1
|
Hermanson G, Arnal FAM, Szczygielski T, Evers SW. A systematic comparative description of extant turtle humeri, with comments on humerus disparity and evolution based on fossil comparisons. Anat Rec (Hoboken) 2024; 307:3437-3505. [PMID: 38716962 DOI: 10.1002/ar.25450] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/25/2024] [Accepted: 03/28/2024] [Indexed: 10/09/2024]
Abstract
The humerus is central for locomotion in turtles as quadrupedal animals. Osteological variation across testudine clades remains poorly documented. Here, we systematically describe the humerus anatomy for all major extant turtle clades based on 38 species representing the phylogenetic and ecological diversity of crown turtles. Three Late Triassic species of shelled stem turtles (Testudindata) are included to establish the plesiomorphic humerus morphology. Our work is based on 3D models, establishing a publicly available digital database. Previously defined terms for anatomical sides of the humerus (e.g., dorsal, ventral) are often not aligned with the respective body sides in turtles and other quadrupedal animals with sprawling gait. We propose alternative anatomical directional terms to simplify communication: radial and ulnar (the sides articulating with the radius/ulna), capitular (the side bearing the humeral head), and intertubercular (opposite to capitular surface). Turtle humeri show low morphological variation with exceptions concentrated in locomotory specialists. We propose 15 discrete characters to summarize osteological variation for future phylogenetic studies. Disparity analyses comparing non-shelled and shelled turtles indicate that the presence of the shell constrains humerus variation. Flippered aquatic turtles are released from this constraint and significantly increase overall disparity. Ontogenetic changes of turtle humeri are related to increased ossification and pronunciation of the proximal processes, the distal articulation areas, and the closure of the ectepicondylar groove to a foramen. Some turtle species retain juvenile features into adulthood and provide evidence for paedomorphic evolution. We review major changes of turtle humerus morphology throughout the evolution of its stem group.
Collapse
Affiliation(s)
| | - Fernando A M Arnal
- The Milner Centre for Evolution, Department of Life Sciences, University of Bath, Bath, UK
| | | | - Serjoscha W Evers
- Department of Geosciences, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
2
|
Eravci Yalin E, Gündemir O, Günay E, Vatansever Çelik EC, Duro S, Szara T, Blagojevic M, Sönmez B, Spataru MC. Carapace Morphology Variations in Captive Tortoises: Insights from Three-Dimensional Analysis. Animals (Basel) 2024; 14:2664. [PMID: 39335254 PMCID: PMC11428744 DOI: 10.3390/ani14182664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/11/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024] Open
Abstract
The carapace morphology of tortoises is a crucial characteristic used for species identification, with features such as shell shape, roughness, and color patterns varying among species. Understanding this morphological diversity is valuable not only for taxonomic classification but also for more specialized clinical approaches. This study investigated the morphological differences in the shells of Leopard tortoises (Stigmochelys pardalis), African spurred tortoises (Centrochelys sulcata), and Greek tortoises (spur-thighed tortoises; Testudo graeca) raised in captivity. Using 3D scanners, the carapaces were modeled, and a 3D geometric morphometric method was employed to analyze shape variations and dimensional features, with landmarks applied automatically. Among the species studied, African spurred tortoises had the largest carapace size. Principal component analysis (PCA) identified PC1 and PC3 as critical factors in distinguishing between species based on morphological characteristics. Positive PC1 values, associated with a shorter carapace height, indicated a flatter or more compact shell shape. A higher PC3 value corresponded to a raised shape at the back of the shell, while a lower PC3 value indicated a raised shape at the front. Specifically, Leopard tortoises exhibited a higher carapace shape than the other species, while African spurred tortoises had shorter carapaces. An allometric effect was observed in the carapaces, where smaller specimens tended to be proportionately higher-domed, whereas larger shells displayed a lower height in shape. These findings highlight the significance of shape variations in tortoise shells, which emerge during adaptation and have important implications for taxonomy and clinical practice. Such differences should be carefully considered in veterinary care and species identification.
Collapse
Affiliation(s)
- Ebru Eravci Yalin
- Department of Surgery, Faculty of Veterinary Medicine, Istanbul University-Cerrahpasa, Istanbul 34320, Türkiye;
| | - Ozan Gündemir
- Department of Anatomy, Faculty of Veterinary Medicine, Istanbul University-Cerrahpasa, Istanbul 34320, Türkiye
| | - Ebuderda Günay
- Department of Wild Animal Diseases and Ecology, Faculty of Veterinary Medicine, Istanbul University-Cerrahpasa, Istanbul 34320, Türkiye;
| | | | - Sokol Duro
- Department of Morphofunctional Modules, Faculty of Veterinary Medicine, Agricultural University, 1000 Tirana, Albania;
| | - Tomasz Szara
- Department of Morphological Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, 02-776 Warsaw, Poland
| | - Milos Blagojevic
- Department of Anatomy, Faculty of Veterinary Medicine, University of Belgrade, 11000 Belgrade, Serbia;
| | - Bektaş Sönmez
- Suşehri Timur Karabal Vocational School, Sivas Cumhuriyet University, Sivas 58600, Türkiye;
| | - Mihaela-Claudia Spataru
- Department of Public Health, Faculty of Veterinary Medicine, Iasi University of Life Sciences, 700489 Iasi, Romania;
| |
Collapse
|
3
|
Miller E, Lee HW, Abzhanov A, Evers SW. The topological organization of the turtle cranium is constrained and conserved over long evolutionary timescales. Anat Rec (Hoboken) 2024; 307:2713-2748. [PMID: 38102921 DOI: 10.1002/ar.25356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/30/2023] [Accepted: 11/14/2023] [Indexed: 12/17/2023]
Abstract
The cranium of turtles (Testudines) is characterized by the secondary reduction of temporal fenestrae and loss of cranial joints (i.e., characteristics of anapsid, akinetic skulls). Evolution and ontogeny of the turtle cranium are associated with shape changes. Cranial shape variation among Testudines can partially be explained by dietary and functional adaptations (neck retraction), but it is unclear if cranial topology shows similar ecomorphological signal, or if it is decoupled from shape evolution. We assess the topological arrangement of cranial bones (i.e., number, relative positioning, connections), using anatomical network analysis. Non-shelled stem turtles have similar cranial arrangements to archosauromorph outgroups. Shelled turtles (Testudinata) evolve a unique cranial organization that is associated with bone losses (e.g., supratemporal, lacrimal, ectopterygoid) and an increase in complexity (i.e., densely and highly interconnected skulls with low path lengths between bones), resulting from the closure of skull openings and establishment of unusual connections such as a parietal-pterygoid contact in the secondary braincase. Topological changes evolutionarily predate many shape changes. Topological variation and taxonomic morphospace discrimination among crown turtles are low, indicating that cranial topology may be constrained. Observed variation results from repeated losses of nonintegral bones (i.e., premaxilla, nasal, epipterygoid, quadratojugal), and changes in temporal emarginations and palate construction. We observe only minor ontogenetic changes. Topology is not influenced by diet and habitat, contrasting cranial shape. Our results indicate that turtles have a unique cranial topology among reptiles that is conserved after its initial establishment, and shows that cranial topology and shape have different evolutionary histories.
Collapse
Affiliation(s)
- Eve Miller
- Department of Life Sciences, Imperial College London, Silwood Park Campus, Berkshire, UK
- Natural History Museum, London, UK
| | - Hiu Wai Lee
- Department of Earth Sciences, The University of Hong Kong, Hong Kong SAR, China
| | - Arkhat Abzhanov
- Department of Life Sciences, Imperial College London, Silwood Park Campus, Berkshire, UK
- Natural History Museum, London, UK
| | - Serjoscha W Evers
- Department of Geosciences, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
4
|
Burroughs RW, Parham JF, Stuart BL, Smits PD, Angielczyk KD. Morphological Species Delimitation in The Western Pond Turtle ( Actinemys): Can Machine Learning Methods Aid in Cryptic Species Identification? Integr Org Biol 2024; 6:obae010. [PMID: 38689939 PMCID: PMC11058871 DOI: 10.1093/iob/obae010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/29/2024] [Indexed: 05/02/2024] Open
Abstract
As the discovery of cryptic species has increased in frequency, there has been an interest in whether geometric morphometric data can detect fine-scale patterns of variation that can be used to morphologically diagnose such species. We used a combination of geometric morphometric data and an ensemble of five supervised machine learning methods (MLMs) to investigate whether plastron shape can differentiate two putative cryptic turtle species, Actinemys marmorata and Actinemys pallida. Actinemys has been the focus of considerable research due to its biogeographic distribution and conservation status. Despite this work, reliable morphological diagnoses for its two species are still lacking. We validated our approach on two datasets, one consisting of eight morphologically disparate emydid species, the other consisting of two subspecies of Trachemys (T. scripta scripta, T. scripta elegans). The validation tests returned near-perfect classification rates, demonstrating that plastron shape is an effective means for distinguishing taxonomic groups of emydids via MLMs. In contrast, the same methods did not return high classification rates for a set of alternative phylogeographic and morphological binning schemes in Actinemys. All classification hypotheses performed poorly relative to the validation datasets and no single hypothesis was unequivocally supported for Actinemys. Two hypotheses had machine learning performance that was marginally better than our remaining hypotheses. In both cases, those hypotheses favored a two-species split between A. marmorata and A. pallida specimens, lending tentative morphological support to the hypothesis of two Actinemys species. However, the machine learning results also underscore that Actinemys as a whole has lower levels of plastral variation than other turtles within Emydidae, but the reason for this morphological conservatism is unclear.
Collapse
Affiliation(s)
- R W Burroughs
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY 11794, USA
- Center for Inclusive Education, Stony Brook University, Stony Brook, NY 11794, USA
| | - J F Parham
- Department of Geological Sciences, California State University, Fullerton, CA 92834, USA
| | - B L Stuart
- Section of Research and Collections, NC Museum of Natural Sciences, Raleigh, NC 27601, USA
| | - P D Smits
- 952 NW 60th St., Seattle, Washington, WA 98107, USA
| | - K D Angielczyk
- Negaunee Integrative Research Center, Field Museum of Natural History, Chicago, IL 60605, USA
| |
Collapse
|
5
|
Panda AK, Verma V, Srivastav A, Badola R, Hussain SA. Digital image processing: A new tool for morphological measurements of freshwater turtles under rehabilitation. PLoS One 2024; 19:e0300253. [PMID: 38484004 PMCID: PMC10939246 DOI: 10.1371/journal.pone.0300253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 02/23/2024] [Indexed: 03/17/2024] Open
Abstract
Freshwater fauna is facing an uphill task for survival in the Ganga Basin, India, due to a range of factors causing habitat degradation and fragmentation, necessitating conservation interventions. As part of the ongoing efforts to conserve the freshwater fauna of the Basin, we are working on rehabilitating rescued freshwater chelonians. We carry out various interventions to restore rescued individuals to an apparent state of fitness for their release in suitable natural habitats. Morphometric measurements are crucial to managing captive wild animals for assessing their growth and well-being. Measurements are made using manual methods like vernier caliper that are prone to observer error experience and require handling the specimens for extended periods. Digital imaging technology is rapidly progressing at a fast pace and with the advancement of technology. We acquired images of turtles using smartphones along with manual morphometric measurements using vernier calipers of the straight carapace length and straight carapace width. The images were subsequently processed using ImageJ, a freeware and compared with manual morphometric measurements. A significant decrease in the time spent in carrying out morphometric measurements was observed in our study. The difference in error in measurements was, however, not significant. A probable cause for this may have been the extensive experience of the personnel carrying out the measurements using vernier caliper. Digital image processing technology can cause a significant reduction in the stress of the animals exposed to handling during measurements, thereby improving their welfare. Additionally, this can be used in the field to carry out morphometric measurements of free-ranging individuals, where it is often difficult to capture individuals, and challenges are faced in obtaining permission to capture specimens.
Collapse
Affiliation(s)
- Ashish Kumar Panda
- Ganga Aqualife Conservation and Monitoring Centre, Wildlife Institute of India, Chandrabani, Dehra Dun, Uttarakhand, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Vikas Verma
- Ganga Aqualife Conservation and Monitoring Centre, Wildlife Institute of India, Chandrabani, Dehra Dun, Uttarakhand, India
| | - Anupam Srivastav
- Ganga Aqualife Conservation and Monitoring Centre, Wildlife Institute of India, Chandrabani, Dehra Dun, Uttarakhand, India
| | - Ruchi Badola
- Ganga Aqualife Conservation and Monitoring Centre, Wildlife Institute of India, Chandrabani, Dehra Dun, Uttarakhand, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Syed Ainul Hussain
- Ganga Aqualife Conservation and Monitoring Centre, Wildlife Institute of India, Chandrabani, Dehra Dun, Uttarakhand, India
| |
Collapse
|
6
|
Diversification of the shell shape and size in Baikal Candonidae ostracods inferred from molecular phylogeny. Sci Rep 2023; 13:2950. [PMID: 36806355 PMCID: PMC9941104 DOI: 10.1038/s41598-023-30003-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 02/14/2023] [Indexed: 02/22/2023] Open
Abstract
Ostracod shells are used extensively in paleontology, but we know little about their evolution, especially in ancient lakes. Lake Baikal (LB) is the world's most important stronghold of Candonidae diversity. These crustaceans radiated here rapidly (12-5 Ma) and with an unprecedented morphological diversity. We reconstruct their molecular phylogeny with 46 species and two markers (18S and 16S rRNA), and use it to estimate the evolution of the shell shape and size with landmark-based geometric morphometrics (LBGM). High posterior probabilities support four major clades, which differ in node depth and morphospace clustering. After removing a significant allometry, the first three principal components (PCs) describe about 88% of total variability, suggesting a strong integration. Reconstructed ancestral shapes are similar for all four clades, indicating that diversification happened after colonization. Major evolutionary changes occurred from trapezoidal to elongated shapes. Sister species are separated in morphospace, by centroid size, or both, as well as by vertical and horizontal distributions in LB. Ostracod shell is a strongly integrated structure that exhibits high evolvability, with some extreme shapes, although mostly along the first PC. This is the first study that combines molecular phylogeny and LBGM for ostracods and for any LB group.
Collapse
|
7
|
Hermanson G, Benson RBJ, Farina BM, Ferreira GS, Langer MC, Evers SW. Cranial ecomorphology of turtles and neck retraction as a possible trigger of ecological diversification. Evolution 2022; 76:2566-2586. [PMID: 36117268 PMCID: PMC9828723 DOI: 10.1111/evo.14629] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 08/24/2022] [Accepted: 08/29/2022] [Indexed: 01/22/2023]
Abstract
Turtles have a highly modified body plan, including a rigid shell that constrains postcranial anatomy. Skull morphology and neck mobility may therefore be key to ecological specialization in turtles. However, the ecological signal of turtle skull morphologies has not been rigorously evaluated, leaving uncertainties about the roles of ecological adaptation and convergence. We evaluate turtle cranial ecomorphology using three-dimensional geometric morphometrics and phylogenetic comparative methods. Skull shape correlates with allometry, neck retraction capability, and different aquatic feeding ecologies. We find that ecological variables influence skull shape only, whereas a key functional variable (the capacity for neck retraction) influences both shape and size. Ecology and functional predictions from three-dimensional shape are validated by high success rates for extant species, outperforming previous two-dimensional approaches. We use this to infer ecological and functional traits of extinct species. Neck retraction evolved among crownward stem-turtles by the Late Jurassic, signaling functional decoupling of the skull and neck from the shell, possibly linked to a major episode of ecomorphological diversification. We also find strong evidence for convergent ecological adaptations among marine groups. This includes parallel loss of neck retraction, evidence for active hunting, possible grazing, and suction feeding in extinct marine groups. Our large-scale assessment of dietary and functional adaptation throughout turtle evolution reveals the timing and origin of their distinct ecomorphologies, and highlights the potential for ecology and function to have distinct effects on skull form.
Collapse
Affiliation(s)
- Guilherme Hermanson
- Department of GeosciencesUniversity of FribourgFribourgCH‐1700Switzerland
- Department of Earth SciencesUniversity of OxfordOxfordOX1 3ANUnited Kingdom
- Laboratório de Paleontologia de Ribeirão PretoUniversidade de São PauloRibeirão Preto14040‐091Brazil
| | - Roger B. J. Benson
- Department of Earth SciencesUniversity of OxfordOxfordOX1 3ANUnited Kingdom
| | - Bruna M. Farina
- Laboratório de Paleontologia de Ribeirão PretoUniversidade de São PauloRibeirão Preto14040‐091Brazil
- Department of BiologyUniversity of FribourgFribourgCH‐1700Switzerland
| | - Gabriel S. Ferreira
- Senckenberg Centre for Human Evolution and Palaeoenvironment (HEP)Eberhard Karls Universität Tübingen72076TübingenGermany
- Fachbereich GeowissenschaftenUniversität Tübingen72074TübingenGermany
| | - Max C. Langer
- Laboratório de Paleontologia de Ribeirão PretoUniversidade de São PauloRibeirão Preto14040‐091Brazil
| | - Serjoscha W. Evers
- Department of GeosciencesUniversity of FribourgFribourgCH‐1700Switzerland
| |
Collapse
|
8
|
Tulli MJ, Manzano A, Abdala V. Is the Shape of Turtle Claws Driven by Locomotor Modes? Evol Biol 2022. [DOI: 10.1007/s11692-022-09580-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
9
|
Niel M, Chaumoître K, Adalian P. Age-at-Death Estimation of Fetuses and Infants in Forensic Anthropology: A New "Coupling" Method to Detect Biases Due to Altered Growth Trajectories. BIOLOGY 2022; 11:biology11020200. [PMID: 35205067 PMCID: PMC8868630 DOI: 10.3390/biology11020200] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/22/2022] [Accepted: 01/25/2022] [Indexed: 01/27/2023]
Abstract
Simple Summary In forensic anthropology, estimating the age-at-death of young juvenile skeletons is crucial as a direct determinant of legal issues in many countries. Most methods published for this purpose are based on either maturation or growth processes (two essential components of development) and focus on “normal” (i.e., nonpathological) growth. However, when the osseous remains available for study are from an individual that experienced an altered growth process, age estimation may be biased, and accounting for this would be helpful for potentially avoiding inaccuracies in estimation. In this research, we developed a method based on the combined evaluation of both maturation and growth. Maturation is evaluated by the conformation of the pars basilaris, a bone at the skull base that provides an indirect estimate of brain maturation, while growth is assessed using femoral biometry. The method was tested on two medical validation samples of normal and pathological individuals. The results show that it was possible to identify “uncoupling” between maturation and growth in 22.8% of the pathological individuals. Highlighting potential uncoupling is therefore an essential step in assessing the confidence of an age estimate, and its presence should lead experts to be cautious in their conclusions in court. Abstract The coupling between maturation and growth in the age estimation of young individuals with altered growth processes was analyzed in this study, whereby the age was determined using a geometric morphometrics method. A medical sample comprising 223 fetuses and infants was used to establish the method. The pars basilaris shapes, quantified by elliptic Fourier analysis, were grouped into consensus stages to characterize the maturation process along increasing age groups. Each pars basilaris maturation stage was “coupled” to biometry by defining an associated femur length range. The method was tested on a validation sample of 42 normal individuals and a pathological sample of 114 individuals whose pathologies were medically assessed. Couplings were present in 90.48% of the normal sample and 77.19% of the pathological sample. The method was able to detect “uncoupling” (i.e., possibly altered growth) in more than 22.8% of samples, even if there was no visible traces of pathology on bones in most cases. In conclusion, experts should be warned that living conditions may cause alterations in the development of young individuals in terms of uncoupling, and that the age-at-death estimation based on long bone biometry could be biased. In a forensic context, when age has been estimated in cases where uncoupling is present, experts should be careful to take potential inaccuracies into account when forming their conclusions.
Collapse
Affiliation(s)
- Mélissa Niel
- Aix Marseille Univ, CNRS, EFS, ADES, 13007 Marseille, France; (K.C.); (P.A.)
- Correspondence: ; Tel.: +33-4-9169-8890
| | - Kathia Chaumoître
- Aix Marseille Univ, CNRS, EFS, ADES, 13007 Marseille, France; (K.C.); (P.A.)
- Service de Radiologie et Imagerie Médicale, Hôpital Nord, CHU Marseille, Assistance Publique des Hôpitaux de Marseille, 13015 Marseille, France
| | - Pascal Adalian
- Aix Marseille Univ, CNRS, EFS, ADES, 13007 Marseille, France; (K.C.); (P.A.)
| |
Collapse
|
10
|
Cadena EA, Link A, Cooke SB, Stroik LK, Vanegas AF, Tallman M. New insights on the anatomy and ontogeny of the largest extinct freshwater turtles. Heliyon 2021; 7:e08591. [PMID: 35005268 PMCID: PMC8717240 DOI: 10.1016/j.heliyon.2021.e08591] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/30/2021] [Accepted: 12/09/2021] [Indexed: 11/26/2022] Open
Abstract
There are many questions regarding the largest freshwater turtle that ever existed, including how its morphology changed during its ontogeny and how a single ecosystem was able to support more than one group of giant turtles. Here, we report the first individual preserving an associated skull and shell for Stupendemys geographica (currently the largest known side-necked turtle) and a nearly complete skull of Caninemys tridentata found in Miocene rocks of the Tatacoa Desert in Colombia. These two specimens indicate that more than two large freshwater turtle species shared a single ecosystem during the middle Miocene in northern South America. We also show the changes in the shell and scutes that occurred along the ontogeny of S. geographica, including a flattening of the carapace, constriction of the vertebral scutes, and increase in the height and thickness of the nuchal upturn wall; some of these changes are also evident in extant representatives of Podocnemididae, and have implications for a better understanding of their phylogeny.
Collapse
Affiliation(s)
- Edwin-Alberto Cadena
- Universidad del Rosario, Facultad de Ciencias Naturales, Grupo de Investigación Paleontología Neotropical Tradicional y Molecular (PaleoNeo), Bogotá, Colombia
- Smithsonian Tropical Research Institute, Panamá, Panama
| | - Andrés Link
- Departamento de Ciencias Biológicas, Universidad de Los Andes, Bogotá, Colombia
| | - Siobhán B. Cooke
- Center for Functional Anatomy and Evolution, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Laura K. Stroik
- Department of Biomedical Sciences, Grand Valley State University, Allendale, MI, USA
| | | | - Melissa Tallman
- Department of Biomedical Sciences, Grand Valley State University, Allendale, MI, USA
| |
Collapse
|
11
|
Butterfield TG, Herrel A, Olson ME, Contreras-Garduño J, Macip-Ríos R. Morphology of the limb, shell and head explain the variation in performance and ecology across 14 turtle taxa (12 species). Biol J Linn Soc Lond 2021. [DOI: 10.1093/biolinnean/blab117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Abstract
Given that morphology directly influences the ability of an organism to utilize its habitat and dietary resources, it also influences fitness. Comparing the relationship between morphology, performance and ecology is fundamental to understand how organisms evolve to occupy a wide range of habitats and diets. In turtles, studies have documented important relationships between morphology, performance and ecology, but none was field based or considered limb, shell and head morphology simultaneously. We compared the morphology, performance and ecology of 14 turtle taxa (12 species) in Mexico that range in their affinity to water and in their diet. We took linear measurements of limb, shell and head variables. We measured maximum swimming speed, maximum bite force and how often turtles were encountered on land, and we used stable isotopes to assess trophic position. We used these data to test the following three hypotheses: (1) morphology, performance and ecology covary; (2) limb and shell variables, like hand length, are correlated with swimming speed and the percentage of time spent on land; and (3) head variables, such as head width, are correlated with bite force and stable isotopes. We find support for these hypotheses and provide the first evidence that morphology influences performance and ecology in turtles in the field.
Collapse
Affiliation(s)
- Taggert G Butterfield
- Escuela Nacional de Estudios Superiores, Unidad Morelia, Universidad Nacional Autónoma de México, Morelia, Michoacán, México, Mexico
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Unidad de Posgrado, edificio D, Ciudad Universitaria, CDMX, México, Mexico
| | - Anthony Herrel
- UMR 7179 CNRS/MNHN, Département Adaptations du Vivant, 55 rue Buffon, 75005, Paris Cedex 5, France
| | - Mark E Olson
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Unidad de Posgrado, edificio D, Ciudad Universitaria, CDMX, México, Mexico
- Departamento de Botánica, Instituto de Biología, Universidad Nacional Autónoma de México, Ciudad de México (CDMX), Mexico, Mexico
| | - Jorge Contreras-Garduño
- Escuela Nacional de Estudios Superiores, Unidad Morelia, Universidad Nacional Autónoma de México, Morelia, Michoacán, México, Mexico
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Unidad de Posgrado, edificio D, Ciudad Universitaria, CDMX, México, Mexico
| | - Rodrigo Macip-Ríos
- Escuela Nacional de Estudios Superiores, Unidad Morelia, Universidad Nacional Autónoma de México, Morelia, Michoacán, México, Mexico
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Unidad de Posgrado, edificio D, Ciudad Universitaria, CDMX, México, Mexico
| |
Collapse
|
12
|
Adrian B, Smith HF, Noto CR, Grossman A. An early bothremydid from the Arlington Archosaur Site of Texas. Sci Rep 2021; 11:9555. [PMID: 34017016 PMCID: PMC8137945 DOI: 10.1038/s41598-021-88905-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 04/14/2021] [Indexed: 12/03/2022] Open
Abstract
Four turtle taxa are previously documented from the Cenomanian Arlington Archosaur Site (AAS) of the Lewisville Formation (Woodbine Group) in Texas. Herein, we describe a new side-necked turtle (Pleurodira), Pleurochayah appalachius gen. et sp. nov., which is a basal member of the Bothremydidae. Pleurochayah appalachius gen. et sp. nov. shares synapomorphic characters with other bothremydids, including shared traits with Kurmademydini and Cearachelyini, but has a unique combination of skull and shell traits. The new taxon is significant because it is the oldest crown pleurodiran turtle from North America and Laurasia, predating bothremynines Algorachelus peregrinus and Paiutemys tibert from Europe and North America respectively. This discovery also documents the oldest evidence of dispersal of crown Pleurodira from Gondwana to Laurasia. Pleurochayah appalachius gen. et sp. nov. is compared to previously described fossil pleurodires, placed in a modified phylogenetic analysis of pelomedusoid turtles, and discussed in the context of pleurodiran distribution in the mid-Cretaceous. Its unique combination of characters demonstrates marine adaptation and dispersal capability among basal bothremydids.
Collapse
Affiliation(s)
- Brent Adrian
- Department of Anatomy, Midwestern University, Glendale, AZ, USA.
| | - Heather F Smith
- Department of Anatomy, Midwestern University, Glendale, AZ, USA
| | - Christopher R Noto
- Department of Biological Sciences, University of Wisconsin-Parkside, Kenosha, WI, USA
| | - Aryeh Grossman
- Department of Anatomy, Midwestern University, Glendale, AZ, USA
| |
Collapse
|
13
|
Ruhr IM, Rose KAR, Sellers WI, Crossley DA, Codd JR. Turning turtle: scaling relationships and self-righting ability in Chelydra serpentina. Proc Biol Sci 2021; 288:20210213. [PMID: 33653130 PMCID: PMC7934899 DOI: 10.1098/rspb.2021.0213] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Testudines are susceptible to inversion and self-righting using their necks, limbs or both, to generate enough mechanical force to flip over. We investigated how shell morphology, neck length and self-righting biomechanics scale with body mass during ontogeny in Chelydra serpentina, which uses neck-powered self-righting. We found that younger turtles flipped over twice as fast as older individuals. A simple geometric model predicted the relationships of shell shape and self-righting time with body mass. Conversely, neck force, power output and kinetic energy increase with body mass at rates greater than predicted. These findings were correlated with relatively longer necks in younger turtles than would be predicted by geometric similarity. Therefore, younger turtles self-right with lower biomechanical costs than predicted by simple scaling theory. Considering younger turtles are more prone to inverting and their shells offer less protection, faster and less costly self-righting would be advantageous in overcoming the detriments of inversion.
Collapse
Affiliation(s)
- Ilan M Ruhr
- School of Biological Sciences, University of Manchester, Manchester, UK
| | | | - William I Sellers
- Department of Earth and Environmental Sciences, University of Manchester, Manchester, UK
| | - Dane A Crossley
- Department of Biological Sciences, University of North Texas, Denton, TX, USA
| | - Jonathan R Codd
- School of Biological Sciences, University of Manchester, Manchester, UK
| |
Collapse
|
14
|
Butterfield T, Olson M, Beck D, Macip-Ríos R. Morphology, Performance, and Ecology of Three Sympatric Turtles in a Tropical Dry Forest. COPEIA 2020. [DOI: 10.1643/ce-18-165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Taggert Butterfield
- Posgrado en Ciencias Biológicas, Unidad de Posgrado, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, CDMX, 04510, Mexico; (TB) . Send reprint requests to TB
| | - Mark Olson
- Posgrado en Ciencias Biológicas, Unidad de Posgrado, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, CDMX, 04510, Mexico; (TB) . Send reprint requests to TB
| | - Daniel Beck
- Department of Biological Sciences, Central Washington University, 400 E University Way, Ellensburg, Washington 98926
| | - Rodrigo Macip-Ríos
- Posgrado en Ciencias Biológicas, Unidad de Posgrado, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, CDMX, 04510, Mexico; (TB) . Send reprint requests to TB
| |
Collapse
|
15
|
Dziomber L, Joyce WG, Foth C. The ecomorphology of the shell of extant turtles and its applications for fossil turtles. PeerJ 2020; 8:e10490. [PMID: 33391873 PMCID: PMC7761203 DOI: 10.7717/peerj.10490] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 11/13/2020] [Indexed: 11/20/2022] Open
Abstract
Turtles are a successful clade of reptiles that originated in the Late Triassic. The group adapted during its evolution to different types of environments, ranging from dry land to ponds, rivers, and the open ocean, and survived all Mesozoic and Cenozoic extinction events. The body of turtles is characterized by a shell, which has been hypothesized to have several biological roles, like protection, thermal and pH regulation, but also to be adapted in its shape to the ecology of the animal. However, only few studies have investigated the relationships between shell shape and ecology in a global context or clarified if shape can be used to diagnose habitat preferences in fossil representatives. Here, we assembled a three-dimensional dataset of 69 extant turtles and three fossils, in particular, the Late Triassic Proganochelys quenstedtii and Proterochersis robusta and the Late Jurassic Plesiochelys bigleri to test explicitly for a relationship between shell shape and ecology. 3D models were obtained using surface scanning and photogrammetry. The general shape of the shells was captured using geometric morphometrics. The habitat ecology of extant turtles was classified using the webbing of their forelimbs as a proxy. Principal component analysis (PCA) highlights much overlap between habitat groups. Discriminant analyses suggests significant differences between extant terrestrial turtles, extant fully aquatic (i.e., marine and riverine) turtles, and an unspecialized assemblage that includes extant turtles from all habitats, mostly freshwater aquatic forms. The paleoecology of the three fossil species cannot be determined with confidence, as all three fall within the unspecialized category, even if Plesiochelys bigleri plots closer to fully aquatic turtles, while the two Triassic species group closer to extant terrestrial forms. Although the shape of the shell of turtles indeed contains an ecological signal, it is overall too weak to uncover using shell shape in paleoecological studies, at least with the methods we selected.
Collapse
Affiliation(s)
- Laura Dziomber
- Department of Geosciences, University of Fribourg, Fribourg, Switzerland
- Institute of Plant Sciences & Oeschger Centre for Climate Change Research, University of Bern, Bern, Switzerland
| | - Walter G. Joyce
- Department of Geosciences, University of Fribourg, Fribourg, Switzerland
| | - Christian Foth
- Department of Geosciences, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
16
|
Assemat A, Mourlam MJ, Weppe R, Maugoust J, Antoine P, Orliac MJ. The ossicular chain of Cainotheriidae (Mammalia, Artiodactyla). J Anat 2020; 237:250-262. [PMID: 32255213 PMCID: PMC7369187 DOI: 10.1111/joa.13190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 03/03/2020] [Accepted: 03/04/2020] [Indexed: 11/30/2022] Open
Abstract
This work describes an unparalleled sample of isolated fossil auditory ossicles of cainotheriid artiodactyls from the Paleogene karstic infillings of Dams (Tarn-et-Garonne, Quercy, France). This collection comprises a total of 18 mallei, 28 incudes and three stapedes. It allows the documentation of both intra- and interspecific variability of ossicular morphology within Cainotheriidae. We show that despite considerable intraspecific variability, the malleus, the incus and the stapes appear to be taxonomically informative at the Cainotheriidae scale. This work further provides the first description of a reconstructed ossicular chain of a terrestrial Paleogene artiodactyl species, found in a basicranium of the late Oligocene cainotheriine Caenomeryx filholi (Pech Desse locality).
Collapse
Affiliation(s)
- Alexandre Assemat
- Institut des Sciences de l’EvolutionCNRS, IRD, EPHE, Université de MontpellierMontpellierFrance
| | - Mickaël J. Mourlam
- Institut des Sciences de l’EvolutionCNRS, IRD, EPHE, Université de MontpellierMontpellierFrance
| | - Romain Weppe
- Institut des Sciences de l’EvolutionCNRS, IRD, EPHE, Université de MontpellierMontpellierFrance
| | - Jacob Maugoust
- Institut des Sciences de l’EvolutionCNRS, IRD, EPHE, Université de MontpellierMontpellierFrance
| | - Pierre‐Olivier Antoine
- Institut des Sciences de l’EvolutionCNRS, IRD, EPHE, Université de MontpellierMontpellierFrance
| | - Maeva Judith Orliac
- Institut des Sciences de l’EvolutionCNRS, IRD, EPHE, Université de MontpellierMontpellierFrance
| |
Collapse
|
17
|
Genetic and Morphologic Variation in a Potential Mosquito Biocontrol Agent, Hydrochara Affinis (Coleoptera: Hydrophilidae). SUSTAINABILITY 2020. [DOI: 10.3390/su12135481] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Hydrochara affinis (Coleoptera: Hydrophilidae), a water scavenger beetle, was recently identified as a natural and effective agent for biological mosquito control; it was reported to exhibit high rates of mosquito larvae predation. However, maintaining the quality (i.e., natural ecological attributes, such as genetic variation) of laboratory-reared populations is essential for ensuring the long-term success of biological control programs. Accordingly, here, we aimed to use mitochondrial Cytochrome c oxidase subunit I (COI) sequences to document the genetic diversity, population structure, and phylogenetic position of natural and lab-reared H. affinis populations in South Korea and use geometric morphometric analysis to investigate the populations’ morphological divergence. The natural H. affinis populations possessed high genetic diversity and numerous COI haplotypes, suggesting that these populations were healthy and could be directly applied to mosquito habitats without alterations to their natural genetic attributes. The lab-reared populations also possessed high genetic diversity and, thus, the potential for high adaptive capacity to new environments. Although no distinct population genetic structures were observed, quantitative variation was observed in the body shape of both the natural and lab-reared populations. The high levels of genetic and morphologic variation observed in the H. affinis populations examined here indicate the species’ favorable conservation status, genetic diversity, adaptive capacity, and, thus, “suitability” for field application as an effective mosquito control agent.
Collapse
|
18
|
Itgen MW, Sessions SK, Wilson LD, Townsend JH. Integrative Systematic Revision of Bolitoglossa celaque (Caudata: Plethodontidae), with a new species from the Lenca Highlands of Honduras. HERPETOLOGICAL MONOGRAPHS 2020. [DOI: 10.1655/herpmonographs-d-19-00001.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Michael W. Itgen
- Department of Biology, Indiana University of Pennsylvania, Indiana, PA 15705, USA
| | | | - Larry David Wilson
- Centro Zamorano de Biodiversidad, Escuela Agrícola Panamericana Zamorano, Honduras; 16010 SW 207th Avenue, Miami, FL 33187, USA
| | - Josiah H. Townsend
- Department of Biology, Indiana University of Pennsylvania, Indiana, PA 15705, USA
| |
Collapse
|
19
|
Abstract
Animals use a diverse array of motion to feed, escape predators, and reproduce. Linking morphology, performance, and fitness is a foundational paradigm in organismal biology and evolution. Yet, the influence of mechanical relationships on evolutionary diversity remains unresolved. Here, I focus on the many-to-one mapping of form to function, a widespread, emergent property of many mechanical systems in nature, and discuss how mechanical redundancy influences the tempo and mode of phenotypic evolution. By supplying many possible morphological pathways for functional adaptation, many-to-one mapping can release morphology from selection on performance. Consequently, many-to-one mapping decouples morphological and functional diversification. In fish, for example, parallel morphological evolution is weaker for traits that contribute to mechanically redundant motions, like suction feeding performance, than for systems with one-to-one form-function relationships, like lower jaw lever ratios. As mechanical complexity increases, historical factors play a stronger role in shaping evolutionary trajectories. Many-to-one mapping, however, does not always result in equal freedom of morphological evolution. The kinematics of complex systems can often be reduced to variation in a few traits of high mechanical effect. In various different four-bar linkage systems, for example, mechanical output (kinematic transmission) is highly sensitive to size variation in one or two links, and insensitive to variation in the others. In four-bar linkage systems, faster rates of evolution are biased to traits of high mechanical effect. Mechanical sensitivity also results in stronger parallel evolution-evolutionary transitions in mechanical output are coupled with transition in linkages of high mechanical effect. In other words, the evolutionary dynamics of complex systems can actually approximate that of simpler, one-to-one systems when mechanical sensitivity is strong. When examined in a macroevolutionary framework, the same mechanical system may experience distinct selective pressures in different groups of organisms. For example, performance tradeoffs are stronger for organisms that use the same mechanical structure for more functions. In general, stronger performance tradeoffs result in less phenotypic diversity in the system and, sometimes, a slower rate of evolution. These macroevolutionary trends can contribute to unevenness in functional and lineage diversity across the tree of life. Finally, I discuss how the evolution of mechanical systems informs our understanding of the relative roles of determinism and contingency in evolution.
Collapse
Affiliation(s)
- Martha M Muñoz
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24060, USA
| |
Collapse
|
20
|
Djurakic MR, Milankov VR. The utility of plastron shape for uncovering cryptic diversity in Hermann's tortoise. J Zool (1987) 2019. [DOI: 10.1111/jzo.12736] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- M. R. Djurakic
- Department of Biology and Ecology Faculty of Sciences University of Novi Sad Novi Sad Serbia
| | - V. R. Milankov
- Department of Biology and Ecology Faculty of Sciences University of Novi Sad Novi Sad Serbia
| |
Collapse
|
21
|
Cordero GA, Stearns S, Quinteros K, Berns CM, Binz SM, Janzen F. The postembryonic transformation of the shell in emydine box turtles. Evol Dev 2019; 21:297-310. [PMID: 31441599 DOI: 10.1111/ede.12307] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A key trend in the 210-million-year-old history of modern turtles was the evolution of shell kinesis, that is, shell movement during neck and limb retraction. Kinesis is hypothesized to enhance predator defense in small terrestrial and semiaquatic turtles and has evolved multiple times since the early Cretaceous. This complex phenotype is nonfunctional and far from fully differentiated following embryogenesis. Instead, kinesis develops slowly in juveniles, providing a unique opportunity to illustrate the postembryonic origins of an adaptive trait. To this end, we examined ventral shell (plastral) kinesis in emydine box turtles and found that hatchling plastron shape differs from that of akinetic-shelled relatives, particularly where the hinge that enables kinesis differentiates. We also demonstrated shape changes relative to plastron size in juveniles, coinciding with a shift in the carapace-plastron structural connection, rearrangement of ectodermal plates, and bone repatterning. Furthermore, because the shell grows larger relative to the head, complete concealment of the head and extremities is only achieved after relative shell proportions increase. Structural alterations that facilitate the box turtle's transformation are probably prepatterned in embryos but require function-induced changes to differentiate in juveniles. This mode of delayed trait differentiation is essential to phenotypic diversification in turtles and perhaps other tetrapods.
Collapse
Affiliation(s)
- Gerardo A Cordero
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, Iowa, USA.,Department of Geosciences, Eberhard-Karls-Universität Tübingen, Tübingen, Germany
| | - Samantha Stearns
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, Iowa, USA
| | - Kevin Quinteros
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, Iowa, USA
| | - Chelsea M Berns
- Department of Biology, Salisbury University, Salisbury, Maryland, USA
| | - Steven M Binz
- Department of Physics, Salisbury University, Salisbury, Maryland, USA
| | - Fredric Janzen
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, Iowa, USA
| |
Collapse
|
22
|
Ascarrunz E, Claude J, Joyce WG. Estimating the phylogeny of geoemydid turtles (Cryptodira) from landmark data: an assessment of different methods. PeerJ 2019; 7:e7476. [PMID: 31497387 PMCID: PMC6708579 DOI: 10.7717/peerj.7476] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 07/15/2019] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND In the last 20 years, a general picture of the evolutionary relationships between geoemydid turtles (ca. 70 species distributed over the Northern hemisphere) has emerged from the analysis of molecular data. However, there is a paucity of good traditional morphological characters that correlate with the phylogeny, which are essential for the robust integration of fossil and molecular data. Part of this problem might be due to intrinsic limitations of traditional discrete characters. Here, we explore the use of continuous data in the form of 3D coordinates of homologous landmarks on the turtle shell for phylogenetic inference and the phylogenetic placement of single species on a scaffold molecular tree. We focus on the performance yielded by sampling the carapace and/or plastral lobes and using various phylogenetic methods. METHODS We digitised the landmark coordinates of the carapace and plastron of 42 and 46 extant geoemydid species, respectively. The configurations were superimposed and we estimated the phylogenetic tree of geoemydids with landmark analysis under parsimony, traditional Farris parsimony, unweighted squared-change parsimony, maximum likelihood with a Brownian motion model, and neighbour-joining on a matrix of pairwise Procrustes distances. We assessed the performance of those analyses by comparing the trees against a reference phylogeny obtained from seven molecular markers. For comparisons between trees we used difference measures based on quartets and splits. We used the same reference tree to evaluate phylogenetic placement performance by a leave-one-out validation procedure. RESULTS Whatever method we used, similarity to the reference phylogeny was low. The carapace alone gave slightly better results than the plastron or the complete shell. Assessment of the potential for placement of single species on the reference tree with landmark data gave much better results, with similar accuracy and higher precision compared to the performance of discrete characters with parsimony.
Collapse
Affiliation(s)
- Eduardo Ascarrunz
- Department of Geosciences, University of Fribourg, Fribourg, Switzerland
| | - Julien Claude
- Institut des Sciences de l’Évolution de Montpellier, UMR UM/CNRS/IRD/EPHE, Montpellier, France
| | - Walter G. Joyce
- Department of Geosciences, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
23
|
Cherepanov G. Morphogenetic and constructional differences of the carapace of aquatic and terrestrial turtles and their evolutionary significance. J Morphol 2019; 280:1571-1581. [PMID: 31411770 DOI: 10.1002/jmor.21050] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 06/18/2019] [Accepted: 07/13/2019] [Indexed: 01/09/2023]
Abstract
The postembryonic development of the turtle carapace was studied in the aquatic Еmys orbicularis and the terrestrial Тestudo graeca. Differences in the structure of the bony shell in aquatic and terrestrial turtles were shown to be associated with varying degrees of development of epidermal derivatives, namely, the thickness of the scutes and the depth of horny furrows. Sinking of the horny furrows into the dermis causes local changes in the structure of the collagen matrix, which might precondition the acceleration of the ossification. Aquatic turtles possess a relatively thin horny cover, whose derivatives are either weakly developed or altogether absent and thus make no noticeable impact on the growth dynamics of bony plates. Carapace plates of these turtles outgrow more or less evenly around the periphery, which results in uniform costals, relatively narrow and partly reduced neurals, and broad peripherals extending beyond the marginal scutes. In terrestrial turtles (Testudinidae), horny structures are much more developed and exert a considerable impact on the growth of bony elements. As a result, bony plates outgrow unevenly in the dermis, expanding fast in the zones under the horny furrows and slowly outside these zones. This determines the basic features of the testudinid carapace: alternately cuneate shape of costals, an alternation of broad octagonal and narrow tetragonal neurals, and the limitation of the growth of peripherals by pleuro-marginal furrows. The evolutionary significance of morphogenetic and constructional differences in the turtle carapace, and the association of these differences with the turtle habitats are discussed.
Collapse
Affiliation(s)
- Gennady Cherepanov
- Faculty of Biology, Department of Vertebrate Zoology, Saint Petersburg State University, Saint Petersburg, Russia
| |
Collapse
|
24
|
Foth C, Evers SW, Joyce WG, Volpato VS, Benson RBJ. Comparative analysis of the shape and size of the middle ear cavity of turtles reveals no correlation with habitat ecology. J Anat 2019; 235:1078-1097. [PMID: 31373396 DOI: 10.1111/joa.13071] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/10/2019] [Indexed: 02/06/2023] Open
Abstract
The middle ear of turtles differs from other reptiles in being separated into two distinct compartments. Several ideas have been proposed as to why the middle ear is compartmentalized in turtles, most suggesting a relationship with underwater hearing. Extant turtle species span fully marine to strictly terrestrial habitats, and ecomorphological hypotheses of turtle hearing predict that this should correlate with variation in the structure of the middle ear due to differences in the fluid properties of water and air. We investigate the shape and size of the air-filled middle ear cavity of 56 extant turtles using 3D data and phylogenetic comparative analysis to test for correlations between habitat preferences and the shape and size of the middle ear cavity. Only weak correlations are found between middle ear cavity size and ecology, with aquatic taxa having proportionally smaller cavity volumes. The middle ear cavity of turtles exhibits high shape diversity among species, but we found no relationship between this shape variation and ecology. Surprisingly, the estimated acoustic transformer ratio, a key functional parameter of impedance-matching ears in vertebrates, also shows no relation to habitat preferences (aquatic/terrestrial) in turtles. We suggest that middle ear cavity shape may be controlled by factors unrelated to hearing, such as the spatial demands of surrounding cranial structures. A review of the fossil record suggests that the modern turtle ear evolved during the Early to Middle Jurassic in stem turtles broadly adapted to freshwater and terrestrial settings. This, combined with our finding that evolutionary transitions between habitats caused only weak evolutionary changes in middle ear structure, suggests that tympanic hearing in turtles evolved as a compromise between subaerial and underwater hearing.
Collapse
Affiliation(s)
- Christian Foth
- Department of Geosciences, University of Fribourg, Fribourg, Switzerland
| | - Serjoscha W Evers
- Department of Geosciences, University of Fribourg, Fribourg, Switzerland.,Department of Earth Sciences, University of Oxford, Oxford, UK
| | - Walter G Joyce
- Department of Geosciences, University of Fribourg, Fribourg, Switzerland
| | - Virginie S Volpato
- Department of Geosciences, University of Fribourg, Fribourg, Switzerland
| | | |
Collapse
|
25
|
Niel M, Chaumoître K, Corny J, Lalys L, Adalian P. Maturation of the human foetal basioccipital: quantifying shape changes in second and third trimesters using elliptic Fourier analysis. J Anat 2019; 235:34-44. [PMID: 31025333 PMCID: PMC6579950 DOI: 10.1111/joa.12997] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/13/2019] [Indexed: 11/29/2022] Open
Abstract
During prenatal development, the brain is considered the best maturation criterion for the estimation of foetal physiological age, regardless of the conditions of pregnancy. Unfortunately, the brain lyses very quickly after death, but fortunately, the brain also has a major influence over osseous structures of the cranial base during development. Therefore, we considered the osseous structures of the cranial base potential indirect maturation indicators of foetal age. Because of its early formation and robustness, the basioccipital is a cranial base bone that is often used for studies in biological anthropology. Studies generally use conventional morphometry and bone size ratio to highlight morphological changes occurring during the foetal period and to create age estimation methods. These methods usually define thresholds beyond which the morphology of the basioccipital changes, but do not fully consider the form that might be valuable precisely to visualize its development or improve age estimation methods. Using geometric morphometric methods, the present study aims to analyse the development of the basioccipital during the second and third trimesters of foetal life by quantifying and visualizing shape changes in the inferior view. Basioccipital shapes are used as direct indicators of the maturation of the cranial base and as indirect indicators of the maturation of the brain and, by extension, the whole body. A sample of 221 anonymized computed tomographic (CT) scans of normal foetuses, ranging from 18 to 41 gestational weeks (GW), was used. Elliptic Fourier analysis (EFA) was used to quantify the basioccipital outline, and maturation stages were established to visualize shape changes with a principal component analysis. Our study allowed us precisely to quantify and continuously visualize shape changes occurring during prenatal life. Additionally, this study provides the first evidence of two distinct linear shape trajectories of the basioccipital. Foetuses aged between 18 and 26 GW have a rapid shape change with well-individualized stages, whereas shape changes are less visible in the second trajectory (27-41 GW). Furthermore, intra-stage shape variation is higher for the basioccipital at the beginning of the second and third trimesters than at the first trimester. By using geometric morphometric methods and EFA, this study shows that it was possible to go beyond classical methods. Indeed, the developed methodology enabled the first quantification of the overall shape changes of the basioccipital between gestational ages. The morphological shape changes throughout the foetal period can be useful for anthropological studies and provide new perspectives for immature age estimation methods.
Collapse
Affiliation(s)
- Mélissa Niel
- Aix Marseille Université, CNRS, EFS, ADESMarseillesFrance
| | - Kathia Chaumoître
- Aix Marseille Université, CNRS, EFS, ADESMarseillesFrance
- Service de Radiologie et Imagerie médicaleHôpital NordCHU MarseilleAssistance Publique des Hôpitaux de MarseilleMarseillesFrance
| | - Julien Corny
- Aix Marseille Université, CNRS, EFS, ADESMarseillesFrance
| | - Loïc Lalys
- Aix Marseille Université, CNRS, EFS, ADESMarseillesFrance
| | - Pascal Adalian
- Aix Marseille Université, CNRS, EFS, ADESMarseillesFrance
| |
Collapse
|
26
|
Williams C, Stayton CT. Effects of Sutured Pelvic Elements on Turtle Shell Strength: A Comparison of Pleurodire and Cryptodire Shell Mechanics. HERPETOLOGICA 2019. [DOI: 10.1655/d-17-00066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Cameron Williams
- Department of Biology, Bucknell University, Lewisburg, PA 17837, USA
| | | |
Collapse
|
27
|
Stayton CT. Performance Surface Analysis Identifies Consistent Functional Patterns across 10 Morphologically Divergent Terrestrial Turtle Lineages. Integr Comp Biol 2019; 59:346-357. [DOI: 10.1093/icb/icz072] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Abstract
Newly-developed methods for utilizing performance surfaces—multivariate representations of the relationship between phenotype and functional performance—allow researchers to test hypotheses about adaptive landscapes and evolutionary diversification with explicit attention to functional factors. Here, information from performance surfaces of three turtle shell functions—shell strength, hydrodynamics, and self-righting—is used to test the hypothesis that turtle lineages transitioning from aquatic to terrestrial habitats show patterns of shell shape evolution consistent with decreased importance of hydrodynamic performance. Turtle shells are excellent model systems for evolutionary functional analysis. The evolution of terrestriality is an interesting test case for the efficacy of these methods because terrestrial turtles do not show a straightforward pattern of morphological convergence in shell shape: many terrestrial lineages show increased shell height, typically assumed to decrease hydrodynamic performance, but there are also several lineages where the evolution of terrestriality was accompanied by shell flattening. Performance surface analyses allow exploration of these complex patterns and explicit quantitative analysis of the functional implications of changes in shell shape. Ten lineages were examined. Nearly all terrestrial lineages, including those which experienced decreased shell height, are associated with morphological changes consistent with a decrease in the importance of shell hydrodynamics. This implies a common selective pattern across lineages showing divergent morphological patterns. Performance studies such as these hold great potential for integrating adaptive and performance data in macroevolutionary studies.
Collapse
Affiliation(s)
- C Tristan Stayton
- Department of Biology, Bucknell University, Lewisburg, PA 17837, USA
| |
Collapse
|
28
|
Stayton CT. Performance in three shell functions predicts the phenotypic distribution of hard-shelled turtles. Evolution 2019; 73:720-734. [PMID: 30820948 DOI: 10.1111/evo.13709] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 01/28/2019] [Indexed: 01/30/2023]
Abstract
Adaptive landscapes have served as fruitful guides to evolutionary research for nearly a century. Current methods guided by landscape frameworks mostly utilize evolutionary modeling (e.g., fitting data to Ornstein-Uhlenbeck models) to make inferences about adaptive peaks. Recent alternative methods utilize known relationships between phenotypes and functional performance to derive information about adaptive landscapes; this information can then help explain the distribution of species in phenotypic space and help infer the relative importance of various functions for guiding diversification. Here, data on performance for three turtle shell functions-strength, hydrodynamic efficiency, and self-righting ability-are used to develop a set of predicted performance optima in shell shape space. The distribution of performance optima shows significant similarity to the distribution of existing turtle species and helps explain the absence of shells in otherwise anomalously empty regions of morphospace. The method outperforms a modeling-based approach in inferring the location of reasonable adaptive peaks and in explaining the shape of the phenotypic distributions of turtle shells. Performance surface-based methods allow researchers to more directly connect functional performance with macroevolutionary diversification, and to explain the distribution of species (including presences and absences) across phenotypic space.
Collapse
Affiliation(s)
- C Tristan Stayton
- Department of Biology, Bucknell University, Lewisburg, Pennsylvania, 17837
| |
Collapse
|
29
|
Zhang W, Niu C, Liu Y, Storey KB. Positive or negative? The shell alters the relationship among behavioral defense strategy, energy metabolic levels and antioxidant capacity in freshwater turtles. Front Zool 2019; 16:3. [PMID: 30809267 PMCID: PMC6375210 DOI: 10.1186/s12983-019-0301-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 01/23/2019] [Indexed: 11/10/2022] Open
Abstract
Background The relationships among energy metabolic levels, behavioral and other physiological traits help to determine the trade-off of energy allocation between different traits and the evolution of life-history driven by natural selection. However, these relationships may be distinctive in selected animal taxa because of their unique traits. In the present study, the relationships among energy metabolic levels, behavioral defense strategies, and antioxidant capacity were explored in three freshwater turtle species with different shell morphologies, by assessing responses to attack, righting time, shell morphology, whole-organism metabolic rates, tissue metabolic enzyme activities and antioxidant levels. Results The Chinese three-keeled pond turtles, Chinemys reevesii, showed a passive defense strategy, relatively larger shells, a higher resting metabolic rate (RMR) and higher antioxidant levels compared to the snapping turtle, Chelydra serpentina, or the Chinese soft-shelled turtle, Pelodiscus sinensis. These latter two species both showed an active defense strategy, a higher factorial aerobic scope and better muscle anaerobic metabolic capacity but relatively smaller shells, lower RMR and antioxidant capacity. Conclusion Our results indicate a negative relationship between RMR and activity levels in behavioral defense strategies along small-big shell continuum among the three turtle species. We also found a positive relationship between antioxidant capacity and energy metabolism but a negative one between antioxidant capacity and activity levels in defense strategies. The present study indicated a role of turtle shell in forming unique relationship between energy metabolic levels and behaviors in freshwater turtle taxa and a possible trade-off between the maintenance of physiological homeostasis and activity levels in energy allocation.
Collapse
Affiliation(s)
- Wenyi Zhang
- 1Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, 100875 China.,2State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102 People's Republic of China
| | - Cuijuan Niu
- 1Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, 100875 China
| | - Yukun Liu
- 1Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, 100875 China
| | - Kenneth B Storey
- 3Institute of Biochemistry and Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6 Canada
| |
Collapse
|
30
|
Stayton CT. Warped finite element models predict whole shell failure in turtle shells. J Anat 2018; 233:666-678. [PMID: 30058131 PMCID: PMC6182993 DOI: 10.1111/joa.12871] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/12/2018] [Indexed: 01/08/2023] Open
Abstract
Finite element (FE) models have become increasingly popular in comparative biomechanical studies, with researchers continually developing methods such as 'warping' preexisting models to facilitate analyses. However, few studies have investigated how well FE models can predict biologically crucial whole-structure performance or whether 'warped' models can provide useful information about the mechanical behavior of actual specimens. This study addresses both of these issues through a validation of warped FE models of turtle shells. FE models for 40 turtle specimens were built using 3D landmark coordinates and thin-plate spline interpolations to warp preexisting turtle shell models. Each actual turtle specimen was loaded to failure, and the load at failure and mode of fracture were then compared with the behavior predicted by the models. Overall, the models performed very well, despite the fact that many simplifying assumptions were made for analysis. Regressions of observed on predicted loads were significant for the dataset as a whole, as well as in separate analyses within two turtle species, and the direction of fracture was generally consistent with the patterns of stresses observed in the models. This was true even when size (an important factor in determining strength) was removed from analyses - the models were also able to predict which shells would be relatively stronger or weaker. Although some residual variation remains unexplained, this study supports the idea that warped FE models run with simplifying assumptions at least can provide useful information for comparative biomechanical studies.
Collapse
|
31
|
Cordero GA, Quinteros K, Janzen FJ. Delayed trait development and the convergent evolution of shell kinesis in turtles. Proc Biol Sci 2018; 285:rspb.2018.1585. [PMID: 30282655 DOI: 10.1098/rspb.2018.1585] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 09/10/2018] [Indexed: 12/30/2022] Open
Abstract
Understanding developmental processes is foundational to clarifying the mechanisms by which convergent evolution occurs. Here, we show how a key convergently evolving trait is slowly 'acquired' in growing turtles. Many functionally relevant traits emerge late in turtle ontogeny, owing to design constraints imposed by the shell. We investigated this trend by examining derived patterns of shell formation associated with the multiple (at least 8) origins of shell kinesis in small-bodied turtles. Using box turtles as a model, we demonstrate that the flexible hinge joint required for shell kinesis differentiates gradually and via extensive repatterning of shell tissue. Disproportionate changes in shell shape and size substantiate that this transformation is a delayed ontogenetic response (3-5 years post-hatching) to structural alterations that arise in embryogenesis. These findings exemplify that the translation of genotype to phenotype may reach far beyond embryonic life stages. Thus, the temporal scope for developmental origins of adaptive morphological change might be broader than generally understood. We propose that delayed trait differentiation via tissue repatterning might facilitate phenotypic diversification and innovation that otherwise would not arise due to developmental constraints.
Collapse
Affiliation(s)
- Gerardo A Cordero
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, 2200 Osborn Drive, 251 Bessey Hall, Ames, IA, USA
| | - Kevin Quinteros
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, 2200 Osborn Drive, 251 Bessey Hall, Ames, IA, USA
| | - Fredric J Janzen
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, 2200 Osborn Drive, 251 Bessey Hall, Ames, IA, USA
| |
Collapse
|
32
|
Stayton CT, O'Connor LF, Nisivoccia NM. The influence of multiple functional demands on morphological diversification: A test on turtle shells. Evolution 2018; 72:1933-1949. [DOI: 10.1111/evo.13561] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 02/02/2018] [Indexed: 11/29/2022]
|
33
|
Abnormal Shell Shapes in Northern Map Turtles of the Juniata River, Pennsylvania, USA. J HERPETOL 2018. [DOI: 10.1670/17-030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
34
|
Foth C, Joyce WG. Slow and steady: the evolution of cranial disparity in fossil and recent turtles. Proc Biol Sci 2017; 283:rspb.2016.1881. [PMID: 27903875 DOI: 10.1098/rspb.2016.1881] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 10/31/2016] [Indexed: 12/26/2022] Open
Abstract
Turtles (Testudinata) are a diverse group of amniotes that have a rich fossil record that extends back to the Late Triassic, but little is known about global patterns of disparity through time. We here investigate the cranial disparity of 172 representatives of the turtle lineage and their ancestors grouped into 20 time bins ranging from the Late Triassic until the Recent using two-dimensional geometric morphometrics. Three evolutionary phases are apparent in all three anatomical views investigated. In the first phase, disparity increases gradually from the Late Triassic to the Palaeogene with only a minor perturbation at the K/T extinct event. Although global warming may have influenced this increase, we find the Mesozoic fragmentation of Pangaea to be a more plausible factor. Following its maximum, disparity decreases strongly towards the Miocene, only to recover partially towards the Recent. The marked collapse in disparity is likely a result of habitat destruction caused by global drying, combined with the homogenization of global turtle faunas that resulted from increased transcontinental dispersal in the Tertiary. The disparity minimum in the Miocene is likely an artefact of poor sampling.
Collapse
Affiliation(s)
- Christian Foth
- Departement für Geowissenschaften, Universität Freiburg, 1700 Freiburg, Switzerland
| | - Walter G Joyce
- Departement für Geowissenschaften, Universität Freiburg, 1700 Freiburg, Switzerland
| |
Collapse
|
35
|
Xiao F, Wang J, Shi H, Long Z, Lin L, Wang W. Ecomorphological correlates of microhabitat selection in two sympatric Asian Box Turtle species (Geoemydidae: Cuora). CAN J ZOOL 2017. [DOI: 10.1139/cjz-2016-0218] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Closely related species that co-occur in homogeneous environments often possess differing morphologies, which can result in niche divergence that minimizes interspecific competition. In the present study, we examined the relationship between ecomorphological characteristics and microhabitat selection of two Asian box turtle species, the Keeled Box Turtle (Cuora mouhotii (Gray, 1862)) and the Indochinese Box Turtle (Cuora galbinifrons Bourret, 1940), that have sympatric distributions in the rainforest of Hainan, People’s Republic of China. We found that C. mouhotii had a relatively flat shell and preferred microhabitats with rock crevices and steep slopes in the field, whereas C. galbinifrons had a domed shell and was restricted to microhabitats of deciduous leaves under bamboo growing on gentle slopes. We conclude that morphological divergence allows the two Cuora spp. to use different microhabitats and, thereby, to successfully co-occur.
Collapse
Affiliation(s)
- Fanrong Xiao
- College of Life Sciences, Hainan Normal University, Haikou 571158, People’s Republic of China
| | - Jichao Wang
- College of Life Sciences, Hainan Normal University, Haikou 571158, People’s Republic of China
| | - Haitao Shi
- College of Life Sciences, Hainan Normal University, Haikou 571158, People’s Republic of China
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, People’s Republic of China
| | - Zaizhong Long
- College of Life Sciences, Hainan Normal University, Haikou 571158, People’s Republic of China
| | - Liu Lin
- College of Life Sciences, Hainan Normal University, Haikou 571158, People’s Republic of China
| | - Wei Wang
- College of Life Sciences, Hainan Normal University, Haikou 571158, People’s Republic of China
| |
Collapse
|
36
|
Berlant ZS, Stayton TC. Shell Morphology in the Kinosternidae: Functional and Evolutionary Patterns. HERPETOLOGICA 2017. [DOI: 10.1655/herpetologica-d-15-00064] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
37
|
Wise TB, Stayton CT. Side-necked Versus Hidden-necked: A Comparison of Shell Morphology Between Pleurodiran and Cryptodiran Turtles. HERPETOLOGICA 2017. [DOI: 10.1655/herpetologica-d-15-00038] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Taylor B. Wise
- Department of Biology, Bucknell University, Lewisburg, PA 17837, USA
| | | |
Collapse
|
38
|
Casale P, Freggi D, Rigoli A, Ciccocioppo A, Luschi P. Geometric morphometrics, scute patterns and biometrics of loggerhead turtles (Caretta caretta) in the central Mediterranean. AMPHIBIA-REPTILIA 2017. [DOI: 10.1163/15685381-00003096] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We investigate for the first time allometric vs. non-allometric shape variation in sea turtles through a geometric morphometrics approach. Five body parts (carapace, plastron, top and lateral sides of the head, dorsal side of front flippers) were considered in a sample of 58 loggerhead turtles (Caretta caretta) collected in the waters around Lampedusa island, Italy, the central Mediterranean. The allometric component was moderate but significant, except for the plastron, and may represent an ontogenetic optimization in the case of the head and flippers. The predominant non-allometric component encourages further investigation with sex and origin as potential explanatory variables. We also reported the variation of marginal and prefrontal scutes of 1497 turtles, showing that: variation of marginals is mostly limited to the two anteriormost scutes, symmetry is favored, asymmetry is biased to one pattern, and the variation of marginal and prefrontal scutes are linked. Comparisons with other datasets from the Mediterranean show a high variability, more likely caused by epigenetic factors. Finally, conversion equations between the most commonly used biometrics (curved and straight carapace length, carapace width, and weight) are often needed in sea turtle research but are lacking for the Mediterranean and are here estimated from a sample of 2624 turtles.
Collapse
Affiliation(s)
- Paolo Casale
- Department of Biology, University of Pisa, Via A. Volta 6, I-56126, Pisa, Italy
| | | | - Alessandro Rigoli
- Department of Biology, University of Pisa, Via A. Volta 6, I-56126, Pisa, Italy
| | - Amedeo Ciccocioppo
- Department of Biology, University of Pisa, Via A. Volta 6, I-56126, Pisa, Italy
| | - Paolo Luschi
- Department of Biology, University of Pisa, Via A. Volta 6, I-56126, Pisa, Italy
| |
Collapse
|
39
|
Foth C, Rabi M, Joyce WG. Skull shape variation in extant and extinct Testudinata and its relation to habitat and feeding ecology. ACTA ZOOL-STOCKHOLM 2016. [DOI: 10.1111/azo.12181] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Christian Foth
- Departement für Geowissenschaften; Universität Freiburg; 1700 Freiburg Switzerland
| | - Márton Rabi
- Department of Earth Sciences; University of Turin; 10125 Turin Italy
- Institut für Geowissenschaften; Universität Tübingen; 72074 Tübingen Germany
| | - Walter G. Joyce
- Departement für Geowissenschaften; Universität Freiburg; 1700 Freiburg Switzerland
| |
Collapse
|
40
|
Affiliation(s)
- Michael Dosik
- Department of Biology, Bucknell University, Lewisburg, PA 17837, USA
| | - Tristan Stayton
- Department of Biology, Bucknell University, Lewisburg, PA 17837, USA
| |
Collapse
|
41
|
Adaptation and acclimation of traits associated with swimming capacity in Lake Whitefish (coregonus clupeaformis) ecotypes. BMC Evol Biol 2016; 16:160. [PMID: 27514685 PMCID: PMC4982116 DOI: 10.1186/s12862-016-0732-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 08/01/2016] [Indexed: 11/10/2022] Open
Abstract
Background Improved performance in a given ecological niche can occur through local adaptation, phenotypic plasticity, or a combination of these mechanisms. Evaluating the relative importance of these two mechanisms is needed to better understand the cause of intra specific polymorphism. In this study, we reared populations of Lake Whitefish (Coregonus clupeaformis) representing the’normal’ (benthic form) and the ‘dwarf’ (derived limnetic form) ecotypes in two different conditions (control and swim-training) to test the relative importance of adaptation and acclimation in the differentiation of traits related to swimming capacity. The dwarf whitefish is a more active swimmer than the normal ecotype, and also has a higher capacity for aerobic energy production in the swimming musculature. We hypothesized that dwarf fish would show changes in morphological and physiological traits consistent with reductions in the energetic costs of swimming and maintenance metabolism. Results We found differences in traits predicted to decrease the costs of prolonged swimming and standard metabolic rate and allow for a more active lifestyle in dwarf whitefish. Dwarf whitefish evolved a more streamlined body shape, predicted to lead to a decreased drag, and a smaller brain, which may decrease their standard metabolic rate. Contrary to predictions, we also found evidence of acclimation in liver size and metabolic enzyme activities. Conclusion Results support the view that local adaptation has contributed to the genetically-based divergence of traits associated with swimming activity. Presence of post-zygotic barriers limiting gene flow between these ecotype pairs may have favoured repeated local adaptation to the limnetic niches. Electronic supplementary material The online version of this article (doi:10.1186/s12862-016-0732-y) contains supplementary material, which is available to authorized users.
Collapse
|
42
|
Schmidt M, Mehlhorn M, Fischer MS. Shoulder girdle rotation, forelimb movement and the influence of carapace shape on locomotion in Testudo hermanni (Testudinidae). ACTA ACUST UNITED AC 2016; 219:2693-703. [PMID: 27340203 DOI: 10.1242/jeb.137059] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2016] [Accepted: 06/20/2016] [Indexed: 11/20/2022]
Abstract
Studies into the function of structures are crucial for making connections between morphology and behaviour of organisms, but are still rare for the terrestrial Testudinidae. We investigated the kinematics of shoulder girdle and forelimb motion in Hermann's tortoise Testudo hermanni using biplanar X-ray fluoroscopy with a twofold aim: firstly, to understand how the derived shapes of shoulder girdle and carapace together influence rotation of the girdle; and, secondly, to understand how girdle rotation affects forelimb excursion. The total degree of shoulder rotation in the horizontal plane is similar to a species with a less domed shell, but because of the long and nearly vertically oriented scapular prong, shoulder girdle rotation contributes more than 30% to the horizontal arc of the humerus and nearly 40% to the rotational component of step length. The antebrachium and manus, which act as a functional unit, contribute roughly 50% to this component of the step length because of their large excursion almost parallel to the mid-sagittal plane. This large excursion is the result of the complex interplay between humerus long-axis rotation, counter-rotation of the antebrachium, and elbow flexion and extension. A significant proportion of forelimb step length results from body translation that is due to the propulsive effect of the other limbs during their stance phases. Traits that are similar to other tortoises and terrestrial or semi-aquatic turtles are the overall slow walk because of a low stride frequency, and the lateral-sequence, diagonally coupled footfall pattern with high duty factors. Intraspecific variation of carapace shape and shoulder girdle dimensions has a corresponding effect on forelimb kinematics.
Collapse
Affiliation(s)
- Manuela Schmidt
- Institute of Systematic Zoology and Evolutionary Biology, Friedrich-Schiller-University Jena, Erbertstraße 1, Jena 07743, Germany
| | - Martin Mehlhorn
- Institute of Systematic Zoology and Evolutionary Biology, Friedrich-Schiller-University Jena, Erbertstraße 1, Jena 07743, Germany
| | - Martin S Fischer
- Institute of Systematic Zoology and Evolutionary Biology, Friedrich-Schiller-University Jena, Erbertstraße 1, Jena 07743, Germany
| |
Collapse
|
43
|
McLaughlin CJ, Stayton CT. Convergent Evolution Provides Evidence of Similar Radiations in Shell Shape in the Turtle Families Emydidae and Geoemydidae. HERPETOLOGICA 2016. [DOI: 10.1655/herpetologica-d-15-00037] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
44
|
Laporte M, Claude J, Berrebi P, Perret P, Magnan P. Shape plasticity in response to water velocity in the freshwater blenny Salaria fluviatilis. JOURNAL OF FISH BIOLOGY 2016; 88:1191-1203. [PMID: 26935595 DOI: 10.1111/jfb.12902] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 12/17/2015] [Indexed: 06/05/2023]
Abstract
A non-random association between an environmental factor and a given trait could be explained by directional selection (genetic determinism) and by phenotypic plasticity (environmental determinism). A previous study showed a significant relationship between morphology and water velocity in Salaria fluviatilis that conformed to functional expectations. The objective of this study was to test whether this relationship could be explained by phenotypic plasticity. Salaria fluviatilis from a Corsican stream were placed in four experimental channels with different water velocities (0, 10, 20 and 30 cm s(-1)) to test whether there was a morphological response associated with this environmental factor. After 28 days, fish shape changed in response to water velocity without any significant growth. Fish in higher water velocities exhibited a more slender body shape and longer anal and caudal fins. These results indicate a high degree of morphological plasticity in riverine populations of S. fluviatilis and suggest that the previous relationship between morphology and water velocity observed in the field may largely be due to an environmental determinism.
Collapse
Affiliation(s)
- M Laporte
- Institut des Sciences de l'Évolution de Montpellier (ISEM), UMR 5554 UM2-CNRS-IRD, Université de Montpellier II, CC065, Place E. Bataillon, 34095, Montpellier, Cedex 5, France
- Centre de recherche sur les interactions bassins versants-écosystèmes aquatiques (RIVE), Université du Québec à Trois-Rivières, C. P. 500, Trois-Rivières, QC, G9A 5H7, Canada
| | - J Claude
- Institut des Sciences de l'Évolution de Montpellier (ISEM), UMR 5554 UM2-CNRS-IRD, Université de Montpellier II, CC065, Place E. Bataillon, 34095, Montpellier, Cedex 5, France
| | - P Berrebi
- Institut des Sciences de l'Évolution de Montpellier (ISEM), UMR 5554 UM2-CNRS-IRD, Université de Montpellier II, CC065, Place E. Bataillon, 34095, Montpellier, Cedex 5, France
| | - P Perret
- Centre d'Écologie Fonctionnelle et d'Évolution (CEFE), UMR 5175 CEFE-CNRS, Équipe Écologie Spatiale des Populations, 1919 route de Mende, F34293, Montpellier, Cedex 5, France
| | - P Magnan
- Centre de recherche sur les interactions bassins versants-écosystèmes aquatiques (RIVE), Université du Québec à Trois-Rivières, C. P. 500, Trois-Rivières, QC, G9A 5H7, Canada
| |
Collapse
|
45
|
Local iterative DLT soft-computing vs. interval-valued stereo calibration and triangulation with uncertainty bounding in 3D reconstruction. Neurocomputing 2015. [DOI: 10.1016/j.neucom.2014.11.087] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
46
|
Slavenko A, Itescu Y, Ihlow F, Meiri S. Home is where the shell is: predicting turtle home range sizes. J Anim Ecol 2015; 85:106-14. [PMID: 26395451 DOI: 10.1111/1365-2656.12446] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 09/14/2015] [Indexed: 11/30/2022]
Abstract
Home range is the area traversed by an animal in its normal activities. The size of home ranges is thought to be tightly linked to body size, through size effect on metabolic requirements. Due to the structure of Eltonian food pyramids, home range sizes of carnivores are expected to exceed those of herbivorous species. The habitat may also affect home range size, with reduced costs of locomotion or lower food abundance in, for example, aquatic habitats selecting for larger home ranges. Furthermore, home range of males in polygamous species may be large due to sexual selection for increased reproductive output. Comparative studies on home range sizes have rarely been conducted on ectotherms. Because ectotherm metabolic rates are much lower than those of endotherms, energetic considerations of metabolic requirements may be less important in determining the home range sizes of the former, and other factors such as differing habitats and sexual selection may have an increased effect. We collected literature data on turtle home range sizes. We used phylogenetic generalized least squares analyses to determine whether body mass, sex, diet, habitat and social structure affect home range size. Turtle home range size increases with body mass. However, body mass explains relatively little of the variation in home range size. Aquatic turtles have larger home ranges than semiaquatic species. Omnivorous turtles have larger home ranges than herbivores and carnivores, but diet is not a strong predictor. Sex and social structure are unrelated to home range size. We conclude that energetic constraints are not the primary factor that determines home range size in turtles, and energetic costs of locomotion in different habitats probably play a major role.
Collapse
Affiliation(s)
- Alex Slavenko
- Department of Zoology, Tel Aviv University, 6997801, Tel Aviv, Israel
| | - Yuval Itescu
- Department of Zoology, Tel Aviv University, 6997801, Tel Aviv, Israel
| | - Flora Ihlow
- Herpetology Department, Zoologisches Forschungsmuseum Alexander Koenig (ZFMK), 53113, Bonn, Germany
| | - Shai Meiri
- Department of Zoology, Tel Aviv University, 6997801, Tel Aviv, Israel
| |
Collapse
|
47
|
Billet G, Hautier L, Lebrun R. Morphological diversity of the bony labyrinth (inner ear) in extant Xenarthrans and its relation to phylogeny. J Mammal 2015. [DOI: 10.1093/jmammal/gyv074] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Abstract
We present a survey of the morphological diversity of the bony labyrinth of the inner ear in Xenarthra, including the fossil ground sloth Megatherium. Using a combination of traditional and geometric morphometrics, correlation analyses, and qualitative observations, we attempt to extract independent and informative phylogenetic characters of the bony labyrinth for the superorder. Geometric morphometric analyses demonstrate a strong imprint of phylogenetic history on the shape of the bony labyrinth of xenarthrans and a weak influence of allometry. Discrete characters mapped on a consensus cladogram for xenarthrans show support for many traditional nodes within the superorder and may also provide critical information for problematic nodes within Cingulata. A relatively large lateral semicircular canal may, for instance, represent a synapomorphy for the molecular clade allying fairy armadillos (Chlamyphorinae) to the Tolypeutinae. Striking convergences were detected when comparing Megatherium, the giant ground sloth, with extant armadillos and Chlamyphorus, the pink fairy armadillo, with the extant three- and two-toed sloths. These findings have the potential to help understand the phylogenetic relationships of fossil xenarthrans.
Presentamos un estudio de la diversidad morfológica del laberinto óseo del oído interno de los xenartros, incluyendo el perezoso fósil Megatherium. Utilizamos una combinación de morfométrica tradicional y geométrica, análisis de correlación y observaciones cuantitativas para intentar extraer caracteres filogenéticos independientes e informativos del laberinto óseo para el superorden. Los análisis geométricos morfométricos muestran una fuerte impronta de la historia filogenética de la forma del laberinto óseo de los xenartros y una baja influencia de la alometría. Los caracteres discretos mapeados en un cladograma de consenso para xenartros apoyan varios nodos tradicionales dentro del superorden y podrían también brindar información importante para los nodos problemáticos dentro de los Cingulata. Un canal semicircular lateral relativamente largo podría, por ejemplo, representar una sinapomorfía que apoye el clado molecular que une a los pichiciegos con los Tolypeutinae. Se hallaron notables convergencias al comparar Megatherium con los armadillos actuales, y Chlamyphorus con los perezosos actuales. Estos hallazgos tienen el potencial para ayudar a entender las relaciones filogenéticas de los xenartros fósiles.
Collapse
Affiliation(s)
- Guillaume Billet
- CR2P, UMR CNRS 7207, CP 38, Muséum national d’Histoire naturelle, Univ Paris 06, 8 rue Buffon, 75005 Paris, France (GB)
| | - Lionel Hautier
- Laboratoire de Paléontologie, Institut des Sciences de l’Évolution de Montpellier (CNRS, UM2, IRD, EPHE), c.c. 064, Université Montpellier, Place Eugène Bataillon, 34095 Montpellier Cedex 05, France (LH, RL)
| | - Renaud Lebrun
- Laboratoire de Paléontologie, Institut des Sciences de l’Évolution de Montpellier (CNRS, UM2, IRD, EPHE), c.c. 064, Université Montpellier, Place Eugène Bataillon, 34095 Montpellier Cedex 05, France (LH, RL)
| |
Collapse
|
48
|
Ruane S. Using geometric morphometrics for integrative taxonomy: an examination of head shapes of milksnakes (genusLampropeltis). Zool J Linn Soc 2015. [DOI: 10.1111/zoj.12245] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Sara Ruane
- Department of Biology; College of Staten Island/CUNY Graduate Center; 2800 Victory Blvd. Staten Island NY 10314
| |
Collapse
|
49
|
Zuffi MA, Foschi E. Reproductive patterns of European pond turtles differ between sites: a small scale scenario. AMPHIBIA-REPTILIA 2015. [DOI: 10.1163/15685381-00003009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
From 1996 to 2002, we studied the body size, measures of reproductive strategy (relative clutch mass and delayed reproduction at sexual maturity), and reproductive output (clutch frequency and annual egg production) of female European Pond turtles,Emys orbicularis, at two sites separated by 12 km in central Mediterranean Tuscany (San Rossore and Camp Darby, central northern Italy). Females did not reproduce at the first appearance of external sexual characters, but reproduced at larger sizes, probably as older turtles. Among years, reproductive females were more common than were non-reproductive females, yet both groups had similar body sizes. Body size (carapace length and width, plastron length and width, shell height and body mass) varied between localities and among years. Body size differed between reproductive and non reproductive females in Camp Darby, but not in San Rossore females. Shell volume did not vary among years, nor between localities, nor between reproductive status. Reproductive females had higher body condition indices (BCI) than did non-reproductive females, while BCI did not differ between females laying one clutch and females laying multiple clutches. Clutch size did not vary among years. One clutch per year was much more frequent than multiple clutches, and multiple clutches were more frequent in Camp Darby than in San Rossore females, likely due to differences in population structures between sites.
Collapse
Affiliation(s)
- Marco A.L. Zuffi
- Museo di Storia Naturale, Università di Pisa, via Roma 79, I-56011 Calci (Pisa), Italy
| | - Elena Foschi
- Museo di Storia Naturale, Università di Pisa, via Roma 79, I-56011 Calci (Pisa), Italy
| |
Collapse
|
50
|
Nakajima Y, Hirayama R, Endo H. Turtle humeral microanatomy and its relationship to lifestyle. Biol J Linn Soc Lond 2014. [DOI: 10.1111/bij.12336] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yasuhisa Nakajima
- Steinmann Institute for Geology, Mineralogy and Paleontology; University of Bonn; Nussallee 8 53115 Bonn Germany
| | - Ren Hirayama
- School of International Liberal Studies; Waseda University; Nishiwaseda 1-6-1 Shinjuku-ku Tokyo Japan
| | - Hideki Endo
- The University Museum; The University of Tokyo; 7-3-1 Hongo Bunkyo-ku Tokyo Japan
| |
Collapse
|