and critically impairs thrombosis. Blood Adv 2020; 3:2368-2380. [PMID: 31399401 DOI: 10.1182/bloodadvances.2019031286] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 07/01/2019] [Indexed: 12/11/2022] Open
Abstract
The biogenesis of lysosome related organelles is defective in Hermansky-Pudlak syndrome (HPS), a disorder characterized by oculocutaneous albinism and platelet dense granule (DG) defects. The first animal model of HPS was the fawn-hooded rat, harboring a spontaneous mutation inactivating the small guanosine triphosphatase Rab38 This leads to coat color dilution associated with the absence of DGs and lung morphological defects. Another RAB38 mutant, the cht mouse, has normal DGs, which has raised controversy about the role of RAB38 in DG biogenesis. We show here that murine and human, but not rat, platelets also express the closely related RAB32. To elucidate the parts played by RAB32 and RAB38 in the biogenesis of DGs in vivo and their effects on platelet functions, we generated mice inactivated for Rab32, Rab38, and both genes. Single Rab38 inactivation mimicked cht mice, whereas single Rab32 inactivation had no effect in DGs, coat color, or lung morphology. By contrast, Rab32/38 double inactivation mimicked severe HPS, with strong coat and eye pigment dilution, some enlarged lung multilamellar bodies associated with a decrease in the number of DGs. These organelles were morphologically abnormal, decreased in number, and devoid of 5-hydroxytryptamine content. In line with the storage pool defect, platelet activation was affected, resulting in severely impaired thrombus growth and prolongation of the bleeding time. Overall, our study demonstrates the absence of impact of RAB38 or RAB32 single deficiency in platelet biogenesis and function resulting from full redundancy, and characterized a new mouse model mimicking HPS devoid of DG content.
Collapse
|
7
|
Coates M, Mariottoni P, Corcoran DL, Kirshner HF, Jaleel T, Brown DA, Brooks SR, Murray J, Morasso MI, MacLeod AS. The skin transcriptome in hidradenitis suppurativa uncovers an antimicrobial and sweat gland gene signature which has distinct overlap with wounded skin. PLoS One 2019; 14:e0216249. [PMID: 31059533 PMCID: PMC6502346 DOI: 10.1371/journal.pone.0216249] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 04/16/2019] [Indexed: 12/15/2022] Open
Abstract
Hidradenitis suppurativa (HS) is a debilitating chronic inflammatory skin disease resulting in non-healing wounds affecting body areas of high hair follicle and sweat gland density. The pathogenesis of HS is not well understood but appears to involve dysbiosis-driven aberrant activation of the innate immune system leading to excessive inflammation. Marked dysregulation of antimicrobial peptides and proteins (AMPs) in HS is observed, which may contribute to this sustained inflammation. Here, we analyzed HS skin transcriptomes from previously published studies and integrated these findings through a comparative analysis with a published wound healing data set and with immunofluorescence and qPCR analysis from new HS patient samples. Among the top differently expressed genes between lesional and non-lesional HS skin were members of the S100 family as well as dermcidin, the latter known as a sweat gland-associated AMP and one of the most downregulated genes in HS lesions. Interestingly, many genes associated with sweat gland function, such as secretoglobins and aquaporin 5, were decreased in HS lesional skin and we discovered that these genes demonstrated opposite expression profiles in healing skin. Conversely, HS lesional and wounded skin shared a common gene signature including genes encoding for S100 proteins, defensins, and genes encoding antiviral proteins. Overall, our results suggest that the pathogenesis of HS may be driven by changes in AMP expression and altered sweat gland function, and may share a similar pathology with chronic wounds.
Collapse
Affiliation(s)
- Margaret Coates
- Department of Dermatology, Duke University, Durham, NC, United States of America
| | - Paula Mariottoni
- Department of Dermatology, Duke University, Durham, NC, United States of America
| | - David L. Corcoran
- Duke Center for Genomic and Computational Biology, Duke University, Durham, NC, United States of America
| | - Hélène Fradin Kirshner
- Duke Center for Genomic and Computational Biology, Duke University, Durham, NC, United States of America
| | - Tarannum Jaleel
- Department of Dermatology, Duke University, Durham, NC, United States of America
| | - David A. Brown
- Department of Surgery, Duke University, Durham, NC, United States of America
| | - Stephen R. Brooks
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institute of Health, Bethesda, MD, United States of America
| | - John Murray
- Department of Dermatology, Duke University, Durham, NC, United States of America
| | - Maria I. Morasso
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institute of Health, Bethesda, MD, United States of America
| | - Amanda S. MacLeod
- Department of Dermatology, Duke University, Durham, NC, United States of America
- Department of Immunology, Duke University, Durham, NC, United States of America
- Pinnell Center for Investigative Dermatology, Duke University, Durham, NC, United States of America
- * E-mail:
| |
Collapse
|
8
|
Abstract
Preterm birth (PTB) complications are the leading cause of long-term morbidity and mortality in children. By using whole blood samples, we integrated whole-genome sequencing (WGS), RNA sequencing (RNA-seq), and DNA methylation data for 270 PTB and 521 control families. We analyzed this combined dataset to identify genomic variants associated with PTB and secondary analyses to identify variants associated with very early PTB (VEPTB) as well as other subcategories of disease that may contribute to PTB. We identified differentially expressed genes (DEGs) and methylated genomic loci and performed expression and methylation quantitative trait loci analyses to link genomic variants to these expression and methylation changes. We performed enrichment tests to identify overlaps between new and known PTB candidate gene systems. We identified 160 significant genomic variants associated with PTB-related phenotypes. The most significant variants, DEGs, and differentially methylated loci were associated with VEPTB. Integration of all data types identified a set of 72 candidate biomarker genes for VEPTB, encompassing genes and those previously associated with PTB. Notably, PTB-associated genes RAB31 and RBPJ were identified by all three data types (WGS, RNA-seq, and methylation). Pathways associated with VEPTB include EGFR and prolactin signaling pathways, inflammation- and immunity-related pathways, chemokine signaling, IFN-γ signaling, and Notch1 signaling. Progress in identifying molecular components of a complex disease is aided by integrated analyses of multiple molecular data types and clinical data. With these data, and by stratifying PTB by subphenotype, we have identified associations between VEPTB and the underlying biology.
Collapse
|
9
|
Ohbayashi N, Fukuda M, Kanaho Y. Rab32 subfamily small GTPases: pleiotropic Rabs in endosomal trafficking. J Biochem 2017; 162:65-71. [DOI: 10.1093/jb/mvx027] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 03/21/2017] [Indexed: 11/13/2022] Open
|
10
|
Haile Y, Deng X, Ortiz-Sandoval C, Tahbaz N, Janowicz A, Lu JQ, Kerr BJ, Gutowski NJ, Holley JE, Eggleton P, Giuliani F, Simmen T. Rab32 connects ER stress to mitochondrial defects in multiple sclerosis. J Neuroinflammation 2017; 14:19. [PMID: 28115010 PMCID: PMC5260063 DOI: 10.1186/s12974-016-0788-z] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 12/29/2016] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Endoplasmic reticulum (ER) stress is a hallmark of neurodegenerative diseases such as multiple sclerosis (MS). However, this physiological mechanism has multiple manifestations that range from impaired clearance of unfolded proteins to altered mitochondrial dynamics and apoptosis. While connections between the triggering of the unfolded protein response (UPR) and downstream mitochondrial dysfunction are poorly understood, the membranous contacts between the ER and mitochondria, called the mitochondria-associated membrane (MAM), could provide a functional link between these two mechanisms. Therefore, we investigated whether the guanosine triphosphatase (GTPase) Rab32, a known regulator of the MAM, mitochondrial dynamics, and apoptosis, could be associated with ER stress as well as mitochondrial dysfunction. METHODS We assessed Rab32 expression in MS patient and experimental autoimmune encephalomyelitis (EAE) tissue, via observation of mitochondria in primary neurons and via monitoring of survival of neuronal cells upon increased Rab32 expression. RESULTS We found that the induction of Rab32 and other MAM proteins correlates with ER stress proteins in MS brain, as well as in EAE, and occurs in multiple central nervous system (CNS) cell types. We identify Rab32, known to increase in response to acute brain inflammation, as a novel unfolded protein response (UPR) target. High Rab32 expression shortens neurite length, alters mitochondria morphology, and accelerates apoptosis/necroptosis of human primary neurons and cell lines. CONCLUSIONS ER stress is strongly associated with Rab32 upregulation in the progression of MS, leading to mitochondrial dysfunction and neuronal death.
Collapse
Affiliation(s)
- Yohannes Haile
- Department of Cell Biology, University of Alberta, Edmonton, Canada.,Present address: Alberta Diabetes Institute, University of Alberta, Edmonton, Canada
| | - Xiaodan Deng
- Department of Medicine, Division of Neurology, University of Alberta, Edmonton, Canada
| | | | - Nasser Tahbaz
- Department of Cell Biology, University of Alberta, Edmonton, Canada
| | | | - Jian-Qiang Lu
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Canada
| | - Bradley J Kerr
- Department of Anesthesiology and Pain Medicine, University of Alberta, Edmonton, Canada
| | - Nicholas J Gutowski
- University of Exeter Medical School & Neurology Department, Royal Devon & Exeter Hospital, Exeter, UK
| | - Janet E Holley
- University of Exeter Medical School & Neurology Department, Royal Devon & Exeter Hospital, Exeter, UK
| | - Paul Eggleton
- University of Exeter Medical School & Neurology Department, Royal Devon & Exeter Hospital, Exeter, UK
| | - Fabrizio Giuliani
- Department of Medicine, Division of Neurology, University of Alberta, Edmonton, Canada.
| | - Thomas Simmen
- Department of Cell Biology, University of Alberta, Edmonton, Canada.
| |
Collapse
|
11
|
Hepatitis C Virus-Induced Rab32 Aggregation and Its Implications for Virion Assembly. J Virol 2017; 91:JVI.01662-16. [PMID: 27852857 DOI: 10.1128/jvi.01662-16] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Accepted: 11/09/2016] [Indexed: 01/09/2023] Open
Abstract
Hepatitis C virus (HCV) is highly dependent on cellular factors for viral propagation. Using high-throughput next-generation sequencing, we analyzed the host transcriptomic changes and identified 30 candidate genes which were upregulated in cell culture-grown HCV (HCVcc)-infected cells. Of these candidates, we selected Rab32 for further investigation. Rab32 is a small GTPase that regulates a variety of intracellular membrane-trafficking events in various cell types. In this study, we demonstrated that both mRNA and protein levels of Rab32 were increased in HCV-infected cells. Furthermore, we showed that HCV infection converted the predominantly expressed GTP-bound Rab32 to GDP-bound Rab32, contributing to the aggregation of Rab32 and thus making it less sensitive to cellular degradation machinery. In addition, GDP-bound Rab32 selectively interacted with HCV core protein and deposited core protein into the endoplasmic reticulum (ER)-associated Rab32-derived aggregated structures in the perinuclear region, which were likely to be viral assembly sites. Using RNA interference technology, we demonstrated that Rab32 was required for the assembly step but not for other stages of the HCV life cycle. Taken together, these data suggest that HCV may modulate Rab32 activity to facilitate virion assembly. IMPORTANCE Rab32, a member of the Ras superfamily of small GTPases, regulates various intracellular membrane-trafficking events in many cell types. In this study, we showed that HCV infection concomitantly increased Rab32 expression at the transcriptional level and altered the balance between GDP- and GTP-bound Rab32 toward production of Rab32-GDP. GDP-bound Rab32 selectively interacted with HCV core protein and enriched core in the ER-associated Rab32-derived aggregated structures that were probably necessary for viral assembly. Indeed, we showed that Rab32 was specifically required for the assembly of HCV. Collectively, our study identifies that Rab32 is a novel host factor essential for HCV particle assembly.
Collapse
|
12
|
Abstract
Our immune system is engaged in a continuous battle against invading pathogens, many of which have evolved to survive in intracellular niches of mammalian hosts. A variety of cellular processes are involved in preventing bacterial invasion or in killing bacteria that successfully invade host cells. Recently, the Rab GTPase Rab32 emerged as critical regulator of a host defense pathway that can eliminate bacterial pathogens. Salmonella enterica is an intracellular bacterium and a major cause of infections and deaths in humans. Rab32 and its guanine nucleotide exchange factor BLOC-3 are essential to prevent the growth of the human-restricted Salmonella enterica serovar Typhi (S. Typhi) in mice, a non-susceptible host. The importance of the Rab32/BLOC-3 pathway has been recently confirmed by the finding that broad-host Salmonella enterica serovars deliver 2 bacterial effectors to neutralize this pathway and infect mice. Rab32 has also been shown to control infection by Listeria monocytogenes, another medically relevant intracellular pathogen. In addition, genetic evidence indicate a possible role of Rab32 in controlling leprosy, a disease caused by Mycobacterium leprae in humans, suggesting that a Rab32-dependent pathway can also act as a host defense pathway in humans. The Rab32 role in bacterial pathogen restriction is discussed here and compared to the function of this GTPase in other cellular processes.
Collapse
Affiliation(s)
- Virtu Solano-Collado
- a Institute of Medical Sciences, University of Aberdeen , Foresterhill , Aberdeen , UK
| | - Adam Rofe
- a Institute of Medical Sciences, University of Aberdeen , Foresterhill , Aberdeen , UK
| | - Stefania Spanò
- a Institute of Medical Sciences, University of Aberdeen , Foresterhill , Aberdeen , UK
| |
Collapse
|
13
|
Genetic and protein biomarkers in blood for the improved detection of GH abuse. J Pharm Biomed Anal 2016; 128:111-118. [DOI: 10.1016/j.jpba.2016.05.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 04/29/2016] [Accepted: 05/15/2016] [Indexed: 11/20/2022]
|
14
|
Approaches to analyze the role of Rab GTPases in endocytic trafficking of epidermal growth factor receptor (EGFR). Methods Mol Biol 2015; 1270:239-51. [PMID: 25702122 DOI: 10.1007/978-1-4939-2309-0_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Abstract
The epidermal growth factor receptor (EGFR), a member of the erythroblastic leukemia viral oncogene homologue (ErbB) receptor tyrosine kinase family, plays key mitogenic signaling roles in development, cellular, and tissue physiology, as well as a myriad of malignancies. EGFR signaling occurs concurrently with ligand-receptor binding and subsequent endocytosis, and its signaling strength and engagement of different downstream signaling components are modulated by its endocytic trafficking itinerary. Understanding the factors and mechanisms that modulate ligand-bound EGFR's endocytic trafficking is therefore important for deciphering its role in pathophysiological processes. Endocytic trafficking of EGFR is regulated by a bunch of Rab small GTPases associated with the endocytic pathway. In this chapter, we describe a suite of relatively standard protocols in dissecting the role of a particular Rab protein in EGFR endocytic trafficking steps/stages. The approach constitutes a combination of genetic/molecular manipulations, followed by confocal imaging and a range of biochemical analyses. We shall mainly focus on Rab31 in our illustrations, but the approaches would be equally applicable to any Rab and its associated regulators/effectors.
Collapse
|
15
|
Chua CEL, Tang BL. The role of the small GTPase Rab31 in cancer. J Cell Mol Med 2014; 19:1-10. [PMID: 25472813 PMCID: PMC4288343 DOI: 10.1111/jcmm.12403] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2014] [Accepted: 07/18/2014] [Indexed: 12/28/2022] Open
Abstract
Members of the small GTPase family Rab are emerging as potentially important factors in cancer development and progression. A good number of Rabs have been implicated or associated with various human cancers, and much recent excitement has been associated with the roles of the Rab11 subfamily member Rab25 and its effector, the Rab coupling protein (RCP), in tumourigenesis and metastasis. In this review, we focus on a Rab5 subfamily member, Rab31, and its implicated role in cancer. Well recognized as a breast cancer marker with good prognostic value, recent findings have provided some insights as to the mechanism underlying Rab31's influence on oncogenesis. Levels of Oestrogen Receptor α (ERα)- responsive Rab31 could be elevated through stabilization of its transcript by the RNA binding protein HuR, or though activation by the oncoprotein mucin1-C (MUC1-C), which forms a transcriptional complex with ERα. Elevated Rab31 stabilizes MUC1-C levels in an auto-inductive loop that could lead to aberrant signalling and gene expression associated with cancer progression. Rab31 and its guanine nucleotide exchange factor GAPex-5 have, however, also been shown to enhance early endosome-late endosome transport and degradation of the epidermal growth factor receptor (EGFR). The multifaceted action and influences of Rab31 in cancer is discussed in the light of its new interacting partners and pathways.
Collapse
Affiliation(s)
- Christelle En Lin Chua
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore
| | | |
Collapse
|
16
|
Waschbüsch D, Michels H, Strassheim S, Ossendorf E, Kessler D, Gloeckner CJ, Barnekow A. LRRK2 transport is regulated by its novel interacting partner Rab32. PLoS One 2014; 9:e111632. [PMID: 25360523 PMCID: PMC4216093 DOI: 10.1371/journal.pone.0111632] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 09/29/2014] [Indexed: 11/18/2022] Open
Abstract
Leucine-rich repeat kinase 2 (LRRK2) is a multi-domain 280 kDa protein that is linked to Parkinson's disease (PD). Mutations especially in the GTPase and kinase domains of LRRK2 are the most common causes of heritable PD and are also found in sporadic forms of PD. Although the cellular function of LRRK2 is largely unknown there is increasing evidence that these mutations cause cell death due to autophagic dysfunction and mitochondrial damage. Here, we demonstrate a novel mechanism of LRRK2 binding and transport, which involves the small GTPases Rab32 and Rab38. Rab32 and its closest homologue Rab38 are known to organize the trans-Golgi network and transport of key enzymes in melanogenesis, whereas their function in non-melanogenic cells is still not well understood. Cellular processes such as autophagy, mitochondrial dynamics, phagocytosis or inflammatory processes in the brain have previously been linked to Rab32. Here, we demonstrate that Rab32 and Rab38, but no other GTPase tested, directly interact with LRRK2. GFP-Trap analyses confirmed the interaction of Rab32 with the endogenous LRRK2. In yeast two-hybrid experiments we identified a predicted coiled-coil motif containing region within the aminoterminus of LRRK2 as the possible interacting domain. Fluorescence microscopy demonstrated a co-localization of Rab32 and LRRK2 at recycling endosomes and transport vesicles, while overexpression of a constitutively active mutant of Rab32 led to an increased co-localization with Rab7/9 positive perinuclear late endosomes/MVBs. Subcellular fractionation experiments supported the novel role of Rab32 in LRRK2 late endosomal transport and sorting in the cell. Thus, Rab32 may regulate the physiological functions of LRRK2.
Collapse
Affiliation(s)
- Dieter Waschbüsch
- Department of Experimental Tumorbiology, Westfälische Wilhelms University Muenster, Muenster, Germany
- * E-mail:
| | - Helen Michels
- Department of Experimental Tumorbiology, Westfälische Wilhelms University Muenster, Muenster, Germany
| | - Swantje Strassheim
- Department of Experimental Tumorbiology, Westfälische Wilhelms University Muenster, Muenster, Germany
| | - Edith Ossendorf
- Department of Experimental Tumorbiology, Westfälische Wilhelms University Muenster, Muenster, Germany
| | - Daniel Kessler
- Department of Experimental Tumorbiology, Westfälische Wilhelms University Muenster, Muenster, Germany
| | - Christian Johannes Gloeckner
- Research Unit Protein Science, Helmholtz Zentrum München, Neuherberg, Germany
- Medical Proteome Center, Institute for Ophthalmic Research, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Angelika Barnekow
- Department of Experimental Tumorbiology, Westfälische Wilhelms University Muenster, Muenster, Germany
| |
Collapse
|
17
|
Ortiz-Sandoval CG, Hughes SC, Dacks JB, Simmen T. Interaction with the effector dynamin-related protein 1 (Drp1) is an ancient function of Rab32 subfamily proteins. CELLULAR LOGISTICS 2014; 4:e986399. [PMID: 25767741 PMCID: PMC4355727 DOI: 10.4161/21592799.2014.986399] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 11/06/2014] [Indexed: 01/21/2023]
Abstract
The mitochondria-associated membrane (MAM) is an endoplasmic reticulum (ER) domain that forms contacts with mitochondria and accommodates Ca2+ transfer between the two organelles. The GTPase Rab32 regulates this function of the MAM via determining the localization of the Ca2+ regulatory transmembrane protein calnexin to the MAM. Another function of the MAM is the regulation of mitochondrial dynamics mediated by GTPases such as dynamin-related protein 1 (Drp1). Consistent with the importance of the MAM for mitochondrial dynamics and the role of Rab32 in MAM enrichment, the inactivation of Rab32 leads to mitochondrial collapse around the nucleus. However, Rab32 and related Rabs also perform intracellular functions at locations other than the MAM including melanosomal trafficking, autophagosome formation and maturation, and retrograde trafficking to the trans-Golgi network (TGN). This plethora of functions raises questions concerning the original cellular role of Rab32 in the last common ancestor of animals and its possible role in the last eukaryotic common ancestor (LECA). Our results now shed light on this conundrum and identify a role in Drp1-mediated mitochondrial dynamics as one common denominator of this group of Rabs, which includes the paralogues Rab32A and Rab32B, as well as the more recently derived Rab29 and Rab38 proteins. Moreover, we provide evidence that this mitochondrial function is dictated by the extent of ER-association of Rab32 family proteins.
Collapse
Affiliation(s)
- Carolina G Ortiz-Sandoval
- Faculty of Medicine and Dentistry; Department of Cell Biology; University of Alberta ; Edmonton, Alberta, Canada
| | - Sarah C Hughes
- Faculty of Medicine and Dentistry; Department of Cell Biology; University of Alberta ; Edmonton, Alberta, Canada ; Faculty of Medicine and Dentistry; Department of Medical Genetics; University of Alberta ; Edmonton, Alberta, Canada
| | - Joel B Dacks
- Faculty of Medicine and Dentistry; Department of Cell Biology; University of Alberta ; Edmonton, Alberta, Canada
| | - Thomas Simmen
- Faculty of Medicine and Dentistry; Department of Cell Biology; University of Alberta ; Edmonton, Alberta, Canada
| |
Collapse
|
18
|
Abstract
Whereas most of what we know today about the Ras-related small GTPases of the Rab family stems from observations made on Golgi complex, endosome and plasma membrane trafficking, a subset of Rabs localizes in part or predominantly to the ER (endoplasmic reticulum). Here, Rabs such as Rab1, Rab2, Rab6 and Rab33 can regulate the anterograde and retrograde trafficking of vesicles between the Golgi complex, the ERGIC (ER-Golgi intermediate compartment) and the ER itself. However, among the ER-associated Rabs, some Rabs appear to perform roles not directly related to trafficking: these Rabs (e.g. Rab32 or Rab24) could aid proteins of the atlastin and reticulon families in determining the extent and direction of ER tubulation. In so doing, these Rabs regulate not only ER contacts with other organelles such as mitochondria, but also the formation of autophagosomes.
Collapse
|
19
|
Schäfer IB, Hesketh GG, Bright NA, Gray SR, Pryor PR, Evans PR, Luzio JP, Owen DJ. The binding of Varp to VAMP7 traps VAMP7 in a closed, fusogenically inactive conformation. Nat Struct Mol Biol 2012; 19:1300-9. [PMID: 23104059 PMCID: PMC3605791 DOI: 10.1038/nsmb.2414] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Accepted: 09/18/2012] [Indexed: 11/29/2022]
Abstract
SNAREs provide energy and specificity to membrane fusion events. Fusogenic trans-SNARE complexes are assembled from glutamine-contributing SNAREs (Q-SNAREs) embedded in one membrane and an arginine-contributing SNARE (R-SNARE) embedded in the other. Regulation of membrane fusion events is crucial for intracellular trafficking. We identify the endosomal protein Varp as an R-SNARE-binding regulator of SNARE complex formation. Varp colocalizes with and binds to VAMP7, an R-SNARE that is involved in both endocytic and secretory pathways. We present the structure of the second ankyrin repeat domain of mammalian Varp in complex with the cytosolic portion of VAMP7. The VAMP7-SNARE motif is trapped between Varp and the VAMP7 longin domain, and hence Varp kinetically inhibits the ability of VAMP7 to form SNARE complexes. This inhibition will be increased when Varp can also bind to other proteins present on the same membrane as VAMP7, such as Rab32-GTP.
Collapse
Affiliation(s)
- Ingmar B Schäfer
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Grismayer B, Sölch S, Seubert B, Kirchner T, Schäfer S, Baretton G, Schmitt M, Luther T, Krüger A, Kotzsch M, Magdolen V. Rab31 expression levels modulate tumor-relevant characteristics of breast cancer cells. Mol Cancer 2012; 11:62. [PMID: 22920728 PMCID: PMC3499445 DOI: 10.1186/1476-4598-11-62] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Accepted: 08/16/2012] [Indexed: 11/12/2022] Open
Abstract
Background Rab proteins constitute a large family of monomeric GTP-binding proteins that regulate intracellular vesicle transport. Several Rab proteins, including rab31, have been shown to affect cancer progression and are related with prognosis in various types of cancer including breast cancer. Recently, the gene encoding rab31 was found to be overexpressed in estrogen receptor-positive breast cancer tissue. In a previous study we found a significant association of high rab31 mRNA expression with poor prognosis in node-negative breast cancer patients. In the present study, we aimed to investigate the impact of rab31 (over)-expression on important aspects of tumor progression in vitro and in vivo. Methods Breast cancer cells displaying low (MDA-MB-231) or no (CAMA-1) endogenous rab31 expression were stably transfected with a rab31 expression plasmid. Batch-transfected cells as well as selected cell clones, expressing different levels of rab31 protein, were analyzed with regard to proliferation, cell adhesion, the invasive capacity of tumor cells, and in vivo in a xenograft tumor model. Polyclonal antibodies directed to recombinantly expressed rab31 were generated and protein expression analyzed by immunohistochemistry, Western blot analysis, and a newly developed sensitive ELISA. Results Elevated rab31 protein levels were associated with enhanced proliferation of breast cancer cells. Interestingly, weak to moderate overexpression of rab31 in cell lines with no detectable endogenous rab31 expression was already sufficient to elicit distinct effects on cell proliferation. By contrast, increased expression of rab31 in breast cancer cells led to reduced adhesion towards several extracellular matrix proteins and decreased invasive capacity through MatrigelTM. Again, the rab31-mediated effects on cell adhesion and invasion were dose-dependent. Finally, in a xenograft mouse model, we observed a significantly impaired metastatic dissemination of rab31 overexpressing MDA-MB-231 breast cancer cells to the lung. Conclusions Overexpression of rab31 in breast cancer cells leads to a switch from an invasive to a proliferative phenotype as indicated by an increased cell proliferation, reduced adhesion and invasion in vitro, and a reduced capacity to form lung metastases in vivo.
Collapse
Affiliation(s)
- Bettina Grismayer
- Clinical Research Unit, Department of Obstetrics and Gynecology, Technical University of Munich, Ismaninger Str, 22, Munich 81675, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Jin C, Rajabi H, Pitroda S, Li A, Kharbanda A, Weichselbaum R, Kufe D. Cooperative interaction between the MUC1-C oncoprotein and the Rab31 GTPase in estrogen receptor-positive breast cancer cells. PLoS One 2012; 7:e39432. [PMID: 22792175 PMCID: PMC3392244 DOI: 10.1371/journal.pone.0039432] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Accepted: 05/21/2012] [Indexed: 01/12/2023] Open
Abstract
Rab31 is a member of the Ras superfamily of small GTPases that has been linked to poor outcomes in patients with breast cancer. The MUC1-C oncoprotein is aberrantly overexpressed in most human breast cancers and also confers a poor prognosis. The present results demonstrate that MUC1-C induces Rab31 expression in estrogen receptor positive (ER+) breast cancer cells. We show that MUC1-C forms a complex with estrogen receptor α (ERα) on the Rab31 promoter and activates Rab31 gene transcription in an estrogen-dependent manner. In turn, Rab31 contributes to the upregulation of MUC1-C abundance in breast cancer cells by attenuating degradation of MUC1-C in lysosomes. Expression of an inactive Rab31(S20N) mutant in nonmalignant breast epithelial cells confirmed that Rab31 regulates MUC1-C expression. The functional significance of the MUC1-C/Rab31 interaction is supported by the demonstration that Rab31 confers the formation of mammospheres by a MUC1-C-dependent mechanism. Analysis of microarray databases further showed that (i) Rab31 is expressed at higher levels in breast cancers as compared to that in normal breast tissues, (ii) MUC1+ and ER+ breast cancers have increased levels of Rab31 expression, and (iii) patients with Rab31-positive breast tumors have a significantly decreased ten-year overall survival as compared to those with Rab31-negative tumors. These findings indicate that MUC1-C and Rab31 function in an autoinductive loop that contributes to overexpression of MUC1-C in breast cancer cells.
Collapse
Affiliation(s)
- Caining Jin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Hasan Rajabi
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Sean Pitroda
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, Illinois, United States of America
| | - Ailing Li
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Akriti Kharbanda
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Ralph Weichselbaum
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, Illinois, United States of America
| | - Donald Kufe
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
22
|
Nottingham RM, Ganley IG, Barr FA, Lambright DG, Pfeffer SR. RUTBC1 protein, a Rab9A effector that activates GTP hydrolysis by Rab32 and Rab33B proteins. J Biol Chem 2011; 286:33213-22. [PMID: 21808068 DOI: 10.1074/jbc.m111.261115] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Rab GTPases regulate all steps of membrane trafficking. Their interconversion between active, GTP-bound states and inactive, GDP-bound states is regulated by guanine nucleotide exchange factors and GTPase-activating proteins. The substrates for most Rab GTPase-activating proteins (GAPs) are unknown. Rab9A and its effectors regulate transport of mannose 6-phosphate receptors from late endosomes to the trans-Golgi network. We show here that RUTBC1 is a Tre2/Bub2/Cdc16 domain-containing protein that binds to Rab9A-GTP both in vitro and in cultured cells, but is not a GTPase-activating protein for Rab9A. Biochemical screening of RUTBC1 Rab protein substrates revealed highest in vitro GTP hydrolysis-activating activity with Rab32 and Rab33B. Catalysis required Arg-803 of RUTBC1, and RUTBC1 could activate a catalytically inhibited Rab33B mutant (Q92A), in support of a dual finger mechanism for RUTBC1 action. Rab9A binding did not influence GAP activity of bead-bound RUTBC1 protein. In cells and cell extracts, RUTBC1 influenced the ability of Rab32 to bind its effector protein, Varp, consistent with a physiological role for RUTBC1 in regulating Rab32. In contrast, binding of Rab33B to its effector protein, Atg16L1, was not influenced by RUTBC1 in cells or extracts. The identification of a protein that binds Rab9A and inactivates Rab32 supports a model in which Rab9A and Rab32 act in adjacent pathways at the boundary between late endosomes and the biogenesis of lysosome-related organelles.
Collapse
Affiliation(s)
- Ryan M Nottingham
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California 94305, USA
| | | | | | | | | |
Collapse
|
23
|
Aneja K, Jalagadugula G, Mao G, Singh A, Rao AK. Mechanism of platelet factor 4 (PF4) deficiency with RUNX1 haplodeficiency: RUNX1 is a transcriptional regulator of PF4. J Thromb Haemost 2011; 9:383-91. [PMID: 21129147 PMCID: PMC3030649 DOI: 10.1111/j.1538-7836.2010.04154.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
BACKGROUND Platelet factor 4 (PF4) is an abundant protein stored in platelet α-granules. Several patients have been described with platelet PF4 deficiency, including the gray platelet syndrome, characterized by a deficiency of α-granule proteins. Defective granule formation and protein targeting are considered to be the predominant mechanisms. We have reported on a patient with thrombocytopenia and impaired platelet aggregation, secretion, and protein phosphorylation, associated with a mutation in the transcription factor RUNX1. Platelet expression profiling showed decreased transcript expression of PF4 and its non-allelic variant PF4V1. OBJECTIVES To understand the mechanism leading to PF4 deficiency associated with RUNX1 haplodeficiency, we addressed the hypothesis that PF4 is a transcriptional target of RUNX1. METHODS/RESULTS Chromatin immunoprecipitation and gel-shift assays with phorbol 12-myristate 13-acetate-treated human erythroleukemia (HEL) cells revealed RUNX1 binding to RUNX1 consensus sites at -1774/-1769 and -157/-152 on the PF4 promoter. In luciferase reporter studies in HEL cells, mutation of each site markedly reduced activity. PF4 promoter activity and PF4 protein level were decreased by small interfering RNA RUNX1 knockdown and increased by RUNX1 overexpression. CONCLUSIONS Our results provide the first evidence that PF4 is regulated by RUNX1 and that impaired transcriptional regulation leads to the PF4 deficiency associated with RUNX1 haplodeficiency. Because our patient had decreased platelet albumin and IgG (not synthesized by megakaryocytes) levels, we postulate additional defects in RUNX1-regulated genes involved in vesicular trafficking. These studies advance our understanding of the mechanisms in α-granule deficiency.
Collapse
Affiliation(s)
- Kawalpreet Aneja
- Sol Sherry Thrombosis Research Center, Temple University School of Medicine, Philadelphia, PA, USA
| | - Gauthami Jalagadugula
- Sol Sherry Thrombosis Research Center, Temple University School of Medicine, Philadelphia, PA, USA
| | - Guangfen Mao
- Sol Sherry Thrombosis Research Center, Temple University School of Medicine, Philadelphia, PA, USA
| | - Anamika Singh
- Sol Sherry Thrombosis Research Center, Temple University School of Medicine, Philadelphia, PA, USA
| | - A. Koneti Rao
- Sol Sherry Thrombosis Research Center, Temple University School of Medicine, Philadelphia, PA, USA
- Department of Medicine, Temple University School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
24
|
Suárez-Fariñas M, Fuentes-Duculan J, Lowes MA, Krueger JG. Resolved psoriasis lesions retain expression of a subset of disease-related genes. J Invest Dermatol 2010; 131:391-400. [PMID: 20861854 DOI: 10.1038/jid.2010.280] [Citation(s) in RCA: 157] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Psoriasis is a complex inflammatory disease that usually heals without visible scarring. Histological evaluation often suggests complete resolution, but reversal of genomic disease-associated alterations has not yet been defined. Gene expression profiling was used to determine the extent to which the psoriasis genes were reversed after 3 months of etanercept treatment in patients who responded to treatment. We reviewed the histology, leukocyte counts, and PCR data for inflammatory genes, to compare recovery of these parameters and the genomic studies. Many cellular markers do return close to nonlesional levels, although five inflammatory genes did not improve by >75% (IL-12p35, MX1, IL-22, IL-17, and IFNγ). Psoriasis-related genes with <75% improvement were defined as comprising a "residual disease genomic profile," composed of 248 probe sets. Genes of interest in psoriasis tissue that did not return to baseline included LYVE-1, WNT5A, RAB31, and AQP9. It appears that even when the epidermal reaction in psoriasis is fully resolved, inflammation, as defined by expression of key cytokines and chemokines, is not completely resolved in treated lesions. We also found that structural cells of the skin continued to express molecular alterations, and that some subtle features of skin structure, for example, lymphatics, were not fully normalized with treatment.
Collapse
Affiliation(s)
- Mayte Suárez-Fariñas
- The Laboratory for Investigative Dermatology, The Rockefeller University, New York, New York 10065, USA
| | | | | | | |
Collapse
|
25
|
Bui M, Gilady SY, Fitzsimmons REB, Benson MD, Lynes EM, Gesson K, Alto NM, Strack S, Scott JD, Simmen T. Rab32 modulates apoptosis onset and mitochondria-associated membrane (MAM) properties. J Biol Chem 2010; 285:31590-602. [PMID: 20670942 DOI: 10.1074/jbc.m110.101584] [Citation(s) in RCA: 131] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The mitochondria-associated membrane (MAM) has emerged as an endoplasmic reticulum (ER) signaling hub that accommodates ER chaperones, including the lectin calnexin. At the MAM, these chaperones control ER homeostasis but also play a role in the onset of ER stress-mediated apoptosis, likely through the modulation of ER calcium signaling. These opposing roles of MAM-localized chaperones suggest the existence of mechanisms that regulate the composition and the properties of ER membrane domains. Our results now show that the GTPase Rab32 localizes to the ER and mitochondria, and we identify this protein as a regulator of MAM properties. Consistent with such a role, Rab32 modulates ER calcium handling and disrupts the specific enrichment of calnexin on the MAM, while not affecting the ER distribution of protein-disulfide isomerase and mitofusin-2. Furthermore, Rab32 determines the targeting of PKA to mitochondrial and ER membranes and through its overexpression or inactivation increases the phosphorylation of Bad and of Drp1. Through a combination of its functions as a PKA-anchoring protein and a regulator of MAM properties, the activity and expression level of Rab32 determine the speed of apoptosis onset.
Collapse
Affiliation(s)
- Michael Bui
- Department of Cell Biology, School of Molecular and Systems Medicine, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Welch EJ, Jones BW, Scott JD. Networking with AKAPs: context-dependent regulation of anchored enzymes. Mol Interv 2010; 10:86-97. [PMID: 20368369 DOI: 10.1124/mi.10.2.6] [Citation(s) in RCA: 131] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A-Kinase Anchoring Proteins (AKAPs) orchestrate and synchronize cellular events by tethering the cAMP-dependent protein kinase (PKA) and other signaling enzymes to organelles and membranes. The control of kinases and phosphatases that are held in proximity to activators, effectors, and substrates favors the rapid dissemination of information from one cellular location to the next. This article charts the inception of the PKA-anchoring hypothesis, the characterization of AKAPs and their nomenclature, and the physiological roles of context-specific AKAP signaling complexes.
Collapse
Affiliation(s)
- Emily J Welch
- Howard Hughes Medical Institute, Department of Pharmacology, University of Washington School of Medicine, Seattle, WA 98195, USA
| | | | | |
Collapse
|
27
|
Mechanisms of protein kinase A anchoring. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2010; 283:235-330. [PMID: 20801421 DOI: 10.1016/s1937-6448(10)83005-9] [Citation(s) in RCA: 138] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The second messenger cyclic adenosine monophosphate (cAMP), which is produced by adenylyl cyclases following stimulation of G-protein-coupled receptors, exerts its effect mainly through the cAMP-dependent serine/threonine protein kinase A (PKA). Due to the ubiquitous nature of the cAMP/PKA system, PKA signaling pathways underlie strict spatial and temporal control to achieve specificity. A-kinase anchoring proteins (AKAPs) bind to the regulatory subunit dimer of the tetrameric PKA holoenzyme and thereby target PKA to defined cellular compartments in the vicinity of its substrates. AKAPs promote the termination of cAMP signals by recruiting phosphodiesterases and protein phosphatases, and the integration of signaling pathways by binding additional signaling proteins. AKAPs are a heterogeneous family of proteins that only display similarity within their PKA-binding domains, amphipathic helixes docking into a hydrophobic groove formed by the PKA regulatory subunit dimer. This review summarizes the current state of information on compartmentalized cAMP/PKA signaling with a major focus on structural aspects, evolution, diversity, and (patho)physiological functions of AKAPs and intends to outline newly emerging directions of the field, such as the elucidation of AKAP mutations and alterations of AKAP expression in human diseases, and the validation of AKAP-dependent protein-protein interactions as new drug targets. In addition, alternative PKA anchoring mechanisms employed by noncanonical AKAPs and PKA catalytic subunit-interacting proteins are illustrated.
Collapse
|
28
|
Ng EL, Ng JJ, Liang F, Tang BL. Rab22B is expressed in the CNS astroglia lineage and plays a role in epidermal growth factor receptor trafficking in A431 cells. J Cell Physiol 2009; 221:716-28. [DOI: 10.1002/jcp.21911] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
29
|
Hirota Y, Tanaka Y. A small GTPase, human Rab32, is required for the formation of autophagic vacuoles under basal conditions. Cell Mol Life Sci 2009; 66:2913-32. [PMID: 19593531 PMCID: PMC11115675 DOI: 10.1007/s00018-009-0080-9] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2009] [Revised: 06/16/2009] [Accepted: 06/18/2009] [Indexed: 12/26/2022]
Abstract
Here we show that a small GTPase, Rab32, is a novel protein required for the formation of autophagic vacuoles. We found that the wild-type or GTP-bound form of human Rab32 expressed in HeLa and COS cells is predominantly localized to the endoplasmic reticulum (ER), and overexpression induces the formation of autophagic vacuoles containing an autophagosome marker protein LC3, the ER-resident protein calnexin and endosomal/lysosomal membrane protein LAMP-2, even under nutrient-rich conditions. The recruitment of Rab32 to the ER membrane was necessary for autophagic vacuole formation, suggesting involvement of the ER as a source of autophagosome membranes. In contrast, the expression of the inactive form of, or siRNA-specific for, Rab32 caused the formation of p62/SQSTM1 and ubiquitinated protein-accumulating aggresome-like structures and significantly prevented constitutive autophagy. We postulate that Rab32 facilitates the formation of autophagic vacuoles whose membranes are derived from the ER and regulates the clearance of aggregated proteins by autophagy.
Collapse
Affiliation(s)
- Yuko Hirota
- Division of Pharmaceutical Cell Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Fukuoka, 812-8582 Japan
| | - Yoshitaka Tanaka
- Division of Pharmaceutical Cell Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Fukuoka, 812-8582 Japan
| |
Collapse
|
30
|
Transport of mannose-6-phosphate receptors from the trans-Golgi network to endosomes requires Rab31. Exp Cell Res 2009; 315:2215-30. [PMID: 19345684 DOI: 10.1016/j.yexcr.2009.03.020] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2009] [Revised: 03/06/2009] [Accepted: 03/26/2009] [Indexed: 01/17/2023]
Abstract
Rab31, a protein that we originally cloned from a rat oligodendrocyte cDNA library, localizes in the trans-Golgi network (TGN) and endosomes. However, its function has not yet been established. Here we show the involvement of Rab31 in the transport of mannose 6-phosphate receptors (MPRs) from TGN to endosomes. We demonstrate the specific sorting of cation-dependent-MPR (CD-MPR), but not CD63 and vesicular stomatitis virus G (VSVG) protein, to Rab31-containing trans-Golgi network carriers. CD-MPR and Rab31 containing carriers originate from extending TGN tubules that also contain clathrin and GGA1 coats. Expression of constitutively active Rab31 reduced the content of CD-MPR in the TGN relative to that of endosomes, while expression of dominant negative Rab31 triggered reciprocal changes in CD-MPR distribution. Expression of dominant negative Rab31 also inhibited the formation of carriers containing CD-MPR in the TGN, without affecting the exit of VSVG from this compartment. Importantly, siRNA-mediated depletion of endogenous Rab31 caused the collapse of the Golgi apparatus. Our observations demonstrate that Rab31 is required for transport of MPRs from TGN to endosomes and for the Golgi/TGN organization.
Collapse
|
31
|
Dudek NL, Dai Y, Muma NA. Neuroprotective effects of calmodulin peptide 76-121aa: disruption of calmodulin binding to mutant huntingtin. Brain Pathol 2009; 20:176-89. [PMID: 19338577 PMCID: PMC2805873 DOI: 10.1111/j.1750-3639.2008.00258.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Huntington's disease (HD) is a neurodegenerative disease caused by mutant huntingtin protein containing an expanded polyglutamine tract, which may cause abnormal protein–protein interactions such as increased association with calmodulin (CaM). We previously demonstrated in HEK293 cells that a peptide containing amino acids 76‐121 of CaM (CaM‐peptide) interrupted the interaction between CaM and mutant huntingtin, reduced mutant huntingtin‐induced cytotoxicity and reduced transglutaminase (TG)‐modified mutant huntingtin. We now report that adeno‐associated virus (AAV)‐mediated expression of CaM‐peptide in differentiated neuroblastoma SH‐SY5Y cells, stably expressing an N‐terminal fragment of huntingtin containing 148 glutamine repeats, significantly decreases the amount of TG‐modified huntingtin and attenuates cytotoxicity. Importantly, the effect of the CaM‐peptide shows selectivity, such that total TG activity is not significantly altered by expression of CaM‐peptide nor is the activity of another CaM‐dependent enzyme, CaM kinase II. In vitro, recombinant exon 1 of huntingtin with 44 glutamines (htt‐exon1‐44Q) binds to CaM‐agarose; the addition of 10 µM of CaM‐peptide significantly decreases the interaction of htt‐exon1‐44Q and CaM but not the binding between CaM and calcineurin, another CaM‐binding protein. These data support the hypothesis that CaM regulates TG‐catalyzed modifications of mutant huntingtin and that specific and selective disruption of the CaM‐huntingtin interaction is potentially a new target for therapeutic intervention in HD.
Collapse
Affiliation(s)
- Nichole L Dudek
- Department of Pharmacology and Experimental Therapeutics, Loyola University Chicago School of Medicine, Maywood, IL, USA
| | | | | |
Collapse
|
32
|
Abstract
BACKGROUND The fawn-hooded hypertensive (FHH) rat has a mutation in the Rab38 gene that is associated with a platelet dense granule storage pool disease. OBJECTIVE To better characterize the expression and function of Rab38 in FHH rat and human megakaryocytes and platelets. PATIENTS AND METHODS Rab38 expression in FHH rat and normal tissues was demonstrated by western blotting. Platelet and megakaryocyte morphology and Rab38 expression were examined by transmission electron microscopy and by immunofluorescence confocal microscopy. Platelet surface glycoprotein and P-selectin expression and total serotonin content were assessed by flow cytometry. RESULTS Rab38 was not expressed in FHH rat tissues, and FHH rat platelets and megakaryocytes lacked dense granules. FHH rat platelets had normal expression of surface glycoproteins and of surface P-selectin in response to thrombin. The total serotonin content in FHH rat platelets was similar to that in Brown Norway rat platelets. In a megakaryocyte cell line, Rab38 was expressed in a granular perinuclear and cytoplasmic pattern. There was partial colocalization with serotonin, and minimal colocalization with von Willebrand factor and lysosomal proteins. CONCLUSIONS The lack of Rab38 expression in the FHH rat results in the absence of normal dense granules in the megakaryocytes and platelets, which have otherwise normal structure and function. Rab38 may play a role in the development of dense granules in the megakaryocytes and platelets.
Collapse
Affiliation(s)
- I Ninkovic
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | | |
Collapse
|
33
|
Carlucci A, Lignitto L, Feliciello A. Control of mitochondria dynamics and oxidative metabolism by cAMP, AKAPs and the proteasome. Trends Cell Biol 2008; 18:604-13. [PMID: 18951795 DOI: 10.1016/j.tcb.2008.09.006] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2008] [Revised: 09/27/2008] [Accepted: 09/29/2008] [Indexed: 12/29/2022]
Abstract
Mitochondria are highly specialized organelles and major players in fundamental aspects of cell physiology. In yeast, energy metabolism and coupling of mitochondrial activity to growth and survival is controlled by the protein kinase A pathway. In higher eukaryotes, modulation of the so-called A-kinase anchor protein (AKAP) complex regulates mitochondrial dynamics and activity, adapting the oxidative machinery and the metabolic pathway to changes in physiological demand. Protein kinases and phosphatases are assembled by AKAPs within transduction units, providing a mechanism to control signaling events at mitochondria and other target organelles. Ubiquitin-mediated proteolysis of signal transducers and effectors provides an additional layer of complexity in the regulation of mitochondria homeostasis. Genetic evidence indicates that alteration of one or more components of these biochemical pathways leads to mitochondrial dysfunction and human diseases. In this review, we focus on the emerging role of AKAP scaffolds and the proteasome pathway in the control of oxidative metabolism, organelle dynamics and the mitochondrial signaling network. These aspects are crucial elements for maintaining a proper energy balance and cellular lifespan.
Collapse
Affiliation(s)
- Annalisa Carlucci
- Dipartimento di Biologia e Patologia Molecolare e Cellulare, Università Federico II, Naples, Italy
| | | | | |
Collapse
|
34
|
Kotzsch M, Sieuwerts AM, Grosser M, Meye A, Fuessel S, Meijer-van Gelder ME, Smid M, Schmitt M, Baretton G, Luther T, Magdolen V, Foekens JA. Urokinase receptor splice variant uPAR-del4/5-associated gene expression in breast cancer: identification of rab31 as an independent prognostic factor. Breast Cancer Res Treat 2007; 111:229-40. [PMID: 17952591 DOI: 10.1007/s10549-007-9782-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2007] [Accepted: 10/03/2007] [Indexed: 10/25/2022]
Abstract
PURPOSE To evaluate the pure prognostic impact of the uPA-receptor splice variant uPAR-del4/5 for lymph node-negative breast cancer patients, and to identify differentially expressed genes associated with high or low uPAR-del4/5 mRNA levels. PATIENTS AND METHODS mRNA transcript levels were measured by real-time PCR in tumor samples from 280 node-negative breast cancer patients who had not received adjuvant systemic therapy. Endpoints were distant metastasis-free survival (DMFS) and overall survival (OS). Gene expression analysis was performed with RNA isolated from breast cancer tissue and breast cancer cell lines using Affymetrix U133a GeneChips. RESULTS In multivariate analysis, uPAR-del4/5 significantly contributed to the base model of traditional prognostic factors for DMFS (HR = 3.29, P < 0.001) and OS (HR = 2.87, P = 0.002). Using microarrays, seven genes were found to be up-regulated in tumor samples and cancer cell lines with high uPAR-del4/5 mRNA expression. The gene encoding rab31, a member of the Ras oncogene family, was selected for quantitative analysis of mRNA expression in the set of 280 patients. High rab31 values were significantly associated with worse outcome of patients for DMFS (HR = 2.27, P < 0.001) and OS (HR = 2.01, P = 0.008) in multivariate analysis, independent from uPAR-del4/5. The patient subgroup with high uPAR-del4/5 and rab31 levels showed the worst DMFS and OS (P < 0.001, both) compared with tumors with low values of both factors. CONCLUSIONS Our results suggest that uPAR-del4/5 and rab31 mRNA represent independent prognostic markers in breast cancer and may be components of different, but possibly associated, tumor-relevant signaling pathways.
Collapse
Affiliation(s)
- Matthias Kotzsch
- Institute of Pathology, Dresden University of Technology, Fetscherstr. 74, 01307, Dresden, Germany.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Ng EL, Wang Y, Tang BL. Rab22B’s role in trans-Golgi network membrane dynamics. Biochem Biophys Res Commun 2007; 361:751-7. [PMID: 17678623 DOI: 10.1016/j.bbrc.2007.07.076] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2007] [Accepted: 07/14/2007] [Indexed: 01/17/2023]
Abstract
The small GTPase Rab22B (or Rab31) has been suspected to be involved in trafficking at trans-Golgi network. However, its exact cellular localization, tissue expression profile, and functions have not been uncharacterized. Specific antibody raised against Rab22B's protein revealed that Rab22B is brain-enriched, but is also present in substantial levels in spleen and intestine. In HeLa cells, endogenous Rab22B is largely associated with the trans-Golgi network (TGN). Over-expression of a GDP-binding mutant (Rab22BSN), but not wild-type Rab22B, specifically disrupts the TGN localization of TGN46, a dynamic marker which cycles between the TGN and the plasma membrane. The TGN resident membrane protein syntaxin 16, cis-Golgi markers such as GM130 and syntaxin 5, as well as the TGN/late endosome marker mannose 6-phosphate receptor (M6PR) are not affected by Rab22BSN, neither was endosomal-TGN transport of the Shiga toxin B subunit. The disruption of TGN46 staining by Rab22BSN could be specifically attributed to a domain at the C-terminal portion of Rab22B, where its sequence deviates the most from Rab22A. Over-expression of Rab22BSN inhibits the cell surface transport of the vesicular stomatitis virus G protein. Thus, Rab22B may have a role in anterograde exit from the TGN.
Collapse
Affiliation(s)
- Ee Ling Ng
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, Singapore 117597, Singapore
| | | | | |
Collapse
|
36
|
Walton SM, Gerlinger M, de la Rosa O, Nuber N, Knights A, Gati A, Laumer M, Strauss L, Exner C, Schäfer N, Urosevic M, Dummer R, Tiercy JM, Mackensen A, Jaeger E, Lévy F, Knuth A, Jäger D, Zippelius A. Spontaneous CD8 T cell responses against the melanocyte differentiation antigen RAB38/NY-MEL-1 in melanoma patients. THE JOURNAL OF IMMUNOLOGY 2007; 177:8212-8. [PMID: 17114498 DOI: 10.4049/jimmunol.177.11.8212] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The melanocyte differentiation Ag RAB38/NY-MEL-1 was identified by serological expression cloning (SEREX) and is expressed in the vast majority of melanoma lesions. The immunogenicity of RAB38/NY-MEL-1 has been corroborated previously by the frequent occurrence of specific Ab responses in melanoma patients. To elucidate potential CD8 T cell responses, we applied in vitro sensitization with overlapping peptides spanning the RAB38/NY-MEL-1 protein sequence and the reverse immunology approach. The identified peptide RAB38/NY-MEL-1(50-58) exhibited a marked response in ELISPOT assays after in vitro sensitization of CD8 T cells from HLA-A *0201(+) melanoma patients. In vitro digestion assays using purified proteasomes provided evidence of natural processing of RAB38/NY-MEL-1(50-58) peptide. Accordingly, monoclonal RAB38/NY-MEL-1(50-58)-specific T cell populations were capable of specifically recognizing HLA-A2(+) melanoma cell lines expressing RAB38/NY-MEL-1. Applying fluorescent HLA-A2/RAB38/NY-MEL-1(50-58) multimeric constructs, we were able to document a spontaneously developed memory/effector CD8 T cell response against this peptide in a melanoma patient. To elucidate the Ag-processing pathway, we demonstrate that RAB38/NY-MEL-1(50-58) is produced efficiently by the standard proteasome and the immunoproteasome. In addition to the identification of a RAB38/NY-MEL-1-derived immunogenic CD8 T cell epitope, this study is instrumental for both the onset and monitoring of future RAB38/NY-MEL-1-based vaccination trials.
Collapse
Affiliation(s)
- Senta M Walton
- Medical Oncology, Department of Internal Medicine, University Hospital Zurich, Raemistrasse 100, CH-8091 Zurich, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Lodhi IJ, Chiang SH, Chang L, Vollenweider D, Watson RT, Inoue M, Pessin JE, Saltiel AR. Gapex-5, a Rab31 guanine nucleotide exchange factor that regulates Glut4 trafficking in adipocytes. Cell Metab 2007; 5:59-72. [PMID: 17189207 PMCID: PMC1779820 DOI: 10.1016/j.cmet.2006.12.006] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2006] [Revised: 10/27/2006] [Accepted: 12/11/2006] [Indexed: 10/23/2022]
Abstract
Insulin stimulates glucose uptake by promoting translocation of the Glut4 glucose transporter from intracellular storage compartments to the plasma membrane. In the absence of insulin, Glut4 is retained intracellularly; the mechanism underlying this process remains uncertain. Using the TC10-interacting protein CIP4 as bait in a yeast two-hybrid screen, we cloned a RasGAP and VPS9 domain-containing protein, Gapex-5/RME-6. The VPS9 domain is a guanine nucleotide exchange factor for Rab31, a Rab5 subfamily GTPase implicated in trans-Golgi network (TGN)-to-endosome trafficking. Overexpression of Rab31 blocks insulin-stimulated Glut4 translocation, whereas knockdown of Rab31 potentiates insulin-stimulated Glut4 translocation and glucose uptake. Gapex-5 is predominantly cytosolic in untreated cells; its overexpression promotes intracellular retention of Glut4 in adipocytes. Insulin recruits the CIP4/Gapex-5 complex to the plasma membrane, thus reducing Rab31 activity and permitting Glut4 vesicles to translocate to the cell surface, where Glut4 docks and fuses to transport glucose into the cell.
Collapse
Affiliation(s)
- Irfan J. Lodhi
- Life Sciences Institute
- Cellular and Molecular Biology Program University of Michigan Ann Arbor, MI 48109
| | | | | | - Daniel Vollenweider
- Department of Pharmacological Sciences Stony Brook University Stony Brook, NY 11794
| | - Robert T. Watson
- Department of Pharmacological Sciences Stony Brook University Stony Brook, NY 11794
| | | | - Jeffrey E. Pessin
- Department of Pharmacological Sciences Stony Brook University Stony Brook, NY 11794
| | - Alan R. Saltiel
- Life Sciences Institute
- Departments of Internal Medicine and Molecular and Integrative Physiology
- Cellular and Molecular Biology Program University of Michigan Ann Arbor, MI 48109
- *Corresponding author: Alan R. Saltiel Life Sciences Institute University of Michigan 210 Washtenaw Ave. Ann Arbor, MI 48109
| |
Collapse
|
38
|
Wasmeier C, Romao M, Plowright L, Bennett DC, Raposo G, Seabra MC. Rab38 and Rab32 control post-Golgi trafficking of melanogenic enzymes. ACTA ACUST UNITED AC 2006; 175:271-81. [PMID: 17043139 PMCID: PMC2064568 DOI: 10.1083/jcb.200606050] [Citation(s) in RCA: 226] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
A mutation in the small GTPase Rab38 gives rise to the mouse coat color phenotype "chocolate" (cht), implicating Rab38 in the regulation of melanogenesis. However, its role remains poorly characterized. We report that cht Rab38(G19V) is inactive and that the nearly normal pigmentation in cht melanocytes results from functional compensation by the closely related Rab32. In cht cells treated with Rab32-specific small interfering RNA, a dramatic loss of pigmentation is observed. In addition to mature melanosomes, Rab38 and Rab32 localize to perinuclear vesicles carrying tyrosinase and tyrosinase-related protein 1, consistent with a role in the intracellular sorting of these proteins. In Rab38/Rab32-deficient cells, tyrosinase appears to be mistargeted and degraded after exit from the trans-Golgi network (TGN). This suggests that Rab38 and Rab32 regulate a critical step in the trafficking of melanogenic enzymes, in particular, tyrosinase, from the TGN to melanosomes. This work identifies a key role for the Rab38/Rab32 subfamily of Rab proteins in the biogenesis of melanosomes and potentially other lysosome-related organelles.
Collapse
Affiliation(s)
- Christina Wasmeier
- Molecular and Cellular Medicine, Division of Biomedical Sciences, Imperial College London, London SW7 2AZ, England, UK
| | | | | | | | | | | |
Collapse
|
39
|
Nindl I, Dang C, Forschner T, Kuban RJ, Meyer T, Sterry W, Stockfleth E. Identification of differentially expressed genes in cutaneous squamous cell carcinoma by microarray expression profiling. Mol Cancer 2006; 5:30. [PMID: 16893473 PMCID: PMC1569867 DOI: 10.1186/1476-4598-5-30] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2006] [Accepted: 08/08/2006] [Indexed: 01/09/2023] Open
Abstract
Background Carcinogenesis is a multi-step process indicated by several genes up- or down-regulated during tumor progression. This study examined and identified differentially expressed genes in cutaneous squamous cell carcinoma (SCC). Results Three different biopsies of 5 immunosuppressed organ-transplanted recipients each normal skin (all were pooled), actinic keratosis (AK) (two were pooled), and invasive SCC and additionally 5 normal skin tissues from immunocompetent patients were analyzed. Thus, total RNA of 15 specimens were used for hybridization with Affymetrix HG-U133A microarray technology containing 22,283 genes. Data analyses were performed by prediction analysis of microarrays using nearest shrunken centroids with the threshold 3.5 and ANOVA analysis was independently performed in order to identify differentially expressed genes (p < 0.05). Verification of 13 up- or down-regulated genes was performed by quantitative real-time reverse transcription (RT)-PCR and genes were additionally confirmed by sequencing. Broad coherent patterns in normal skin vs. AK and SCC were observed for 118 genes. Conclusion The majority of identified differentially expressed genes in cutaneous SCC were previously not described.
Collapse
Affiliation(s)
- Ingo Nindl
- Department of Dermatology, Charité, Skin Cancer Center Charité, University Hospital of Berlin, Charitéplatz 1, D-10117 Berlin, Germany
| | - Chantip Dang
- Department of Dermatology, Charité, Skin Cancer Center Charité, University Hospital of Berlin, Charitéplatz 1, D-10117 Berlin, Germany
| | - Tobias Forschner
- Department of Dermatology, Charité, Skin Cancer Center Charité, University Hospital of Berlin, Charitéplatz 1, D-10117 Berlin, Germany
| | - Ralf J Kuban
- Institute of Biochemistry, Charité, University Hospital of Berlin, Monbijoustr. 2, D-10098 Berlin, Germany
| | - Thomas Meyer
- Institut of Pathology and Molecularbiology (IPM), Lademannbogen 61, D-22339 Hamburg, Germany
| | - Wolfram Sterry
- Department of Dermatology, Charité, Skin Cancer Center Charité, University Hospital of Berlin, Charitéplatz 1, D-10117 Berlin, Germany
| | - Eggert Stockfleth
- Department of Dermatology, Charité, Skin Cancer Center Charité, University Hospital of Berlin, Charitéplatz 1, D-10117 Berlin, Germany
| |
Collapse
|
40
|
Shibata D, Mori Y, Cai K, Zhang L, Yin J, Elahi A, Hamelin R, Wong YF, Lo WK, Chung TKH, Sato F, Karpeh MS, Meltzer SJ. RAB32 hypermethylation and microsatellite instability in gastric and endometrial adenocarcinomas. Int J Cancer 2006; 119:801-6. [PMID: 16557577 DOI: 10.1002/ijc.21912] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The recently described gene, RAB32, is a ras proto-oncogene family member that encodes an A-kinase-anchoring protein. RAB32 has been found to be frequently hypermethylated in microsatellite instability-high (MSI-H) colon cancers. We sought to determine the prevalence of RAB32 hypermethylation in gastric and endometrial adenocarcinomas, the 2 other major tumor types in which MSI-H is common. Moreover, we delineated the association of RAB32 hypermethylation with microsatellite instability (MSI) and hMLH1 hypermethylation. MSI status and hypermethylation of the RAB32 and hMLH1 genes were studied in paired primary normal and tumor tissues from 48 patients with gastric cancer. An additional 80 endometrial cancer patients were studied for RAB32 methylation and MSI status. Thirteen (27%) of 48 gastric cancers demonstrated evidence of RAB32 hypermethylation. MSI status was determined in 46 of the tumors, with 7 (100%) of 7 MSI-H tumors, 1 (33%) of 3 MSI-low (MSI-L) tumors and 4 (11%) of 36 microsatellite-stable (MSS) tumors found to harbor RAB32 hypermethylation. RAB32 methylation was significantly associated with intestinal type histology and concomitant hMLH1 hypermethylation in gastric cancer. In contrast, RAB32 methylation occurred in only 1 of 80 endometrial cancers, including 20 MSI-H, 8 MSI-L and 52 MSS tumors. Hypermethylation of hMLH1 was noted in 16 (20%) of 80 endometrial tumors. We conclude that although RAB32 methylation is rare in endometrial cancers, it is strongly associated with hMLH1 hypermethylation and MSI in gastric adenocarcinomas. Given its similar involvement in colon cancer, RAB32 inactivation may represent a component of the oncogenic pathway of microsatellite-unstable gastrointestinal adenocarcinomas.
Collapse
Affiliation(s)
- David Shibata
- Division of Gastrointestinal Oncology, Department of Interdisciplinary Oncology, H. Lee Moffitt Cancer Center and Research Institute, University of South Florida College of Medicine, Tampa, FL 33612, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Lee KT, Park EW, Moon S, Park HS, Kim HY, Jang GW, Choi BH, Chung HY, Lee JW, Cheong IC, Oh SJ, Kim H, Suh DS, Kim TH. Genomic sequence analysis of a potential QTL region for fat trait on pig chromosome 6. Genomics 2005; 87:218-24. [PMID: 16326071 DOI: 10.1016/j.ygeno.2005.09.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2005] [Revised: 08/22/2005] [Accepted: 09/03/2005] [Indexed: 11/19/2022]
Abstract
On pig chromosome 6, the SW71 microsatellite is located in the region corresponding to several quantitative trait loci (QTL), such as those for intramuscular fat content and for body weight at 4 weeks of age. The genomic sequence of approximately 909 kb was obtained from seven BAC clones encompassing the SW71 region corresponding to human 18q11.21-q11.22. By searching the NCBI GenBank using BLASTX and BLASTN, this 909-kb segment was found to contain eight genes, RAB31, TXNDC2, VAPA, APCDD1, NAPG, FAM38B, C18orf30, and C18orf58, and one putative gene (DN119777). The average G + C content in the sequence of this contig was 45.75% and 33 CpG islands were detected. CpG islands were scattered throughout the region in which most of the putative genes were located. Dense CpG islands of approximately 840 bp were observed, including within the 5' UTR and exon 1 of the orthologs of the RAB31, VAPA, APCDD1, and NAPG genes. Comparative analysis of conserved segments of six species showed that K(a)/K(s) ratios of the TXNDC2 gene in collinear and rearranged segments were significantly different at 4.1 and 1.3, respectively. In conclusion, we demonstrated the genomic organization of pig chromosome 6, including the gene order surrounding SW71, which provides important information for comparative mapping. Moreover, the genes revealed in this study may be positional candidate genes associated with QTL on chromosome 6 that affect fat deposition in pigs.
Collapse
Affiliation(s)
- Kyung-Tai Lee
- Division of Animal Genomics and Bioinformatics, National Livestock Research Institute, Rural Development Administration, Omokchun-dong 564, Kwonsun-gu, Suwon, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Yang SX, Simon RM, Tan AR, Nguyen D, Swain SM. Gene expression patterns and profile changes pre- and post-erlotinib treatment in patients with metastatic breast cancer. Clin Cancer Res 2005; 11:6226-32. [PMID: 16144925 DOI: 10.1158/1078-0432.ccr-05-0270] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE To delineate gene expression patterns and profile changes in metastatic tumor biopsies at baseline and 1 month after treatment with the epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor erlotinib in patients with metastatic breast cancer. EXPERIMENTAL DESIGN Patients were treated with 150 mg of oral erlotinib daily. Gene expression profiles were measured with Affymetrix U133A GeneChip and immunohistochemistry was used to validate microarray findings. RESULTS Estrogen receptor (ER) status by immunohistochemistry is nearly coincided with the two major expression clusters determined by expression of genes using unsupervised hierarchical clustering analysis. One of 10 patients had an EGFR-positive tumor detected by both microarray and immunohistochemistry. In this tumor, tissue inhibitor of metalloproteinases-3 and collagen type 1 alpha 2, which are the EGF-down-regulated growth repressors, were significantly increased by erlotinib. Gene changes in EGFR-negative tumors are those of G-protein-linked and cell surface receptor-linked signaling. Gene ontology comparison analysis pretreatment and posttreatment in EGFR-negative tumors revealed biological process categories that have more genes differentially expressed than expected by chance. Among 495 gene ontology categories, the significant differed gene ontology groups include G-protein-coupled receptor protein signaling (34 genes, P = 0.002) and cell surface receptor-linked signal transduction (74 genes, P = 0.007). CONCLUSIONS ER status reflects the major difference in gene expression pattern in metastatic breast cancer. Erlotinib had effects on genes of EGFR signaling pathway in the EGFR-positive tumor and on gene ontology biological process categories or genes that have function in signal transduction in EGFR-negative tumors.
Collapse
Affiliation(s)
- Sherry X Yang
- Cancer Therapeutics Branch in Center for Cancer Research , National Cancer Institute, NIH, Bethesda, Maryland 20889, USA.
| | | | | | | | | |
Collapse
|
43
|
Øynebråten I, Barois N, Hagelsteen K, Johansen FE, Bakke O, Haraldsen G. Characterization of a Novel Chemokine-Containing Storage Granule in Endothelial Cells: Evidence for Preferential Exocytosis Mediated by Protein Kinase A and Diacylglycerol. THE JOURNAL OF IMMUNOLOGY 2005; 175:5358-69. [PMID: 16210642 DOI: 10.4049/jimmunol.175.8.5358] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We have recently shown that several proinflammatory chemokines can be stored in secretory granules of endothelial cells (ECs). Subsequent regulated exocytosis of such chemokines may then enable rapid recruitment of leukocytes to inflammatory sites. Although IL-8/CXCL8 and eotaxin-3/CCL26 are sorted to the rod-shaped Weibel-Palade body (WPB), we found that GROalpha/CXCL1 and MCP-1/CCL2 reside in small granules that, similarly to the WPB, respond to secretagogue stimuli. In the present study, we report that GROalpha and MCP-1 colocalized in 50- to 100-nm granules, which occur throughout the cytoplasm and at the cell cortex. Immunofluorescence confocal microscopy revealed no colocalization with multimerin or tissue plasminogen activator, i.e., proteins that are released from small granules of ECs by regulated exocytosis. Moreover, the GROalpha/MCP-1-containing granules were Rab27-negative, contrasting the Rab27-positive, WPB. The secretagogues PMA, histamine, and forskolin triggered distinct dose and time-dependent responses of GROalpha release. Furthermore, GROalpha release was more sensitive than IL-8 release to inhibitors and activators of PKA and PKC but not to an activator of Epac, a cAMP-regulated GTPase exchange factor, indicating that GROalpha release is regulated by molecular adaptors different from those regulating exocytosis of the WPB. On the basis of these findings, we designated the GROalpha/MCP-1-containing compartment the type 2 granule of regulated secretion in ECs, considering the WPB the type 1 compartment. In conclusion, we propose that the GROalpha/MCP-1-containing type 2 granule shows preferential responsiveness to important mediators of EC activation, pointing to the existence of selective agonists that would allow differential release of selected chemokines.
Collapse
Affiliation(s)
- Inger Øynebråten
- Laboratory for Immunohistochemistry and Immunopathology, University of Oslo and Rikshospitalet University Hospital, Oslo, Norway.
| | | | | | | | | | | |
Collapse
|
44
|
Helip-Wooley A, Thoene JG. Sucrose-induced vacuolation results in increased expression of cholesterol biosynthesis and lysosomal genes. Exp Cell Res 2004; 292:89-100. [PMID: 14720509 DOI: 10.1016/j.yexcr.2003.09.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Mammalian cells cultured in the presence of high concentrations of sucrose demonstrate large, phase-lucent, osmotically swollen vacuoles. Three normal human fibroblast cell lines exposed to 100 mM of sucrose for 24 h demonstrated increased expression of lysosomal, intracellular vesicle trafficking, cholesterol biosynthesis, and fatty acid metabolism genes. Most steps of the cholesterol biosynthesis pathway were upregulated including HMG CoA reductase, which catalyzes the rate-limiting step of cholesterol biosynthesis. The lysosomal genes neuraminidase, CLN3, and CLCN5 and the small GTP-binding proteins Rab7L1 and Arl7 were also increased. A Rab7L1-GFP fusion protein was overexpressed in human fibroblasts and was demonstrated to localize primarily to the Golgi apparatus, and in some cells to the membranes bounding vesicles in the perinuclear region. Increased levels of the transcription factor C/EBP were found in nuclear extracts from cells exposed to sucrose for 12 h, relative to matched controls suggesting regulation of gene expression following sucrose-induced vacuolation may be coordinated, at least in part, by the transcription factor C/EBP. Sucrose-induced vacuolation is a useful model in which to study the regulation of lysosomal gene expression and biogenesis.
Collapse
Affiliation(s)
- Amanda Helip-Wooley
- Hayward Human Genetics Center, Tulane University School of Medicine, New Orleans, LA 70112, USA.
| | | |
Collapse
|
45
|
McRedmond JP, Park SD, Reilly DF, Coppinger JA, Maguire PB, Shields DC, Fitzgerald DJ. Integration of proteomics and genomics in platelets: a profile of platelet proteins and platelet-specific genes. Mol Cell Proteomics 2003; 3:133-44. [PMID: 14645502 DOI: 10.1074/mcp.m300063-mcp200] [Citation(s) in RCA: 236] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Platelets, while anucleate, contain RNA, some of which is translated into protein upon activation. Hypothesising that the platelet proteome is reflected in the transcriptome, we identified 82 proteins secreted from activated platelets and compared these, as well as published proteomic data, to the transcriptional profile. We also compared the transcriptome of platelets to other tissues to identify platelet-specific genes and used ontology to determine gene categories over-represented in platelets. RNA was isolated from highly pure platelet preparations for hybridization to Affymetrix oligonucleotide arrays. We identified 2,928 distinct messages as being present in platelets. The platelet transcriptome was compared with the proteome by relating both to UniGene clusters. Platelet proteomic data correlated well with the transcriptome, with 69% of secreted proteins detectable at the mRNA level, and similar concordance was obtained using two published datasets. While many of the most abundant mRNAs are for known platelet proteins, messages were detected for proteins not previously reported in platelets. Some of these may represent residual megakaryocyte messages; however, proteomic analysis confirmed the expression of many previously unreported genes in platelets. Transcripts for well-described platelet proteins are among the most platelet-specific messages. Ontological categories related to signal transduction, receptors, ion channels, and membranes are over-represented in platelets, while categories involved in protein synthesis are depleted. Despite the absence of gene transcription, the platelet proteome is mirrored in the transcriptome. Conversely, transcriptional analysis predicts the presence of novel proteins in the platelet. Transcriptional analysis is relevant to platelet biology, providing insights into platelet function and the mechanisms of platelet disorders.
Collapse
Affiliation(s)
- J P McRedmond
- Proteomics and Bioinformatics Cores, Department of Clinical Pharmacology, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | | | | | | | | | | | | |
Collapse
|
46
|
Chen Y, Guo X, Deng FM, Liang FX, Sun W, Ren M, Izumi T, Sabatini DD, Sun TT, Kreibich G. Rab27b is associated with fusiform vesicles and may be involved in targeting uroplakins to urothelial apical membranes. Proc Natl Acad Sci U S A 2003; 100:14012-7. [PMID: 14625374 PMCID: PMC283537 DOI: 10.1073/pnas.2436350100] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The terminally differentiated umbrella cells of bladder epithelium contain unique cytoplasmic organelles, the fusiform vesicles, which deliver preassembled crystalline arrays of uroplakin proteins to the apical cell surface of urothelial umbrella cells. We have investigated the possible role of Rab proteins in this delivery process, and found Rab27b to be expressed at an extraordinary high level (0.1% of total protein) in urothelium, whereas Rab27b levels were greatly reduced (to <5% of normal urothelium) in cultured urothelial cells, which synthesized only small amounts of uroplakins and failed to form fusiform vesicles. Immuno-electron microscopy showed that Rab27b was associated with the cytoplasmic face of the fusiform vesicles, but not with that of the apical plasma membrane. The association of Rab27b with fusiform vesicles and its differentiation-dependent expression suggest that this Rab protein plays a role in regulating the delivery of fusiform vesicles to the apical plasma membrane of umbrella cells.
Collapse
Affiliation(s)
- Yanru Chen
- Department of Cell Biology, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Cohen-Solal KA, Sood R, Marin Y, Crespo-Carbone SM, Sinsimer D, Martino JJ, Robbins C, Makalowska I, Trent J, Chen S. Identification and characterization of mouse Rab32 by mRNA and protein expression analysis. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2003; 1651:68-75. [PMID: 14499590 DOI: 10.1016/s1570-9639(03)00236-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Rab proteins, a subfamily of the ras superfamily, are low molecular weight GTPases involved in the regulation of intracellular vesicular transport. Cloning of human RAB32 was recently described. Presently, we report the cloning and characterization of the mouse homologue of Rab32. We show that murine Rab32 exhibits a ubiquitous expression pattern, with tissue-specific variation in expression level. Three cell types with highly specialized organelles, melanocytes, platelets and mast cells, exhibit relatively high level of Rab32. We show that in murine amelanotic in vitro transformed melanocytes as well as in human amelanotic metastatic melanoma cell lines, the expression of Rab32 is markedly reduced or absent, in parallel with the loss of expression of two key enzymes for the production of melanin, tyrosinase and Tyrp1. Therefore, in both mouse and human systems, the expression of Rab32 correlates with the expression of genes involved in pigment production. However, in melanoma samples, amelanotic due to a mutation in the tyrosinase gene, the expression of Rab32 remains at levels comparable to those observed in pigmented melanoma samples. Finally, we observed co-localization of Rab32 and the melanosomal proteins, Tyrp1 and Dct, indicating an association of Rab32 with melanosomes. Based on these data, we propose the inclusion of Rab32 to the so-called melanocyte/platelet family of Rab proteins.
Collapse
Affiliation(s)
- Karine A Cohen-Solal
- Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, Piscataway, NJ 08854, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Alto NM, Soderling J, Scott JD. Rab32 is an A-kinase anchoring protein and participates in mitochondrial dynamics. J Cell Biol 2002; 158:659-68. [PMID: 12186851 PMCID: PMC2174006 DOI: 10.1083/jcb.200204081] [Citation(s) in RCA: 178] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
A-kinase anchoring proteins (AKAPs) tether the cAMP-dependent protein kinase (PKA) and other signaling enzymes to distinct subcellular organelles. Using the yeast two-hybrid approach, we demonstrate that Rab32, a member of the Ras superfamily of small molecular weight G-proteins, interacts directly with the type II regulatory subunit of PKA. Cellular and biochemical studies confirm that Rab32 functions as an AKAP inside cells. Anchoring determinants for PKA have been mapped to sites within the conserved alpha5 helix that is common to all Rab family members. Subcellular fractionation and immunofluorescent approaches indicate that Rab32 and a proportion of the cellular PKA pool are associated with mitochondria. Transient transfection of a GTP binding-deficient mutant of Rab32 promotes aberrant accumulation of mitochondria at the microtubule organizing center. Further analysis of this mutant indicates that disruption of the microtubule cytoskeleton results in aberrantly elongated mitochondria. This implicates Rab32 as a participant in synchronization of mitochondrial fission. Thus, Rab32 is a dual function protein that participates in both mitochondrial anchoring of PKA and mitochondrial dynamics.
Collapse
Affiliation(s)
- Neal M Alto
- Howard Hughes Medical Institute, Vollum Institute, Oregon Health and Sciences University, 3181 SW Sam Jackson Park Road, Portland, OR 97201, USA
| | | | | |
Collapse
|