1
|
Allard JL, Aguirre M, Gupta R, Chua SMH, Shields KA, Lua LHL. Effective parallel evaluation of molecular design, expression and bioactivity of novel recombinant butyrylcholinesterase medical countermeasures. Chem Biol Interact 2024; 403:111219. [PMID: 39222902 DOI: 10.1016/j.cbi.2024.111219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/12/2024] [Accepted: 08/30/2024] [Indexed: 09/04/2024]
Abstract
Current medical countermeasures (MCMs) for nerve agent poisoning have limited efficacy, and can cause serious adverse effects, prompting the requirement for new broad-spectrum therapeutics. Human plasma-derived butyrylcholinseterase (huBChE) is a promising novel bioscavenger MCM which has shown potential in animal studies, however, is economically prohibitive to manufacture at scale. This study addresses current challenges for the economical production of a bioactive and long-acting recombinant huBChE (rBChE) in mammalian cells by being the first to directly compare novel rBChE design strategies. These include co-expression of a proline rich attachment domain (PRAD) and fusion of BChE with a protein partner. Additionally, a pre-purification screening method developed in this study enables parallel comparison of the expression efficiency, activity and broad-spectrum binding to nerve agents for ten novel rBChE molecular designs. All designed rBChE demonstrated functionality to act as broad-spectrum MCMs to G, V and A series nerve agents. Expression using the ExpiCHO™ Max protocol provided greatest expression levels and activity for all constructs, with most rBChE expressing poorly in Expi293™. Fc- or hSA-fused rBChE significantly outperformed constructs designed to mimic huBChE, including PRAD-BChE, and proved an effective strategy to significantly improve enzyme activity and expression. Choice of protein partner, directionality and the addition of a linker also impacted fusion rBChE activity and expression. Overall, hSA fused rBChE provided greatest expression yield and activity, with BChE-hSA the best performing construct. The purified and characterised BChE-hSA demonstrated similar functionality to huBChE to be inhibited by GD, VX and A-234, supporting the findings of the pre-screening study and validating its capacity to assess and streamline the selection process for rBChE constructs in a cost-effective manner. Collectively, these outcomes contribute to risk mitigation in early-stage development, providing a systematic method to compare rBChE designs and a focus for future development.
Collapse
Affiliation(s)
- Joanne L Allard
- Chemical, Biological, Radiological and Nuclear Defence Branch, Defence Science and Technology Group (DSTG), Victoria, 3027, Australia; Protein Expression Facility, The University of Queensland, Brisbane, 4072, Australia.
| | - Miguel Aguirre
- Protein Expression Facility, The University of Queensland, Brisbane, 4072, Australia
| | - Ruchi Gupta
- Chemical, Biological, Radiological and Nuclear Defence Branch, Defence Science and Technology Group (DSTG), Victoria, 3027, Australia
| | - Sheena M H Chua
- Protein Expression Facility, The University of Queensland, Brisbane, 4072, Australia
| | - Katherine A Shields
- Chemical, Biological, Radiological and Nuclear Defence Branch, Defence Science and Technology Group (DSTG), Victoria, 3027, Australia
| | - Linda H L Lua
- Protein Expression Facility, The University of Queensland, Brisbane, 4072, Australia
| |
Collapse
|
2
|
Pidany F, Kroustkova J, Al Mamun A, Suchankova D, Brazzolotto X, Nachon F, Chantegreil F, Dolezal R, Pulkrabkova L, Muckova L, Hrabinova M, Finger V, Kufa M, Soukup O, Jun D, Jenco J, Kunes J, Novakova L, Korabecny J, Cahlikova L. Highly selective butyrylcholinesterase inhibitors related to Amaryllidaceae alkaloids - Design, synthesis, and biological evaluation. Eur J Med Chem 2023; 252:115301. [PMID: 36996715 DOI: 10.1016/j.ejmech.2023.115301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/17/2023] [Accepted: 03/17/2023] [Indexed: 03/29/2023]
Abstract
Butyrylcholinesterase (BChE) is one of the most frequently implicated enzymes in the advanced stage of Alzheimer's disease (AD). As part of our endeavors to develop new drug candidates for AD, we have focused on natural template structures, namely the Amaryllidaceae alkaloids carltonine A and B endowed with high BChE selectivity. Herein, we report the design, synthesis, and in vitro evaluation of 57 novel highly selective human BChE (hBChE) inhibitors. Most synthesized compounds showed hBChE inhibition potency ranging from micromolar to low nanomolar scale. Compounds that revealed BChE inhibition below 100 nM were selected for detailed biological investigation. The CNS-targeted profile of the presented compounds was confirmed theoretically by calculating the BBB score algorithm, these data were corroborated by determining the permeability in vitro using PAMPA-assay for the most active derivatives. The study highlighted compounds 87 (hBChE IC50 = 3.8 ± 0.2 nM) and 88 (hBChE IC50 = 5.7 ± 1.5 nM) as the top-ranked BChE inhibitors. Compounds revealed negligible cytotoxicity for the human neuroblastoma (SH-SY5Y) and hepatocellular carcinoma (HepG2) cell lines compared to BChE inhibitory potential. A crystallographic study was performed to inspect the binding mode of compound 87, revealing essential interactions between 87 and hBChE active site. In addition, multidimensional QSAR analyses were applied to determine the relationship between chemical structures and biological activity in a dataset of designed agents. Compound 87 is a promising lead compound with potential implications for treating the late stages of AD.
Collapse
Affiliation(s)
- Filip Pidany
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmacy in Hradec Kralove, Charles University, Akademika Heyrovskeho 1203, 500 05, Hradec Kralove, Czech Republic
| | - Jana Kroustkova
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmacy in Hradec Kralove, Charles University, Akademika Heyrovskeho 1203, 500 05, Hradec Kralove, Czech Republic
| | - Abdullah Al Mamun
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmacy in Hradec Kralove, Charles University, Akademika Heyrovskeho 1203, 500 05, Hradec Kralove, Czech Republic
| | - Daniela Suchankova
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmacy in Hradec Kralove, Charles University, Akademika Heyrovskeho 1203, 500 05, Hradec Kralove, Czech Republic
| | - Xavier Brazzolotto
- Institut de Recherche Biomédicale des Armées, Département de Toxicologie et Risques Chimiques, 1 Place Général Valérie André, 91220, Brétigny-sur-Orge, France
| | - Florian Nachon
- Institut de Recherche Biomédicale des Armées, Département de Toxicologie et Risques Chimiques, 1 Place Général Valérie André, 91220, Brétigny-sur-Orge, France
| | - Fabien Chantegreil
- Institut de Recherche Biomédicale des Armées, Département de Toxicologie et Risques Chimiques, 1 Place Général Valérie André, 91220, Brétigny-sur-Orge, France
| | - Rafael Dolezal
- Biomedical Research Center, University Hospital Hradec Kralove, Sokolska 581, 500 05, Hradec Kralove, Czech Republic
| | - Lenka Pulkrabkova
- Biomedical Research Center, University Hospital Hradec Kralove, Sokolska 581, 500 05, Hradec Kralove, Czech Republic; Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defence, Trebesska 1575, 500 01, Hradec Kralove, Czech Republic
| | - Lubica Muckova
- Biomedical Research Center, University Hospital Hradec Kralove, Sokolska 581, 500 05, Hradec Kralove, Czech Republic; Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defence, Trebesska 1575, 500 01, Hradec Kralove, Czech Republic
| | - Martina Hrabinova
- Biomedical Research Center, University Hospital Hradec Kralove, Sokolska 581, 500 05, Hradec Kralove, Czech Republic; Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defence, Trebesska 1575, 500 01, Hradec Kralove, Czech Republic
| | - Vladimir Finger
- Biomedical Research Center, University Hospital Hradec Kralove, Sokolska 581, 500 05, Hradec Kralove, Czech Republic; Department of Bioorganic and Organic Chemistry, Faculty of Pharmacy Pharmacy in Hradec Kralove, Charles University, Akademika Heyrovskeho 1203, 500 05, Hradec Kralove, Czech Republic
| | - Martin Kufa
- Biomedical Research Center, University Hospital Hradec Kralove, Sokolska 581, 500 05, Hradec Kralove, Czech Republic; Department of Bioorganic and Organic Chemistry, Faculty of Pharmacy Pharmacy in Hradec Kralove, Charles University, Akademika Heyrovskeho 1203, 500 05, Hradec Kralove, Czech Republic
| | - Ondrej Soukup
- Biomedical Research Center, University Hospital Hradec Kralove, Sokolska 581, 500 05, Hradec Kralove, Czech Republic; Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defence, Trebesska 1575, 500 01, Hradec Kralove, Czech Republic
| | - Daniel Jun
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defence, Trebesska 1575, 500 01, Hradec Kralove, Czech Republic
| | - Jaroslav Jenco
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmacy in Hradec Kralove, Charles University, Akademika Heyrovskeho 1203, 500 05, Hradec Kralove, Czech Republic
| | - Jiri Kunes
- Department of Bioorganic and Organic Chemistry, Faculty of Pharmacy Pharmacy in Hradec Kralove, Charles University, Akademika Heyrovskeho 1203, 500 05, Hradec Kralove, Czech Republic
| | - Lucie Novakova
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Kralove, Charles University, Akademika Heyrovskeho 1203, 500 05, Hradec Kralove, Czech Republic
| | - Jan Korabecny
- Biomedical Research Center, University Hospital Hradec Kralove, Sokolska 581, 500 05, Hradec Kralove, Czech Republic; Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defence, Trebesska 1575, 500 01, Hradec Kralove, Czech Republic.
| | - Lucie Cahlikova
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmacy in Hradec Kralove, Charles University, Akademika Heyrovskeho 1203, 500 05, Hradec Kralove, Czech Republic.
| |
Collapse
|
3
|
Jing L, Wei W, Meng B, Chantegreil F, Nachon F, Martínez A, Wu G, Zhao H, Song Y, Kang D, Brazzolotto X, Zhan P, Liu X. Rapid discovery and crystallography study of highly potent and selective butylcholinesterase inhibitors based on oxime-containing libraries and conformational restriction strategies. Bioorg Chem 2023; 134:106465. [PMID: 36933339 DOI: 10.1016/j.bioorg.2023.106465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 02/27/2023] [Accepted: 03/07/2023] [Indexed: 03/16/2023]
Abstract
Butyrylcholinesterase is regarded as a promising drug target in advanced Alzheimer's disease. In order to identify highly selective and potent BuChE inhibitors, a 53-membered compound library was constructed via the oxime-based tethering approach based on microscale synthesis. Although A2Q17 and A3Q12 exhibited higher BuChE selectivity versus acetylcholinesterase, the inhibitory activities were unsatisfactory and A3Q12 did not inhibit Aβ1-42 peptide self-induced aggregation. With A2Q17 and A3Q12 as leads, a novel series of tacrine derivatives with nitrogen-containing heterocycles were designed based on conformation restriction strategy. The results demonstrated that 39 (IC50 = 3.49 nM) and 43 (IC50 = 7.44 nM) yielded much improved hBuChE inhibitory activity compared to the lead A3Q12 (IC50 = 63 nM). Besides, the selectivity indexes (SI = AChE IC50 / BChE IC50) of 39 (SI = 33) and 43 (SI = 20) were also higher than A3Q12 (SI = 14). The results of the kinetic study showed that 39 and 43 exhibited a mixed-type inhibition against eqBuChE with respective Ki values of 1.715 nM and 0.781 nM. And 39 and 43 could inhibit Aβ1-42 peptide self-induced aggregation into fibril. X-ray crystallography structures of 39 or 43 complexes with BuChE revealed the molecular basis for their high potency. Thus, 39 and 43 are deserve for further study to develop potential drug candidates for the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Lanlan Jing
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012 Ji'nan, Shandong, PR China
| | - Wenxiu Wei
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012 Ji'nan, Shandong, PR China
| | - Bairu Meng
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012 Ji'nan, Shandong, PR China
| | - Fabien Chantegreil
- Département de Toxicologie et Risques Chimiques, Institut de Recherche Biomédicale des Armées, 1 Place du Général Valérie André, 91220, Brétigny-sur-Orge, France
| | - Florian Nachon
- Département de Toxicologie et Risques Chimiques, Institut de Recherche Biomédicale des Armées, 1 Place du Général Valérie André, 91220, Brétigny-sur-Orge, France
| | - Ana Martínez
- Centro de Investigaciones Biológicas Margarita Salas (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Gaochan Wu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012 Ji'nan, Shandong, PR China
| | - Huajun Zhao
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong 250012, PR China
| | - Yuning Song
- Department of Clinical Pharmacy, Qilu Hospital of Shandong University, Ji'nan, Shandong, PR China.
| | - Dongwei Kang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012 Ji'nan, Shandong, PR China.
| | - Xavier Brazzolotto
- Département de Toxicologie et Risques Chimiques, Institut de Recherche Biomédicale des Armées, 1 Place du Général Valérie André, 91220, Brétigny-sur-Orge, France.
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012 Ji'nan, Shandong, PR China.
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012 Ji'nan, Shandong, PR China.
| |
Collapse
|
4
|
Panek D, Pasieka A, Latacz G, Zaręba P, Szczęch M, Godyń J, Chantegreil F, Nachon F, Brazzolotto X, Skrzypczak-Wiercioch A, Walczak M, Smolik M, Sałat K, Höfner G, Wanner K, Więckowska A, Malawska B. Discovery of new, highly potent and selective inhibitors of BuChE - design, synthesis, in vitro and in vivo evaluation and crystallography studies. Eur J Med Chem 2023; 249:115135. [PMID: 36696766 DOI: 10.1016/j.ejmech.2023.115135] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/09/2023] [Accepted: 01/16/2023] [Indexed: 01/19/2023]
Abstract
The symptomatic and disease-modifying effects of butyrylcholinesterase (BuChE) inhibitors provide an encouraging premise for researching effective treatments for Alzheimer's disease. Here, we examined a series of compounds with a new chemical scaffold based on 3-(cyclohexylmethyl)amino-2-hydroxypropyl, and we identified a highly selective hBuChE inhibitor (29). Based on extensive in vitro and in vivo evaluations of the compound and its enantiomers, (R)-29 was identified as a promising candidate for further development. Compound (R)-29 is a potent hBuChE inhibitor (IC50 = 40 nM) with selectivity over AChE and relevant off-targets, including H1, M1, α1A and β1 receptors. The compound displays high metabolic stability on human liver microsomes (90% of the parent compound after 2 h of incubation), and its safety was confirmed through examining the cytotoxicity on the HepG2 cell line (LC50 = 2.85 μM) and hERG inhibition (less than 50% at 10 μM). While (rac)-29 lacked an effect in vivo and showed limited penetration to the CNS in pharmacokinetics studies, compound (R)-29 exhibited a procognitive effect at 15 mg/kg in the passive avoidance task in scopolamine-treated mice.
Collapse
Affiliation(s)
- Dawid Panek
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna St. 9, 30-688, Kraków, Poland.
| | - Anna Pasieka
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna St. 9, 30-688, Kraków, Poland
| | - Gniewomir Latacz
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna St. 9, 30-688, Kraków, Poland
| | - Paula Zaręba
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna St. 9, 30-688, Kraków, Poland
| | - Michał Szczęch
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna St. 9, 30-688, Kraków, Poland
| | - Justyna Godyń
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna St. 9, 30-688, Kraków, Poland
| | - Fabien Chantegreil
- Département de Toxicologie et Risques Chimiques, Institut de Recherche Biomédicale des Armées, 91223, Brétigny sur Orge, France
| | - Florian Nachon
- Département de Toxicologie et Risques Chimiques, Institut de Recherche Biomédicale des Armées, 91223, Brétigny sur Orge, France
| | - Xavier Brazzolotto
- Département de Toxicologie et Risques Chimiques, Institut de Recherche Biomédicale des Armées, 91223, Brétigny sur Orge, France
| | - Anna Skrzypczak-Wiercioch
- Department of Animal Anatomy and Preclinical Sciences, University Centre of Veterinary Medicine JU-UA, University of Agriculture in Krakow, Mickiewicza 24/28, 30-059, Kraków, Poland
| | - Maria Walczak
- Chair and Department of Toxicology, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna St. 9, 30-688, Krakow, Poland
| | - Magdalena Smolik
- Chair and Department of Toxicology, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna St. 9, 30-688, Krakow, Poland
| | - Kinga Sałat
- Department of Pharmacodynamics, Chair of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna St. 9, 30-688, Krakow, Poland
| | - Georg Höfner
- Department of Pharmacy - Center for Drug Research, Ludwig-Maximilians-Universität München, Butenandtstr, 5-13, 81377, Munich, Germany
| | - Klaus Wanner
- Department of Pharmacy - Center for Drug Research, Ludwig-Maximilians-Universität München, Butenandtstr, 5-13, 81377, Munich, Germany
| | - Anna Więckowska
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna St. 9, 30-688, Kraków, Poland
| | - Barbara Malawska
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna St. 9, 30-688, Kraków, Poland
| |
Collapse
|
5
|
Pseudo-irreversible butyrylcholinesterase inhibitors: Structure-activity relationships, computational and crystallographic study of the N-dialkyl O-arylcarbamate warhead. Eur J Med Chem 2023; 247:115048. [PMID: 36586299 DOI: 10.1016/j.ejmech.2022.115048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/21/2022] [Accepted: 12/21/2022] [Indexed: 12/25/2022]
Abstract
Alongside reversible butyrylcholinesterase inhibitors, a plethora of covalent butyrylcholinesterase inhibitors have been reported in the literature, typically pseudo-irreversible carbamates. For these latter, however, most cases lack full confirmation of their covalent mode of action. Additionally, the available reports regarding the structure-activity relationships of the O-arylcarbamate warhead are incomplete. Therefore, a follow-up on a series of pseudo-irreversible covalent carbamate human butyrylcholinesterase inhibitors and the structure-activity relationships of the N-dialkyl O-arylcarbamate warhead are presented in this study. The covalent mechanism of binding was tested by IC50 time-dependency profiles, and sequentially and increasingly confirmed by kinetic analysis, whole protein LC-MS, and crystallographic analysis. Computational studies provided valuable insights into steric constraints and identified problematic, bulky carbamate warheads that cannot reach and carbamoylate the catalytic Ser198. Quantum mechanical calculations provided further evidence that steric effects appear to be a key factor in determining the covalent binding behaviour of these carbamate cholinesterase inhibitors and their duration of action. Additionally, the introduction of a clickable terminal alkyne moiety into one of the carbamate N-substituents and in situ derivatisation with azide-containing fluorophore enabled fluorescent labelling of plasma human butyrylcholinesterase. This proof-of-concept study highlights the potential of this novel approach and for these compounds to be further developed as clickable molecular probes for investigating tissue localisation and activity of cholinesterases.
Collapse
|
6
|
8- Hydroxyquinolylnitrones as multifunctional ligands for the therapy of neurodegenerative diseases. Acta Pharm Sin B 2023; 13:2152-2175. [DOI: 10.1016/j.apsb.2023.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 12/28/2022] [Accepted: 01/05/2023] [Indexed: 01/20/2023] Open
|
7
|
Nachon F, Brazzolotto X, Dias J, Courageux C, Drożdż W, Cao XY, Stefankiewicz AR, Lehn JM. Grid-Type Quaternary Metallosupramolecular Compounds Inhibit Human Cholinesterases through Dynamic Multivalent Interactions. Chembiochem 2022; 23:e202200456. [PMID: 36193860 DOI: 10.1002/cbic.202200456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/14/2022] [Indexed: 01/25/2023]
Abstract
We report the implementation of coordination complexes containing two types of cationic moieties, i. e. pyridinium and ammonium quaternary salt, as potential inhibitors of human cholinesterase enzymes. Utilization of ligands containing NNO-coordination site and binding zinc metal ion allowed mono- and tetra-nuclear complexes to be obtained with corner and grid structural type, respectively, thus affecting the overall charge of the compounds (from +1 to +8). We were able to examine for the first time the multivalency effect of metallosupramolecular species on their inhibitory abilities towards acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). Importantly, resolution of the crystal structures of the obtained enzyme-substrate complexes provided a better understanding of the inhibition process at the molecular level.
Collapse
Affiliation(s)
- Florian Nachon
- Département de Toxicologie et Risques Chimiques, Institut de Recherche Biomédicale des Armées, 1 place Gal Valérie André, BP87, 91220, Brétigny-sur-Orge, France
| | - Xavier Brazzolotto
- Département de Toxicologie et Risques Chimiques, Institut de Recherche Biomédicale des Armées, 1 place Gal Valérie André, BP87, 91220, Brétigny-sur-Orge, France
| | - José Dias
- Département de Toxicologie et Risques Chimiques, Institut de Recherche Biomédicale des Armées, 1 place Gal Valérie André, BP87, 91220, Brétigny-sur-Orge, France
| | - Charlotte Courageux
- Département de Toxicologie et Risques Chimiques, Institut de Recherche Biomédicale des Armées, 1 place Gal Valérie André, BP87, 91220, Brétigny-sur-Orge, France
| | - Wojciech Drożdż
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614, Poznań, Poland.,Center for Advanced Technology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 10, 61-614, Poznań, Poland
| | - Xiao-Yu Cao
- Laboratoire de Chimie Supramoléculaire, Institut de Science et d'Ingénierie Supramoléculaires, Université de Strasbourg, 8 allée Gaspard Monge, 67000, Strasbourg, France
| | - Artur R Stefankiewicz
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614, Poznań, Poland.,Center for Advanced Technology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 10, 61-614, Poznań, Poland
| | - Jean-Marie Lehn
- Laboratoire de Chimie Supramoléculaire, Institut de Science et d'Ingénierie Supramoléculaires, Université de Strasbourg, 8 allée Gaspard Monge, 67000, Strasbourg, France
| |
Collapse
|
8
|
Allard JL, Shields KA, Munro T, Lua LHL. Design and production strategies for developing a recombinant butyrylcholinesterase medical countermeasure for Organophosphorus poisoning. Chem Biol Interact 2022; 363:109996. [PMID: 35654125 DOI: 10.1016/j.cbi.2022.109996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 05/06/2022] [Accepted: 05/24/2022] [Indexed: 11/25/2022]
Abstract
Organophosphorus nerve agents represent a serious chemical threat due to their ease of production and scale of impact. The recent use of the nerve agent Novichok has re-emphasised the need for broad-spectrum medical countermeasures (MCMs) to these agents. However, current MCMs are limited. Plasma derived human butyrylcholinesterase (huBChE) is a promising novel bioscavenger MCM strategy, but is prohibitively expensive to isolate from human plasma at scale. Efforts to produce recombinant huBChE (rBChE) in various protein expression platforms have failed to achieve key critical attributes of huBChE such as circulatory half-life. These proteins often lack critical features such as tetrameric structure and requisite post-translational modifications. This review evaluates previous attempts to generate rBChE and assesses recent advances in mammalian cell expression and protein engineering strategies that could be deployed to achieve the required half-life and yield for a viable rBChE MCM. This includes the addition of a proline-rich attachment domain, fusion proteins, post translational modifications, expression system selection and optimised downstream processes. Whilst challenges remain, a combinatorial approach of these strategies demonstrates potential as a technically feasible approach to achieving a bioactive and cost effective bioscavenger MCM.
Collapse
Affiliation(s)
- Joanne L Allard
- Defence Science and Technology Group, Fishermans Bend, Victoria, 3207, Australia; The University of Queensland, Brisbane, Queensland, 4072, Australia.
| | - Katherine A Shields
- Defence Science and Technology Group, Fishermans Bend, Victoria, 3207, Australia
| | - TrentP Munro
- The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Linda H L Lua
- The University of Queensland, Brisbane, Queensland, 4072, Australia
| |
Collapse
|
9
|
From tryptophan-based amides to tertiary amines: Optimization of a butyrylcholinesterase inhibitor series. Eur J Med Chem 2022; 234:114248. [DOI: 10.1016/j.ejmech.2022.114248] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 02/20/2022] [Accepted: 02/28/2022] [Indexed: 12/29/2022]
|
10
|
Ganeshpurkar A, Singh R, Kumar D, Gore P, Shivhare S, Sardana D, Rayala S, Kumar A, Singh SK. Identification of sulfonamide based butyrylcholinesterase inhibitors through scaffold hopping approach. Int J Biol Macromol 2022; 203:195-211. [PMID: 35090939 DOI: 10.1016/j.ijbiomac.2022.01.136] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 01/18/2022] [Accepted: 01/20/2022] [Indexed: 11/16/2022]
Abstract
Butyrylcholinesterase (BChE), a hydrolytic enzyme, is responsible for the termination of the action of acetylcholine besides acetylcholinesterase (AChE) in the synaptic cleft of the brain. The alteration in the enzyme level, in patients with the progression of Alzheimer's disease, makes it a therapeutic target. In the present study, we developed BChE inhibitors through scaffold hopping by exploring two previously reported compounds, i.e., 1,4-bis((4-chlorophenyl) sulfonyl)-3,6-diphenylpiperazine-2,5-dione and N-(2-chlorophenyl)-4-(phenylsulfonamido)benzamide, to afford scaffold and pharmacophore fragments, respectively. The N,2-diphenyl-2-(phenylsulfonamido)acetamide derivatives, thus designed, were synthesised and screened for the inhibition of AChE and BChE enzymes. Compounds 30 and 33 were found to be most active against BChE among the derivatives, with IC50 values of 7.331 ± 0.946 and 10.964 ± 0.936 μM, respectively. The compounds displayed a non-competitive mode of inhibition along with BBB permeability and good cell viability on SH-SY5Y cell line. The molecular docking analysis of the compounds with BChE showed interactions with Trp82, Trp231, Leu286, and His438. The molecular dynamics study revealed the stability of the protein-ligand complexes.
Collapse
Affiliation(s)
- Ankit Ganeshpurkar
- Pharmaceutical Chemistry Research Laboratory I, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Ravi Singh
- Pharmaceutical Chemistry Research Laboratory I, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Devendra Kumar
- Pharmaceutical Chemistry Research Laboratory I, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Pravin Gore
- Pharmaceutical Chemistry Research Laboratory I, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Shalini Shivhare
- Pharmaceutical Chemistry Research Laboratory I, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Divya Sardana
- Pharmaceutical Chemistry Research Laboratory I, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Swetha Rayala
- Pharmaceutical Chemistry Research Laboratory I, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Ashok Kumar
- Pharmaceutical Chemistry Research Laboratory I, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Sushil Kumar Singh
- Pharmaceutical Chemistry Research Laboratory I, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India.
| |
Collapse
|
11
|
Wichur T, Godyń J, Góral I, Latacz G, Bucki A, Siwek A, Głuch-Lutwin M, Mordyl B, Śniecikowska J, Walczak M, Knez D, Jukič M, Sałat K, Gobec S, Kołaczkowski M, Malawska B, Brazzolotto X, Więckowska A. Development and crystallography-aided SAR studies of multifunctional BuChE inhibitors and 5-HT 6R antagonists with β-amyloid anti-aggregation properties. Eur J Med Chem 2021; 225:113792. [PMID: 34530376 DOI: 10.1016/j.ejmech.2021.113792] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/26/2021] [Accepted: 08/17/2021] [Indexed: 12/16/2022]
Abstract
The lack of an effective treatment makes Alzheimer's disease a serious healthcare problem and a challenge for medicinal chemists. Herein we report interdisciplinary research on novel multifunctional ligands targeting proteins and processes involved in the development of the disease: BuChE, 5-HT6 receptors and β-amyloid aggregation. Structure-activity relationship analyses supported by crystallography and docking studies led to the identification of a fused-type multifunctional ligand 50, with remarkable and balanced potencies against BuChE (IC50 = 90 nM) and 5-HT6R (Ki = 4.8 nM), and inhibitory activity against Aβ aggregation (53% at 10 μM). In in vitro ADME-Tox and in vivo pharmacokinetic studies compound 50 showed good stability in the mouse liver microsomes, favourable safety profile and brain permeability with the brain to plasma ratio of 6.79 after p.o. administration in mice, thus being a promising candidate for in vivo pharmacology studies and a solid foundation for further research on effective anti-AD therapies.
Collapse
Affiliation(s)
- Tomasz Wichur
- Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Kraków, Poland
| | - Justyna Godyń
- Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Kraków, Poland
| | - Izabella Góral
- Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Kraków, Poland
| | - Gniewomir Latacz
- Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Kraków, Poland
| | - Adam Bucki
- Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Kraków, Poland
| | - Agata Siwek
- Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Kraków, Poland
| | - Monika Głuch-Lutwin
- Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Kraków, Poland
| | - Barbara Mordyl
- Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Kraków, Poland
| | - Joanna Śniecikowska
- Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Kraków, Poland
| | - Maria Walczak
- Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Kraków, Poland
| | - Damijan Knez
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva 7, 1000, Ljubljana, Slovenia
| | - Marko Jukič
- University of Maribor, Faculty of Chemistry and Chemical Engineering, Laboratory of Physical Chemistry and Chemical Thermodynamics, Smetanova ulica 17, SI-2000 Maribor, Slovenia
| | - Kinga Sałat
- Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Kraków, Poland
| | - Stanislav Gobec
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva 7, 1000, Ljubljana, Slovenia
| | - Marcin Kołaczkowski
- Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Kraków, Poland
| | - Barbara Malawska
- Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Kraków, Poland
| | - Xavier Brazzolotto
- Département de Toxicologie et Risques Chimiques, Institut de Recherche Biomédicale des Armées, 91223, Brétigny sur Orge, France
| | - Anna Więckowska
- Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Kraków, Poland.
| |
Collapse
|
12
|
Rossi M, Freschi M, de Camargo Nascente L, Salerno A, de Melo Viana Teixeira S, Nachon F, Chantegreil F, Soukup O, Prchal L, Malaguti M, Bergamini C, Bartolini M, Angeloni C, Hrelia S, Soares Romeiro LA, Bolognesi ML. Sustainable Drug Discovery of Multi-Target-Directed Ligands for Alzheimer's Disease. J Med Chem 2021; 64:4972-4990. [PMID: 33829779 PMCID: PMC8154578 DOI: 10.1021/acs.jmedchem.1c00048] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Indexed: 12/12/2022]
Abstract
The multifactorial nature of Alzheimer's disease (AD) is a reason for the lack of effective drugs as well as a basis for the development of "multi-target-directed ligands" (MTDLs). As cases increase in developing countries, there is a need of new drugs that are not only effective but also accessible. With this motivation, we report the first sustainable MTDLs, derived from cashew nutshell liquid (CNSL), an inexpensive food waste with anti-inflammatory properties. We applied a framework combination of functionalized CNSL components and well-established acetylcholinesterase (AChE)/butyrylcholinesterase (BChE) tacrine templates. MTDLs were selected based on hepatic, neuronal, and microglial cell toxicity. Enzymatic studies disclosed potent and selective AChE/BChE inhibitors (5, 6, and 12), with subnanomolar activities. The X-ray crystal structure of 5 complexed with BChE allowed rationalizing the observed activity (0.0352 nM). Investigation in BV-2 microglial cells revealed antineuroinflammatory and neuroprotective activities for 5 and 6 (already at 0.01 μM), confirming the design rationale.
Collapse
Affiliation(s)
- Michele Rossi
- Department
of Pharmacy and Biotechnology, Alma Mater
Studiorum - University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| | - Michela Freschi
- Department
for Life Quality Studies, Alma Mater Studiorum
- University of Bologna, Corso d’Augusto 237, 47921 Rimini, Italy
| | - Luciana de Camargo Nascente
- Department
of Pharmacy, Health Sciences Faculty, University
of Brasília, Campus Universitário Darcy Ribeiro, 70910-900 Brasília, DF, Brazil
| | - Alessandra Salerno
- Department
of Pharmacy and Biotechnology, Alma Mater
Studiorum - University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| | - Sarah de Melo Viana Teixeira
- Department
of Pharmacy, Health Sciences Faculty, University
of Brasília, Campus Universitário Darcy Ribeiro, 70910-900 Brasília, DF, Brazil
| | - Florian Nachon
- Département
de Toxicologie et Risques Chimiques, Institut
de Recherche Biomédicale des Armées, 91220 Brétigny-sur-Orge, France
| | - Fabien Chantegreil
- Département
de Toxicologie et Risques Chimiques, Institut
de Recherche Biomédicale des Armées, 91220 Brétigny-sur-Orge, France
| | - Ondrej Soukup
- Biomedical
Research Center, University Hospital, Sokolska 581, 500 05 Hradec Kralove, Czech
Republic
- Department
of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defence, Trebesska 1575, 500
01 Hradec Kralove, Czech Republic
| | - Lukáš Prchal
- Biomedical
Research Center, University Hospital, Sokolska 581, 500 05 Hradec Kralove, Czech
Republic
| | - Marco Malaguti
- Department
for Life Quality Studies, Alma Mater Studiorum
- University of Bologna, Corso d’Augusto 237, 47921 Rimini, Italy
| | - Christian Bergamini
- Department
of Pharmacy and Biotechnology, Alma Mater
Studiorum - University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| | - Manuela Bartolini
- Department
of Pharmacy and Biotechnology, Alma Mater
Studiorum - University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| | - Cristina Angeloni
- School
of Pharmacy, University of Camerino, Via Madonna delle Carceri 9, 62032 Camerino, MC, Italy
| | - Silvana Hrelia
- Department
for Life Quality Studies, Alma Mater Studiorum
- University of Bologna, Corso d’Augusto 237, 47921 Rimini, Italy
| | - Luiz Antonio Soares Romeiro
- Department
of Pharmacy, Health Sciences Faculty, University
of Brasília, Campus Universitário Darcy Ribeiro, 70910-900 Brasília, DF, Brazil
| | - Maria Laura Bolognesi
- Department
of Pharmacy and Biotechnology, Alma Mater
Studiorum - University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| |
Collapse
|
13
|
Pasieka A, Panek D, Jończyk J, Godyń J, Szałaj N, Latacz G, Tabor J, Mezeiova E, Chantegreil F, Dias J, Knez D, Lu J, Pi R, Korabecny J, Brazzolotto X, Gobec S, Höfner G, Wanner K, Więckowska A, Malawska B. Discovery of multifunctional anti-Alzheimer's agents with a unique mechanism of action including inhibition of the enzyme butyrylcholinesterase and γ-aminobutyric acid transporters. Eur J Med Chem 2021; 218:113397. [PMID: 33838585 DOI: 10.1016/j.ejmech.2021.113397] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/17/2021] [Accepted: 03/18/2021] [Indexed: 12/31/2022]
Abstract
Looking for an effective anti-Alzheimer's agent is very challenging; however, a multifunctional ligand strategy may be a promising solution for the treatment of this complex disease. We herein present the design, synthesis and biological evaluation of novel hydroxyethylamine derivatives displaying unique, multiple properties that have not been previously reported. The original mechanism of action combines inhibitory activity against disease-modifying targets: β-secretase enzyme (BACE1) and amyloid β (Aβ) aggregation, along with an effect on targets associated with symptom relief - inhibition of butyrylcholinesterase (BuChE) and γ-aminobutyric acid transporters (GATs). Among the obtained molecules, compound 36 exhibited the most balanced and broad activity profile (eeAChE IC50 = 2.86 μM; eqBuChE IC50 = 60 nM; hBuChE IC50 = 20 nM; hBACE1 IC50 = 5.9 μM; inhibition of Aβ aggregation = 57.9% at 10 μM; mGAT1 IC50 = 10.96 μM; and mGAT2 IC50 = 19.05 μM). Moreover, we also identified 31 as the most potent mGAT4 and hGAT3 inhibitor (IC50 = 5.01 μM and IC50 = 2.95 μM, respectively), with high selectivity over other subtypes. Compounds 36 and 31 represent new anti-Alzheimer agents that can ameliorate cognitive decline and modify the progress of disease.
Collapse
Affiliation(s)
- Anna Pasieka
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Kraków, Poland
| | - Dawid Panek
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Kraków, Poland
| | - Jakub Jończyk
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Kraków, Poland
| | - Justyna Godyń
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Kraków, Poland
| | - Natalia Szałaj
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Kraków, Poland
| | - Gniewomir Latacz
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Kraków, Poland
| | - Julia Tabor
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Kraków, Poland
| | - Eva Mezeiova
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05, Hradec Kralove, Czech Republic
| | - Fabien Chantegreil
- Département de Toxicologie et Risques Chimiques, Institut de Recherche Biomédicale des Armées, 91223, Brétigny sur Orge, France
| | - José Dias
- Département de Toxicologie et Risques Chimiques, Institut de Recherche Biomédicale des Armées, 91223, Brétigny sur Orge, France
| | - Damijan Knez
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000, Ljubljana, Slovenia
| | - Junfeng Lu
- Department of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Rongbiao Pi
- Department of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Jan Korabecny
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05, Hradec Kralove, Czech Republic
| | - Xavier Brazzolotto
- Département de Toxicologie et Risques Chimiques, Institut de Recherche Biomédicale des Armées, 91223, Brétigny sur Orge, France
| | - Stanislav Gobec
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000, Ljubljana, Slovenia
| | - Georg Höfner
- Department of Pharmacy - Center for Drug Research, Ludwig-Maximilians-Universität München, Butenandtstr, 5-13, 81377, Munich, Germany
| | - Klaus Wanner
- Department of Pharmacy - Center for Drug Research, Ludwig-Maximilians-Universität München, Butenandtstr, 5-13, 81377, Munich, Germany
| | - Anna Więckowska
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Kraków, Poland
| | - Barbara Malawska
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Kraków, Poland.
| |
Collapse
|
14
|
Hrvat NM, Kovarik Z. Counteracting poisoning with chemical warfare nerve agents. Arh Hig Rada Toksikol 2020; 71:266-284. [PMID: 33410774 PMCID: PMC7968514 DOI: 10.2478/aiht-2020-71-3459] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/01/2020] [Accepted: 11/01/2020] [Indexed: 12/14/2022] Open
Abstract
Phosphylation of the pivotal enzyme acetylcholinesterase (AChE) by nerve agents (NAs) leads to irreversible inhibition of the enzyme and accumulation of neurotransmitter acetylcholine, which induces cholinergic crisis, that is, overstimulation of muscarinic and nicotinic membrane receptors in the central and peripheral nervous system. In severe cases, subsequent desensitisation of the receptors results in hypoxia, vasodepression, and respiratory arrest, followed by death. Prompt action is therefore critical to improve the chances of victim's survival and recovery. Standard therapy of NA poisoning generally involves administration of anticholinergic atropine and an oxime reactivator of phosphylated AChE. Anticholinesterase compounds or NA bioscavengers can also be applied to preserve native AChE from inhibition. With this review of 70 years of research we aim to present current and potential approaches to counteracting NA poisoning.
Collapse
Affiliation(s)
| | - Zrinka Kovarik
- Institute for Medical Research and Occupational Health, Zagreb, Croatia
| |
Collapse
|
15
|
Pajk S, Knez D, Košak U, Zorović M, Brazzolotto X, Coquelle N, Nachon F, Colletier JP, Živin M, Stojan J, Gobec S. Development of potent reversible selective inhibitors of butyrylcholinesterase as fluorescent probes. J Enzyme Inhib Med Chem 2020; 35:498-505. [PMID: 31914836 PMCID: PMC6968640 DOI: 10.1080/14756366.2019.1710502] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 12/19/2019] [Accepted: 12/25/2019] [Indexed: 12/14/2022] Open
Abstract
Brain butyrylcholinesterase (BChE) is an attractive target for drugs designed for the treatment of Alzheimer's disease (AD) in its advanced stages. It also potentially represents a biomarker for progression of this disease. Based on the crystal structure of previously described highly potent, reversible, and selective BChE inhibitors, we have developed the fluorescent probes that are selective towards human BChE. The most promising probes also maintain their inhibition of BChE in the low nanomolar range with high selectivity over acetylcholinesterase. Kinetic studies of probes reveal a reversible mixed inhibition mechanism, with binding of these fluorescent probes to both the free and acylated enzyme. Probes show environment-sensitive emission, and additionally, one of them also shows significant enhancement of fluorescence intensity upon binding to the active site of BChE. Finally, the crystal structures of probes in complex with human BChE are reported, which offer an excellent base for further development of this library of compounds.
Collapse
Affiliation(s)
- Stane Pajk
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Damijan Knez
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Urban Košak
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Maja Zorović
- Faculty of Medicine, Institute of Pathological Physiology, University of Ljubljana, Ljubljana, Slovenia
| | - Xavier Brazzolotto
- Département de Toxicologie et Risques Chimiques, Institut de Recherche Biomédicale des Armées, Brétigny sur Orge, France
| | | | - Florian Nachon
- Département de Toxicologie et Risques Chimiques, Institut de Recherche Biomédicale des Armées, Brétigny sur Orge, France
| | | | - Marko Živin
- Faculty of Medicine, Institute of Pathological Physiology, University of Ljubljana, Ljubljana, Slovenia
| | - Jure Stojan
- Faculty of Medicine, Institute of Biochemistry, University of Ljubljana, Ljubljana, Slovenia
| | - Stanislav Gobec
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
16
|
Leung MR, Zeev-Ben-Mordehai T. Cryo-electron microscopy of cholinesterases, present and future. J Neurochem 2020; 158:1236-1243. [PMID: 33222205 PMCID: PMC8518539 DOI: 10.1111/jnc.15245] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 10/30/2020] [Accepted: 11/11/2020] [Indexed: 02/06/2023]
Abstract
Acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) exist in a variety of oligomeric forms, each with defined cellular and subcellular distributions. Although crystal structures of AChE and BChE have been available for many years, structures of the physiologically relevant ChE tetramer were only recently solved by cryo‐electron microscopy (cryo‐EM) single‐particle analysis. Here, we briefly review how these structures contribute to our understanding of cholinesterase oligomerization, highlighting the advantages of using cryo‐EM to resolve structures of protein assemblies that cannot be expressed recombinantly. We argue that the next frontier in cholinesterase structural biology is to image membrane‐anchored ChE oligomers directly in their native environment—the cell.
Collapse
Affiliation(s)
- Miguel Ricardo Leung
- Cryo-Electron Microscopy, Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands.,The Division of Structural Biology, Wellcome Centre for Human Genetics, The University of Oxford, Oxford, UK
| | - Tzviya Zeev-Ben-Mordehai
- Cryo-Electron Microscopy, Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands.,The Division of Structural Biology, Wellcome Centre for Human Genetics, The University of Oxford, Oxford, UK
| |
Collapse
|
17
|
Characterization of four BCHE mutations associated with prolonged effect of suxamethonium. THE PHARMACOGENOMICS JOURNAL 2020; 21:165-173. [PMID: 33024248 DOI: 10.1038/s41397-020-00192-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 08/14/2020] [Accepted: 09/23/2020] [Indexed: 11/08/2022]
Abstract
Butyrylcholinesterase (BChE) deficiency is characterized by prolonged apnea after the use of muscle relaxants (suxamethonium or mivacurium) in patients who have mutations in the BCHE gene. Here, we report the characterization of four BCHE mutations associated with prolonged effect of suxamethonium (amino acid numbering based on the matured enzyme): p.20delValPheGlyGlyThrValThr, p.Leu88His, p.Ile140del and p.Arg386Cys. Expression of recombinant BCHE mutants, kinetic analysis and molecular dynamics were undertaken to understand how these mutations induce BChE deficiency. Three of the mutations studied (p.20delValPheGlyGlyThrValThr, p.Ile140del and p.Arg386Cys) lead to a "silent" BChE phenotype. Recombinant BCHE expression studies for these mutants revealed BChE activity levels comparable to untransfected cells. Only the last one (hBChE-L88H) presented BChE activity in the transfected cell culture medium. This BChE mutant (p.Leu88His) is associated with a lower kcat value compare to the wild-type enzyme. Molecular dynamics simulations analyses suggest that a destabilization of a structure implicated in enzyme activity (Ω-loop) can explain the modification of the kinetic parameter of the mutated protein.
Collapse
|
18
|
Meden A, Knez D, Malikowska-Racia N, Brazzolotto X, Nachon F, Svete J, Sałat K, Grošelj U, Gobec S. Structure-activity relationship study of tryptophan-based butyrylcholinesterase inhibitors. Eur J Med Chem 2020; 208:112766. [PMID: 32919297 DOI: 10.1016/j.ejmech.2020.112766] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/14/2020] [Accepted: 08/15/2020] [Indexed: 12/19/2022]
Abstract
A series of tryptophan-based selective nanomolar butyrylcholinesterase (BChE) inhibitors was designed and synthesized. Compounds were optimized in terms of potency, selectivity, and synthetic accessibility. The crystal structure of the inhibitor 18 in complex with BChE revealed the molecular basis for its low nanomolar inhibition (IC50 = 2.8 nM). The favourable in vitro results enabled a first-in-animal in vivo efficacy and safety trial, which demonstrated a positive impact on fear-motivated and spatial long-term memory retrieval without any concomitant adverse motor effects. Altogether, this research culminated in a handful of new lead compounds with promising potential for symptomatic treatment of patients with Alzheimer's disease.
Collapse
Affiliation(s)
- Anže Meden
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva 7, SI-1000, Ljubljana, Slovenia
| | - Damijan Knez
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva 7, SI-1000, Ljubljana, Slovenia
| | - Natalia Malikowska-Racia
- Department of Pharmacodynamics, Chair of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna St., 30-688, Krakow, Poland
| | - Xavier Brazzolotto
- Département de Toxicologie et Risques Chimiques, Institut de Recherche Biomédicale des Armées, 91223, Brétigny sur Orge, France
| | - Florian Nachon
- Département de Toxicologie et Risques Chimiques, Institut de Recherche Biomédicale des Armées, 91223, Brétigny sur Orge, France
| | - Jurij Svete
- University of Ljubljana, Faculty of Chemistry and Chemical Technology, Večna Pot 113, SI-1000, Ljubljana, Slovenia
| | - Kinga Sałat
- Department of Pharmacodynamics, Chair of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna St., 30-688, Krakow, Poland
| | - Uroš Grošelj
- University of Ljubljana, Faculty of Chemistry and Chemical Technology, Večna Pot 113, SI-1000, Ljubljana, Slovenia.
| | - Stanislav Gobec
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva 7, SI-1000, Ljubljana, Slovenia.
| |
Collapse
|
19
|
Enantioseparation, in vitro testing, and structural characterization of triple-binding reactivators of organophosphate-inhibited cholinesterases. Biochem J 2020; 477:2771-2790. [PMID: 32639532 DOI: 10.1042/bcj20200192] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 07/06/2020] [Accepted: 07/08/2020] [Indexed: 11/17/2022]
Abstract
The enantiomers of racemic 2-hydroxyimino-N-(azidophenylpropyl)acetamide-derived triple-binding oxime reactivators were separated, and tested for inhibition and reactivation of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibited with tabun (GA), cyclosarin (GF), sarin (GB), and VX. Both enzymes showed the greatest affinity toward the methylimidazole derivative (III) of 2-hydroxyimino-N-(azidophenylpropyl)acetamide (I). The crystal structure was determined for the complex of oxime III within human BChE, confirming that all three binding groups interacted with active site residues. In the case of BChE inhibited by GF, oximes I (kr = 207 M-1 min-1) and III (kr = 213 M-1 min-1) showed better reactivation efficiency than the reference oxime 2-PAM. Finally, the key mechanistic steps in the reactivation of GF-inhibited BChE with oxime III were modeled using the PM7R6 method, stressing the importance of proton transfer from Nε of His438 to Oγ of Ser203 for achieving successful reactivation.
Collapse
|
20
|
Efficacy Assessment of an Uncharged Reactivator of NOP-Inhibited Acetylcholinesterase Based on Tetrahydroacridine Pyridine-Aldoxime Hybrid in Mouse Compared to Pralidoxime. Biomolecules 2020; 10:biom10060858. [PMID: 32512884 PMCID: PMC7355633 DOI: 10.3390/biom10060858] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/01/2020] [Accepted: 06/03/2020] [Indexed: 12/11/2022] Open
Abstract
(1) Background: Human exposure to organophosphorus compounds employed as pesticides or as chemical warfare agents induces deleterious effects due to cholinesterase inhibition. One therapeutic approach is the reactivation of inhibited acetylcholinesterase by oximes. While currently available oximes are unable to reach the central nervous system to reactivate cholinesterases or to display a wide spectrum of action against the variety of organophosphorus compounds, we aim to identify new reactivators without such drawbacks. (2) Methods: This study gathers an exhaustive work to assess in vitro and in vivo efficacy, and toxicity of a hybrid tetrahydroacridine pyridinaldoxime reactivator, KM297, compared to pralidoxime. (3) Results: Blood–brain barrier crossing assay carried out on a human in vitro model established that KM297 has an endothelial permeability coefficient twice that of pralidoxime. It also presents higher cytotoxicity, particularly on bone marrow-derived cells. Its strong cholinesterase inhibition potency seems to be correlated to its low protective efficacy in mice exposed to paraoxon. Ventilatory monitoring of KM297-treated mice by double-chamber plethysmography shows toxic effects at the selected therapeutic dose. This breathing assessment could help define the No Observed Adverse Effect Level (NOAEL) dose of new oximes which would have a maximum therapeutic effect without any toxic side effects.
Collapse
|
21
|
Košak U, Strašek N, Knez D, Jukič M, Žakelj S, Zahirović A, Pišlar A, Brazzolotto X, Nachon F, Kos J, Gobec S. N-alkylpiperidine carbamates as potential anti-Alzheimer's agents. Eur J Med Chem 2020; 197:112282. [PMID: 32380361 DOI: 10.1016/j.ejmech.2020.112282] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 03/26/2020] [Accepted: 03/26/2020] [Indexed: 11/29/2022]
Abstract
Compounds capable of interacting with single or multiple targets involved in Alzheimer's disease (AD) pathogenesis are potential anti-Alzheimer's agents. In our aim to develop new anti-Alzheimer's agents, a series of 36 new N-alkylpiperidine carbamates was designed, synthesized and evaluated for the inhibition of cholinesterases [acetylcholinesterase (AChE) and butyrylcholinesterase (BChE)] and monoamine oxidases [monoamine oxidase A (MAO-A and monoamine oxidase B (MAO-B)]. Four compounds are very promising: multiple AChE (IC50 = 7.31 μM), BChE (IC50 = 0.56 μM) and MAO-B (IC50 = 26.1 μM) inhibitor 10, dual AChE (IC50 = 2.25 μM) and BChE (IC50 = 0.81 μM) inhibitor 22, selective BChE (IC50 = 0.06 μM) inhibitor 13, and selective MAO-B (IC50 = 0.18 μM) inhibitor 16. Results of enzyme kinetics experiments showed that despite the carbamate group in the structure, compounds 10, 13, and 22 are reversible and non-time-dependent inhibitors of AChE and/or BChE. The resolved crystal structure of the complex of BChE with compound 13 confirmed the non-covalent mechanism of inhibition. Additionally, N-propargylpiperidine 16 is an irreversible and time-dependent inhibitor of MAO-B, while N-benzylpiperidine 10 is reversible. Additionally, compounds 10, 13, 16, and 22 should be able to cross the blood-brain barrier and are not cytotoxic to human neuronal-like SH-SY5Y and liver HepG2 cells. Finally, compounds 10 and 16 also prevent amyloid β1-42 (Aβ1-42)-induced neuronal cell death. The neuroprotective effects of compound 16 could be the result of its Aβ1-42 anti-aggregation effects.
Collapse
Affiliation(s)
- Urban Košak
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva 7, 1000, Ljubljana, Slovenia
| | - Nika Strašek
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva 7, 1000, Ljubljana, Slovenia
| | - Damijan Knez
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva 7, 1000, Ljubljana, Slovenia
| | - Marko Jukič
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva 7, 1000, Ljubljana, Slovenia
| | - Simon Žakelj
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva 7, 1000, Ljubljana, Slovenia
| | - Abida Zahirović
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva 7, 1000, Ljubljana, Slovenia
| | - Anja Pišlar
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva 7, 1000, Ljubljana, Slovenia
| | - Xavier Brazzolotto
- Institut de Recherche Biomédicale des Armées, 91223, Brétigny-sur-Orge, France
| | - Florian Nachon
- Institut de Recherche Biomédicale des Armées, 91223, Brétigny-sur-Orge, France
| | - Janko Kos
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva 7, 1000, Ljubljana, Slovenia
| | - Stanislav Gobec
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva 7, 1000, Ljubljana, Slovenia.
| |
Collapse
|
22
|
Zhang L, Baker SL, Murata H, Harris N, Ji W, Amitai G, Matyjaszewski K, Russell AJ. Tuning Butyrylcholinesterase Inactivation and Reactivation by Polymer-Based Protein Engineering. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:1901904. [PMID: 31921563 PMCID: PMC6947490 DOI: 10.1002/advs.201901904] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 09/21/2019] [Indexed: 05/11/2023]
Abstract
Organophosphate nerve agents rapidly inhibit cholinesterases thereby destroying the ability to sustain life. Strong nucleophiles, such as oximes, have been used as therapeutic reactivators of cholinesterase-organophosphate complexes, but suffer from short half-lives and limited efficacy across the broad spectrum of organophosphate nerve agents. Cholinesterases have been used as long-lived therapeutic bioscavengers for unreacted organophosphates with limited success because they react with organophosphate nerve agents with one-to-one stoichiometries. The chemical power of nucleophilic reactivators is coupled to long-lived bioscavengers by designing and synthesizing cholinesterase-polymer-oxime conjugates using atom transfer radical polymerization and azide-alkyne "click" chemistry. Detailed kinetic studies show that butyrylcholinesterase-polymer-oxime activity is dependent on the electrostatic properties of the polymers and the amount of oxime within the conjugate. The covalent coupling of oxime-containing polymers to the surface of butyrylcholinesterase slows the rate of inactivation of paraoxon, a model nerve agent. Furthermore, when the enzyme is covalently inhibited by paraoxon, the covalently attached oxime induced inter- and intramolecular reactivation. Intramolecular reactivation will open the door to the generation of a new class of nerve agent scavengers that couple the speed and selectivity of biology to the ruggedness and simplicity of synthetic chemicals.
Collapse
Affiliation(s)
- Libin Zhang
- Center for Polymer‐Based Protein EngineeringCarnegie Mellon University5000 Forbes AvenuePittsburghPA15213USA
| | - Stefanie L. Baker
- Center for Polymer‐Based Protein EngineeringCarnegie Mellon University5000 Forbes AvenuePittsburghPA15213USA
- Department of Biomedical EngineeringCarnegie Mellon University5000 Forbes AvenuePittsburghPA15213USA
| | - Hironobu Murata
- Center for Polymer‐Based Protein EngineeringCarnegie Mellon University5000 Forbes AvenuePittsburghPA15213USA
| | - Nicholas Harris
- Center for Polymer‐Based Protein EngineeringCarnegie Mellon University5000 Forbes AvenuePittsburghPA15213USA
- Department of Biotechnology EngineeringORT Braude Academic CollegeKarmielPOB78Israel
| | - Weihang Ji
- Center for Polymer‐Based Protein EngineeringCarnegie Mellon University5000 Forbes AvenuePittsburghPA15213USA
| | - Gabriel Amitai
- Wohl Drug Discovery InstituteNancy and Stephen Grand Israel National Center for Personalized Medicine (G‐INCPM)Weizmann Institute of ScienceRehovot760001Israel
| | - Krzysztof Matyjaszewski
- Center for Polymer‐Based Protein EngineeringCarnegie Mellon University5000 Forbes AvenuePittsburghPA15213USA
- Department of ChemistryDepartment of Chemical EngineeringCarnegie Mellon University4400 Fifth AvenuePittsburghPA15213USA
| | - Alan J. Russell
- Center for Polymer‐Based Protein EngineeringCarnegie Mellon University5000 Forbes AvenuePittsburghPA15213USA
- Department of Biomedical EngineeringCarnegie Mellon University5000 Forbes AvenuePittsburghPA15213USA
- Department of ChemistryDepartment of Chemical EngineeringCarnegie Mellon University4400 Fifth AvenuePittsburghPA15213USA
| |
Collapse
|
23
|
Gupta V, Cadieux CL, McMenamin D, Medina-Jaszek CA, Arif M, Ahonkhai O, Wielechowski E, Taheri M, Che Y, Goode T, Limberis MP, Li M, Cerasoli DM, Tretiakova AP, Wilson JM. Adeno-associated virus-mediated expression of human butyrylcholinesterase to treat organophosphate poisoning. PLoS One 2019; 14:e0225188. [PMID: 31765413 PMCID: PMC6876934 DOI: 10.1371/journal.pone.0225188] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 10/30/2019] [Indexed: 02/05/2023] Open
Abstract
Rare diseases defined by genetic mutations are classic targets for gene therapy. More recently, researchers expanded the use of gene therapy in non-clinical studies to infectious diseases through the delivery of vectorized antibodies to well-defined antigens. Here, we further extend the utility of gene therapy beyond the “accepted” indications to include organophosphate poisoning. There are no approved preventives for the multi-organ damage resulting from acute or chronic exposure to organophosphates. We show that a single intramuscular injection of adeno-associated virus vector produces peak expression (~0.5 mg/ml) of active human butyrylcholinesterase (hBChE) in mice serum within 3–4 weeks post-treatment. This expression is sustained for up to 140 days post-injection with no silencing. Sustained expression of hBChE provided dose-dependent protection against VX in male and female mice despite detectable antibodies to hBChE in some mice, thereby demonstrating that expression of hBChE in vivo in mouse muscle is an effective prophylactic against organophosphate poisoning.
Collapse
Affiliation(s)
- Vibhor Gupta
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - C. Linn Cadieux
- United States Army Medical Research Institute of Chemical Defense, Maryland, United States of America
| | - Deirdre McMenamin
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - C. Angelica Medina-Jaszek
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Muhammad Arif
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Omua Ahonkhai
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Erik Wielechowski
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Maryam Taheri
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Yan Che
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Tamara Goode
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Maria P. Limberis
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Mingyao Li
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Biostatistics and Epidemiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Douglas M. Cerasoli
- United States Army Medical Research Institute of Chemical Defense, Maryland, United States of America
| | - Anna P. Tretiakova
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - James M. Wilson
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
24
|
Cai Y, Zhou S, Stewart MJ, Zheng F, Zhan CG. Dimerization of human butyrylcholinesterase expressed in bacterium for development of a thermally stable bioscavenger of organophosphorus compounds. Chem Biol Interact 2019; 310:108756. [PMID: 31325422 DOI: 10.1016/j.cbi.2019.108756] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 07/10/2019] [Accepted: 07/16/2019] [Indexed: 12/30/2022]
Abstract
Human butyrylcholinesterase (BChE) is a widely distributed plasma enzyme. For decades, numerous research efforts have been directed at engineering BChE as a bioscavenger of organophosphorus insecticides and chemical warfare nerve agents. However, it has been a grand challenge to cost-efficiently produce BChE in large-scale. Recently reported studies have successfully designed a truncated BChE mutant (with amino-acid substitutions on 47 residues that are far away from the catalytic site), denoted as BChE-M47 for convenience, which can be expressed in E. coli without loss of its catalytic activity. In this study, we aimed to dimerize the truncated BChE mutant protein expressed in a prokaryotic system (E. coli) in order to further improve its thermal stability by introducing a pair of cross-subunit disulfide bonds to the BChE-M47 structure. Specifically, the E377C/A516C mutations were designed and introduced to BChE-M47, and the obtained new protein entity, denoted as BChE-M48, with a pair of cross-subunit disulfide bonds indeed exists as a dimer with significantly improved thermostability and unaltered catalytic activity and reactivity compared to BChE-M47. These results provide a new strategy for optimizing protein stability for production in a cost-efficient prokaryotic system. Our enzyme, BChE-M48, has a half-life of almost one week at a 37°C, suggesting that it could be utilized as a highly stable bioscavenger of OP insecticides and chemical warfare nerve agents.
Collapse
Affiliation(s)
- Yingting Cai
- Molecular Modeling and Biopharmaceutical Center and Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY, 40536, USA; West China School of Pharmacy, Sichuan University, No. 17 People's South Road, Chengdu, 610041, PR China
| | - Shuo Zhou
- Molecular Modeling and Biopharmaceutical Center and Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY, 40536, USA
| | - Madeline J Stewart
- Molecular Modeling and Biopharmaceutical Center and Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY, 40536, USA
| | - Fang Zheng
- Molecular Modeling and Biopharmaceutical Center and Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY, 40536, USA.
| | - Chang-Guo Zhan
- Molecular Modeling and Biopharmaceutical Center and Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY, 40536, USA.
| |
Collapse
|
25
|
Novichkova DA, Lushchekina SV, Dym O, Masson P, Silman I, Sussman JL. The four-helix bundle in cholinesterase dimers: Structural and energetic determinants of stability. Chem Biol Interact 2019; 309:108699. [PMID: 31202688 DOI: 10.1016/j.cbi.2019.06.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 05/30/2019] [Accepted: 06/06/2019] [Indexed: 11/28/2022]
Abstract
The crystal structures of truncated forms of cholinesterases provide good models for assessing the role of non-covalent interactions in dimer assembly in the absence of cross-linking disulfide bonds. These structures identify the four-helix bundle that serves as the interface for formation of acetylcholinesterase and butyrylcholinesterase dimers. Here we performed a theoretical comparison of the structural and energetic factors governing dimerization. This included identification of inter-subunit and intra-subunit hydrogen bonds and hydrophobic interactions, evaluation of solvent-accessible surfaces, and estimation of electrostatic contributions to dimerization. To reveal the contribution to dimerization of individual amino acids within the contact area, free energy perturbation alanine screening was performed. Markov state modelling shows that the loop between the α13 and α14 helices in BChE is unstable, and occupies 4 macro-states. The order of magnitude of mean first passage times between these macrostates is ~10-8 s. Replica exchange molecular dynamics umbrella sampling calculations revealed that the free energy of human BChE dimerization is -15.5 kcal/mol, while that for human AChE is -26.4 kcal/mol. Thus, the C-terminally truncated human butyrylcholinesterase dimer is substantially less stable than that of human acetylcholinesterase. An animated Interactive 3D Complement (I3DC) is available in Proteopedia at http://proteopedia.org/w/Journal:CHEMBIOINT:1.
Collapse
Affiliation(s)
- Dana A Novichkova
- N.M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 4 Kosygina St., Moscow, 119334, Russia
| | - Sofya V Lushchekina
- N.M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 4 Kosygina St., Moscow, 119334, Russia.
| | - Orly Dym
- Weizmann Institute of Science, 234 Herzl St., Rehovot, 7610001, Israel
| | - Patrick Masson
- Kazan Federal University, Neuropharmacology Laboratory, 18 Kremlevskaya St., Kazan, 420008, Russia
| | - Israel Silman
- Weizmann Institute of Science, 234 Herzl St., Rehovot, 7610001, Israel
| | - Joel L Sussman
- Weizmann Institute of Science, 234 Herzl St., Rehovot, 7610001, Israel
| |
Collapse
|
26
|
Braid LR, Wood CA, Ford BN. Human umbilical cord perivascular cells: A novel source of the organophosphate antidote butyrylcholinesterase. Chem Biol Interact 2019; 305:66-78. [PMID: 30926319 DOI: 10.1016/j.cbi.2019.03.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 03/20/2019] [Accepted: 03/25/2019] [Indexed: 01/06/2023]
Abstract
Human butyrylcholinesterase (BChE) is a well-characterized bioscavenger with significant potential as a prophylactic or post-exposure treatment for organophosphate poisoning. Despite substantial efforts, BChE has proven technically challenging to produce in recombinant systems. Recombinant BChE tends to be insufficiently or incorrectly glycosylated, and consequently exhibits a truncated half-life, compromised activity, or is immunogenic. Thus, expired human plasma remains the only reliable source of the benchmark BChE tetramer, but production is costly and time intensive and presents possible blood-borne disease hazards. Here we report a human BChE production platform that produces functionally active, tetrameric BChE enzyme, without the addition of external factors such as polyproline peptides or chemical or gene modification required by other systems. Human umbilical cord perivascular cells (HUCPVCs) are a rich population of mesenchymal stromal cells (MSCs) derived from Wharton's jelly. We show that HUCPVCs naturally and stably secrete BChE during culture in xeno- and serum-free media, and can be gene-modified to increase BChE output. However, BChE secretion from HUCPVCs is limited by innate feedback mechanisms that can be interrupted by addition of miR 186 oligonucleotide mimics or by competitive inhibition of muscarinic cholinergic signalling receptors by addition of atropine. By contrast, adult bone marrow-derived mesenchymal stromal cells neither secrete measurable levels of BChE naturally, nor after gene modification. Further work is required to fully characterize and disable the intrinsic ceiling of HUCPVC-mediated BChE secretion to achieve commercially relevant enzyme output. However, HUCPVCs present a unique opportunity to produce both native and strategically engineered recombinant BChE enzyme in a human platform with the innate capacity to secrete the benchmark human plasma form.
Collapse
Affiliation(s)
- Lorena R Braid
- Aurora BioSolutions Inc., PO Box 21053, Crescent Heights PO, Medicine Hat, AB, T1A 6N0, Canada.
| | - Catherine A Wood
- Aurora BioSolutions Inc., PO Box 21053, Crescent Heights PO, Medicine Hat, AB, T1A 6N0, Canada
| | - Barry N Ford
- DRDC Suffield Research Centre, Casualty Management Section, Box 4000 Station Main, Medicine Hat, AB, T1A 8K6, Canada
| |
Collapse
|
27
|
Alkanaimsh S, Corbin JM, Kailemia MJ, Karuppanan K, Rodriguez RL, Lebrilla CB, McDonald KA, Nandi S. Purification and site-specific N-glycosylation analysis of human recombinant butyrylcholinesterase from Nicotiana benthamiana. Biochem Eng J 2019. [DOI: 10.1016/j.bej.2018.11.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
28
|
Purification of human butyrylcholinesterase from frozen Cohn fraction IV-4 by ion exchange and Hupresin affinity chromatography. PLoS One 2019; 14:e0209795. [PMID: 30625168 PMCID: PMC6326467 DOI: 10.1371/journal.pone.0209795] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 12/11/2018] [Indexed: 12/15/2022] Open
Abstract
Human butyrylcholinesterase (HuBChE) is being developed as a therapeutic for protection from the toxicity of nerve agents. An enriched source of HuBChE is Cohn fraction IV-4 from pooled human plasma. For the past 40 years, purification of HuBChE has included affinity chromatography on procainamide-Sepharose. The present report supports a new affinity sorbent, Hupresin, for purification of HuBChE from Cohn fraction IV-4. Nine batches of 70–80 kg frozen Cohn fraction were extracted with water, filtered, and chromatographed on 30 L of Q-Ceramic ion exchange sorbent at pH 4.5. The 4% pure Q-eluent was pumped onto 4.2 L Hupresin, where contaminants were washed off with 0.3 M NaCl in 20 mM sodium phosphate pH 8.0, before 99% pure HuBChE was eluted with 0.1 M tetramethylammonium bromide. The average yield was 1.5 g of HuBChE from 80 kg Cohn paste. Recovery of HuBChE was reduced by 90% when the paste was stored at -20°C for 1 year, and reduced 100% when stored at 4°C for 24h. No reduction in HuBChE recovery occurred when paste was stored at -80°C for 3 months or 3 years. Hupresin and procainamide-Sepharose were equally effective at purifying HuBChE from Cohn fraction. HuBChE in Cohn fraction required 1000-fold purification to attain 99% purity, but 15,000-fold purification when the starting material was plasma. HuBChE (P06276) purified from Cohn fraction was a 340 kDa tetramer of 4 identical N-glycated subunits, stable for years in solution or as a lyophilized product.
Collapse
|
29
|
Boyko KM, Baymukhametov TN, Chesnokov YM, Hons M, Lushchekina SV, Konarev PV, Lipkin AV, Vasiliev AL, Masson P, Popov VO, Kovalchuk MV. 3D structure of the natural tetrameric form of human butyrylcholinesterase as revealed by cryoEM, SAXS and MD. Biochimie 2019; 156:196-205. [DOI: 10.1016/j.biochi.2018.10.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 10/24/2018] [Indexed: 12/13/2022]
|
30
|
Cryo-EM structure of the native butyrylcholinesterase tetramer reveals a dimer of dimers stabilized by a superhelical assembly. Proc Natl Acad Sci U S A 2018; 115:13270-13275. [PMID: 30538207 DOI: 10.1073/pnas.1817009115] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The quaternary structures of the cholinesterases, acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), are essential for their localization and function. Of practical importance, BChE is a promising therapeutic candidate for intoxication by organophosphate nerve agents and insecticides, and for detoxification of addictive substances. Efficacy of the recombinant enzyme hinges on its having a long circulatory half-life; this, in turn, depends strongly on its ability to tetramerize. Here, we used cryoelectron microscopy (cryo-EM) to determine the structure of the highly glycosylated native BChE tetramer purified from human plasma at 5.7 Å. Our structure reveals that the BChE tetramer is organized as a staggered dimer of dimers. Tetramerization is mediated by assembly of the C-terminal tryptophan amphiphilic tetramerization (WAT) helices from each subunit as a superhelical assembly around a central lamellipodin-derived oligopeptide with a proline-rich attachment domain (PRAD) sequence that adopts a polyproline II helical conformation and runs antiparallel. The catalytic domains within a dimer are asymmetrically linked to the WAT/PRAD. In the resulting arrangement, the tetramerization domain is largely shielded by the catalytic domains, which may contribute to the stability of the human BChE (HuBChE) tetramer. Our cryo-EM structure reveals the basis for assembly of the native tetramers and has implications for the therapeutic applications of HuBChE. This mode of tetramerization is seen only in the cholinesterases but may provide a promising template for designing other proteins with improved circulatory residence times.
Collapse
|
31
|
Purification of recombinant human butyrylcholinesterase on Hupresin®. J Chromatogr B Analyt Technol Biomed Life Sci 2018; 1102-1103:109-115. [PMID: 30384187 DOI: 10.1016/j.jchromb.2018.10.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 10/21/2018] [Accepted: 10/24/2018] [Indexed: 12/16/2022]
Abstract
Affinity chromatography on procainamide-Sepharose has been an important step in the purification of butyrylcholinesterase (BChE) and acetylcholinesterase (AChE) since its introduction in 1978. The procainamide affinity gel has limitations. In the present report a new affinity gel called Hupresin® was evaluated for its ability to purify truncated, recombinant human butyrylcholinesterase (rHuBChE) expressed in a stably transfected Chinese Hamster Ovary cell line. We present a detailed example of the purification of rHuBChE secreted into 3940 mL of serum-free culture medium. The starting material contained 13,163 units of BChE activity (20.9 mg). rHuBChE was purified to homogeneity in a single step by passage over 82 mL of Hupresin® eluted with 0.1 M tetramethylammonium bromide in 20 mM TrisCl pH 7.5. The fraction with the highest specific activity of 630 units/mg contained 11 mg of BChE. Hupresin® is superior to procainamide-Sepharose for purification of BChE, but is not suitable for purifying native AChE because Hupresin® binds AChE so tightly that AChE is not released with buffers, but is desorbed with denaturing solvents such as 50% acetonitrile or 1% trifluoroacetic acid. Procainamide-Sepharose will continue to be useful for purification of AChE.
Collapse
|
32
|
Uno Y, Uehara S, Mahadhi HM, Ohura K, Hosokawa M, Imai T. Molecular characterization and polymorphisms of butyrylcholinesterase in cynomolgus macaques. J Med Primatol 2018; 47:185-191. [DOI: 10.1111/jmp.12342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/10/2018] [Indexed: 11/30/2022]
Affiliation(s)
- Yasuhiro Uno
- Shin Nippon Biomedical Laboratories, Ltd.; Kainan Japan
| | | | - Hassan M.D. Mahadhi
- Graduate School of Pharmaceutical Sciences; Kumamoto University; Kumamoto Japan
| | - Kayoko Ohura
- Graduate School of Pharmaceutical Sciences; Kumamoto University; Kumamoto Japan
| | - Masakiyo Hosokawa
- Laboratory of Drug Metabolism and Biopharmaceutics; Faculty of Pharmaceutical Sciences; Chiba Institute of Science; Choshi Japan
| | - Teruko Imai
- Graduate School of Pharmaceutical Sciences; Kumamoto University; Kumamoto Japan
| |
Collapse
|
33
|
Vorčáková K, Májeková M, Horáková E, Drabina P, Sedlák M, Štěpánková Š. Synthesis and characterization of new inhibitors of cholinesterases based on N-phenylcarbamates: In vitro study of inhibitory effect, type of inhibition, lipophilicity and molecular docking. Bioorg Chem 2018; 78:280-289. [PMID: 29621640 DOI: 10.1016/j.bioorg.2018.03.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 03/09/2018] [Accepted: 03/12/2018] [Indexed: 10/17/2022]
Abstract
Based on current treatment of Alzheimer's disease, where the carbamate inhibitor Rivastigmine is used, two series of carbamate derivatives were prepared: (i) N-phenylcarbamates with additional carbamate group (1-12) and (ii) N-phenylcarbamates with monosaccharide moiety (13-24). All compounds were tested for the inhibitory effect on both of the cholinesterases, electric eel acetylcholinesterase (eeAChE) and butyrylcholinesterase from equine serum (eqBChE) and the inhibitory activity (expressed as IC50 values) was compared with that of the established drugs Galanthamine and Rivastigmine. The compounds with two carbamate groups 1-12 revealed higher inhibitory efficiency on both cholinesterases in compared with monosaccharide derived carbamates 13-24 and with Rivastigmine. The significant decrease of inhibitory efficiency on eqBChE (also for eeAChE but in less manner) was observed after deacetalization of monosaccharide. Moreover, the type of inhibitory mechanism of five chosen compounds was studied. It was found, that compounds with two carbamate groups act presumably via a mixed inhibitory mechanism and the compounds with monosaccharide moiety act as non-competitive inhibitors. The lipophilicity of tested compounds was determined using partition coefficient. Specific positions of the inhibitors in the binding sites of cholinesterases were determined using molecular modeling and the results indicate the importance of phenylcarbamate orientation in the catalytic gorges of both enzymes.
Collapse
Affiliation(s)
- Katarína Vorčáková
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Pardubice, Czech Republic
| | - Magdaléna Májeková
- Department of Biochemical Pharmacology, Institute of Experimental Pharmacology & Toxicology, Slovak Academy of Science, Bratislava, Slovak Republic
| | - Eva Horáková
- Institute of Organic Chemistry and Technology, Faculty of Chemical Technology, University of Pardubice, Pardubice, Czech Republic
| | - Pavel Drabina
- Institute of Organic Chemistry and Technology, Faculty of Chemical Technology, University of Pardubice, Pardubice, Czech Republic
| | - Miloš Sedlák
- Institute of Organic Chemistry and Technology, Faculty of Chemical Technology, University of Pardubice, Pardubice, Czech Republic
| | - Šárka Štěpánková
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Pardubice, Czech Republic.
| |
Collapse
|
34
|
Masson P, Lushchekina S. Analysis of Apparent Catalytic Parameters of Multiple Molecular Forms of Human Plasma Butyrylcholinesterase by Activity Gel-Scanning Following Non-denaturing Electrophoresis. BIONANOSCIENCE 2018. [DOI: 10.1007/s12668-017-0489-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
35
|
Corbin JM, Kailemia MJ, Cadieux CL, Alkanaimsh S, Karuppanan K, Rodriguez RL, Lebrilla CB, Cerasoli DM, McDonald KA, Nandi S. Purification, characterization, and N-glycosylation of recombinant butyrylcholinesterase from transgenic rice cell suspension cultures. Biotechnol Bioeng 2018; 115:1301-1310. [PMID: 29411865 DOI: 10.1002/bit.26557] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 01/07/2018] [Accepted: 01/29/2018] [Indexed: 11/05/2022]
Abstract
Recombinant butyrylcholinesterase produced in a metabolically regulated transgenic rice cell culture (rrBChE) was purified to produce a highly pure (95%), active form of enzyme. The developed downstream process uses common manufacturing friendly operations including tangential flow filtration, anion-exchange chromatography, and affinity chromatography to obtain a process recovery of 42% active rrBChE. The purified rrBChE was then characterized to confirm its comparability to the native human form of the molecule (hBChE). The recombinant and native enzyme demonstrated comparable enzymatic behavior and had an identical amino acid sequence. However, rrBChE differs in that it contains plant-type complex N-glycans, including an α-1,3 linked core fucose, and a β-1,2 xylose, and lacking a terminal sialic acid. Despite this difference, rrBChE is demonstrated to be an effective stoichiometric bioscavenger for five different organophosphorous nerve agents in vitro. Together, the efficient downstream processing scheme and functionality of rrBChE confirm its promise as a cost-effective alternative to hBChE for prophylactic and therapeutic use.
Collapse
Affiliation(s)
- Jasmine M Corbin
- Department of Chemical Engineering, University of California, Davis, California
| | | | - C Linn Cadieux
- Medical Toxicology Division, US Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, Maryland
| | - Salem Alkanaimsh
- Department of Chemical Engineering, University of California, Davis, California.,Department of Chemical Engineering, College of Engineering and Petroleum, Kuwait University, Safat, Kuwait
| | | | - Raymond L Rodriguez
- Department of Molecular and Cellular Biology, University of California, Davis, California.,Global HealthShare Initiative, University of California, Davis, California
| | | | - Douglas M Cerasoli
- Medical Toxicology Division, US Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, Maryland
| | - Karen A McDonald
- Department of Chemical Engineering, University of California, Davis, California.,Global HealthShare Initiative, University of California, Davis, California
| | - Somen Nandi
- Department of Chemical Engineering, University of California, Davis, California.,Global HealthShare Initiative, University of California, Davis, California
| |
Collapse
|
36
|
Bonichon M, Combès A, Desoubries C, Bossée A, Pichon V. Development of immunosorbents coupled on-line to immobilized pepsin reactor and micro liquid chromatography–tandem mass spectrometry for analysis of butyrylcholinesterase in human plasma. J Chromatogr A 2017; 1526:70-81. [DOI: 10.1016/j.chroma.2017.10.033] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 10/09/2017] [Accepted: 10/11/2017] [Indexed: 10/18/2022]
|
37
|
Comparison of the Binding of Reversible Inhibitors to Human Butyrylcholinesterase and Acetylcholinesterase: A Crystallographic, Kinetic and Calorimetric Study. Molecules 2017; 22:molecules22122098. [PMID: 29186056 PMCID: PMC6149722 DOI: 10.3390/molecules22122098] [Citation(s) in RCA: 162] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 11/26/2017] [Accepted: 11/27/2017] [Indexed: 12/17/2022] Open
Abstract
Acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) hydrolyze the neurotransmitter acetylcholine and, thereby, function as coregulators of cholinergic neurotransmission. Although closely related, these enzymes display very different substrate specificities that only partially overlap. This disparity is largely due to differences in the number of aromatic residues lining the active site gorge, which leads to large differences in the shape of the gorge and potentially to distinct interactions with an individual ligand. Considerable structural information is available for the binding of a wide diversity of ligands to AChE. In contrast, structural data on the binding of reversible ligands to BChE are lacking. In a recent effort, an inhibitor competition approach was used to probe the overlap of ligand binding sites in BChE. Here, we extend this study by solving the crystal structures of human BChE in complex with five reversible ligands, namely, decamethonium, thioflavin T, propidium, huprine, and ethopropazine. We compare these structures to equivalent AChE complexes when available in the protein data bank and supplement this comparison with kinetic data and observations from isothermal titration calorimetry. This new information now allows us to define the binding mode of various ligand families and will be of importance in designing specific reversible ligands of BChE that behave as inhibitors or reactivators.
Collapse
|
38
|
Abstract
Originally, organophosphorus (OP) toxicology consisted of acetylcholinesterase inhibition by insecticides and chemical threat agents acting as phosphorylating agents for serine in the catalytic triad, but this is no longer the case. Other serine hydrolases can be secondary OP targets, depending on the OP structure, and include neuropathy target esterase, lipases, and endocannabinoid hydrolases. The major OP herbicides are glyphosate and glufosinate, which act in plants but not animals to block aromatic amino acid and glutamine biosynthesis, respectively, with safety for crops conferred by their expression of herbicide-tolerant targets and detoxifying enzymes from bacteria. OP fungicides, pharmaceuticals including calcium retention agents, industrial chemicals, and cytochrome P450 inhibitors act by multiple noncholinergic mechanisms, often with high potency and specificity. One type of OP-containing fire retardant forms a highly toxic bicyclophosphate γ-aminobutyric acid receptor antagonist upon combustion. Some OPs are teratogenic, mutagenic, or carcinogenic by known mechanisms that can be avoided as researchers expand knowledge of OP chemistry and toxicology for future developments in bioregulation.
Collapse
Affiliation(s)
- John E Casida
- Environmental Chemistry and Toxicology Laboratory, Department of Environmental Science, Policy, and Management, University of California, Berkeley, California 94720-3112;
| |
Collapse
|
39
|
Bacterial Expression of Human Butyrylcholinesterase as a Tool for Nerve Agent Bioscavengers Development. Molecules 2017; 22:molecules22111828. [PMID: 29077024 PMCID: PMC6150354 DOI: 10.3390/molecules22111828] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 10/23/2017] [Indexed: 12/13/2022] Open
Abstract
Human butyrylcholinesterase is a performant stoichiometric bioscavenger of organophosphorous nerve agents. It is either isolated from outdated plasma or functionally expressed in eukaryotic systems. Here, we report the production of active human butyrylcholinesterase in a prokaryotic system after optimization of the primary sequence through the Protein Repair One Stop Shop process, a structure- and sequence-based algorithm for soluble bacterial expression of difficult eukaryotic proteins. The mutant enzyme was purified to homogeneity. Its kinetic parameters with substrate are similar to the endogenous human butyrylcholinesterase or recombinants produced in eukaryotic systems. The isolated protein was prone to crystallize and its 2.5-Å X-ray structure revealed an active site gorge region identical to that of previously solved structures. The advantages of this alternate expression system, particularly for the generation of butyrylcholinesterase variants with nerve agent hydrolysis activity, are discussed.
Collapse
|
40
|
Siano A, Garibotto FF, Andujar SA, Baldoni HA, Tonarelli GG, Enriz RD. Molecular design and synthesis of novel peptides from amphibians skin acting as inhibitors of cholinesterase enzymes. J Pept Sci 2017; 23:236-244. [DOI: 10.1002/psc.2974] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 01/05/2017] [Accepted: 01/10/2017] [Indexed: 01/06/2023]
Affiliation(s)
- Alvaro Siano
- Departamento de Química Orgánica, Facultad de Bioquímica y Cs. Biológicas (FBCB); Universidad Nacional del Litoral (UNL), Ciudad Universitaria; 3000 Santa Fe Argentina
| | - Francisco F. Garibotto
- Facultad de Química, Bioquímica y Farmacia; Instituto Multidisciplinario de Investigaciones Biológicas (IMIBIO-SL. CONICET), Universidad Nacional de San Luis; Chacabuco 915 5700 San Luis Argentina
| | - Sebastian A. Andujar
- Facultad de Química, Bioquímica y Farmacia; Instituto Multidisciplinario de Investigaciones Biológicas (IMIBIO-SL. CONICET), Universidad Nacional de San Luis; Chacabuco 915 5700 San Luis Argentina
| | - Hector A. Baldoni
- Facultad de Química, Bioquímica y Farmacia; Instituto de Matemática Aplicada San Luis, Universidad Nacional de San Luis (UNSL, CONICET); Ejército de Los Andes 950 5700 San Luis Argentina
| | - Georgina G. Tonarelli
- Departamento de Química Orgánica, Facultad de Bioquímica y Cs. Biológicas (FBCB); Universidad Nacional del Litoral (UNL), Ciudad Universitaria; 3000 Santa Fe Argentina
| | - Ricardo D. Enriz
- Facultad de Química, Bioquímica y Farmacia; Instituto Multidisciplinario de Investigaciones Biológicas (IMIBIO-SL. CONICET), Universidad Nacional de San Luis; Chacabuco 915 5700 San Luis Argentina
| |
Collapse
|
41
|
Development of immobilized-pepsin microreactors coupled to nano liquid chromatography and tandem mass spectrometry for the quantitative analysis of human butyrylcholinesterase. J Chromatogr A 2016; 1461:84-91. [DOI: 10.1016/j.chroma.2016.07.058] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 07/21/2016] [Accepted: 07/22/2016] [Indexed: 01/25/2023]
|
42
|
Alkanaimsh S, Karuppanan K, Guerrero A, Tu AM, Hashimoto B, Hwang MS, Phu ML, Arzola L, Lebrilla CB, Dandekar AM, Falk BW, Nandi S, Rodriguez RL, McDonald KA. Transient Expression of Tetrameric Recombinant Human Butyrylcholinesterase in Nicotiana benthamiana. FRONTIERS IN PLANT SCIENCE 2016; 7:743. [PMID: 27379103 PMCID: PMC4909763 DOI: 10.3389/fpls.2016.00743] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 05/17/2016] [Indexed: 05/08/2023]
Abstract
To optimize the expression, extraction and purification of plant-derived tetrameric recombinant human butyrylcholinesterase (prBChE), we describe the development and use of plant viral amplicon-based gene expression system; Tobacco Mosaic Virus (TMV) RNA-based overexpression vector (TRBO) to express enzymatically active FLAG-tagged plant made recombinant butyrylcholinesterase (rBChE) in Nicotiana benthamiana leaves using transient agroinfiltration. Two gene expression cassettes were designed to express the recombinant protein in either the ER or to the apoplastic compartment. Leaf homogenization was used to isolate ER-retained recombinant butyrylcholinesterase (prBChE-ER) while apoplast-targeted rBChE was isolated by either leaf homogenization (prBChE) or vacuum-extraction of apoplastic wash fluid (prBChE-AWF). rBChE from apoplast wash fluid had a higher specific activity but lower enzyme yield than leaf homogenate. To optimize the isolation and purification of total recombinant protein from leaf homogenates, an acidic extraction buffer was used. The acidic extraction buffer yielded >95% enzymatically active tetrameric rBChE as verified by Coomassie stained and native gel electrophoresis. Furthermore, when compared to human butyrylcholinesterase, the prBChE was found to be similar in terms of tetramerization and enzyme kinetics. The N-linked glycan profile of purified prBChE-ER was found to be mostly high mannose structures while the N-linked glycans on prBChE-AWF were primarily complex. The glycan profile of the prBChE leaf homogenates showed a mixture of high mannose, complex and paucimannose type N-glycans. These findings demonstrate the ability of plants to produce rBChE that is enzymatically active and whose oligomeric state is comparable to mammalian butyrylcholinesterase. The process of plant made rBChE tetramerization and strategies for improving its pharmacokinetics properties are also discussed.
Collapse
Affiliation(s)
- Salem Alkanaimsh
- Department of Chemical Engineering, University of California, DavisDavis, CA, USA
| | - Kalimuthu Karuppanan
- Department of Chemical Engineering, University of California, DavisDavis, CA, USA
| | - Andrés Guerrero
- Department of Chemistry, University of California, DavisDavis, CA, USA
| | - Aye M. Tu
- Department of Plant Science, University of California, DavisDavis, CA, USA
| | - Bryce Hashimoto
- Department of Chemical Engineering, University of California, DavisDavis, CA, USA
| | - Min Sook Hwang
- Department of Plant Pathology, University of California, DavisDavis, CA, USA
| | - My L. Phu
- Department of Plant Science, University of California, DavisDavis, CA, USA
| | - Lucas Arzola
- Department of Chemical Engineering, University of California, DavisDavis, CA, USA
| | | | - Abhaya M. Dandekar
- Department of Plant Science, University of California, DavisDavis, CA, USA
| | - Bryce W. Falk
- Department of Plant Pathology, University of California, DavisDavis, CA, USA
| | - Somen Nandi
- Department of Molecular and Cellular Biology, University of California, DavisDavis, CA, USA
- Department of Global HealthShare Initiative, University of California, DavisDavis, CA, USA
| | - Raymond L. Rodriguez
- Department of Molecular and Cellular Biology, University of California, DavisDavis, CA, USA
- Department of Global HealthShare Initiative, University of California, DavisDavis, CA, USA
| | - Karen A. McDonald
- Department of Chemical Engineering, University of California, DavisDavis, CA, USA
- Department of Global HealthShare Initiative, University of California, DavisDavis, CA, USA
- *Correspondence: Karen A. McDonald,
| |
Collapse
|
43
|
Dingova D, Leroy J, Check A, Garaj V, Krejci E, Hrabovska A. Optimal detection of cholinesterase activity in biological samples: modifications to the standard Ellman's assay. Anal Biochem 2014; 462:67-75. [PMID: 24929086 DOI: 10.1016/j.ab.2014.05.031] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 05/09/2014] [Accepted: 05/30/2014] [Indexed: 11/25/2022]
Abstract
Ellman's assay is the most commonly used method to measure cholinesterase activity. It is cheap, fast, and reliable, but it has limitations when used for biological samples. The problems arise from 5,5-dithiobis(2-nitrobenzoic acid) (DTNB), which is unstable, interacts with free sulfhydryl groups in the sample, and may affect cholinesterase activity. We report that DTNB is more stable in 0.09 M Hepes with 0.05 M sodium phosphate buffer than in 0.1M sodium phosphate buffer, thereby notably reducing background. Using enzyme-linked immunosorbent assay (ELISA) to enrich tissue homogenates for cholinesterase while depleting the sample of sulfhydryl groups eliminates unwanted interactions with DTNB, making it possible to measure low cholinesterase activity in biological samples. To eliminate possible interference of DTNB with enzyme hydrolysis, we introduce a modification of the standard Ellman's assay. First, thioesters are hydrolyzed by cholinesterase to produce thiocholine in the absence of DTNB. Then, the reaction is stopped by a cholinesterase inhibitor and the produced thiocholine is revealed by DTNB and quantified at 412 nm. Indeed, this modification of Ellman's method increases butyrylcholinesterase activity by 20 to 25%. Moreover, high stability of thiocholine enables separation of the two reactions of the Ellman's method into two successive steps that may be convenient for some applications.
Collapse
Affiliation(s)
- Dominika Dingova
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University in Bratislava, Slovakia; CNRS UMR 8257 MD 4, COGNAC G, Université Paris Descartes, 75014 Paris, France
| | - Jacqueline Leroy
- CNRS UMR 8257 MD 4, COGNAC G, Université Paris Descartes, 75014 Paris, France
| | - Abel Check
- CNRS UMR 8257 MD 4, COGNAC G, Université Paris Descartes, 75014 Paris, France
| | - Vladimir Garaj
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Comenius University, Bratislava, Slovakia
| | - Eric Krejci
- CNRS UMR 8257 MD 4, COGNAC G, Université Paris Descartes, 75014 Paris, France
| | - Anna Hrabovska
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University in Bratislava, Slovakia; Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic.
| |
Collapse
|
44
|
|
45
|
Preparation and in vivo characterization of a cocaine hydrolase engineered from human butyrylcholinesterase for metabolizing cocaine. Biochem J 2013; 453:447-54. [PMID: 23849058 DOI: 10.1042/bj20130549] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Cocaine is a widely abused drug without an FDA (Food and Drug Administration)-approved medication. It has been recognized that an ideal anti-cocaine medication would accelerate cocaine metabolism producing biologically inactive metabolites via a route similar to the primary cocaine-metabolizing pathway, i.e. human BChE (butyrylcholinesterase)-catalysed hydrolysis. However, the native human BChE has a low catalytic activity against cocaine. We recently designed and discovered a BChE mutant (A199S/F227A/S287G/A328W/Y332G) with a high catalytic activity (kcat=5700 min-1, Km=3.1 μM) specifically for cocaine, and the mutant was proven effective in protecting mice from acute cocaine toxicity of a lethal dose of cocaine (180 mg/kg of body weight, LD100). Further characterization in animal models requires establishment of a high-efficiency stable cell line for the BChE mutant production at a relatively larger scale. It has been extremely challenging to develop a high-efficiency stable cell line expressing BChE or its mutant. In the present study, we successfully developed a stable cell line efficiently expressing the BChE mutant by using a lentivirus-based repeated-transduction method. The scaled-up protein production enabled us to determine for the first time the in vivo catalytic activity and the biological half-life of this high-activity mutant of human BChE in accelerating cocaine clearance. In particular, it has been demonstrated that the BChE mutant (administered to mice 1 min prior to cocaine) can quickly metabolize cocaine and completely eliminate cocaine-induced hyperactivity in rodents, implying that the BChE mutant may be developed as a promising therapeutic agent for cocaine abuse treatment.
Collapse
|
46
|
Crystal structures of human cholinesterases in complex with huprine W and tacrine: elements of specificity for anti-Alzheimer's drugs targeting acetyl- and butyryl-cholinesterase. Biochem J 2013; 453:393-9. [PMID: 23679855 DOI: 10.1042/bj20130013] [Citation(s) in RCA: 294] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The multifunctional nature of Alzheimer's disease calls for MTDLs (multitarget-directed ligands) to act on different components of the pathology, like the cholinergic dysfunction and amyloid aggregation. Such MTDLs are usually on the basis of cholinesterase inhibitors (e.g. tacrine or huprine) coupled with another active molecule aimed at a different target. To aid in the design of these MTDLs, we report the crystal structures of hAChE (human acetylcholinesterase) in complex with FAS-2 (fasciculin 2) and a hydroxylated derivative of huprine (huprine W), and of hBChE (human butyrylcholinesterase) in complex with tacrine. Huprine W in hAChE and tacrine in hBChE reside in strikingly similar positions highlighting the conservation of key interactions, namely, π-π/cation-π interactions with Trp86 (Trp82), and hydrogen bonding with the main chain carbonyl of the catalytic histidine residue. Huprine W forms additional interactions with hAChE, which explains its superior affinity: the isoquinoline moiety is associated with a group of aromatic residues (Tyr337, Phe338 and Phe295 not present in hBChE) in addition to Trp86; the hydroxyl group is hydrogen bonded to both the catalytic serine residue and residues in the oxyanion hole; and the chlorine substituent is nested in a hydrophobic pocket interacting strongly with Trp439. There is no pocket in hBChE that is able to accommodate the chlorine substituent.
Collapse
|
47
|
Nachon F, Brazzolotto X, Trovaslet M, Masson P. Progress in the development of enzyme-based nerve agent bioscavengers. Chem Biol Interact 2013; 206:536-44. [PMID: 23811386 DOI: 10.1016/j.cbi.2013.06.012] [Citation(s) in RCA: 123] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 06/15/2013] [Accepted: 06/18/2013] [Indexed: 11/17/2022]
Abstract
Acetylcholinesterase is the physiological target for acute toxicity of nerve agents. Attempts to protect acetylcholinesterase from phosphylation by nerve agents, is currently achieved by reversible inhibitors that transiently mask the enzyme active site. This approach either protects only peripheral acetylcholinesterase or may cause side effects. Thus, an alternative strategy consists in scavenging nerve agents in the bloodstream before they can reach acetylcholinesterase. Pre- or post-exposure administration of bioscavengers, enzymes that neutralize and detoxify organophosphorus molecules, is one of the major developments of new medical counter-measures. These enzymes act either as stoichiometric or catalytic bioscavengers. Human butyrylcholinesterase is the leading stoichiometric bioscavenger. Current efforts are devoted to its mass production with care to pharmacokinetic properties of the final product for extended lifetime. Development of specific reactivators of phosphylated butyrylcholinesterase, or variants with spontaneous reactivation activity is also envisioned for rapid in situ regeneration of the scavenger. Human paraoxonase 1 is the leading catalytic bioscavenger under development. Research efforts focus on improving its catalytic efficiency toward the most toxic isomers of nerve agents, by means of directed evolution-based strategies. Human prolidase appears to be another promising human enzyme. Other non-human efficient enzymes like bacterial phosphotriesterases or squid diisopropylfluorophosphatase are also considered though their intrinsic immunogenic properties remain challenging for use in humans. Encapsulation, PEGylation and other modifications are possible solutions to address this problem as well as that of their limited lifetime. Finally, gene therapy for in situ generation and delivery of bioscavengers is for the far future, but its proof of concept has been established.
Collapse
Affiliation(s)
- Florian Nachon
- Institut de Recherche Biomédicale des Armées, BP87, 38702 La Tronche Cédex, France.
| | | | | | | |
Collapse
|
48
|
Trovaslet M, Trapp M, Weik M, Nachon F, Masson P, Tehei M, Peters J. Relation between dynamics, activity and thermal stability within the cholinesterase family. Chem Biol Interact 2013; 203:14-8. [DOI: 10.1016/j.cbi.2012.08.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Revised: 07/30/2012] [Accepted: 08/02/2012] [Indexed: 11/17/2022]
|
49
|
Mrvova K, Obzerova L, Girard E, Krejci E, Hrabovska A. Monoclonal antibodies to mouse butyrylcholinesterase. Chem Biol Interact 2013; 203:348-53. [DOI: 10.1016/j.cbi.2012.10.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Revised: 09/24/2012] [Accepted: 10/12/2012] [Indexed: 10/27/2022]
|
50
|
Wandhammer M, de Koning M, van Grol M, Loiodice M, Saurel L, Noort D, Goeldner M, Nachon F. A step toward the reactivation of aged cholinesterases – Crystal structure of ligands binding to aged human butyrylcholinesterase. Chem Biol Interact 2013; 203:19-23. [DOI: 10.1016/j.cbi.2012.08.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Revised: 08/05/2012] [Accepted: 08/06/2012] [Indexed: 11/25/2022]
|