1
|
Protasi F, Pietrangelo L, Boncompagni S. Improper Remodeling of Organelles Deputed to Ca 2+ Handling and Aerobic ATP Production Underlies Muscle Dysfunction in Ageing. Int J Mol Sci 2021; 22:6195. [PMID: 34201319 PMCID: PMC8228829 DOI: 10.3390/ijms22126195] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/01/2021] [Accepted: 06/02/2021] [Indexed: 12/28/2022] Open
Abstract
Proper skeletal muscle function is controlled by intracellular Ca2+ concentration and by efficient production of energy (ATP), which, in turn, depend on: (a) the release and re-uptake of Ca2+ from sarcoplasmic-reticulum (SR) during excitation-contraction (EC) coupling, which controls the contraction and relaxation of sarcomeres; (b) the uptake of Ca2+ into the mitochondrial matrix, which stimulates aerobic ATP production; and finally (c) the entry of Ca2+ from the extracellular space via store-operated Ca2+ entry (SOCE), a mechanism that is important to limit/delay muscle fatigue. Abnormalities in Ca2+ handling underlie many physio-pathological conditions, including dysfunction in ageing. The specific focus of this review is to discuss the importance of the proper architecture of organelles and membrane systems involved in the mechanisms introduced above for the correct skeletal muscle function. We reviewed the existing literature about EC coupling, mitochondrial Ca2+ uptake, SOCE and about the structural membranes and organelles deputed to those functions and finally, we summarized the data collected in different, but complementary, projects studying changes caused by denervation and ageing to the structure and positioning of those organelles: a. denervation of muscle fibers-an event that contributes, to some degree, to muscle loss in ageing (known as sarcopenia)-causes misplacement and damage: (i) of membrane structures involved in EC coupling (calcium release units, CRUs) and (ii) of the mitochondrial network; b. sedentary ageing causes partial disarray/damage of CRUs and of calcium entry units (CEUs, structures involved in SOCE) and loss/misplacement of mitochondria; c. functional electrical stimulation (FES) and regular exercise promote the rescue/maintenance of the proper architecture of CRUs, CEUs, and of mitochondria in both denervation and ageing. All these structural changes were accompanied by related functional changes, i.e., loss/decay in function caused by denervation and ageing, and improved function following FES or exercise. These data suggest that the integrity and proper disposition of intracellular organelles deputed to Ca2+ handling and aerobic generation of ATP is challenged by inactivity (or reduced activity); modifications in the architecture of these intracellular membrane systems may contribute to muscle dysfunction in ageing and sarcopenia.
Collapse
Affiliation(s)
- Feliciano Protasi
- CAST, Center for Advanced Studies and Technology, University G. d’Annunzio of Chieti-Pescara, I-66100 Chieti, Italy; (L.P.); (S.B.)
- DMSI, Department of Medicine and Aging Sciences, University G. d’Annunzio of Chieti-Pescara, I-66100 Chieti, Italy
| | - Laura Pietrangelo
- CAST, Center for Advanced Studies and Technology, University G. d’Annunzio of Chieti-Pescara, I-66100 Chieti, Italy; (L.P.); (S.B.)
- DMSI, Department of Medicine and Aging Sciences, University G. d’Annunzio of Chieti-Pescara, I-66100 Chieti, Italy
| | - Simona Boncompagni
- CAST, Center for Advanced Studies and Technology, University G. d’Annunzio of Chieti-Pescara, I-66100 Chieti, Italy; (L.P.); (S.B.)
- DNICS, Department of Neuroscience and Clinical Sciences, University G. d’Annunzio of Chieti-Pescara, I-66100 Chieti, Italy
| |
Collapse
|
2
|
Kraemer WJ, Kennett MJ, Mastro AM, McCarter RJ, Rogers CJ, DuPont WH, Flanagan SD, Turbitt WJ, Fragala MS, Post EM, Hymer WC. Bioactive growth hormone in older men and women: It's relationship to immune markers and healthspan. Growth Horm IGF Res 2017; 34:45-54. [PMID: 28551577 DOI: 10.1016/j.ghir.2017.05.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 05/07/2017] [Accepted: 05/07/2017] [Indexed: 02/06/2023]
Abstract
OBJECTIVE The consequences of age-related decline in the somatotropic axis of humans are complex and remain largely unresolved. We tested the hypothesis that hGH measurements of plasma by bioassay vs immunoassay from samples obtained from free-living, elderly individuals would reveal a dichotomy in GH activities that are correlated with the functional status of the donors, i.e. their healthspan. DESIGN Forty-one men and women of advanced age (men: N=16, age, 80.5±6.5years; height, 173.1±6.9cm; body mass, 81.8±13.0kg) and (women: N=25, age, 80.7±7.2years; height, 157.7±6.0cm; body mass, 68.8±17kg), were recruited for a cross-sectional study. Participants filled out PROMIS (Patient-Reported Outcomes Measurement Information System, U. S. Department of Health and Human Services) scales, undertook physical performance tests and had fasted blood samples obtained at rest for measurement of hormonal and immunology biomarkers. RESULTS When measured by the well-established rat tibial line GH bioassay, one half of the plasma samples (n=20) contained bioassayable GH (bGH), but the other half (n=21) failed to mount increases in tibial plate width above saline injected controls. This difference did not correlate with the age, sex or physical functionality of the plasma donor. It also did not correlate with hGH concentrations measured by immunoassay. In those cases in which bGH was detected, various hierarchical regression models predicted that GHRH, c-peptide, VEGF, NPY, IL-4 and T-regulatory lymphocytes were associated with the difference and predicted bGH. CONCLUSION Results from this study suggest that the actions of bGH at the cellular level may be modified by other factors and that this may explain the lack of correlations observed in this study.
Collapse
Affiliation(s)
- William J Kraemer
- Department of Human Sciences, The Ohio State University, Columbus, OH 43210, United States.
| | - Mary J Kennett
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, United States
| | - Andrea M Mastro
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, United States
| | - Roger J McCarter
- Department of Behavioral Health, The Pennsylvania State University, University Park, PA 16802, United States
| | - Connie J Rogers
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA 16802, United States
| | - William H DuPont
- Department of Human Sciences, The Ohio State University, Columbus, OH 43210, United States
| | - Shawn D Flanagan
- Neuromuscular Research Laboratory/Warrior Human Performance Research Center, Department of Sports Medicine and Nutrition, University of Pittsburgh, Pittsburgh, PA 15203, United States
| | - William J Turbitt
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA 16802, United States
| | | | - Emily M Post
- Department of Human Sciences, The Ohio State University, Columbus, OH 43210, United States
| | - Wesley C Hymer
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, United States
| |
Collapse
|
3
|
Chaves DFS, Carvalho PC, Lima DB, Nicastro H, Lorenzeti FM, Siqueira-Filho M, Hirabara SM, Alves PHM, Moresco JJ, Yates JR, Lancha AH. Comparative proteomic analysis of the aging soleus and extensor digitorum longus rat muscles using TMT labeling and mass spectrometry. J Proteome Res 2013; 12:4532-46. [PMID: 24001182 PMCID: PMC3845496 DOI: 10.1021/pr400644x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Sarcopenia describes an age-related decline in skeletal muscle mass, strength, and function that ultimately impairs metabolism and leads to poor balance, frequent falling, limited mobility, and a reduction in quality of life. Here we investigate the pathogenesis of sarcopenia through a proteomic shotgun approach. In brief, we employed tandem mass tags to quantitate and compare the protein profiles obtained from young versus old rat slow-twitch type of muscle (soleus) and a fast-twitch type of muscle (extensor digitorum longus, EDL). Our results disclose 3452 and 1848 proteins identified from soleus and EDL muscles samples, of which 78 and 174 were found to be differentially expressed, respectively. In general, most of the proteins were structural related and involved in energy metabolism, oxidative stress, detoxification, or transport. Aging affected soleus and EDL muscles differently, and several proteins were regulated in opposite ways. For example, pyruvate kinase had its expression and activity different in both soleus and EDL muscles. We were able to verify with existing literature many of our differentially expressed proteins as candidate aging biomarkers and, most importantly, disclose several new candidate biomarkers such as the glioblastoma amplified sequence, zero β-globin, and prolargin.
Collapse
Affiliation(s)
- Daniela F S Chaves
- Laboratory of Applied Nutrition and Metabolism, School of Physical Education and Sports, University of São Paulo , Av. Prof. Mello Moraes, 65, 05508-900 São Paulo, SP, Brazil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Silvestri E, Lombardi A, de Lange P, Glinni D, Senese R, Cioffi F, Lanni A, Goglia F, Moreno M. Studies of complex biological systems with applications to molecular medicine: the need to integrate transcriptomic and proteomic approaches. J Biomed Biotechnol 2010; 2011:810242. [PMID: 20981256 PMCID: PMC2963870 DOI: 10.1155/2011/810242] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2010] [Accepted: 09/08/2010] [Indexed: 02/07/2023] Open
Abstract
Omics approaches to the study of complex biological systems with potential applications to molecular medicine are attracting great interest in clinical as well as in basic biological research. Genomics, transcriptomics and proteomics are characterized by the lack of an a priori definition of scope, and this gives sufficient leeway for investigators (a) to discern all at once a globally altered pattern of gene/protein expression and (b) to examine the complex interactions that regulate entire biological processes. Two popular platforms in "omics" are DNA microarrays, which measure messenger RNA transcript levels, and proteomic analyses, which identify and quantify proteins. Because of their intrinsic strengths and weaknesses, no single approach can fully unravel the complexities of fundamental biological events. However, an appropriate combination of different tools could lead to integrative analyses that would furnish new insights not accessible through one-dimensional datasets. In this review, we will outline some of the challenges associated with integrative analyses relating to the changes in metabolic pathways that occur in complex pathophysiological conditions (viz. ageing and altered thyroid state) in relevant metabolically active tissues. In addition, we discuss several new applications of proteomic analysis to the investigation of mitochondrial activity.
Collapse
Affiliation(s)
- Elena Silvestri
- Dipartimento di Scienze Biologiche ed Ambientali, Università degli Studi del Sannio, Via Port'Arsa 11, 82100 Benevento, Italy
| | - Assunta Lombardi
- Dipartimento delle Scienze Biologiche, Sezione Fisiologia, Università degli Studi di Napoli “Federico II”, Via Mezzocannone 8, 80134 Napoli, Italy
| | - Pieter de Lange
- Dipartimento di Scienze della Vita, Seconda Università di Napoli, Via Vivaldi 43, 81100 Caserta, Italy
| | - Daniela Glinni
- Dipartimento di Scienze Biologiche ed Ambientali, Università degli Studi del Sannio, Via Port'Arsa 11, 82100 Benevento, Italy
| | - Rosalba Senese
- Dipartimento di Scienze della Vita, Seconda Università di Napoli, Via Vivaldi 43, 81100 Caserta, Italy
| | - Federica Cioffi
- Dipartimento di Scienze della Vita, Seconda Università di Napoli, Via Vivaldi 43, 81100 Caserta, Italy
| | - Antonia Lanni
- Dipartimento di Scienze della Vita, Seconda Università di Napoli, Via Vivaldi 43, 81100 Caserta, Italy
| | - Fernando Goglia
- Dipartimento di Scienze Biologiche ed Ambientali, Università degli Studi del Sannio, Via Port'Arsa 11, 82100 Benevento, Italy
| | - Maria Moreno
- Dipartimento di Scienze Biologiche ed Ambientali, Università degli Studi del Sannio, Via Port'Arsa 11, 82100 Benevento, Italy
| |
Collapse
|
5
|
Gannon J, Doran P, Kirwan A, Ohlendieck K. Drastic increase of myosin light chain MLC-2 in senescent skeletal muscle indicates fast-to-slow fibre transition in sarcopenia of old age. Eur J Cell Biol 2009; 88:685-700. [DOI: 10.1016/j.ejcb.2009.06.004] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2009] [Revised: 06/25/2009] [Accepted: 06/27/2009] [Indexed: 10/20/2022] Open
|
6
|
Doran P, Donoghue P, O'Connell K, Gannon J, Ohlendieck K. Proteomics of skeletal muscle aging. Proteomics 2009; 9:989-1003. [DOI: 10.1002/pmic.200800365] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
7
|
O’Connell K, Doran P, Gannon J, Ohlendieck K. Lectin-based proteomic profiling of aged skeletal muscle: Decreased pyruvate kinase isozyme M1 exhibits drastically increased levels of N-glycosylation. Eur J Cell Biol 2008; 87:793-805. [DOI: 10.1016/j.ejcb.2008.04.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2008] [Revised: 04/10/2008] [Accepted: 04/21/2008] [Indexed: 12/24/2022] Open
|
8
|
Doran P, O'Connell K, Gannon J, Kavanagh M, Ohlendieck K. Opposite pathobiochemical fate of pyruvate kinase and adenylate kinase in aged rat skeletal muscle as revealed by proteomic DIGE analysis. Proteomics 2008; 8:364-77. [PMID: 18050275 DOI: 10.1002/pmic.200700475] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Sarcopenia is the drastic loss of skeletal muscle mass and strength during ageing. In order to better understand the molecular pathogenesis of age-related muscle wasting, we have performed a DIGE analysis of young adult versus old rat skeletal muscle. Proteomic profiling revealed that out of 2493 separated 2-D spots, 69 proteins exhibited a drastically changed expression. Age-dependent alterations in protein abundance indicated dramatic changes in metabolism, contractile activity, myofibrillar remodelling and stress response. In contrast to decreased levels of pyruvate kinase (PK), enolase and phosphofructokinase, the mitochondrial ATP synthase, succinate dehydrogenase, malate dehydrogenase, isocitrate dehydrogenase and adenylate kinase (AK) were increased in senescent fibres. Higher expression levels of myoglobin and fatty acid binding-protein indicated a shift to more aerobic-oxidative metabolism in a slower-twitching aged fibre population. The drastic increase in alphaB-crystallin and myotilin demonstrated substantial filament remodelling during ageing. An immunoblotting survey of selected muscle proteins confirmed the pathobiochemical transition process in aged muscle metabolism. The proteomic analysis of aged muscle has identified a large cohort of new biomarkers of sarcopenia including opposite changes in PK and AK, which might be useful for the design of improved diagnostic procedures and/or therapeutic strategies to counteract ageing-induced muscle degeneration.
Collapse
Affiliation(s)
- Philip Doran
- Department of Biology, National University of Ireland, Maynooth, County Kildare, Ireland
| | | | | | | | | |
Collapse
|
9
|
Doran P, Gannon J, O'Connell K, Ohlendieck K. Proteomic profiling of animal models mimicking skeletal muscle disorders. Proteomics Clin Appl 2007; 1:1169-84. [PMID: 21136766 DOI: 10.1002/prca.200700042] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2007] [Indexed: 01/01/2023]
Abstract
Over the last few decades of biomedical research, animal models of neuromuscular diseases have been widely used for determining pathological mechanisms and for testing new therapeutic strategies. With the emergence of high-throughput proteomics technology, the identification of novel protein factors involved in disease processes has been decisively improved. This review outlines the usefulness of the proteomic profiling of animal disease models for the discovery of new reliable biomarkers, for the optimization of diagnostic procedures and the development of new treatment options for skeletal muscle disorders. Since inbred animal strains show genetically much less interindividual differences as compared to human patients, considerably lower experimental repeats are capable of producing meaningful proteomic data. Thus, animal model proteomics can be conveniently employed for both studying basic mechanisms of molecular pathogenesis and the effects of drugs, genetic modifications or cell-based therapies on disease progression. Based on the results from comparative animal proteomics, a more informed decision on the design of clinical proteomics studies could be reached. Since no one animal model represents a perfect pathobiochemical replica of all of the symptoms seen in complex human disorders, the proteomic screening of novel animal models can also be employed for swift and enhanced protein biochemical phenotyping.
Collapse
Affiliation(s)
- Philip Doran
- Department of Biology, National University of Ireland, Maynooth Co. Kildare, Ireland
| | | | | | | |
Collapse
|
10
|
Boncompagni S, d'Amelio L, Fulle S, Fanò G, Protasi F. Progressive disorganization of the excitation-contraction coupling apparatus in aging human skeletal muscle as revealed by electron microscopy: a possible role in the decline of muscle performance. J Gerontol A Biol Sci Med Sci 2006; 61:995-1008. [PMID: 17077192 DOI: 10.1093/gerona/61.10.995] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
An impairment of the mechanisms controlling the release of calcium from internal stores (excitation-contraction [EC] coupling) has been proposed to contribute to the age-related decline of muscle performance that accompanies aging (EC uncoupling theory). EC coupling in muscle fibers occurs at the junctions between sarcoplasmic reticulum and transverse tubules, in structures called calcium release units (CRUs). We studied the frequency, cellular localization, and ultrastructure of CRUs in human muscle biopsies from male and female participants with ages ranging from 28 to 83 years. Our results show significant alterations in the CRUs' morphology and cellular disposition, and a significant decrease in their frequency between control and aged samples: 24.4/100 microm(2) (n = 2) versus 11.6/100 microm(2) (n = 7). These data indicate that in aging humans the EC coupling apparatus undergoes a partial disarrangement and a spatial reorganization that could interfere with an efficient delivery of Ca(2+) ions to the contractile proteins.
Collapse
Affiliation(s)
- Simona Boncompagni
- CeSI, Centro Scienze dell'Invecchiamento, Università degli Studi G. d'Annunzio, Chieti, CH I-66013, Italy
| | | | | | | | | |
Collapse
|
11
|
Jackson MJ. Lack of CuZnSOD activity: a pointer to the mechanisms underlying age-related loss of muscle function, a commentary on "absence of CuZn superoxide dismutase leads to elevated oxidative stress and acceleration of age-dependent skeletal muscle atrophy". Free Radic Biol Med 2006; 40:1900-2. [PMID: 16716891 DOI: 10.1016/j.freeradbiomed.2006.02.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2006] [Accepted: 02/23/2006] [Indexed: 11/26/2022]
Affiliation(s)
- Malcolm J Jackson
- Division of Metabolic and Cellular Medicine, School of Clinical Sciences, University of Liverpool, Liverpool L69 3GA, UK.
| |
Collapse
|
12
|
Korfage JAM, Koolstra JH, Langenbach GEJ, van Eijden TMGJ. Fiber-type composition of the human jaw muscles--(part 2) role of hybrid fibers and factors responsible for inter-individual variation. J Dent Res 2005; 84:784-93. [PMID: 16109985 DOI: 10.1177/154405910508400902] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
This is the second of two articles about fiber-type composition of the human jaw muscles. It reviews the functional relationship of hybrid fibers and the adaptive properties of jaw-muscle fibers. In addition, to explain inter-individual variation in fiber-type composition, we discuss these adaptive properties in relation to environmental stimuli or perturbations. The fiber-type composition of the human jaw muscles is very different from that of limb and trunk muscles. Apart from the presence of the usual type I, IIA, and IIX myosin heavy-chains (MyHC), human jaw-muscle fibers contain MyHCs that are typical for developing or cardiac muscle. In addition, much more frequently than in limb and trunk muscles, jaw-muscle fibers are hybrid, i.e., they contain more than one type of MyHC isoform. Since these fibers have contractile properties that differ from those of pure fibers, this relatively large quantity of hybrid fibers provides a mechanism that produces a very fine gradation of force and movement. The presence of hybrid fibers might also reflect the adaptive capacity of jaw-muscle fibers. The capacity for adaptation also explains the observed large inter-individual variability in fiber-type composition. Besides local influences, like the amount of muscle activation and/or stretch, more general influences, like aging and gender, also play a role in the composition of fiber types.
Collapse
Affiliation(s)
- J A M Korfage
- Department of Functional Anatomy, Academic Center for Dentistry Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
13
|
von Zglinicki T, Martin-Ruiz CM, Saretzki G. Telomeres, cell senescence and human ageing. ACTA ACUST UNITED AC 2005. [DOI: 10.1002/sita.200400049] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
14
|
Abstract
Apoptosis has been implicated in the regulation of denervation-induced muscle atrophy. However, the activation of apoptotic signal transduction during muscle denervation has not been fully elucidated. The present study examined the apoptotic responses to denervation in rat gastrocnemius muscle. Following 14 days of denervation, the extent of apoptotic DNA fragmentation as determined by a cytosolic nucleosome ELISA was increased by 100% in the gastrocnemius muscle. RT-PCR and immunoblot analyses indicated that Bax was dramatically upregulated while Bcl-2 was modestly increased; however, the Bax/Bcl-2 ratio was significantly increased in denervated muscles relative to control muscles. Analyses of ELISA and immunoblots from mitochondria-free cytosol extracts showed a significant increase in mitochondria-associated apoptotic factors, including cytochrome c, Smac/DIABLO and apoptosis-inducing factor (AIF). In addition to the upregulation of caspase-3 and -9 mRNA, pro-/cleaved caspase protein and proteolytic activity levels, the X-linked inhibitor of apoptosis (XIAP) protein level was downregulated. The cleaved product of poly(ADP-ribose) polymerase (PARP) was detected in muscle samples following denervation. Although we did not find a difference in the inhibitor of DNA binding/differentiation-2 (Id2) and c-Myc protein contents between the denervated and control muscles, the protein content of tumour suppressor p53 was significantly increased in both the nuclear and the cytosolic fractions with denervation. Moreover, denervation increased the protein content of HSP70, whereas the MnSOD (a mitochondrial isoform of superoxide dismutase) protein content was diminished, which indicated that denervation might have induced cellular and/or oxidative stress. Our data show that mitochondria-associated apoptotic signalling is upregulated during muscle denervation. We interpret these findings to indicate that apoptosis has a physiologically important role in regulating denervation-induced muscle atrophy.
Collapse
Affiliation(s)
- Parco M Siu
- Laboratory of Muscle Biology an Sarcopenia, Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown WV 26506-9227, USA
| | | |
Collapse
|
15
|
Ferrington DA, Husom AD, Thompson LV. Altered proteasome structure, function, and oxidation in aged muscle. FASEB J 2005; 19:644-6. [PMID: 15677694 DOI: 10.1096/fj.04-2578fje] [Citation(s) in RCA: 187] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The proteasome is the main protease for degrading oxidized proteins. We asked whether altered proteasome function contributes to the accumulation of oxidized muscle proteins with aging. Proteasome structure, function, and oxidation state were compared in young and aged F344BN rat fast-twitch skeletal muscle. In proteasome-enriched homogenates from aged muscle, we observed a two- to threefold increase in content of the 20S proteasome that was due to a corresponding increase in immunoproteasome. Content of the regulatory proteins, PA700 and PA28, relative to the 20S were reduced 75% with aging. Upon addition of exogenous PA700, there was a twofold increase in peptide hydrolysis in aged muscle, suggesting the endogenous content of PA700 is inadequate for complete activation of the 20S. Measures of catalytic activity showed a 50% reduction in specific activity for proteasome-enriched homogenates with aging. With purification of the 20S, proteasome specific activity was equivalent between ages, indicating that endogenous regulators inhibit proteasome in aged muscle. Significantly less degradation of oxidized calmodulin by the 20S from aged muscle was observed. Partial rescue of activity for aged 20S by DTT implies oxidation of functionally significant cysteines. These results demonstrate significant age-related changes in proteasome structure, function, and oxidation state that could inhibit removal of oxidized proteins.
Collapse
Affiliation(s)
- Deborah A Ferrington
- Department of Ophthalmology, 380 Lions Research Bldg., 2001 6th Street SE, University of Minnesota, Minneapolis, MN 55455, USA.
| | | | | |
Collapse
|
16
|
Alway SE, Degens H, Krishnamurthy G, Chaudhrai A. Denervation stimulates apoptosis but not Id2 expression in hindlimb muscles of aged rats. J Gerontol A Biol Sci Med Sci 2003; 58:687-97. [PMID: 12902526 DOI: 10.1093/gerona/58.8.b687] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Inhibitors of differentiation (Id) proteins are repressors of myogenic regulatory factors and have been implicated in apoptosis and muscle atrophy during aging. Indeed, we have previously found that Id levels are elevated in muscles from old rodents, possibly as a consequence of loss of alpha-motoneurons during senescence. To determine if Id2 proteins increase after denervation and if this is accompanied by increased apoptosis in aged as compared with adult animals, the gastrocnemius and soleus muscles were denervated in 1 limb of Fischer 344 x Brown Norway rats aged 9 months (adult, n = 12) and 33 months (aged, n = 9), while the contralateral limb served as the intra-animal control. After 14 days, the muscles in each limb were removed. The levels of Id1, Id2, and Id3 mRNA and protein were significantly greater in muscles of old as compared with young adult rats. Denervation, however, did not significantly increase Id1, Id2, and Id3 mRNA in soleus or gastrocnemius muscles from either young or old rats. Also Id2 protein levels were similar in denervated and control muscles from young adult and old rats. In young adult rats only, denervation induced an increase in Id1 and Id3 protein levels in both the soleus (Id1 113%; Id3 900%) and gastrocnemius (Id1 86%; Id3 80%). Denervation induced a significant increase in caspase 8 in both soleus and gastrocnemius muscles from young (101% and 147%, respectively) and old rats (167% and 190%, respectively). Bax protein levels, as estimated by western blots, increased by 726% and 1087% after denervation in the soleus and by 368% and 49% in the gastrocnemius muscles of young and old rats, respectively. The data suggest that the denervation-induced muscle loss was at least partly due to apoptosis as indicated by elevated caspase 8 and Bax levels in denervated muscles. While Id2 may have a role in aging-induced sarcopenia, Id2 does not appear to directly regulate apoptosis during denervation. The elevated Id expression in muscles from aged animals is therefore not a direct consequence of loss of alpha-motoneurons during senescence.
Collapse
Affiliation(s)
- Stephen E Alway
- Laboratory of Muscle, Sarcopenia and Muscle Diseases, Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown 26506-9227, USA. sa
| | | | | | | |
Collapse
|
17
|
Renault V, Thornell LE, Eriksson PO, Butler-Browne G, Mouly V, Thorne LE. Regenerative potential of human skeletal muscle during aging. Aging Cell 2002; 1:132-9. [PMID: 12882343 DOI: 10.1046/j.1474-9728.2002.00017.x] [Citation(s) in RCA: 233] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
In this study, we have investigated the consequences of aging on the regenerative capacity of human skeletal muscle by evaluating two parameters: (i) variation in telomere length which was used to evaluate the in vivo turn-over and (ii) the proportion of satellite cells calculated as compared to the total number of nuclei in a muscle fibre. Two skeletal muscles which have different types of innervation were analysed: the biceps brachii, a limb muscle, and the masseter, a masticatory muscle. The biopsies were obtained from two groups: young adults (23 +/- 1.15 years old) and aged adults (74 +/- 4.25 years old). Our results showed that during adult life, minimum telomere lengths and mean telomere lengths remained stable in the two muscles. The mean number of myonuclei per fibre was lower in the biceps brachii than in the masseter but no significant change was observed in either muscle with increasing age. However, the number of satellite cells, expressed as a proportion of myonuclei, decreased with age in both muscles. Therefore, normal aging of skeletal muscle in vivo is reflected by the number of satellite cells available for regeneration, but not by the mean number of myonuclei per fibre or by telomere lengths. We conclude that a decrease in regenerative capacity with age may be partially explained by a reduced availability of satellite cells.
Collapse
Affiliation(s)
- Valérie Renault
- CNRS UMR 7000, Cytosquelette et Développement, F-75 634 Paris, France
| | | | | | | | | | | |
Collapse
|
18
|
Renault V, Thornell LE, Butler-Browne G, Mouly V. Human skeletal muscle satellite cells: aging, oxidative stress and the mitotic clock. Exp Gerontol 2002; 37:1229-36. [PMID: 12470836 DOI: 10.1016/s0531-5565(02)00129-8] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Normal satellite cell cultures, isolated from human skeletal muscle, have a limited proliferative capacity and inevitably reach replicative senescence. In this study, we have focused on the consequences of a single oxidative stress by hydrogen peroxide (H(2)O(2)) on both proliferative capacity and myogenic characteristics. Treatment with 1mM H(2)O(2) for 30 min causes a small decrease in the viability and lifespan while the number of cells which are able to proliferate, decreases dramatically. This premature arrest of the cells in a non-proliferative state was not due to spontaneous differentiation since there was no increase in the number of myogenin positive cells. This stress did not affect the myogenicity of the cells or their ability to differentiate and fuse to form multinucleated myotubes. In addition, the mitotic clock does not seem to be modified by oxidative stress treatment since the rate of telomere shortening was similar in H(2)O(2)-treated and control cells. This could be the consequence of the high level of oxygen consumption with an even higher level of ROS being produced in skeletal muscle than in other tissues which would be counteracted by an increase in the antioxidant defense system.
Collapse
Affiliation(s)
- Valérie Renault
- UMR CNRS 7000, Cytosquelette et Développement, Faculté de Medecine Pitié-Salpétrière, 105, bd de l'Hôpital, F-75634 Cedex Paris 13, France
| | | | | | | |
Collapse
|
19
|
Putman CT, Sultan KR, Wassmer T, Bamford JA, Skorjanc D, Pette D. Fiber-type transitions and satellite cell activation in low-frequency-stimulated muscles of young and aging rats. J Gerontol A Biol Sci Med Sci 2001; 56:B510-9. [PMID: 11723143 DOI: 10.1093/gerona/56.12.b510] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We examined satellite cell content and the activity of satellite cell progeny in tibialis anterior muscles of young (15 weeks) and aging (101 weeks) Brown Norway (BN) rats, after they were exposed for 50 days to a standardized and highly reproducible regime of chronic low-frequency electrical stimulation. Chronic low-frequency electrical stimulation was successful in inducing fast-to-slow fiber-type transformation, characterized by a 2.3-fold increase in the proportion of IIA fibers and fourfold and sevenfold decreases in the proportion of IID/X and IIB fibers in both young and aging BN rats. These changes were accompanied by a twofold increase in the satellite cell content in both the young and aging groups; satellite cell content reached a level that was significantly higher in the young group (p <.04). The total muscle precursor cell content (i.e., satellite cells plus progeny), however, did not differ between groups, because there was a greater number of satellite cell progeny passing through the proliferative and differentiative compartments of the aging group. The resulting 1.5-fold increase in myonuclear content was similar in the young and aging groups. We conclude that satellite cells and satellite cell progeny of aging BN rats possess an unaltered capacity to contribute to the adaptive response.
Collapse
Affiliation(s)
- C T Putman
- Skeletal Muscle Research Group, Faculty of Physical Education, University of Alberta, Edmonton, Canada.
| | | | | | | | | | | |
Collapse
|
20
|
Ryan M, Carlson BM, Ohlendieck K. Oligomeric status of the dihydropyridine receptor in aged skeletal muscle. MOLECULAR CELL BIOLOGY RESEARCH COMMUNICATIONS : MCBRC 2000; 4:224-9. [PMID: 11409916 DOI: 10.1006/mcbr.2001.0282] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A prominent feature of aging is represented by a decrease in muscle mass and strength. Abnormalities in Ca2+ -regulatory membrane complexes are involved in many muscular disorders. In analogy, we determined potential age-related changes in a key component of excitation-contraction coupling, the dihydropyridine receptor. Immunoblotting of the microsomal fraction from aged rabbit muscle revealed a drastic decline in the voltage-sensing alpha1-subunit of this transverse-tubular receptor, but only marginally altered expression of its auxiliary alpha(2)-subunit and the Na+/K+ -ATPase. A shift to slower fibre type characteristics was indicated by an age-related increase in the slow calsequestrin isoform. Chemical crosslinking analysis showed that the triad receptor complex has a comparable tendency of protein-protein interactions in young and aged muscles. Hence, a reduced expression and not modified oligomerization of the principal dihydropyridine receptor subunit might be involved in triggering impaired triadic signal transduction and abnormal Ca2+ -homeostasis resulting in a progressive functional decline of skeletal muscles.
Collapse
Affiliation(s)
- M Ryan
- Department of Pharmacology, University College Dublin, Dublin, Belfield, 4, Ireland
| | | | | |
Collapse
|
21
|
Monemi M, Thornell L, Eriksson P. Diverse changes in fibre type composition of the human lateral pterygoid and digastric muscles during aging. J Neurol Sci 1999; 171:38-48. [PMID: 10567048 DOI: 10.1016/s0022-510x(99)00244-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The fibre type composition of the superior and inferior portions of the human lateral pterygoid and the anterior and posterior bellies of the digastric muscles of five elderly subjects (mean age 73 years) was studied by morphological and enzyme-histochemical methods. Both muscles showed significant age-related changes in fibre type composition as compared with previous data for young adults. In the lateral pterygoid we observed a large proportion of type IIA fibres, which are rare or absent in young adults, and muscle fibre atrophy and an increased variability in fibre diameter. The digastric muscle of elderly showed a decrease in the proportion of type IIB fibres. The only difference in age-related changes between muscle portions was found in the lateral pterygoid with fibre atrophy in its inferior portion. Both the lateral pterygoid and digastric muscles are known to be active in mandibular depression (jaw opening) and horizontal positioning of the mandible. The present results and previous data from young adults show that the lateral pterygoid and digastric muscles differ not only in fibre type composition, but also in muscular changes following aging. This suggests that, even if they are simultaneously active, they fulfill different, specific tasks in natural jaw function. The differences in age-related changes in fibre type composition between these two muscles indicate that mechanisms underlying their alterations during aging are muscle specific. The results indicate that, although nerve supply and developmental history are essential for fibre composition of skeletal muscles, functional tasks and demands are of major importance.
Collapse
Affiliation(s)
- M Monemi
- Departments of Odontology and Clinical Oral Physiology, Umeâ University, S-901 87, Umeå, Sweden
| | | | | |
Collapse
|
22
|
Mäntyvaara J, Sjöholm T, Pertovaara A. Masseter inhibitory reflex in humans: attempted modulation by various experimental parameters. ACTA PHYSIOLOGICA SCANDINAVICA 1999; 167:A21. [PMID: 10571581 DOI: 10.1046/j.1365-201x.1999.00625.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- J Mäntyvaara
- Address of presenting author: Antti Pertovaara Department of Physiology Institute of Biomedicine University of Turku Kiinamyllynkatu 10 FIN-20520 Turku Finland Telephone: 358-2-333 7578; Fax: 358-2-250 2610
| | | | | |
Collapse
|
23
|
Roos MR, Rice CL, Connelly DM, Vandervoort AA. Quadriceps muscle strength, contractile properties, and motor unit firing rates in young and old men. Muscle Nerve 1999; 22:1094-103. [PMID: 10417793 DOI: 10.1002/(sici)1097-4598(199908)22:8<1094::aid-mus14>3.0.co;2-g] [Citation(s) in RCA: 202] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Changes with age in the voluntary static and dynamic strength of the quadriceps muscle group have been well characterized, and the importance of the muscle group for locomotion and independent living have been highlighted in both normal human aging and in clinical studies. Surprisingly few studies of this muscle group have described age-related changes in voluntary activation ability using twitch interpolation and changes in stimulated contractile properties, and none have assessed the influence of old age on motor unit firing rates. We compared in 13 young (mean age 26 years) and 12 old (mean age 80 years) men the voluntary isometric strength, stimulated contractile properties, and average steady state motor unit firing rates in the quadriceps muscle. Maximum voluntary contraction (MVC) force and twitch tension were approximately 50% lower in the old men, but contractile speed was only approximately 10% slower than in the young men. There was no difference in the ability of either group to activate the quadriceps to a high degree (94-96%). At all isometric force levels tested (10%, 25%, 50%, 75%, and 100% MVC), there were no differences in mean motor unit firing rates. In both groups, the range of firing rates was similar and not large ( approximately 8 Hz at 10% MVC and 26 Hz at MVC). Thus, the substantial age-related weakness in this muscle does not seem to be related to changes in neural drive.
Collapse
Affiliation(s)
- M R Roos
- Centre for Activity and Ageing, St. Joseph's Health Centre Annex, 1490 Richmond Street, London, Ontario N6G 2M3, Canada
| | | | | | | |
Collapse
|