1
|
Gatticchi L, de Las Heras JI, Sivakumar A, Zuleger N, Roberti R, Schirmer EC. Tm7sf2 Disruption Alters Radial Gene Positioning in Mouse Liver Leading to Metabolic Defects and Diabetes Characteristics. Front Cell Dev Biol 2020; 8:592573. [PMID: 33330474 PMCID: PMC7719783 DOI: 10.3389/fcell.2020.592573] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 10/26/2020] [Indexed: 01/23/2023] Open
Abstract
Tissue-specific patterns of radial genome organization contribute to genome regulation and can be established by nuclear envelope proteins. Studies in this area often use cancer cell lines, and it is unclear how well such systems recapitulate genome organization of primary cells or animal tissues; so, we sought to investigate radial genome organization in primary liver tissue hepatocytes. Here, we have used a NET47/Tm7sf2–/– liver model to show that manipulating one of these nuclear membrane proteins is sufficient to alter tissue-specific gene positioning and expression. Dam-LaminB1 global profiling in primary liver cells shows that nearly all the genes under such positional regulation are related to/important for liver function. Interestingly, Tm7sf2 is a paralog of the HP1-binding nuclear membrane protein LBR that, like Tm7sf2, also has an enzymatic function in sterol reduction. Fmo3 gene/locus radial mislocalization could be rescued with human wild-type, but not TM7SF2 mutants lacking the sterol reductase function. One central pathway affected is the cholesterol synthesis pathway. Within this pathway, both Cyp51 and Msmo1 are under Tm7sf2 positional and expression regulation. Other consequences of the loss of Tm7sf2 included weight gain, insulin sensitivity, and reduced levels of active Akt kinase indicating additional pathways under its regulation, several of which are highlighted by mispositioning genes. This study emphasizes the importance for tissue-specific radial genome organization in tissue function and the value of studying genome organization in animal tissues and primary cells over cell lines.
Collapse
Affiliation(s)
- Leonardo Gatticchi
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Jose I de Las Heras
- Institute of Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - Aishwarya Sivakumar
- Institute of Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - Nikolaj Zuleger
- Institute of Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - Rita Roberti
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Eric C Schirmer
- Institute of Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
2
|
Danon Disease-Associated LAMP-2 Deficiency Drives Metabolic Signature Indicative of Mitochondrial Aging and Fibrosis in Cardiac Tissue and hiPSC-Derived Cardiomyocytes. J Clin Med 2020; 9:jcm9082457. [PMID: 32751926 PMCID: PMC7465084 DOI: 10.3390/jcm9082457] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 07/15/2020] [Accepted: 07/21/2020] [Indexed: 12/15/2022] Open
Abstract
Danon disease is a severe X-linked disorder caused by deficiency of the lysosome-associated membrane protein-2 (LAMP-2). Clinical manifestations are phenotypically diverse and consist of hypertrophic and dilated cardiomyopathies, skeletal myopathy, retinopathy, and intellectual dysfunction. Here, we investigated the metabolic landscape of Danon disease by applying a multi-omics approach and combined structural and functional readouts provided by Raman and atomic force microscopy. Using these tools, Danon patient-derived cardiac tissue, primary fibroblasts, and human induced pluripotent stem cells differentiated into cardiomyocytes (hiPSC-CMs) were analyzed. Metabolic profiling indicated LAMP-2 deficiency promoted a switch toward glycolysis accompanied by rerouting of tryptophan metabolism. Cardiomyocytes' energetic balance and NAD+/NADH ratio appeared to be maintained despite mitochondrial aging. In turn, metabolic adaption was accompanied by a senescence-associated signature. Similarly, Danon fibroblasts appeared more stress prone and less biomechanically compliant. Overall, shaping of both morphology and metabolism contributed to the loss of cardiac biomechanical competence that characterizes the clinical progression of Danon disease.
Collapse
|
3
|
Capell-Hattam IM, Sharpe LJ, Qian L, Hart-Smith G, Prabhu AV, Brown AJ. Twin enzymes, divergent control: The cholesterogenic enzymes DHCR14 and LBR are differentially regulated transcriptionally and post-translationally. J Biol Chem 2020; 295:2850-2865. [PMID: 31911440 PMCID: PMC7049974 DOI: 10.1074/jbc.ra119.011323] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 12/13/2019] [Indexed: 01/07/2023] Open
Abstract
Cholesterol synthesis is a tightly regulated process, both transcriptionally and post-translationally. Transcriptional control of cholesterol synthesis is relatively well-understood. However, of the ∼20 enzymes in cholesterol biosynthesis, post-translational regulation has only been examined for a small number. Three of the four sterol reductases in cholesterol production, 7-dehydrocholesterol reductase (DHCR7), 14-dehydrocholesterol reductase (DHCR14), and lamin-B receptor (LBR), share evolutionary ties with a high level of sequence homology and predicted structural homology. DHCR14 and LBR uniquely share the same Δ-14 reductase activity in cholesterol biosynthesis, yet little is known about their post-translational regulation. We have previously identified specific modes of post-translational control of DHCR7, but it is unknown whether these regulatory mechanisms are shared by DHCR14 and LBR. Using CHO-7 cells stably expressing epitope-tagged DHCR14 or LBR, we investigated the post-translational regulation of these enzymes. We found that DHCR14 and LBR undergo differential post-translational regulation, with DHCR14 being rapidly turned over, triggered by cholesterol and other sterol intermediates, whereas LBR remained stable. DHCR14 is degraded via the ubiquitin-proteasome system, and we identified several DHCR14 and DHCR7 putative interaction partners, including a number of E3 ligases that modulate DHCR14 levels. Interestingly, we found that gene expression across an array of human tissues showed a negative relationship between the C14-sterol reductases; one enzyme or the other tends to be predominantly expressed in each tissue. Overall, our findings indicate that whereas LBR tends to be the constitutively active C14-sterol reductase, DHCR14 levels are tunable, responding to the local cellular demands for cholesterol.
Collapse
Affiliation(s)
- Isabelle M Capell-Hattam
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, New South Wales 2052, Australia
| | - Laura J Sharpe
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, New South Wales 2052, Australia
| | - Lydia Qian
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, New South Wales 2052, Australia
| | - Gene Hart-Smith
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, New South Wales 2052, Australia; Department of Molecular Sciences, Macquarie University, Macquarie Park, New South Wales 2109, Australia
| | - Anika V Prabhu
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, New South Wales 2052, Australia
| | - Andrew J Brown
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, New South Wales 2052, Australia.
| |
Collapse
|
4
|
Metabolism and Biological Activities of 4-Methyl-Sterols. Molecules 2019; 24:molecules24030451. [PMID: 30691248 PMCID: PMC6385002 DOI: 10.3390/molecules24030451] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 01/19/2019] [Accepted: 01/23/2019] [Indexed: 12/12/2022] Open
Abstract
4,4-Dimethylsterols and 4-methylsterols are sterol biosynthetic intermediates (C4-SBIs) acting as precursors of cholesterol, ergosterol, and phytosterols. Their accumulation caused by genetic lesions or biochemical inhibition causes severe cellular and developmental phenotypes in all organisms. Functional evidence supports their role as meiosis activators or as signaling molecules in mammals or plants. Oxygenated C4-SBIs like 4-carboxysterols act in major biological processes like auxin signaling in plants and immune system development in mammals. It is the purpose of this article to point out important milestones and significant advances in the understanding of the biogenesis and biological activities of C4-SBIs.
Collapse
|
5
|
Ranadheera C, Coombs KM, Kobasa D. Comprehending a Killer: The Akt/mTOR Signaling Pathways Are Temporally High-Jacked by the Highly Pathogenic 1918 Influenza Virus. EBioMedicine 2018; 32:142-163. [PMID: 29866590 PMCID: PMC6021456 DOI: 10.1016/j.ebiom.2018.05.027] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 05/08/2018] [Accepted: 05/21/2018] [Indexed: 02/06/2023] Open
Abstract
Previous transcriptomic analyses suggested that the 1918 influenza A virus (IAV1918), one of the most devastating pandemic viruses of the 20th century, induces a dysfunctional cytokine storm and affects other innate immune response patterns. Because all viruses are obligate parasites that require host cells for replication, we globally assessed how IAV1918 induces host protein dysregulation. We performed quantitative mass spectrometry of IAV1918-infected cells to measure host protein dysregulation. Selected proteins were validated by immunoblotting and phosphorylation levels of members of the PI3K/AKT/mTOR pathway were assessed. Compared to mock-infected controls, >170 proteins in the IAV1918-infected cells were dysregulated. Proteins mapped to amino sugar metabolism, purine metabolism, steroid biosynthesis, transmembrane receptors, phosphatases and transcription regulation. Immunoblotting demonstrated that IAV1918 induced a slight up-regulation of the lamin B receptor whereas all other tested virus strains induced a significant down-regulation. IAV1918 also strongly induced Rab5b expression whereas all other tested viruses induced minor up-regulation or down-regulation. IAV1918 showed early reduced phosphorylation of PI3K/AKT/mTOR pathway members and was especially sensitive to rapamycin. These results suggest the 1918 strain requires mTORC1 activity in early replication events, and may explain the unique pathogenicity of this virus. Proteomic analyses of influenza 1918 virus-infected cells identified >170 dysregulated host proteins. Dysregulated proteins mapped to numerous important cellular pathways. 1918 virus infection showed prominent early reduced phosphorylation of PI3K/Akt/mTOR.
The 1918 influenza pandemic was one of the most devastating infectious disease events of the 20th century, resulting in 20–100 million deaths. Gene-based assays showed severe dysregulation of the host's cytokine responses, but little was known about global protein responses to virus infection. This work identifies unique and temporal alterations in phosphorylation of the PI3K/AKT/mTOR signaling pathway, which is important in determining cell death. This work paves the way for further research on how this pathway influences host mechanisms responsible for aiding virus replication and in determining levels and severity of influenza virus-induced patho
Collapse
Affiliation(s)
- Charlene Ranadheera
- Department of Medical Microbiology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba R3E 0J6, Canada; Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba R3E 3R2, Canada
| | - Kevin M Coombs
- Department of Medical Microbiology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba R3E 0J6, Canada; Manitoba Centre for Proteomics & Systems Biology, Room 799, 715 McDermot Avenue, Winnipeg, Manitoba R3E 3P4, Canada; Manitoba Institute of Child Health, John Buhler Research Centre, Room 513, 715 McDermot Avenue, Winnipeg, Manitoba R3E 3P4, Canada.
| | - Darwyn Kobasa
- Department of Medical Microbiology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba R3E 0J6, Canada; Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba R3E 3R2, Canada.
| |
Collapse
|
6
|
Gatticchi L, Cerra B, Scarpelli P, Macchioni L, Sebastiani B, Gioiello A, Roberti R. Selected cholesterol biosynthesis inhibitors produce accumulation of the intermediate FF-MAS that targets nucleus and activates LXRα in HepG2 cells. Biochim Biophys Acta Mol Cell Biol Lipids 2017; 1862:842-852. [DOI: 10.1016/j.bbalip.2017.05.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 05/07/2017] [Indexed: 01/23/2023]
|
7
|
Bartoli D, Piobbico D, Bellet MM, Bennati AM, Roberti R, Della Fazia MA, Servillo G. Impaired cell proliferation in regenerating liver of 3 β-hydroxysterol Δ14-reductase (TM7SF2) knock-out mice. Cell Cycle 2016; 15:2164-2173. [PMID: 27341299 PMCID: PMC4993425 DOI: 10.1080/15384101.2016.1195939] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 05/18/2016] [Accepted: 05/22/2016] [Indexed: 12/21/2022] Open
Abstract
The liver is the most important organ in cholesterol metabolism, which is instrumental in regulating cell proliferation and differentiation. The gene Tm7sf2 codifies for 3 β-hydroxysterol-Δ14-reductase (C14-SR), an endoplasmic reticulum resident protein catalyzing the reduction of C14-unsaturated sterols during cholesterol biosynthesis from lanosterol. In this study we analyzed the role of C14-SR in vivo during cell proliferation by evaluating liver regeneration in Tm7sf2 knockout (KO) and wild-type (WT) mice. Tm7sf2 KO mice showed no alteration in cholesterol content. However, accumulation and delayed catabolism of hepatic triglycerides was observed, resulting in persistent steatosis at all times post hepatectomy. Moreover, delayed cell cycle progression to the G1/S phase was observed in Tm7sf2 KO mice, resulting in reduced cell division at the time points examined. This was associated to abnormal ER stress response, leading to alteration in p53 content and, consequently, induction of p21 expression in Tm7sf2 KO mice. In conclusion, our results indicate that Tm7sf2 deficiency during liver regeneration alters lipid metabolism and generates a stress condition, which, in turn, transiently unbalances hepatocytes cell cycle progression.
Collapse
Affiliation(s)
- Daniela Bartoli
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Danilo Piobbico
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | | | - Anna Maria Bennati
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Rita Roberti
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | | | - Giuseppe Servillo
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| |
Collapse
|
8
|
Li X, Roberti R, Blobel G. Structure of an integral membrane sterol reductase from Methylomicrobium alcaliphilum. Nature 2015; 517:104-7. [PMID: 25307054 PMCID: PMC4285568 DOI: 10.1038/nature13797] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2014] [Accepted: 08/26/2014] [Indexed: 01/04/2023]
Abstract
Sterols are essential biological molecules in the majority of life forms. Sterol reductases including Δ(14)-sterol reductase (C14SR, also known as TM7SF2), 7-dehydrocholesterol reductase (DHCR7) and 24-dehydrocholesterol reductase (DHCR24) reduce specific carbon-carbon double bonds of the sterol moiety using a reducing cofactor during sterol biosynthesis. Lamin B receptor (LBR), an integral inner nuclear membrane protein, also contains a functional C14SR domain. Here we report the crystal structure of a Δ(14)-sterol reductase (MaSR1) from the methanotrophic bacterium Methylomicrobium alcaliphilum 20Z (a homologue of human C14SR, LBR and DHCR7) with the cofactor NADPH. The enzyme contains ten transmembrane segments (TM1-10). Its catalytic domain comprises the carboxy-terminal half (containing TM6-10) and envelops two interconnected pockets, one of which faces the cytoplasm and houses NADPH, while the other one is accessible from the lipid bilayer. Comparison with a soluble steroid 5β-reductase structure suggests that the reducing end of NADPH meets the sterol substrate at the juncture of the two pockets. A sterol reductase activity assay proves that MaSR1 can reduce the double bond of a cholesterol biosynthetic intermediate, demonstrating functional conservation to human C14SR. Therefore, our structure as a prototype of integral membrane sterol reductases provides molecular insight into mutations in DHCR7 and LBR for inborn human diseases.
Collapse
Affiliation(s)
- Xiaochun Li
- Laboratory of Cell Biology, Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA
| | - Rita Roberti
- Department of Experimental Medicine, University of Perugia, 06132 Perugia, Italy
| | - Günter Blobel
- Laboratory of Cell Biology, Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA
| |
Collapse
|
9
|
Bellezza I, Roberti R, Gatticchi L, Del Sordo R, Rambotti MG, Marchetti MC, Sidoni A, Minelli A. A novel role for Tm7sf2 gene in regulating TNFα expression. PLoS One 2013; 8:e68017. [PMID: 23935851 PMCID: PMC3720723 DOI: 10.1371/journal.pone.0068017] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Accepted: 05/24/2013] [Indexed: 12/11/2022] Open
Abstract
We have explored the role of Tm7sf2 gene, which codifies for 3β-hydroxysterol Δ14-reductase, an endoplasmic reticulum resident protein, in the sensitivity to endoplasmic reticulum stress and in the resulting inflammatory response. We used mouse embryonic fibroblasts, derived from Tm7sf2+/+ and Tm7sf2−/− mice, to determine the in vitro effects of thapsigargin on NF-κB activation. Our results show that the Tm7sf2 gene controls the launch of the unfolded protein response and presides an anti-inflammatory loop thus its absence correlates with NF-κB activation and TNFα up-regulation. Our data also show that Tm7sf2 gene regulates liver X receptor activation and its absence inhibits LXR signalling. By expressing the hTm7sf2 gene in KO MEFs and observing a reduced NF-κB activation, we have confirmed that Tm7sf2 gene is linked to NF-κB activation. Finally we used genetically modified mice in an in vivo model of ER stress and of inflammation. Our results show a significant increase in renal TNFα expression after tunicamycin exposure and in the oedematogenic response in Tm7sf2−/− mice. In conclusion, we have shown that the Tm7sf2 gene, to date involved only in cholesterol biosynthesis, also controls an anti-inflammatory loop thereby confirming the existence of cross talk between metabolic pathways and inflammatory response.
Collapse
Affiliation(s)
- Ilaria Bellezza
- Dipartimento di Medicina Sperimentale e Scienze Biochimiche, Sezione di Biochimica Cellulare, Università di Perugia, Perugia, Italia.
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Zuleger N, Boyle S, Kelly DA, de las Heras JI, Lazou V, Korfali N, Batrakou DG, Randles KN, Morris GE, Harrison DJ, Bickmore WA, Schirmer EC. Specific nuclear envelope transmembrane proteins can promote the location of chromosomes to and from the nuclear periphery. Genome Biol 2013; 14:R14. [PMID: 23414781 PMCID: PMC4053941 DOI: 10.1186/gb-2013-14-2-r14] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Accepted: 02/15/2013] [Indexed: 01/04/2023] Open
Abstract
Background Different cell types have distinctive patterns of chromosome positioning in the nucleus. Although ectopic affinity-tethering of specific loci can be used to relocate chromosomes to the nuclear periphery, endogenous nuclear envelope proteins that control such a mechanism in mammalian cells have yet to be widely identified. Results To search for such proteins, 23 nuclear envelope transmembrane proteins were screened for their ability to promote peripheral localization of human chromosomes in HT1080 fibroblasts. Five of these proteins had strong effects on chromosome 5, but individual proteins affected different subsets of chromosomes. The repositioning effects were reversible and the proteins with effects all exhibited highly tissue-restricted patterns of expression. Depletion of two nuclear envelope transmembrane proteins that were preferentially expressed in liver each reduced the normal peripheral positioning of chromosome 5 in liver cells. Conclusions The discovery of nuclear envelope transmembrane proteins that can modulate chromosome position and have restricted patterns of expression may enable dissection of the functional relevance of tissue-specific patterns of radial chromosome positioning.
Collapse
|
11
|
Subramanian G, Chaudhury P, Malu K, Fowler S, Manmode R, Gotur D, Zwerger M, Ryan D, Roberti R, Gaines P. Lamin B receptor regulates the growth and maturation of myeloid progenitors via its sterol reductase domain: implications for cholesterol biosynthesis in regulating myelopoiesis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2012; 188:85-102. [PMID: 22140257 PMCID: PMC3244548 DOI: 10.4049/jimmunol.1003804] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Lamin B receptor (LBR) is a bifunctional nuclear membrane protein with N-terminal lamin B and chromatin-binding domains plus a C-terminal sterol Δ(14) reductase domain. LBR expression increases during neutrophil differentiation, and deficient expression disrupts neutrophil nuclear lobulation characteristic of Pelger-Huët anomaly. Thus, LBR plays a critical role in regulating myeloid differentiation, but how the two functional domains of LBR support this role is currently unclear. We previously identified abnormal proliferation and deficient functional maturation of promyelocytes (erythroid, myeloid, and lymphoid [EML]-derived promyelocytes) derived from EML-ic/ic cells, a myeloid model of ichthyosis (ic) bone marrow that lacks Lbr expression. In this study, we provide new evidence that cholesterol biosynthesis is important to myeloid cell growth and is supported by the sterol reductase domain of Lbr. Cholesterol biosynthesis inhibitors caused growth inhibition of EML cells that increased in EML-derived promyelocytes, whereas cells lacking Lbr exhibited complete growth arrest at both stages. Lipid production increased during wild-type neutrophil maturation, but ic/ic cells exhibited deficient levels of lipid and cholesterol production. Ectopic expression of a full-length Lbr in EML-ic/ic cells rescued both nuclear lobulation and growth arrest in cholesterol starvation conditions. Lipid production also was rescued, and a deficient respiratory burst was corrected. Expression of just the C-terminal sterol reductase domain of Lbr in ic/ic cells also improved each of these phenotypes. Our data support the conclusion that the sterol Δ(14) reductase domain of LBR plays a critical role in cholesterol biosynthesis and that this process is essential to both myeloid cell growth and functional maturation.
Collapse
Affiliation(s)
- Gayathri Subramanian
- Department of Biological Sciences, University of Massachusetts Lowell, Lowell, MA, USA
| | - Pulkit Chaudhury
- Department of Biological Sciences, University of Massachusetts Lowell, Lowell, MA, USA
| | - Krishnakumar Malu
- Department of Biological Sciences, University of Massachusetts Lowell, Lowell, MA, USA
| | - Samantha Fowler
- Department of Biological Sciences, University of Massachusetts Lowell, Lowell, MA, USA
| | - Rahul Manmode
- Department of Chemistry, University of Massachusetts Lowell, Lowell, MA, USA
| | - Deepali Gotur
- Department of Biological Sciences, University of Massachusetts Lowell, Lowell, MA, USA
| | - Monika Zwerger
- Department of Molecular Genetics, German Cancer Research Center, 69120 Heidelberg, Germany
| | - David Ryan
- Department of Chemistry, University of Massachusetts Lowell, Lowell, MA, USA
| | - Rita Roberti
- Department of Internal Medicine, Laboratory of Biochemistry, University of Perugia, via del Giochetto, 06122 Perugia, Italy
| | - Peter Gaines
- Department of Biological Sciences, University of Massachusetts Lowell, Lowell, MA, USA
| |
Collapse
|
12
|
Porter FD, Herman GE. Malformation syndromes caused by disorders of cholesterol synthesis. J Lipid Res 2010; 52:6-34. [PMID: 20929975 DOI: 10.1194/jlr.r009548] [Citation(s) in RCA: 321] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Cholesterol homeostasis is critical for normal growth and development. In addition to being a major membrane lipid, cholesterol has multiple biological functions. These roles include being a precursor molecule for the synthesis of steroid hormones, neuroactive steroids, oxysterols, and bile acids. Cholesterol is also essential for the proper maturation and signaling of hedgehog proteins, and thus cholesterol is critical for embryonic development. After birth, most tissues can obtain cholesterol from either endogenous synthesis or exogenous dietary sources, but prior to birth, the human fetal tissues are dependent on endogenous synthesis. Due to the blood-brain barrier, brain tissue cannot utilize dietary or peripherally produced cholesterol. Generally, inborn errors of cholesterol synthesis lead to both a deficiency of cholesterol and increased levels of potentially bioactive or toxic precursor sterols. Over the past couple of decades, a number of human malformation syndromes have been shown to be due to inborn errors of cholesterol synthesis. Herein, we will review clinical and basic science aspects of Smith-Lemli-Opitz syndrome, desmosterolosis, lathosterolosis, HEM dysplasia, X-linked dominant chondrodysplasia punctata, Congenital Hemidysplasia with Ichthyosiform erythroderma and Limb Defects Syndrome, sterol-C-4 methyloxidase-like deficiency, and Antley-Bixler syndrome.
Collapse
Affiliation(s)
- Forbes D Porter
- Program in Developmental Genetics and Endocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892, USA.
| | | |
Collapse
|
13
|
Hata M, Ishii Y, Watanabe E, Uoto K, Kobayashi S, Yoshida KI, Otani T, Ando A. Inhibition of ergosterol synthesis by novel antifungal compounds targeting C-14 reductase. Med Mycol 2010; 48:613-21. [PMID: 20392153 DOI: 10.3109/13693780903390208] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The limited number of clinically available antifungal drugs for life-threatening fungal infections has produced an increased demand for new agents. In the course of our screening for novel antifungals, we identified aminopiperidine derivatives which exhibit antifungal activities against the major pathogenic yeasts. Thin layer chromatography (TLC) analysis of the extracted non-saponifiable lipids from Candida albicans showed that these compounds inhibited the ergosterol production in the late step of the synthesis pathway. The results of an LC/Q-Tof MS analysis showed that abnormal sterols including predicted ignosterol, which is known to be accumulated in C. albicans ERG24 deleted mutant, were accumulated in C. albicans treated with one of these derivatives (Compound 1b). Furthermore, the partial disruption of the cell membrane of C. albicans treated with compound 1b was observed by electron microscopy analysis, suggesting its inhibition of ergosterol synthesis. Additionally, a genetic approach demonstrated that ERG24 gene would be responsible for the resistance of Saccharomyces cerevisiae against Compound 1b, strongly indicating that the enzyme targeted by Compound 1b is Erg24p. From all these data, we concluded that these aminopiperidine derivatives are novel antifungal compounds inhibiting C-14 reduction in the ergosterol synthesis pathway.
Collapse
Affiliation(s)
- Masato Hata
- Kasai R&D Center, Daiichi Sankyo Co., Ltd, Edogawa-ku, Tokyo, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Zwerger M, Kolb T, Richter K, Karakesisoglou I, Herrmann H. Induction of a massive endoplasmic reticulum and perinuclear space expansion by expression of lamin B receptor mutants and the related sterol reductases TM7SF2 and DHCR7. Mol Biol Cell 2010; 21:354-68. [PMID: 19940018 PMCID: PMC2808238 DOI: 10.1091/mbc.e09-08-0739] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2009] [Revised: 11/13/2009] [Accepted: 11/17/2009] [Indexed: 11/11/2022] Open
Abstract
Lamin B receptor (LBR) is an inner nuclear membrane protein involved in tethering the nuclear lamina and the underlying chromatin to the nuclear envelope. In addition, LBR exhibits sterol reductase activity. Mutations in the LBR gene cause two different human diseases: Pelger-Huët anomaly and Greenberg skeletal dysplasia, a severe chrondrodystrophy causing embryonic death. Our study aimed at investigating the effect of five LBR disease mutants on human cultured cells. Three of the tested LBR mutants caused a massive compaction of chromatin coincidental with the formation of a large nucleus-associated vacuole (NAV) in several human cultured cell lines. Live cell imaging and electron microscopy revealed that this structure was generated by the separation of the inner and outer nuclear membrane. During NAV formation, nuclear pore complexes and components of the linker of nucleoskeleton and cytoskeleton complex were lost in areas of membrane separation. Concomitantly, a large number of smaller vacuoles formed throughout the cytoplasm. Notably, forced expression of the two structurally related sterol reductases transmembrane 7 superfamily member 2 and 7-dehydrocholesterol reductase caused, even in their wild-type form, a comparable phenotype in susceptible cell lines. Hence, LBR mutant variants and sterol reductases can severely interfere with the regular organization of the nuclear envelope and the endoplasmic reticulum.
Collapse
Affiliation(s)
- Monika Zwerger
- *Department of Molecular Genetics, German Cancer Research Center, 69120 Heidelberg, Germany; and
| | - Thorsten Kolb
- *Department of Molecular Genetics, German Cancer Research Center, 69120 Heidelberg, Germany; and
| | - Karsten Richter
- *Department of Molecular Genetics, German Cancer Research Center, 69120 Heidelberg, Germany; and
| | - Iakowos Karakesisoglou
- School of Biological and Biomedical Sciences, University of Durham, Durham DH1 3LE, United Kingdom
| | - Harald Herrmann
- *Department of Molecular Genetics, German Cancer Research Center, 69120 Heidelberg, Germany; and
| |
Collapse
|
15
|
Olins AL, Rhodes G, Welch DBM, Zwerger M, Olins DE. Lamin B receptor: multi-tasking at the nuclear envelope. Nucleus 2010; 1:53-70. [PMID: 21327105 PMCID: PMC3035127 DOI: 10.4161/nucl.1.1.10515] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Revised: 11/01/2009] [Accepted: 11/04/2009] [Indexed: 12/11/2022] Open
Abstract
Lamin B receptor (LBR) is an integral membrane protein of the interphase nuclear envelope (NE). The N-terminal end resides in the nucleoplasm, binding to lamin B and heterochromatin, with the interactions disrupted during mitosis. The C-terminal end resides within the inner nuclear membrane, retreating with the ER away from condensing chromosomes during mitotic NE breakdown. Some of these properties are interpretable in terms of our current structural knowledge of LBR, but many of the structural features remain unknown. LBR apparently has an evolutionary history which brought together at least two ancient conserved structural domains (i.e., Tudor and sterol reductase). This convergence may have occurred with the emergence of the chordates and echinoderms. It is not clear what survival values have maintained LBR structure during evolution. But it seems likely that roles in post-mitotic nuclear reformation, interphase NE growth and compartmentalization of nuclear architecture might have provided some evolutionary advantage to preservation of the LBR gene.
Collapse
Affiliation(s)
- Ada L Olins
- Department of Biology, Bowdoin College, Brunswick, ME, USA
| | | | | | | | | |
Collapse
|
16
|
Bennati AM, Schiavoni G, Franken S, Piobbico D, Della Fazia MA, Caruso D, De Fabiani E, Benedetti L, Cusella De Angelis MG, Gieselmann V, Servillo G, Beccari T, Roberti R. Disruption of the gene encoding 3beta-hydroxysterol Delta-reductase (Tm7sf2) in mice does not impair cholesterol biosynthesis. FEBS J 2008; 275:5034-47. [PMID: 18785926 DOI: 10.1111/j.1742-4658.2008.06637.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Tm7sf2 gene encodes 3beta-hydroxysterol Delta(14)-reductase (C14SR, DHCR14), an endoplasmic reticulum enzyme acting on Delta(14)-unsaturated sterol intermediates during the conversion of lanosterol to cholesterol. The C-terminal domain of lamin B receptor, a protein of the inner nuclear membrane mainly involved in heterochromatin organization, also possesses sterol Delta(14)-reductase activity. The subcellular localization suggests a primary role of C14SR in cholesterol biosynthesis. To investigate the role of C14SR and lamin B receptor as 3beta-hydroxysterol Delta(14)-reductases, Tm7sf2 knockout mice were generated and their biochemical characterization was performed. No Tm7sf2 mRNA was detected in the liver of knockout mice. Neither C14SR protein nor 3beta-hydroxysterol Delta(14)-reductase activity were detectable in liver microsomes of Tm7sf2((-/-)) mice, confirming the effectiveness of gene inactivation. C14SR protein and its enzymatic activity were about half of control levels in the liver of heterozygous mice. Normal cholesterol levels in liver membranes and in plasma indicated that, despite the lack of C14SR, Tm7sf2((-/-)) mice are able to perform cholesterol biosynthesis. Lamin B receptor 3beta-hydroxysterol Delta(14)-reductase activity determined in liver nuclei showed comparable values in wild-type and knockout mice. These results suggest that lamin B receptor, although residing in nuclear membranes, may contribute to cholesterol biosynthesis in Tm7sf2((-/-)) mice. Affymetrix microarray analysis of gene expression revealed that several genes involved in cell-cycle progression are downregulated in the liver of Tm7sf2((-/-)) mice, whereas genes involved in xenobiotic metabolism are upregulated.
Collapse
Affiliation(s)
- Anna M Bennati
- Department of Internal Medicine, University of Perugia, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Wassif CA, Brownson KE, Sterner AL, Forlino A, Zerfas PM, Wilson WK, Starost MF, Porter FD. HEM dysplasia and ichthyosis are likely laminopathies and not due to 3beta-hydroxysterol Delta14-reductase deficiency. Hum Mol Genet 2007; 16:1176-87. [PMID: 17403717 DOI: 10.1093/hmg/ddm065] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Mutations of the lamin B receptor (LBR) have been shown to cause HEM dysplasia in humans and ichthyosis in mice. LBR is a bifunctional protein with both a lamin B binding and a sterol Delta(14)-reductase domain. It previously has been proposed that LBR is the primary sterol Delta(14)-reductase and that HEM dysplasia and ichthyosis are inborn errors of cholesterol synthesis. However, DHCR14 also encodes a sterol Delta(14)-reductase and could provide enzymatic redundancy with respect to cholesterol synthesis. To test the hypothesis that LBR and DHCR14 both function as sterol Delta(14)-reductases, we obtained ichthyosis mice (Lbr(-/-)) and disrupted Dhcr14. Heterozygous Lbr and Dhcr14 mice were intercrossed to test for a digenic phenotype. Lbr(-/-), Dhcr14(Delta4-7/Delta4-7) and Lbr(+/-):Dhcr14(Delta4-7/Delta4-7) mutant mice have distinct physical and biochemical phenotypes. Dhcr14(Delta4-7/Delta4-7) mice are essentially normal, whereas Lbr(+/-):Dhcr14(Delta4-7/Delta4-7) mice are growth retarded and neurologically abnormal. Neither of these mutants resembles the ichthyosis mouse and biochemically, no sterol abnormalities were detected in either liver or kidney tissue. In contrast, relatively small transient elevations of Delta(14)-sterols were observed in Lbr(-/-) and Dhcr14(Delta4-7/Delta4-7) brain tissue, and marked elevations were seen in Lbr(+/-):Dhcr14(Delta4-7/Delta4-7) brain. Pathological evaluation demonstrated vacuolation and swelling of the myelin sheaths in the spinal cord of Lbr(+/-):Dhcr14(Delta4-7/Delta4-7) mice consistent with a demyelinating process. This was not observed in either Lbr(-/-) or Dhcr14 (Delta4-7/Delta4-7) mice. Our data support the conclusions that LBR and DHCR14 provide substantial enzymatic redundancy with respect to cholesterol synthesis and that HEM dysplasia and ichthyosis are laminopathies rather than inborn errors of cholesterol synthesis.
Collapse
MESH Headings
- Abnormalities, Multiple/genetics
- Abnormalities, Multiple/metabolism
- Abnormalities, Multiple/pathology
- Animals
- Bone Diseases, Developmental/genetics
- Bone Diseases, Developmental/metabolism
- Bone Diseases, Developmental/pathology
- Brain/metabolism
- Calcinosis/genetics
- Calcinosis/metabolism
- Calcinosis/pathology
- Cholesterol/biosynthesis
- Disease Models, Animal
- Female
- Humans
- Hydrops Fetalis/genetics
- Hydrops Fetalis/metabolism
- Ichthyosis/genetics
- Ichthyosis/metabolism
- Ichthyosis/pathology
- Lipid Metabolism, Inborn Errors/genetics
- Lipid Metabolism, Inborn Errors/metabolism
- Lipid Metabolism, Inborn Errors/pathology
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Mutant Strains
- Mutation
- Oxidoreductases/deficiency
- Oxidoreductases/genetics
- Phenotype
- Receptors, Cytoplasmic and Nuclear/genetics
- Receptors, Cytoplasmic and Nuclear/metabolism
- Sterols/metabolism
- Syndrome
- Lamin B Receptor
Collapse
|
18
|
Sumathi JC, Raghukumar S, Kasbekar DP, Raghukumar C. Molecular Evidence of Fungal Signatures in the Marine Protist Corallochytrium limacisporum and its Implications in the Evolution of Animals and Fungi. Protist 2006; 157:363-76. [PMID: 16899404 DOI: 10.1016/j.protis.2006.05.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2005] [Accepted: 05/11/2006] [Indexed: 11/23/2022]
Abstract
Fungi, animals, and single-celled organisms belonging to the choanozoans together constitute the supergroup Opisthokonta. The latter are considered crucial in understanding the evolutionary origin of animals and fungi. The choanozoan Corallochytrium limacisporum is an enigmatic marine protist of considerable interest in opisthokontan evolution. Several isolates of the organism were obtained from a coral reef lagoon in the Lakshadweep group of islands of the Arabian Sea. The capability of these cultures to grow on media containing inorganic nitrogen sources prompted us to examine the possible presence of fungal signatures, namely the enzyme alpha-aminoadipate reductase (alpha-AAR) involved in the alpha-aminoadipate (AAA) pathway for synthesizing lysine and ergosterol, in one of the isolates. These features, as well as the sterol C-14 reductase gene involved in the sterol pathway of animals and fungi, were detected in the organism. Phylogenetic trees based on the alpha-AAR gene suggested that Corallochytrium limacisporum is a sister clade to fungi, while those based on the C-14 reductase gene did not adequately resolve whether the organism was more closely related to fungi or animals. While many studies indicate that Corallochytrium is a sister clade to animals, we suggest that further studies are required to examine whether this protist is in fact more closely related to fungi rather than to animals.
Collapse
|
19
|
Bennati AM, Castelli M, Della Fazia MA, Beccari T, Caruso D, Servillo G, Roberti R. Sterol dependent regulation of human TM7SF2 gene expression: role of the encoded 3beta-hydroxysterol Delta14-reductase in human cholesterol biosynthesis. BIOCHIMICA ET BIOPHYSICA ACTA 2006; 1761:677-85. [PMID: 16784888 DOI: 10.1016/j.bbalip.2006.05.004] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2005] [Revised: 05/04/2006] [Accepted: 05/04/2006] [Indexed: 11/26/2022]
Abstract
3Beta-hydroxysterol Delta(14)-reductase operates during the conversion of lanosterol to cholesterol in mammalian cells. Besides the endoplasmic reticulum 3beta-hydroxysterol Delta(14)-reductase (C14SR) encoded by TM7SF2 gene, the lamin B receptor (LBR) of the inner nuclear membrane possesses 3beta-hydroxysterol Delta(14)-reductase activity, based on its ability to complement C14SR-defective yeast strains. LBR was indicated as the primary 3beta-hydroxysterol Delta(14)-reductase in human cholesterol biosynthesis, since mutations in LBR gene were found in Greenberg skeletal dysplasia, characterized by accumulation of Delta(14)-unsaturated sterols. This study addresses the issue of C14SR and LBR role in cholesterol biosynthesis. Both human C14SR and LBR expressed in COS-1 cells exhibit 3beta-hydroxysterol Delta(14)-reductase activity in vitro. TM7SF2 mRNA and C14SR protein expression in HepG2 cells grown in delipidated serum (LPDS) plus lovastatin (sterol starvation) were 4- and 8-fold higher, respectively, than in LPDS plus 25-hydroxycholesterol (sterol feeding), resulting in 4-fold higher 3beta-hydroxysterol Delta(14)-reductase activity. No variations in LBR mRNA and protein levels were detected in the same conditions. The induction of TM7SF2 gene expression is turned-on by promoter activation in response to low cell sterol levels and is mediated by SREBP-2. The results suggest a primary role of C14SR in human cholesterol biosynthesis, whereas LBR role in the pathway remains unclear.
Collapse
Affiliation(s)
- Anna Maria Bennati
- Department of Internal Medicine, Laboratory of Biochemistry, University of Perugia, Via del Giochetto, 06122 Perugia, Italy
| | | | | | | | | | | | | |
Collapse
|
20
|
Kasbekar DP. Benign anomaly to malign dysplasia: variable expression of lamin B receptor mutations in humans. J Biosci 2004; 29:367-8. [PMID: 15625388 DOI: 10.1007/bf02712103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
21
|
Moebius FF, Fitzky BU, Wietzorrek G, Haidekker A, Eder A, Glossmann H. Cloning of an emopamil-binding protein (EBP)-like protein that lacks sterol delta8-delta7 isomerase activity. Biochem J 2003; 374:229-37. [PMID: 12760743 PMCID: PMC1223579 DOI: 10.1042/bj20030465] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2003] [Revised: 04/30/2003] [Accepted: 05/21/2003] [Indexed: 11/17/2022]
Abstract
EBP (emopamil-binding protein) is a high-affinity binding protein for [3H]emopamil and belongs to the family of so-called sigma receptors. Mutations that disrupt EBP's 3beta-hydroxysteroid sterol delta8-delta7 isomerase activity (EC 5.3.3.5) impair cholesterol biosynthesis and cause X-chromosomal dominant chondrodysplasia punctata. We identified a human cDNA for a novel EBPL (EBP-like protein) with a calculated mass of 23.2 kDa. Amino acid sequence alignments and phylogenetic analysis revealed that EBPL is distantly related to EBP (31% identity and 52% similarity) and found in animals but not in plants. EBPL is encoded by four exons on human chromosome 13q14.2 covering 30.7 kb, and a partially processed EBPL pseudogene was found on 16q21. The EBPL mRNA was expressed ubiquitously and most abundant in liver, lung and kidney. Upon heterologous expression in yeast EBPL had no detectable 3beta-hydroxysteroid sterol delta8-delta7 isomerase and sigma-ligand-binding activity. Nine out of ten amino acid residues essential for catalytic activity of EBP were conserved in EBPL. Replacement of the only differing residue (EBP-Y111W) reduced catalytic activity of EBP. Transfer of the divergent residue from EBP to EBPL (EBPL-W91Y) and chimaerization of EBP and EBPL at various positions failed to restore catalytic activity of EBPL. Chemical cross-linking induced homodimerization of EBPL and EBP. Whereas mevinolin increased the mRNA for EBP and DHCR7 (delta7-sterol reductase) in HepG2 cells, it had no effect on mRNAs for EBPL and sigma1 receptor, indicating that EBP and EBPL expression are not co-ordinated. We propose that EBPL has a yet-to-be-discovered function other than cholesterol biosynthesis.
Collapse
Affiliation(s)
- Fabian F Moebius
- Institut für Biochemische Pharmakologie, Peter-Mayr-Strasse 1, A-6020 Innsbruck, Austria.
| | | | | | | | | | | |
Collapse
|
22
|
Waterham HR, Koster J, Mooyer P, Noort Gv GV, Kelley RI, Wilcox WR, Wanders RJA, Hennekam RCM, Oosterwijk JC. Autosomal recessive HEM/Greenberg skeletal dysplasia is caused by 3 beta-hydroxysterol delta 14-reductase deficiency due to mutations in the lamin B receptor gene. Am J Hum Genet 2003; 72:1013-7. [PMID: 12618959 PMCID: PMC1180330 DOI: 10.1086/373938] [Citation(s) in RCA: 136] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2002] [Accepted: 12/26/2002] [Indexed: 11/03/2022] Open
Abstract
Hydrops-ectopic calcification-"moth-eaten" (HEM) or Greenberg skeletal dysplasia is an autosomal recessive chondrodystrophy with a lethal course, characterized by fetal hydrops, short limbs, and abnormal chondro-osseous calcification. We found elevated levels of cholesta-8,14-dien-3beta-ol in cultured skin fibroblasts of an 18-wk-old fetus with HEM, compatible with a deficiency of the cholesterol biosynthetic enzyme 3beta-hydroxysterol delta(14)-reductase. Sequence analysis of two candidate genes encoding putative human sterol delta(14)-reductases (TM7SF2 and LBR) identified a homozygous 1599-1605TCTTCTA-->CTAGAAG substitution in exon 13 of the LBR gene encoding the lamin B receptor, which results in a truncated protein. Functional complementation of the HEM cells by transfection with control LBR cDNA confirmed that LBR encoded the defective sterol delta(14)-reductase. Mutations in LBR recently have been reported also to cause Pelger-Huët anomaly, an autosomal dominant trait characterized by hypolobulated nuclei and abnormal chromatin structure in granulocytes. The fact that the healthy mother of the fetus showed hypolobulated nuclei in 60% of her granulocytes confirms that classic Pelger-Huët anomaly represents the heterozygous state of 3beta-hydroxysterol delta(14)-reductase deficiency.
Collapse
Affiliation(s)
- Hans R Waterham
- Department of Pediatrics, Emma Children's Hospital, Academic Medical Center, Amsterdam, The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
For many decades, cholesterol has been considered an important structural component of cellular membranes and myelin, and a precursor of steroid hormones and bile acids. Moreover, the recognition that high cholesterol levels (hypercholesterolemia) are a major risk factor for the development of heart disease and atherosclerosis has gained enormous attention not only in medicine, medical and pharmacological research, but also from the general public. The discovery of a crucial role of cholesterol in human embryogenesis and the recent identification of a number of inherited disorders of cholesterol biosynthesis also show that low cholesterol levels (hypocholesterolemia) may have severe consequences for human health and development. In the past few years, seven distinct inherited disorders have been linked to different enzyme defects in the cholesterol biosynthetic pathway by the finding of abnormally increased levels of intermediate metabolites in patients followed by the demonstration of disease-causing mutations in genes encoding the implicated enzymes. Patients afflicted with these disorders are characterized by multiple morphogenic and congenital anomalies including internal organ, skeletal and/or skin abnormalities.
Collapse
Affiliation(s)
- H R Waterham
- Laboratory Genetic Metabolic Diseases (F0-224), Department of Paediatrics/Emma Children's Hospital, Academic Medical Centre, University of Amsterdam, Amsterdam, the Netherlands.
| |
Collapse
|