1
|
Codella R, Della Guardia L, Terruzzi I, Solini A, Folli F, Varoni EM, Carrassi A, Luzi L. Physical activity as a proxy to ameliorate inflammation in patients with type 2 diabetes and periodontal disease at high cardiovascular risk. Nutr Metab Cardiovasc Dis 2021; 31:2199-2209. [PMID: 34099361 DOI: 10.1016/j.numecd.2021.04.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 04/19/2021] [Accepted: 04/24/2021] [Indexed: 12/17/2022]
Abstract
While the beneficial impact of physical activity has been ascertained in a variety of pathological scenarios, including diabetes and low-grade systemic inflammation, its potential remains still putative for periodontal health. Periodontal disease has been associated with inflammatory systemic alterations, which share a common denominator with type 2 diabetes mellitus and cardiovascular disease. Physical exercise, along with nutritional counseling, is a cornerstone in the treatment and prevention of type 2 diabetes, also able to reduce the prevalence of periodontal disease and cardiovascular risk. In addition, considering the higher incidence of periodontitis in patients with type 2 diabetes compared to healthy controls, the fascinating research question would be whether physical activity could relieve the inflammatory pressure exerted by the combination of these two diseases. This multi-disciplinary viewpoint discusses available literature in order to argument the hypothesis of a "three-way relationship" linking diabetes, periodontitis, and physical activity.
Collapse
Affiliation(s)
- Roberto Codella
- Department of Biomedical Sciences for Health, Università Degli Studi di Milano, Milano, Italy; Department of Endocrinology, Nutrition and Metabolic Diseases, IRCCS MultiMedica, Milan, Italy
| | - Lucio Della Guardia
- Department of Biomedical Sciences for Health, Università Degli Studi di Milano, Milano, Italy
| | - Ileana Terruzzi
- Department of Biomedical Sciences for Health, Università Degli Studi di Milano, Milano, Italy; Department of Endocrinology, Nutrition and Metabolic Diseases, IRCCS MultiMedica, Milan, Italy
| | - Anna Solini
- Department of Surgical, Medical, Molecular and Critical Area Pathology, Università di Pisa, Pisa, Italy
| | - Franco Folli
- Endocrinology and Metabolism, Department of Health Science, Università Degli Studi di Milano, Milano, Italy
| | - Elena Maria Varoni
- Department of Biomedical, Surgical and Dental Sciences, Università degli Studi di Milano, Milano, Italy
| | - Antonio Carrassi
- Department of Biomedical, Surgical and Dental Sciences, Università degli Studi di Milano, Milano, Italy
| | - Livio Luzi
- Department of Biomedical Sciences for Health, Università Degli Studi di Milano, Milano, Italy; Department of Endocrinology, Nutrition and Metabolic Diseases, IRCCS MultiMedica, Milan, Italy.
| |
Collapse
|
2
|
Structure of polymerized type V pilin reveals assembly mechanism involving protease-mediated strand exchange. Nat Microbiol 2020; 5:830-837. [DOI: 10.1038/s41564-020-0705-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 03/09/2020] [Indexed: 01/07/2023]
|
3
|
Yang X, Pan Y, Xu X, Tong T, Yu S, Zhao Y, Lin L, Liu J, Zhang D, Li C. Sialidase Deficiency in Porphyromonas gingivalis Increases IL-12 Secretion in Stimulated Macrophages Through Regulation of CR3, IncRNA GAS5 and miR-21. Front Cell Infect Microbiol 2018; 8:100. [PMID: 29675399 PMCID: PMC5895773 DOI: 10.3389/fcimb.2018.00100] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 03/16/2018] [Indexed: 12/31/2022] Open
Abstract
Porphyromonas gingivalis (P. gingivalis) is a major periodontal pathogen that can induce an immune response leading to a destructive inflammatory process. During the inflammatory process, interleukin-12 (IL-12) is secreted, correlating with bacterial clearance by macrophages. Bacterial sialidase has recently been shown to influence the synthesis and modification of the macromolecules on its surface, and is associated with the interaction between bacteria and host cells. We have previously constructed a P. gingivalis sialidase gene mutant strain in P. gingivalis W83 (ΔPG0352) and found that ΔPG0352 showed less pathogenicity than the wild-type strain. In this study, U937-differentiated macrophages were stimulated by P. gingivalis W83, ΔPG0352, or PG0352 complemented strain (comΔPG0352). Transmission electron microscopy showed that P. gingivalis caused a loss of membrane integrity in macrophages and the intracellular bacteria were enclosed within endocytic vacuoles. The expression of both IL-12p35 and IL-12p40 genes and the levels of IL-12p70 were significantly higher in U937 stimulated by ΔPG0352 than in those with P. gingivalis W83 and comΔPG0352. In order to explain why ΔPG0352 induced more IL-12 in macrophages, immunofluorescence assays, PCR arrays, and gene silence or overexpression experiments were carried out. Immunofluorescence assays showed that ΔPG0352 induced lower expression of CR3 in macrophages. After CR3 was suppressed, there were no significant differences in the IL-12p70 levels between macrophages stimulated by P. gingivalis W83, ΔPG0352 or comΔPG0352. PCR array experiments showed that miR-21 and lncRNA GAS5 were differentially expressed between macrophages stimulated by P. gingivalis W83 and ΔPG0352, which had been identified by real-time PCR. The results of CR3 blocking and lncRNA GAS5 gene silence or overexpression showed that the difference in IL-12 levels between P. gingivalis W83 and ΔPG0352 groups was associated with CR3, lncRNA GAS5 and miR-21. Thus it can be concluded that the sialidase-deficient strain is more easily cleared by attenuating CR3 activation, reducing the inhibition of lncRNA GAS5, inducing less miR-21 and more IL-12 in macrophages. These results indicate that inhibiting the activity of sialidase in P. gingivalis will cause rapid clearing by macrophages.
Collapse
Affiliation(s)
- Xue Yang
- Department of Periodontics, School of Stomatology, China Medical University, Shenyang, China.,Shenyang Medical College, Shenyang, China
| | - Yaping Pan
- Department of Periodontics, School of Stomatology, China Medical University, Shenyang, China
| | - Xiaoyu Xu
- Department of Periodontics, School of Stomatology, China Medical University, Shenyang, China.,Department of Periodontics, Dalian Stomatology Hospital, Dalian Shi, China
| | - Tong Tong
- Department of Periodontics, School of Stomatology, China Medical University, Shenyang, China
| | - Shiwen Yu
- Department of Periodontics, School of Stomatology, China Medical University, Shenyang, China
| | - Yue Zhao
- Department of Periodontics, School of Stomatology, China Medical University, Shenyang, China
| | - Li Lin
- Department of Periodontics, School of Stomatology, China Medical University, Shenyang, China
| | - Jingbo Liu
- Department of Periodontics, School of Stomatology, China Medical University, Shenyang, China.,Liaoning Province Key Laboratory of Oral Diseases, Shenyang, China
| | - Dongmei Zhang
- Department of Periodontics, School of Stomatology, China Medical University, Shenyang, China.,Liaoning Province Translational Medicine Research Center of Oral Diseases, Shenyang, China
| | - Chen Li
- Department of Periodontics, School of Stomatology, China Medical University, Shenyang, China
| |
Collapse
|
4
|
Gmiterek A, Kłopot A, Wójtowicz H, Trindade SC, Olczak M, Olczak T. Immune response of macrophages induced by Porphyromonas gingivalis requires HmuY protein. Immunobiology 2016; 221:1382-1394. [DOI: 10.1016/j.imbio.2016.07.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 06/30/2016] [Accepted: 07/21/2016] [Indexed: 11/29/2022]
|
5
|
Taylor JJ, Preshaw PM, Lalla E. A review of the evidence for pathogenic mechanisms that may link periodontitis and diabetes. J Clin Periodontol 2016; 40 Suppl 14:S113-34. [PMID: 23627323 DOI: 10.1111/jcpe.12059] [Citation(s) in RCA: 145] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/14/2012] [Indexed: 12/16/2022]
Abstract
AIMS To review the evidence for the molecular and cellular processes that may potentially link periodontal disease and diabetes. The pathogenic roles of cytokines and metabolic molecules (e.g. glucose, lipids) are explored and the role of periodontal bacteria is also addressed. Paradigms for bidirectional relationships between periodontitis and diabetes are discussed and opportunities for elaborating these models are considered. METHODS Database searches were performed using MeSH terms, keywords, and title words. Studies were evaluated and summarized in a narrative review. RESULTS Periodontal microbiota appears unaltered by diabetes and there is little evidence that it may influence glycaemic control. Small-scale clinical studies and experiments in animal models suggest that IL-1β, TNF-α, IL-6, OPG and RANKL may mediate periodontitis in diabetes. The AGE-RAGE axis is likely an important pathway of tissue destruction and impaired repair in diabetes-associated periodontitis. A role for locally activated pro-inflammatory factors in the periodontium, which subsequently impact on diabetes, remains speculative. CONCLUSION There is substantial information on potential mechanistic pathways which support a close association between diabetes and periodontitis, but there is a real need for longitudinal clinical studies using larger patient groups, integrated with studies of animal models and cells/tissues in vitro.
Collapse
Affiliation(s)
- John J Taylor
- Centre for Oral Health Research and Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK.
| | | | | |
Collapse
|
6
|
Hasturk H, Kantarci A. Activation and resolution of periodontal inflammation and its systemic impact. Periodontol 2000 2015; 69:255-73. [PMID: 26252412 PMCID: PMC4530469 DOI: 10.1111/prd.12105] [Citation(s) in RCA: 121] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/02/2015] [Indexed: 02/06/2023]
Abstract
Inflammation is a highly organized event impacting upon organs, tissues and biological systems. Periodontal diseases are characterized by dysregulation or dysfunction of resolution pathways of inflammation that results in failure to heal and in a dominant chronic, progressive, destructive and predominantly unresolved inflammation. The biological consequences of inflammatory processes may be independent of the etiological agents, such as trauma, microbial organisms and stress. The impact of the inflammatory pathological process depends upon the tissues or organ system affected. Whilst mediators are similar, there is tissue specificity for the inflammatory events. It is plausible that inflammatory processes in one organ could directly lead to pathologies in another organ or tissue. Communication between distant parts of the body and their inflammatory status is also mediated by common signaling mechanisms mediated via cells and soluble mediators. This review focuses on periodontal inflammation, its systemic associations and advances in therapeutic approaches based on mediators acting through orchestration of natural pathways to resolution of inflammation. We also discuss a new treatment concept in which natural pathways of resolution of periodontal inflammation can be used to limit systemic inflammation and promote healing and regeneration.
Collapse
Affiliation(s)
- Hatice Hasturk
- The Forsyth Institute, Department of Applied Oral Sciences, Center for Periodontology, Cambridge, MA 02142, USA. Phone: 617-892-8499; Fax: 617-892-8505
| | - Alpdogan Kantarci
- The Forsyth Institute, Department of Applied Oral Sciences, Center for Periodontology, Cambridge, MA 02142, USA. Phone: 617-892-8530
| |
Collapse
|
7
|
Morandini AC, Ramos-Junior ES, Potempa J, Nguyen KA, Oliveira AC, Bellio M, Ojcius DM, Scharfstein J, Coutinho-Silva R. Porphyromonas gingivalis fimbriae dampen P2X7-dependent interleukin-1β secretion. J Innate Immun 2014; 6:831-45. [PMID: 24925032 DOI: 10.1159/000363338] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2014] [Accepted: 05/01/2014] [Indexed: 01/10/2023] Open
Abstract
Porphyromonas gingivalis is a major contributor to the pathogenesis of periodontitis, an infection-driven inflammatory disease that leads to bone destruction. This pathogen stimulates pro-interleukin (IL)-1β synthesis but not mature IL-1β secretion, unless the P2X7 receptor is activated by extracellular ATP (eATP). Here, we investigated the role of P. gingivalis fimbriae in eATP-induced IL-1β release. Bone marrow-derived macrophages (BMDMs) from wild-type (WT) or P2X7-deficient mice were infected with P. gingivalis (381) or isogenic fimbria-deficient (DPG3) strain with or without subsequent eATP stimulation. DPG3 induced higher IL-1β secretion after eATP stimulation compared to 381 in WT BMDMs, but not in P2X7-deficient cells. This mechanism was dependent on K(+) efflux and Ca(2+)-independent phospholipase A2 activity. Accordingly, non-fimbriated P. gingivalis failed to inhibit apoptosis via the eATP/P2X7 pathway. Furthermore, P. gingivalis-driven stimulation of IL-1β was Toll-like receptor 2 and MyD88 dependent, and not associated with fimbria expression. Fimbria-dependent down-modulation of IL-1β was selective, as levels of other cytokines remained unaffected by P2X7 deficiency. Confocal microscopy demonstrated the presence of discrete P2X7 expression in the absence of P. gingivalis stimulation, which was enhanced by 381-stimulated cells. Notably, DPG3-infected macrophages revealed a distinct pattern of P2X7 receptor expression with a marked focus formation. Collectively, these data demonstrate that eATP-induced IL-1β secretion is impaired by P. gingivalis fimbriae in a P2X7-dependent manner.
Collapse
Affiliation(s)
- Ana Carolina Morandini
- Programa de Imunobiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Yang J, Wu J, Liu Y, Huang J, Lu Z, Xie L, Sun W, Ji Y. Porphyromonas gingivalis infection reduces regulatory T cells in infected atherosclerosis patients. PLoS One 2014; 9:e86599. [PMID: 24466164 PMCID: PMC3900568 DOI: 10.1371/journal.pone.0086599] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2013] [Accepted: 12/11/2013] [Indexed: 12/22/2022] Open
Abstract
Increasing evidence has shown periodontal pathogen Porphyromonas gingivalis (P.gingivalis) infection contributes to atherosclerosis (AS) progression. P.gingivalis fimbriae act as an important virulence factor in AS. Regulatory T cells (Tregs) may play a crucial role in autoimmune response during this process. However, whether P.gingivalis infection is associated with Tregs dysregulation during AS is still unknown and the prevalence of different P.gingivalis FimA genotypes during this process is unclear. Here we analyzed the distribution of Tregs and in P.gingivalis-infected atherosclerotic patients to reveal the relationship between P.gingivalis infection and Tregs reduction/dysfunction and to elucidate their role in periodontitis-AS interaction. FimA genotype was also examined to determine the prevalence of fimbriae. Our results showed that P.gingivalis infection reduced Tregs in atherosclerotic patients compared with non-atherosclerotic patients and health controls. Concentration of TGF-β1, which plays an important role in the development of Tregs, also decreased in P.gingivalis infected patients. Furthermore, type II FimA seems to show higher prevalence than the other five detected types. The population of Tregs further decreased in patients with type II FimA compared with the other types. P.gingivlias FimA genotype II was the dominant type associated with decreased Treg population. These results indicate that P.gingivalis infection may be associated with Tregs dysregulation in AS; type II FimA may be a predominant genotype in this process.
Collapse
Affiliation(s)
- Jie Yang
- Department of Periodontology, Hospital of Stomatology, Medical School, Nanjing University, Nanjing, Jiangsu Province, China
- Central Laboratory of Stomatology, Hospital of Stomatology, Medical School, Nanjing University, Nanjing, Jiangsu Province, China
| | - Juan Wu
- Department of Periodontology, Hospital of Stomatology, Medical School, Nanjing University, Nanjing, Jiangsu Province, China
| | - Yu Liu
- Department of Periodontology, Hospital of Stomatology, Medical School, Nanjing University, Nanjing, Jiangsu Province, China
| | - Jin Huang
- Department of Cardiology, Nanjing Chest Hospital, Nanjing, Jiangsu Province, China
| | - Zhipin Lu
- Department of Cardiology, Nanjing Chest Hospital, Nanjing, Jiangsu Province, China
| | - Liping Xie
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Atherosclerosis Research Centre, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Weibin Sun
- Department of Periodontology, Hospital of Stomatology, Medical School, Nanjing University, Nanjing, Jiangsu Province, China
- * E-mail: (WS); (YJ)
| | - Yong Ji
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Atherosclerosis Research Centre, Nanjing Medical University, Nanjing, Jiangsu Province, China
- * E-mail: (WS); (YJ)
| |
Collapse
|
9
|
Taylor JJ, Preshaw PM, Lalla E. A review of the evidence for pathogenic mechanisms that may link periodontitis and diabetes. J Periodontol 2013; 84:S113-34. [DOI: 10.1902/jop.2013.134005] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
10
|
The Haemophilus influenzae Sap transporter mediates bacterium-epithelial cell homeostasis. Infect Immun 2012; 81:43-54. [PMID: 23071138 DOI: 10.1128/iai.00942-12] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Nontypeable Haemophilus influenzae (NTHI) is a commensal inhabitant of the human nasopharynx and a causative agent of otitis media and other diseases of the upper and lower human airway. During colonization within the host, NTHI must acquire essential nutrients and evade immune attack. We previously demonstrated that the NTHI Sap transporter, an inner membrane protein complex, mediates resistance to antimicrobial peptides and is required for heme homeostasis. We hypothesized that Sap transporter functions are critical for NTHI interaction with the host epithelium and establishment of colonization. Thus, we cocultured the parent or the sapA mutant on polarized epithelial cells grown at an air-liquid interface, as a physiological model of NTHI colonization, to determine the contribution of the Sap transporter to bacterium-host cell interactions. Although SapA-deficient NTHI was less adherent to epithelial cells, we observed a significant increase in invasive bacteria compared to the parent strain. Upon internalization, the sapA mutant appeared free in the cytoplasm, whereas the parent strain was primarily found in endosomes, indicating differential subcellular trafficking. Additionally, we observed reduced inflammatory cytokine production by the epithelium in response to the sapA mutant strain compared to the parental strain. Furthermore, chinchilla middle ears challenged with the sapA mutant demonstrated a decrease in disease severity compared to ears challenged with the parental strain. Collectively, our data suggest that NTHI senses host environmental cues via Sap transporter function to mediate interaction with host epithelial cells. Epithelial cell invasion and modulation of host inflammatory cytokine responses may promote NTHI colonization and access to essential nutrients.
Collapse
|
11
|
Sánchez-Hernández PE, Zamora-Perez AL, Fuentes-Lerma M, Robles-Gómez C, Mariaud-Schmidt RP, Guerrero-Velázquez C. IL-12 and IL-18 levels in serum and gingival tissue in aggressive and chronic periodontitis. Oral Dis 2011; 17:522-9. [DOI: 10.1111/j.1601-0825.2011.01798.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
12
|
Grenier D, Tanabe SI. Porphyromonas gingivalis gingipains trigger a proinflammatory response in human monocyte-derived macrophages through the p38α mitogen-activated protein kinase signal transduction pathway. Toxins (Basel) 2010; 2:341-52. [PMID: 22069588 PMCID: PMC3153194 DOI: 10.3390/toxins2030341] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2010] [Revised: 03/04/2010] [Accepted: 03/08/2010] [Indexed: 11/16/2022] Open
Abstract
Porphyromonas gingivalis, the major etiologic agent of chronic periodontitis, produces a broad spectrum of virulence factors, including Arg- and Lys-gingipain cysteine proteinases. In this study, we investigated the capacity of P. gingivalis gingipains to trigger a proinflammatory response in human monocyte-derived macrophages. Both Arg- and Lys-gingipain preparations induced the secretion of TNF-α and IL-8 by macrophages. Stimulation of macrophages with Arg-gingipain A/B preparation at the highest concentration was associated with lower amounts of cytokines detected, a phenomenon likely related to proteolytic degradation. The inflammatory response induced by gingipains was not dependent of their catalytic activity since heat-inactivated preparations were still effective. Stimulating macrophages with gingipain preparations was associated with increased levels of phosphorylated p38α MAPK suggesting its involvement in cell activation. In conclusion, our study brought clear evidence that P. gingivalis Arg- and Lys-gingipains may contribute to the host inflammatory response, a critical factor in periodontitis-associated tissue destruction.
Collapse
Affiliation(s)
- Daniel Grenier
- Groupe de Recherche en Écologie Buccale, Faculté de Médecine Dentaire, Université Laval, Quebec City, Quebec.
| | | |
Collapse
|
13
|
Pollreisz A, Huang Y, Roth GA, Cheng B, Kebschull M, Papapanou PN, Schmidt AM, Lalla E. Enhanced monocyte migration and pro-inflammatory cytokine production by Porphyromonas gingivalis infection. J Periodontal Res 2009; 45:239-45. [PMID: 19778327 DOI: 10.1111/j.1600-0765.2009.01225.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND AND OBJECTIVE Porphyromonas gingivalis, a major periodontal pathogen, has been reported to be involved in atherogenesis. In order to further understand this pathogen's link with systemic inflammation and vascular disease, we investigated its influence on murine monocytes and macrophages from three different sources. MATERIAL AND METHODS Concanavalin A-elicited peritoneal macrophages, peripheral blood monocyte-derived macrophages and WEHI 274.1 monocytes were infected with either P. gingivalis 381 or its non-invasive fimbriae-deficient mutant, DPG3. RESULTS Infection with P. gingivalis 381 markedly induced monocyte migration and significantly enhanced production of the pro-inflammatory cytokines, tumor necrosis factor-alpha and interleukin-6. Consistent with a role for this pathogen's major fimbriae and/or its invasive capacity, infection with DPG3 had a minimal effect on both monocyte attraction and pro-inflammatory cytokine production. CONCLUSION Since monocyte recruitment and activation are important steps in the development of vascular inflammation and atherosclerosis, these results suggest that P. gingivalis infection may be involved in these processes.
Collapse
Affiliation(s)
- A Pollreisz
- Division of Periodontics, Section of Oral and Diagnostic Sciences, College of Dental Medicine, Columbia University, New York, NY 10032, USA
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Teixeira SRL, Mattarazo F, Feres M, Figueiredo LC, de Faveri M, Simionato MRL, Mayer MPA. Quantification of Porphyromonas gingivalis and fimA genotypes in smoker chronic periodontitis. J Clin Periodontol 2009; 36:482-7. [PMID: 19508247 DOI: 10.1111/j.1600-051x.2009.01411.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AIM Porphyromonas gingivalis fimA genotypes were associated with virulence factors in vitro, but little evidence of an association with disease severity were shown in humans. We aimed to correlate levels of P. gingivalis fimA genotypes II and IV and probing depth in smoker-chronic periodontitis subjects. MATERIAL AND METHODS One hundred and sixty eight subgingival samples of 20 smokers non-treated chronic periodontitis subjects obtained from sites with different probing depths [shallow (< or =3 mm), intermediate (4-6 mm), deep (> or =7 mm)] were analysed by real-time PCR for P. gingivalis and genotypes fimA II and IV. RESULTS P. gingivalis and fimA IV were detected in all subjects, whereas fimA II was detected in 18 subjects (90%). One hundred and fifty two sites (90.5%) harboured P. gingivalis. Genotypes II and IV were detected in 28% and 69.6% of sites, respectively. The proportions of genotypes II and IV in relation to P. gingivalis levels were similar in shallow, intermediate and deep probing sites (2.4%, 4.6%, 1.4% for genotype II and 15.5%, 17.7%, 11.7% for genotype IV, respectively), indicating that other non-tested genotypes were more abundant. Increased levels of genotype IV were associated with increasing probing depth, but not of genotype II. CONCLUSIONS The data suggested an association between P. gingivalis genotype fimA IV and disease severity in smoker-chronic periodontitis subjects.
Collapse
Affiliation(s)
- Sílvia R L Teixeira
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-900, Brazil
| | | | | | | | | | | | | |
Collapse
|
15
|
Makiura N, Ojima M, Kou Y, Furuta N, Okahashi N, Shizukuishi S, Amano A. Relationship of Porphyromonas gingivalis with glycemic level in patients with type 2 diabetes following periodontal treatment. ACTA ACUST UNITED AC 2008; 23:348-51. [PMID: 18582336 DOI: 10.1111/j.1399-302x.2007.00426.x] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
INTRODUCTION The aim of this study was to assess the relationship between serum glycemic levels and subgingival microbial profile alteration following periodontal treatment in patients with type 2 diabetes mellitus. METHODS We studied 30 periodontitis patients with type 2 diabetes mellitus who received full-mouth subgingival debridement by analyzing their subgingival microbial profiles using a polymerase chain reaction method at baseline and various time-points for 12 months following treatment. Concurrently, probing pocket depth, bleeding on probing, and metabolic parameters, including glycated hemoglobin A1c (HbA1c), blood sugar level, C-reactive proteins, total cholesterol, triglyceride, and high-density and low-density lipoprotein cholesterol, were recorded. RESULTS Periodontal conditions were significantly improved after treatment, and the occurrence rates of periodontal bacterial species, including Porphyromonas gingivalis, Tannerella forsythensis, Treponema denticola, and Prevotella intermedia, were also reduced. Interestingly, P. gingivalis was detected more frequently in subjects with increased HbA1c values after periodontal treatment than in those patients with decreased HbA1c values. Furthermore, P. gingivalis with type II fimbriae was detected only in HbA1c-increased subjects, while improvements in HbA1c values were observed only in subjects without type II clones. CONCLUSIONS These results suggest that glycemic level in diabetes is affected by the persistence of P. gingivalis, especially clones with type II fimbriae, in periodontal pockets.
Collapse
Affiliation(s)
- N Makiura
- Department of Oral Frontier Biology, Osaka University Graduate School of Dentistry, Suita-Osaka 565-0871, Japan
| | | | | | | | | | | | | |
Collapse
|
16
|
Rajam G, Phillips DJ, White E, Anderton J, Hooper CW, Sampson JS, Carlone GM, Ades EW, Romero-Steiner S. A functional epitope of the pneumococcal surface adhesin A activates nasopharyngeal cells and increases bacterial internalization. Microb Pathog 2008; 44:186-96. [DOI: 10.1016/j.micpath.2007.09.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/24/2007] [Indexed: 10/22/2022]
|
17
|
Yamazaki K, Honda T, Domon H, Okui T, Kajita K, Amanuma R, Kudoh C, Takashiba S, Kokeguchi S, Nishimura F, Kodama M, Aizawa Y, Oda H. Relationship of periodontal infection to serum antibody levels to periodontopathic bacteria and inflammatory markers in periodontitis patients with coronary heart disease. Clin Exp Immunol 2007; 149:445-52. [PMID: 17645769 PMCID: PMC2219327 DOI: 10.1111/j.1365-2249.2007.03450.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Several reports have demonstrated a possible association of periodontal infections with coronary heart disease (CHD) by elevated antibody titre to periodontopathic bacteria in CHD patients compared with non-diseased controls. Although each periodontopathic bacterium may vary in virulence for periodontitis and atherosclerosis, antibody response to multiple bacteria in CHD patients has not been understood fully. Therefore, serum levels of antibody to 12 periodontopathic bacteria together with other atherosclerotic risk markers were compared among 51 patients with CHD, 55 patients with moderate to severe chronic periodontitis and 37 healthy individuals. The antibody response was the most prevalent for Porphyromonas gingivalis, a major causative organism, in CHD as well as periodontitis patients. However, antibody positivity was different between CHD and periodontitis if the response was analysed for two different strains of P. gingivalis, namely FDC381 and Su63. While periodontitis patients were positive for both P. gingivalis FDC381 and Su63, a high frequency of antibody positivity for P. gingivalis Su63 but not for FDC381 was observed in CHD patients. The results indicate that the presence of particular periodontopathic bacteria with high virulence may affect atherogenesis. Identifying the virulence factors of P. gingivalis Su63 may gain insight into the new therapeutic modality for infection-induced deterioration of atherosclerosis.
Collapse
Affiliation(s)
- K Yamazaki
- Laboratory of Periodontology and Immunology, Department of Oral Health and Welfare, Niigata University Faculty of Dentistry, Niigata, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Hajishengallis G. Peptide Mapping of a Functionally Versatile Fimbrial Adhesin from Porphyromonas gingivalis. Int J Pept Res Ther 2007. [DOI: 10.1007/s10989-007-9084-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
19
|
Bostanci N, Allaker R, Johansson U, Rangarajan M, Curtis MA, Hughes FJ, McKay IJ. Interleukin-1? stimulation in monocytes by periodontal bacteria: antagonistic effects of Porphyromonas gingivalis. ACTA ACUST UNITED AC 2007; 22:52-60. [PMID: 17241171 DOI: 10.1111/j.1399-302x.2007.00322.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Periodontal pathogenic bacteria are associated with elevated levels of interleukin-1alpha (IL-1alpha) but it is unclear if all species can induce cytokine production equally. Porphyromonas gingivalis may be able antagonize IL-1alpha induced by other species through the activity of its proteases or lipopolysaccharide (LPS). Monomac-6 cells and primary human monocytes were treated with culture supernatants from Porphyromonas gingivalis, Fusobacterium nucleatum, Campylobacter rectus, Actinobacillus actinomycetemcomitans, Prevotella intermedius, Veillonella atypical and Prevotella nigrescens. IL-1alpha protein levels were measured after 6 h of incubation. In addition, monocytes were co-stimulated with supernatants from P. gingivalis and other bacteria. The role of P. gingivalis proteases was tested using Arg-X and Lys-X mutant strains. The role of LPS was investigated using purified P. gingivalis LPS and polymixin depletion. All species tested induced significant IL-1alpha production, but P. gingivalis was the weakest. Co-stimulation of monocytes with P. gingivalis antagonized the ability of other bacterial species to induce IL-1alpha production. This effect was at its greatest with C. rectus (resulting in a 70% reduction). Gingipain mutant strains and chemical inhibition of protease activity did not reduce antagonistic activity. However, 100 ng/ml of P. gingivalis LPS can reproduce the antagonistic activity of P. gingivalis culture supernatants. Periodontitis-associated bacterial species stimulate IL-1alpha production by monocytes. P. gingivalis can antagonize this effect, and its LPS appears to be the crucial component. This study highlights the importance of mixed infections in the pathogenesis of periodontal disease because reduction of pro-inflammatory cytokine levels may impair the ability of the host to tackle infection.
Collapse
Affiliation(s)
- N Bostanci
- Centre for Adult Oral Health, Institute of Dentistry, Barts and The London School of Medicine and Dentistry, London, UK
| | | | | | | | | | | | | |
Collapse
|
20
|
Lin X, Wu J, Xie H. Porphyromonas gingivalis minor fimbriae are required for cell-cell interactions. Infect Immun 2006; 74:6011-5. [PMID: 16988281 PMCID: PMC1594877 DOI: 10.1128/iai.00797-06] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Two distinctive types of fimbriae have been identified in Porphyromonas gingivalis. In this report, we demonstrate that minor fimbriae are involved in P. gingivalis autoaggregation and colonization. A mutant with a deficiency in minor fimbriae can bind to a saliva-coated surface but does not form microcolonies as the wild-type strain does.
Collapse
Affiliation(s)
- Xinghua Lin
- School of Dentistry, Meharry Medical College, Nashville, TN 37208, USA
| | | | | |
Collapse
|
21
|
Forner L, Nielsen CH, Bendtzen K, Larsen T, Holmstrup P. Increased plasma levels of IL-6 in bacteremic periodontis patients after scaling. J Clin Periodontol 2006; 33:724-9. [PMID: 16901299 DOI: 10.1111/j.1600-051x.2006.00964.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Bacteremia frequently occurs after dental treatment. Periodontal inflammation may influence the incidence, magnitude and duration of bacteremia. The presence of circulating oral bacteria or bacterial components may induce cytokine synthesis in blood cells, which may contribute to the development or exacerbation of atherosclerosis. The present study tested the hypothesis that bacteremia occurring after scaling in periodontitis patients results in altered plasma levels of cytokines. Twenty periodontitis patients were subjected to scaling. Blood samples at baseline and at 0.5, 10 and 30 minutes postscaling were examined for bacteremia whereas baseline and eight-hour postscaling blood samples were examined for the levels of IL-1beta, TNF-alpha, IL-6, IL-8, IL-10 and IL-12p70. IL-6 levels were significantly increased eight hours after scaling, while IL-8 was significantly decreased. No systematic changes occurred in the levels of IL-1beta, TNF-alpha, IL-10 and IL-2p70. IL-6 levels may be increased while IL-8 may be decreased due to scaling, which may have implications for general health.
Collapse
|
22
|
Urnowey S, Ansai T, Bitko V, Nakayama K, Takehara T, Barik S. Temporal activation of anti- and pro-apoptotic factors in human gingival fibroblasts infected with the periodontal pathogen, Porphyromonas gingivalis: potential role of bacterial proteases in host signalling. BMC Microbiol 2006; 6:26. [PMID: 16524480 PMCID: PMC1431544 DOI: 10.1186/1471-2180-6-26] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2005] [Accepted: 03/08/2006] [Indexed: 01/07/2023] Open
Abstract
Background Porphyromonas gingivalis is the foremost oral pathogen of adult periodontitis in humans. However, the mechanisms of bacterial invasion and the resultant destruction of the gingival tissue remain largely undefined. Results We report host-P. gingivalis interactions in primary human gingival fibroblast (HGF) cells. Quantitative immunostaining revealed the need for a high multiplicity of infection for optimal infection. Early in infection (2–12 h), P. gingivalis activated the proinflammatory transcription factor NF-kappa B, partly via the PI3 kinase/AKT pathway. This was accompanied by the induction of cellular anti-apoptotic genes, including Bfl-1, Boo, Bcl-XL, Bcl2, Mcl-1, Bcl-w and Survivin. Late in infection (24–36 h) the anti-apoptotic genes largely shut down and the pro-apoptotic genes, including Nip3, Hrk, Bak, Bik, Bok, Bax, Bad, Bim and Moap-1, were activated. Apoptosis was characterized by nuclear DNA degradation and activation of caspases-3, -6, -7 and -9 via the intrinsic mitochondrial pathway. Use of inhibitors revealed an anti-apoptotic function of NF-kappa B and PI3 kinase in P. gingivalis-infected HGF cells. Use of a triple protease mutant P. gingivalis lacking three major gingipains (rgpA rgpB kgp) suggested a role of some or all these proteases in myriad aspects of bacteria-gingival interaction. Conclusion The pathology of the gingival fibroblast in P. gingivalis infection is affected by a temporal shift from cellular survival response to apoptosis, regulated by a number of anti- and pro-apoptotic molecules. The gingipain group of proteases affects bacteria-host interactions and may directly promote apoptosis by intracellular proteolytic activation of caspase-3.
Collapse
Affiliation(s)
- Sonya Urnowey
- Department of Biochemistry and Molecular Biology, University of South Alabama, College of Medicine, 307 University Blvd., Mobile, Alabama 36688-0002, USA
| | - Toshihiro Ansai
- Department of Preventive Dentistry, Kyushu Dental College, Kitakyushu 803-8580, Japan
| | - Vira Bitko
- Department of Biochemistry and Molecular Biology, University of South Alabama, College of Medicine, 307 University Blvd., Mobile, Alabama 36688-0002, USA
| | - Koji Nakayama
- Division of Microbiology and Oral Infection, Nagasaki University Graduate School of Biomedical Sciences, Sakamoto 1-7-1, Nagasaki 852-8588, Japan
| | - Tadamichi Takehara
- Department of Preventive Dentistry, Kyushu Dental College, Kitakyushu 803-8580, Japan
| | - Sailen Barik
- Department of Biochemistry and Molecular Biology, University of South Alabama, College of Medicine, 307 University Blvd., Mobile, Alabama 36688-0002, USA
| |
Collapse
|
23
|
Affiliation(s)
- Zhimin Feng
- Department of Biological Sciences, School of Dental Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | | |
Collapse
|
24
|
Bodet C, Chandad F, Grenier D. Porphyromonas gingivalis-induced inflammatory mediator profile in an ex vivo human whole blood model. Clin Exp Immunol 2006; 143:50-7. [PMID: 16367933 PMCID: PMC1809557 DOI: 10.1111/j.1365-2249.2005.02956.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Periodontitis is characterized by an accumulation of inflammatory cells in periodontal tissue and subgingival sites. Leukocytes play a major role in the host response to Porphyromonas gingivalis, a major aetiological agent of chronic periodontitis. Secretion of high levels of inflammatory mediators, including cytokines and prostaglandins, by leucocytes is believed to contribute to periodontal tissue destruction. The aim of this study was to investigate the inflammatory response of an ex vivo whole blood model to P. gingivalis stimulation. The production of interleukin-1 beta (IL-1beta), IL-4, IL-5, IL-6, IL-8, IL-10, IL-12p70, IL-13, tumour necrosis factor alpha (TNF-alpha), interferon gamma (IFN-gamma), IFN-gamma-inducible protein 10 (IP-10), monocyte chemoattractant protein-1 (MCP-1), Regulated on Activation Normal T cell Expressed and Secreted (RANTES) and prostaglandin E2 (PGE2) were quantified by enzyme-linked immunosorbent assays. P. gingivalis induced the secretion of the pro-inflammatory cytokines IL-1beta, TNF-alpha, IL-6 and IFN-gamma, the chemokines IL-8, RANTES and MCP-1 and the inflammatory mediator PGE2 in an ex vivo human whole blood model. The secretion levels were dependent on the strain and the infectious dose used. While the mediator profiles were comparable between six healthy subjects, a high interindividual variability in the levels of secreted mediators was observed. This study supports the view that P. gingivalis, by inducing high levels of inflammatory mediators from a mixed leucocyte population, can contribute to the progression of periodontitis.
Collapse
Affiliation(s)
- C Bodet
- Groupe de Recherche en Ecologie Buccale, Faculté de Médecine Dentaire, Université Laval, Quebec City, Quebec, Canada
| | | | | |
Collapse
|
25
|
Hall LMC, Fawell SC, Shi X, Faray-Kele MC, Aduse-Opoku J, Whiley RA, Curtis MA. Sequence diversity and antigenic variation at the rag locus of Porphyromonas gingivalis. Infect Immun 2005; 73:4253-62. [PMID: 15972517 PMCID: PMC1168617 DOI: 10.1128/iai.73.7.4253-4262.2005] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The rag locus of Porphyromonas gingivalis W50 encodes RagA, a predicted tonB-dependent receptor protein, and RagB, a lipoprotein that constitutes an immunodominant outer membrane antigen. The low G+C content of the locus, an association with mobility elements, and an apparent restricted distribution in the species suggested that the locus had arisen by horizontal gene transfer. In the present study, we have demonstrated that there are four divergent alleles of the rag locus. The original rag allele found in W50 was renamed rag-1, while three novel alleles, rag-2 to rag-4, were found in isolates lacking rag-1. The three novel alleles encoded variants of RagA with 63 to 71% amino acid identity to RagA1 and each other and variants of RagB with 43 to 56% amino acid identity. The RagA/B proteins have homology to numerous Bacteroides proteins, including SusC/D, implicated in polysaccharide uptake. Monoclonal and polyclonal antibodies raised against RagB1 of P. gingivalis W50 did not cross-react with proteins from isolates carrying different alleles. In a laboratory collection of 168 isolates, 26% carried rag-1, 36% carried rag-2, 25% carried rag-3, and 14% carried rag-4 (including the type strain, ATCC 33277). Restriction profiles of the locus in different isolates demonstrated polymorphism within each allele, some of which is accounted for by the presence or absence of insertion sequence elements. By reference to a previously published study on virulence in a mouse model (M. L. Laine and A. J. van Winkelhoff, Oral Microbiol. Immunol. 13:322-325, 1998), isolates that caused serious disease in mice were significantly more likely to carry rag-1 than other rag alleles.
Collapse
Affiliation(s)
- Lucinda M C Hall
- Centre for Infectious Disease, Barts and The London School of Medicine and Dentistry, Queen Mary, University of London, Turner Street, London E1 2AD, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
26
|
Tamura K, Nakano K, Nomura R, Miyake S, Nakagawa I, Amano A, Ooshima T. Distribution ofPorphyromonas gingivalis fimAGenotypes in Japanese Children and Adolescents. J Periodontol 2005; 76:674-9. [PMID: 15898925 DOI: 10.1902/jop.2005.76.5.674] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Porphyromonas gingivalis is considered to be one of the most important pathogens in periodontal disease and its fimA genes have been classified into six variants (types I through V and Ib). A majority of the P. gingivalis organisms isolated from periodontitis patients are type II, followed by type IV, while type I is prevalent in healthy adults. METHODS A total of 650 saliva samples were taken from 464 children (3 to 18 years of age), who visited Osaka University Dental Hospital. Genomic DNA was extracted from each sample and analyzed using a polymerase chain reaction (PCR) method with P. gingivalis-specific primers, followed by an additional PCR assay to determine the fimA genotypes for P. gingivalis- positive subjects. RESULTS Fifteen (3.23%) of the subjects were P. gingivalis-positive and none of those samples showed a positive reaction to the type II fimA-specific primers, while four, one, and two subjects were shown to be positive for the type I, Ib, and III genotypes, respectively. In addition, the type IV genotype was detected in three subjects in the older age group. CONCLUSIONS Our findings suggest that a limited number of children harbor P. gingivalis, and that the distribution of type II and IV fimA genotypes is extremely low. Further, some adolescents were found to possess the type IV fimA genotype which has been shown to be possibly related to adult periodontitis, in contrast to types I, III, and V.
Collapse
Affiliation(s)
- Kiyoko Tamura
- Department of Pediatric Dentistry, Osaka University Graduate School of Dentistry, Osaka, Japan
| | | | | | | | | | | | | |
Collapse
|
27
|
Lee SH, Kim KK, Choi BK. Upregulation of intercellular adhesion molecule 1 and proinflammatory cytokines by the major surface proteins of Treponema maltophilum and Treponema lecithinolyticum, the phylogenetic group IV oral spirochetes associated with periodontitis and endodontic infections. Infect Immun 2005; 73:268-76. [PMID: 15618163 PMCID: PMC538977 DOI: 10.1128/iai.73.1.268-276.2005] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2004] [Revised: 08/13/2004] [Accepted: 09/27/2004] [Indexed: 11/20/2022] Open
Abstract
Treponema maltophilum and Treponema lecithinolyticum belong to the group IV oral spirochetes and are associated with endodontic infections, as well as periodontitis. Recently, the genes encoding the major surface proteins (Msps) of these bacteria (MspA and MspTL, respectively) were cloned and sequenced. The amino acid sequences of these proteins showed significant similarity. In this study we analyzed the functional role of these homologous proteins in human monocytic THP-1 cells and primary cultured periodontal ligament (PDL) cells using recombinant proteins. The complete genes encoding MspA and MspTL without the signal sequence were cloned into Escherichia coli by using the expression vector pQE-30. Fusion proteins tagged with N-terminal hexahistidine (recombinant MspA [rMspA] and rMspTL) were obtained, and any possible contamination of the recombinant proteins with E. coli endotoxin was removed by using polymyxin B-agarose. Flow cytometry showed that rMspA and rMspTL upregulated the expression of intercellular adhesion molecule 1 (ICAM-1) in both THP-1 and PDL cells. Expression of proinflammatory cytokines, such as interleukin-6 (IL-6) and IL-8, was also induced significantly in both cell types by the Msps, as determined by reverse transcription-PCR and an enzyme-linked immunosorbent assay, whereas IL-1beta synthesis could be detected only in the THP-1 cells. The upregulation of ICAM-1, IL-6, and IL-8 was completely inhibited by pretreating the cells with an NF-kappaB activation inhibitor, l-1-tosylamido-2-phenylethyl chloromethyl ketone. This suggests involvement of NF-kappaB activation. The increased ICAM-1 and IL-8 expression in the THP-1 cells obtained with rMsps was not inhibited in the presence of the IL-1 receptor antagonist (IL-1ra), a natural inhibitor of IL-1. Our results show that the Msps of the group IV oral spirochetes may play an important role in amplifying the local immune response by continuous inflammatory cell recruitment and retention at an infection site by stimulation of expression of ICAM-1 and proinflammatory cytokines.
Collapse
Affiliation(s)
- Sung-Hoon Lee
- Department of Oromaxillofacial Infection and Immunity, College of Dentistry, Seoul National University, 28 Yongon-Dong, Chongno-Gu, Seoul 110-749, Republic of Korea
| | | | | |
Collapse
|
28
|
Oshikawa M, Sugano N, Koshi R, Ikeda K, Ito K. Differential gene induction in macrophage-like human cells by two types of Porphyromonas gingivalis: a microarray study. J Oral Sci 2004; 46:9-14. [PMID: 15141718 DOI: 10.2334/josnusd.46.9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Several studies have provided clinical evidence that FimA clonal variation may contribute to the periodontopathogenicity of Porphyromonas gingivalis (P.g.). We studied the gene expression profiling of the macrophage-like human cell line U937 after infection of two types of P.g. (fimA type I; Pg-I and fimA type II; Pg-II) using microarray. Of 1088 genes examined, 394 genes were detectable. Bioinformatics algorithms were used to analyze the detectable genes. Hierarchical clustering analysis showed that gene expression patterns of Pg-II and the control (no infection) were grouped together. K-means clustering grouped 79 genes into Pg-II dominance and 88 genes into Pg-I dominance. A large number of genes related to cell signaling, extracellular communication proteins, cell receptors (by ligands), protein turnover and cell adhesion receptors/proteins were grouped into clusters of Pg-I dominance. Our results indicate that compared with Pg-I, Pg-II induces a low host response as measured by its weak induction of gene expression.
Collapse
Affiliation(s)
- Maiko Oshikawa
- Nihon University Graduate School of Dentistry, Tokyo, Japan
| | | | | | | | | |
Collapse
|