1
|
Aslam ML, Bastiaansen JWM, Crooijmans RPMA, Vereijken A, Megens HJ, Groenen MAM. A SNP based linkage map of the turkey genome reveals multiple intrachromosomal rearrangements between the turkey and chicken genomes. BMC Genomics 2010; 11:647. [PMID: 21092123 PMCID: PMC3091770 DOI: 10.1186/1471-2164-11-647] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2010] [Accepted: 11/20/2010] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND The turkey (Meleagris gallopavo) is an important agricultural species that is the second largest contributor to the world's poultry meat production. The genomic resources of turkey provide turkey breeders with tools needed for the genetic improvement of commercial breeds of turkey for economically important traits. A linkage map of turkey is essential not only for the mapping of quantitative trait loci, but also as a framework to enable the assignment of sequence contigs to specific chromosomes. Comparative genomics with chicken provides insight into mechanisms of genome evolution and helps in identifying rare genomic events such as genomic rearrangements and duplications/deletions. RESULTS Eighteen full sib families, comprising 1008 (35 F1 and 973 F2) birds, were genotyped for 775 single nucleotide polymorphisms (SNPs). Of the 775 SNPs, 570 were informative and used to construct a linkage map in turkey. The final map contains 531 markers in 28 linkage groups. The total genetic distance covered by these linkage groups is 2,324 centimorgans (cM) with the largest linkage group (81 loci) measuring 326 cM. Average marker interval for all markers across the 28 linkage groups is 4.6 cM. Comparative mapping of turkey and chicken revealed two inter-, and 57 intrachromosomal rearrangements between these two species. CONCLUSION Our turkey genetic map of 531 markers reveals a genome length of 2,324 cM. Our linkage map provides an improvement of previously published maps because of the more even distribution of the markers and because the map is completely based on SNP markers enabling easier and faster genotyping assays than the microsatellitemarkers used in previous linkage maps. Turkey and chicken are shown to have a highly conserved genomic structure with a relatively low number of inter-, and intrachromosomal rearrangements.
Collapse
Affiliation(s)
- Muhammad L Aslam
- Animal Breeding and Genomics Centre, Wageningen University,6709PG, Wageningen, The Netherlands
| | - John WM Bastiaansen
- Animal Breeding and Genomics Centre, Wageningen University,6709PG, Wageningen, The Netherlands
| | - Richard PMA Crooijmans
- Animal Breeding and Genomics Centre, Wageningen University,6709PG, Wageningen, The Netherlands
| | - Addie Vereijken
- Hendrix Genetics, Research & Technology Centre, 5830 AC, Boxmeer, The Netherlands
| | - Hendrik-Jan Megens
- Animal Breeding and Genomics Centre, Wageningen University,6709PG, Wageningen, The Netherlands
| | - Martien AM Groenen
- Animal Breeding and Genomics Centre, Wageningen University,6709PG, Wageningen, The Netherlands
| |
Collapse
|
2
|
Stefanowicz-Hajduk J, Filipowicz N, Kosinski I, Ochocka JR. Capillary electrophoresis with dual laser detection in separation of amplified fragment length polymorphism fragments. J Sep Sci 2009; 32:3539-43. [DOI: 10.1002/jssc.200900297] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
3
|
Huang CW, Cheng YS, Rouvier R, Yang KT, Wu CP, Huang HL, Huang MC. Duck (Anas platyrhynchos) linkage mapping by AFLP fingerprinting. Genet Sel Evol 2009; 41:28. [PMID: 19291328 PMCID: PMC2666072 DOI: 10.1186/1297-9686-41-28] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2009] [Accepted: 03/17/2009] [Indexed: 11/10/2022] Open
Abstract
Amplified fragment length polymorphism (AFLP) with multicolored fluorescent molecular markers was used to analyze duck (Anas platyrhynchos) genomic DNA and to construct the first AFLP genetic linkage map. These markers were developed and genotyped in 766 F2 individuals from six families from a cross between two different selected duck lines, brown Tsaiya and Pekin. Two hundred and ninety-six polymorphic bands (64% of all bands) were detected using 18 pairs of fluorescent TaqI/EcoRI primer combinations. Each primer set produced a range of 7 to 29 fragments in the reactions, and generated on average 16.4 polymorphic bands. The AFLP linkage map included 260 co-dominant markers distributed in 32 linkage groups. Twenty-one co-dominant markers were not linked with any other marker. Each linkage group contained three to 63 molecular markers and their size ranged between 19.0 cM and 171.9 cM. This AFLP linkage map provides important information for establishing a duck chromosome map, for mapping quantitative trait loci (QTL mapping) and for breeding applications.
Collapse
Affiliation(s)
- Chang-Wen Huang
- Department of Animal Science, National Chung Hsing University, 250 Kuo-Kung Road, Taichung 402, Taiwan
- Institute of Cellular and Organism Biology, Academia Sinica, 128 Section 2, Academia Road, Nankang, Taipei 115, Taiwan
| | - Yu-Shin Cheng
- Livestock Research Institute, Council of Agriculture, Hsin-Hua, Tainan 712, Taiwan
| | - Roger Rouvier
- Institut National de la Recherche Agronomique, Station d'Amélioration Génétique des Animaux, Centre de Recherches de Toulouse, BP52627, F31326 Castanet-Tolosan Cedex, France
| | - Kuo-Tai Yang
- Department of Animal Science, National Chung Hsing University, 250 Kuo-Kung Road, Taichung 402, Taiwan
- Institute of Biomedical Sciences, Academia Sinica, 128 Section 2, Academia Road, Nankang, Taipei 115, Taiwan
| | - Chean-Ping Wu
- Department of Animal Science, National Chung Hsing University, 250 Kuo-Kung Road, Taichung 402, Taiwan
- Department of Animal Science, National Chiayi University, 300 Syuefu Road, Chiayi 600, Taiwan
| | - Hsiu-Lin Huang
- Department of Animal Science, National Chung Hsing University, 250 Kuo-Kung Road, Taichung 402, Taiwan
| | - Mu-Chiou Huang
- Department of Animal Science, National Chung Hsing University, 250 Kuo-Kung Road, Taichung 402, Taiwan
| |
Collapse
|
4
|
Kochan KJ, Amaral MEJ, Agarwala R, Schäffer AA, Riggs PK. Application of dissociation curve analysis to radiation hybrid panel marker scoring: generation of a map of river buffalo (B. bubalis) chromosome 20. BMC Genomics 2008; 9:544. [PMID: 19014630 PMCID: PMC2621213 DOI: 10.1186/1471-2164-9-544] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2008] [Accepted: 11/17/2008] [Indexed: 11/30/2022] Open
Abstract
Background Fluorescence of dyes bound to double-stranded PCR products has been utilized extensively in various real-time quantitative PCR applications, including post-amplification dissociation curve analysis, or differentiation of amplicon length or sequence composition. Despite the current era of whole-genome sequencing, mapping tools such as radiation hybrid DNA panels remain useful aids for sequence assembly, focused resequencing efforts, and for building physical maps of species that have not yet been sequenced. For placement of specific, individual genes or markers on a map, low-throughput methods remain commonplace. Typically, PCR amplification of DNA from each panel cell line is followed by gel electrophoresis and scoring of each clone for the presence or absence of PCR product. To improve sensitivity and efficiency of radiation hybrid panel analysis in comparison to gel-based methods, we adapted fluorescence-based real-time PCR and dissociation curve analysis for use as a novel scoring method. Results As proof of principle for this dissociation curve method, we generated new maps of river buffalo (Bubalus bubalis) chromosome 20 by both dissociation curve analysis and conventional marker scoring. We also obtained sequence data to augment dissociation curve results. Few genes have been previously mapped to buffalo chromosome 20, and sequence detail is limited, so 65 markers were screened from the orthologous chromosome of domestic cattle. Thirty bovine markers (46%) were suitable as cross-species markers for dissociation curve analysis in the buffalo radiation hybrid panel under a standard protocol, compared to 25 markers suitable for conventional typing. Computational analysis placed 27 markers on a chromosome map generated by the new method, while the gel-based approach produced only 20 mapped markers. Among 19 markers common to both maps, the marker order on the map was maintained perfectly. Conclusion Dissociation curve analysis is reliable and efficient for radiation hybrid panel scoring, and is more sensitive and robust than conventional gel-based typing methods. Several markers could be scored only by the new method, and ambiguous scores were reduced. PCR-based dissociation curve analysis decreases both time and resources needed for construction of radiation hybrid panel marker maps and represents a significant improvement over gel-based methods in any species.
Collapse
Affiliation(s)
- Kelli J Kochan
- Department of Animal Science, Texas A&M University, College Station, Texas, USA.
| | | | | | | | | |
Collapse
|
5
|
Akesson M, Hansson B, Hasselquist D, Bensch S. Linkage mapping of AFLP markers in a wild population of great reed warblers: importance of heterozygosity and number of genotyped individuals. Mol Ecol 2007; 16:2189-202. [PMID: 17561884 DOI: 10.1111/j.1365-294x.2007.03290.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Amplified fragment length polymorphisms (AFLP) are dominant markers frequently used to build linkage maps where heterozygosity could be inferred by a backcross breeding strategy. In the present study, we describe the utilization of an unmanipulated great reed warbler, Acrocephalus arundinaceus pedigree to infer heterozygous genotypes of AFLP markers in order to map these markers to a partial linkage map previously based on microsatellites. In total, 50 of the 83 autosomal AFLPs (60%) and 4 of 5 Z-linked AFLPs (80%) were mapped. For each marker, on average, 88% of the expected number of heterozygote parents was detected. The likelihood of map assignment was to a large extent due to the number and density of microsatellite markers already in the map. The 'parsimonious linkage map', that is the map based on the most parsimonious location of all significantly linked markers, consisted of 21 autosomal linkage groups with 2 to 15 markers and had a total map size of 552 cM in males and 858 cM in females. The Z-chromosome linkage group with 12 markers had a size of 155 cM. The autosomal 'framework linkage map', that is the map based only on markers with an unambiguous position, had a total size of 237 cM in males and 440 cM in females, respectively. The inclusion of AFLPs enlarged the previous map substantially (e.g. the autosomal parsimonious linkage map became 441 cM and 621 cM larger for male and female recombination, respectively). The probability that an AFLP became mapped increased with increasing level of heterozygosity, whereas the probability of mapping into a framework position increased with both heterozygosity and number of genotyped individuals. Our results suggest that AFLP provides a fast and inexpensive means of enlarging genetic maps already composed of markers with high polymorphism, also in wild populations with unmanipulated pedigrees.
Collapse
Affiliation(s)
- Mikael Akesson
- Department of Animal Ecology, Ecology Building, Lund University, S-223 62 Lund, Sweden.
| | | | | | | |
Collapse
|
6
|
Huang CW, Cheng YS, Rouvier R, Yang KT, Wu CP, Huang MC. AFLP fingerprinting for paternity testing in ducks. Br Poult Sci 2007; 48:323-30. [PMID: 17578695 DOI: 10.1080/00071660701370459] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
1. The accuracy and reproducibility of AFLP fingerprinting was investigated in the duck (Anas Platyrhynchos), using a multicolour fluorescent labeling technique. The fluorescent labelling fragments were separated on a capillary electrophoresis-base ABI PRISM 3100 Genetic Analyzer. 2. A total of 337 AFLP peaks with 103 of them being polymorphic markers were generated by 16 sets consisting of EcoRI/TaqI primer pair combinations. The number and size range of AFLP polymorphisms detected per primer pair varied from 3 to 11 and 58 to 290 bp, respectively. About 30.6% (103/337) of AFLP peaks were detected polymorphisms, with an average of 6.4 polymorphic markers per primer pair. 3. The clear polymorphic peaks were amplified with EcoR+AC/Taq+AC primer combinations. The AFLP peaks showed high reproducibility. From the family testing, we found that the fingerprints of all the offspring were derived from one or other parent. Therefore, we conclude that AFLP fingerprinting might be a suitable method for duck paternity testing.
Collapse
Affiliation(s)
- C-W Huang
- Department of Animal Science, National Chung Hsing University, Taichung, Taiwan
| | | | | | | | | | | |
Collapse
|
7
|
Abstract
The AFLP technique is a powerful DNA fingerprinting technology applicable to any organism without the need for prior sequence knowledge. The protocol involves the selective PCR amplification of restriction fragments of a total digest of genomic DNA, typically obtained with a mix of two restriction enzymes. Two limited sets of AFLP primers are sufficient to generate a large number of different primer combinations (PCs), each of which will yield unique fingerprints. Visualization of AFLP fingerprints after gel electrophoresis of AFLP products is described using either a conventional autoradiography platform or an automated LI-COR system. The AFLP technology has been used predominantly for assessing the degree of variability among plant cultivars, establishing linkage groups in crosses and saturating genomic regions with markers for gene landing efforts. AFLP fragments may also be used as physical markers to determine the overlap and positions of genomic clones and to integrate genetic and physical maps. Crucial characteristics of the AFLP technology are its robustness, reliability and quantitative nature. This latter feature has been exploited for co-dominant scoring of AFLP markers in sample collections such as F2 or back-cross populations using appropriate AFLP scoring software. This protocol can be completed in 2-3 d.
Collapse
Affiliation(s)
- Marnik Vuylsteke
- Department of Plant Systems Biology, VIB, Technologiepark 927, B-9052 Ghent, Belgium.
| | | | | |
Collapse
|
8
|
Abstract
The chicken has a proud history, both in genetic research and as a source of food. Here we attempt to provide an overview of past contributions of the chicken in both arenas and to link those contributions to the near future from a genetic perspective. Companion articles will discuss current poultry genetics research in greater detail. The chicken was the first animal species in which Mendelian inheritance was demonstrated. A century later, the chicken was the first among farm animals to have its genome sequenced. Between these firsts, the chicken remained a key organism used in genetic research. Breeding programs, based on sound genetic principles, facilitated the global emergence of the chicken meat and egg industries. Concomitantly, the chicken served as a model whose experimental populations and mutant stocks were used in basic and applied studies with broad application to other species, including humans. In this paper, we review some of these contributions, trace the path from the origin of molecular genetics to the sequence of the chicken genome, and discuss the merits of the chicken as a model organism for furthering our understanding of biology.
Collapse
Affiliation(s)
- P B Siegel
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg 24061, USA.
| | | | | |
Collapse
|
9
|
Takahashi H, Tsudzuki M, Sasaki O, Niikura J, Inoue-Murayama M, Minezawa M. A chicken linkage map based on microsatellite markers genotyped on a Japanese Large Game and White Leghorn cross. Anim Genet 2006; 36:463-7. [PMID: 16293118 DOI: 10.1111/j.1365-2052.2005.01391.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
A detailed linkage map is necessary for efficient detection of quantitative trait loci (QTL) in chicken resource populations. In this study, microsatellite markers isolated from a (CA)n-enriched library (designated as ABR Markers) were mapped using a population developed from a cross between Japanese Game and White Leghorn chickens. In total, 296 markers including 193 ABR, 43 MCW, 31 ADL, 22 LEI, 3 HUJ, 2 GCT, 1 UMA and 1 ROS were mapped by linkage to chicken chromosomes 1-14, 17-21, 23, 24, 26-28 and Z. In addition, five markers were assigned to the map based on the chicken draft genomic sequence, bringing the total number of markers on the map to 301. The resulting linkage map will contribute to QTL mapping in chicken.
Collapse
Affiliation(s)
- H Takahashi
- Genebank, National Institute of Agrobiological Sciences (NIAS), Tsukuba 305-8602, Japan.
| | | | | | | | | | | |
Collapse
|
10
|
De Marchi M, Dalvit C, Targhetta C, Cassandro M. Assessing genetic diversity in indigenous Veneto chicken breeds using AFLP markers. Anim Genet 2006; 37:101-5. [PMID: 16573523 DOI: 10.1111/j.1365-2052.2005.01390.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Genetic variation in four indigenous chicken breeds from the Veneto region of Italy was assessed using amplified fragment length polymorphism (AFLP) markers. A total of 99 individuals were analysed using three AFLP primer combinations that produced 70 polymorphisms. Four indigenous Veneto chicken breeds (Ermellinata, Padovana, Pépoi and Robusta) and a reference broiler line were included in the analysis. Breed-specific markers were identified in each breed. The expected heterozygosity did not differ significantly among the indigenous Veneto chicken breeds and the broiler line. The coefficient of gene variation (Gst) value across loci indicated that almost half of the total variability was observed among breeds. Nei's standard genetic distance between pairs of breeds showed that the distance between the broiler line and the Pépoi breed was greater than the distances between the broiler line and the other three chicken breeds. Cluster analysis based on standard genetic distances between breeds indicated that the Padovana and Pépoi breeds were closely related. Factorial analysis based on a binary matrix of the AFLP data showed a clear distinction of all breeds.
Collapse
Affiliation(s)
- M De Marchi
- Department of Animal Science, University of Padova, Agripolis, Italy.
| | | | | | | |
Collapse
|
11
|
Beaumont C, Roussot O, Feve K, Vignoles F, Leroux S, Pitel F, Faure JM, Mills AD, Guémené D, Sellier N, Mignon-Grasteau S, Le Roy P, Vignal A. A genome scan with AFLP markers to detect fearfulness-related QTLs in Japanese quail. Anim Genet 2006; 36:401-7. [PMID: 16167983 DOI: 10.1111/j.1365-2052.2005.01336.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
A quantitative trait loci (QTL) study was undertaken to identify genome regions involved in the control of fearfulness in Japanese quail (Coturnix japonica). An F2 cross was made between two quail lines divergently selected over 29 generations on duration of tonic immobility (DTI), a catatonic-like state of reduced responsiveness to a stressful stimulation. A total of 1065 animals were measured for the logarithm of DTI (LOGTI), the number of inductions (NI) necessary to induce the immobility reaction, open-field behaviour including locomotor activity (MOVE), latency before first movement (LAT), number of jumps (JUMP), dejections (DEJ) and shouts (SHOUT), corticosterone level after a contention stress (LOGCORT) and body weight at 2 weeks of age (BW2). A total of 310 animals were included in a genome scan using selective genotyping with 248 AFLP markers. A total of 21 suggestive or genome-wide significant QTL were observed. Two highly significant QTL were identified on linkage group 1 (GL1), one for LOGTI and one for NI. In the vicinity of the QTL for LOGTI, a nearly significant QTL for SHOUT and a suggestive QTL for LAT were also identified. On GL3, genome-wide significant QTL were observed for JUMP and DEJ as well as suggestive QTL for LOGTI, MOVE, SHOUT and LAT. A significant QTL for BW2 was observed on GL2 and a nearly significant one on GL1. These results may be useful in the understanding of fearfulness in quail and related species provided that fearfulness has the same genetic basis.
Collapse
Affiliation(s)
- C Beaumont
- Laboratoire de Génétique Cellulaire, INRA, 31326 Castanet-Tolosan, France.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Yan P, Wu X, Wang Y, Jiang Z, Gu C, Wang C. AFLP Analysis of genetic variation on captive-bred chinese alligators: an application to select individuals for release. Zoo Biol 2006. [DOI: 10.1002/zoo.20110] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
13
|
Abstract
Researchers in the field of molecular ecology and evolution require versatile and low-cost genetic typing methods. The AFLP (amplified fragment length polymorphism) method was introduced 10 years ago and shows many features that fulfil these requirements. With good quality genomic DNA at hand, it is relatively easy to generate anonymous multilocus DNA profiles in most species and the start-up time before data can be generated is often less than a week. Built-in dynamic, yet simple modifications make it possible to find a protocol suitable to the genome size of the species and to screen thousands of loci in hundreds of individuals for a relatively low cost. Until now, the method has primarily been applied in studies of plants, bacteria and fungi, with a strong bias towards economically important cultivated species and their pests. In this review we identify a number of research areas in the study of wild species of animals where the AFLP method, presently very much underused, should be a very valuable tool. These aspects include classical problems such as studies of population genetic structure and phylogenetic reconstructions, and also new challenges such as finding markers for genes governing adaptations in wild populations and modifications of the protocol that makes it possible to measure expression variation of multiple genes (cDNA-AFLP) and the distribution of DNA methylation. We hope this review will help molecular ecologists to identify when AFLP is likely to be superior to other more established methods, such as microsatellites, SNP (single nucleotide polymorphism) analyses and multigene DNA sequencing.
Collapse
Affiliation(s)
- Staffan Bensch
- Department of Animal Ecology, Ecology Building, Lund University, S-223 62 Lund, Sweden.
| | | |
Collapse
|
14
|
Bonin A, Pompanon F, Taberlet P. Use of amplified fragment length polymorphism (AFLP) markers in surveys of vertebrate diversity. Methods Enzymol 2005; 395:145-61. [PMID: 15865966 DOI: 10.1016/s0076-6879(05)95010-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
The amplified fragment length polymorphism (AFLP) technique is one of the most informative and cost-effective fingerprinting methods. It produces polymerase chain reaction (PCR)-based multi-locus genotypes helpful in many areas of population genetics. This chapter focuses on technical laboratory information to successfully develop the AFLP technique for vertebrates. Several AFLP protocols are described, as well as recommendations about important factors of the procedure such as the choice of enzyme and primer combinations, the choice and scoring of markers, the influence of the genome size on the AFLP procedure, and the control and estimation of genotyping errors. Finally, this chapter proposes a troubleshooting guide to help resolve the main technical difficulties encountered during the AFLP procedure.
Collapse
Affiliation(s)
- Aurélie Bonin
- Laboratoire d'Ecologie Alpine, Université Joseph Fourier, F-38041 Grenoble Cedex 9, France
| | | | | |
Collapse
|
15
|
Fischer BM, Salakhutdinov I, Akkurt M, Eibach R, Edwards KJ, Töpfer R, Zyprian EM. Quantitative trait locus analysis of fungal disease resistance factors on a molecular map of grapevine. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2004; 108:501-15. [PMID: 14574452 DOI: 10.1007/s00122-003-1445-3] [Citation(s) in RCA: 129] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2003] [Accepted: 08/18/2003] [Indexed: 05/21/2023]
Abstract
A full-sibling F1 population comprising 153 individuals from the cross of 'Regent' x 'Lemberger' was employed to construct a genetic map based on 429 molecular markers. The newly-bred red grapevine variety 'Regent' has multiple field-resistance to fungal diseases inherited as polygenic traits, while 'Lemberger' is a traditional fungus-susceptible cultivar. The progeny segregate quantitatively for resistances to Plasmopara viticola and Uncinula necator, fungal pathogens that threaten viticulture in temperate areas. A double pseudo-testcross strategy was employed to construct the two parental maps under high statistical stringency for linkage to obtain a robust marker frame for subsequent quantitative trait locus (QTL) analysis. In total, 185 amplified fragment length polymorphism, 137 random amplified polymorphic DNA, 85 single sequence repeat and 22 sequence characterized amplified region or cleaved amplified polymorphic sequence markers were mapped. The maps were aligned by co-dominant or doubly heterozygous dominant anchor markers. Twelve pairs of homologous linkage groups could be integrated into consensus linkage groups. Resistance phenotypes and segregating characteristics were scored as quantitative traits in three or four growing seasons. Interval mapping reproducibly localized genetic factors that correlated with fungal disease resistances to specific regions on three linkage groups of the maternal 'Regent' map. A QTL for resistance to Uncinula necator was identified on linkage group 16, and QTLs for endurance to Plasmopara viticola on linkage groups 9 and 10 of 'Regent'. Additional QTLs for the onset of berry ripening ("veraison"), berry size and axillary shoot growth were identified. Berry color segregated as a simple trait in this cross of two red varieties and was mapped as a morphological marker. Six markers derived from functional genes could be localized. This dissection of polygenic fungus disease resistance in grapevine allows the development of marker-assisted selection for breeding, the characterization of genetic resources and the isolation of the corresponding genes.
Collapse
Affiliation(s)
- B M Fischer
- Federal Centre for Breeding Research on Cultivated Plants, Institute for Grapevine Breeding Geilweilerhof, 76833, Siebeldingen, Germany
| | | | | | | | | | | | | |
Collapse
|
16
|
Milanesi E, Ajmone-Marsan P, Bignotti E, Losio MN, Bernardi J, Chegdani F, Soncini M, Ferrari M. Molecular detection of cell line cross-contaminations using amplified fragment length polymorphism DNA fingerprinting technology. In Vitro Cell Dev Biol Anim 2003; 39:124-30. [PMID: 14505435 DOI: 10.1007/s11626-003-0006-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We have tested amplified fragment length polymorphism (AFLP) technology, in comparison with isoenzyme analysis, for the simultaneous detection of inter- and intraspecific cell line cross-contaminations (CCCs) in the cell line collection held at the Istituto Zooprofilattico della Lombardia e dell'Emilia Romagna. Isoenzyme analysis identified four cases of interspecific CCCs. In a single experiment, AFLP was able to identify the species of origin of all cell lines for which a reference genomic deoxyribonucleic acid was available and to detect five interspecific contaminations. Four CCCs confirmed data on isoenzymes, whereas the fifth CCC was detected in a species for which isoenzyme analysis was noninformative. In addition, AFLP was able to identify the putative source of the contaminations detected. The utility of the technology in the detection of intraspecific cell line contaminations depends on the number of cell lines that have to be distinguished in a specific species and on the availability of highly informative fingerprinting systems. In mice, a single AFLP primer pair produced 16 polymorphisms and distinguished all the 15 strains of mouse cell lines analyzed. In humans, 18 AFLPs identified 83 different profiles in the 159 cell lines analyzed. Amplified fragment length polymorphism can conveniently be applied for cell line fingerprinting in species for which hypervariable markers are not available. In species for which a highly informative multiplex of microsatellite markers is available, AFLP can still provide a useful and cheap tool for simultaneously testing inter- and intraspecific contaminations.
Collapse
Affiliation(s)
- E Milanesi
- Istituto di Zootecnica, Università Cattolica del Sacro Cuore, Via Emilia Parmense, 84, 29100 Piacenza, Italy
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Fumière O, Dubois M, Grégoire D, Théwis A, Berben G. Identification on commercialized products of AFLP markers able to discriminate slow- from fast-growing chicken strains. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2003; 51:1115-1119. [PMID: 12590443 DOI: 10.1021/jf020748w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The European chicken meat market is characterized by numerous quality marks: "Label de Qualité Wallon" in Belgium, "Label Rouge" in France, denominations of geographical origin, organic agriculture, etc. Most of those certified productions have specifications requiring the use of slow-growing chicken strains. The amplified fragment length polymorphism (AFLP) technique has been used to search molecular markers able to discriminate slow-growing chicken strains from fast-growing ones and to authenticate certified products. Two pairs of restriction enzymes (EcoRI/MseI and EcoRI/TaqI) and 121 selective primer combinations were tested on individual DNA samples from chicken products essentially in carcass form that were ascribed as belonging to either slow- or fast-growing strains. Within the resulting fingerprints, two fragments were identified as type-strains specific markers. One primer combination gives a band (333 bp) that is specific for slow-growing chickens, and another primer pair generates a band (372 bp) that was found to be characteristic of fast-growing chickens. The two markers were isolated, cloned, and sequenced. The effectiveness and the specificity of the two interesting determinants were assessed on individuals of two well-known strains (ISA 657 and Cobb 500) and on commercialized products coming from various origins.
Collapse
Affiliation(s)
- Olivier Fumière
- Département Qualité des Productions Agricoles, Centre de Recherches Agronomiques de Gembloux, 24 Chaussée de Namur, Belgium.
| | | | | | | | | |
Collapse
|
18
|
Kochan KJ, Wright DA, Schroeder LJ, Shen J, Morizot DC. Genetic linkage maps of the West African clawed frog Xenopus tropicalis. Dev Dyn 2003; 226:99-102. [PMID: 12508229 DOI: 10.1002/dvdy.10193] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Amphibians, and particularly the African clawed frog Xenopus laevis, have been used for more than a century as models of vertebrate embryonic development. However, in many cases, elucidation of developmental functions of specific gene sequences could be severely impeded, because X. laevis is a tetraploid species, with multiple functional copies of many genes of interest. Recent studies have shifted focus to the West African or tropical clawed frog, X. tropicalis, the only known diploid species of the genus Xenopus. Here, we present two preliminary linkage maps, constructed by analysis of joint segregation of amplified fragment length polymorphism (AFLP) markers in a X. tropicalis interstrain hybrid. A total of 53 markers, including 51 AFLP markers and 2 isozyme markers, are presently assigned to 13 multipoint linkage groups on a map of the maternal strain, whereas 9 AFLP markers from the paternal strain are assigned to 3 linkage groups on a separate map. A dense genetic linkage map is essential in mapping new developmental mutants and determining their sequences by positional cloning.
Collapse
Affiliation(s)
- Kelli J Kochan
- Department of Carcinogenesis, University of Texas M.D. Anderson Cancer Center, Science Park--Research Division, Smithville, Texas 78957, USA
| | | | | | | | | |
Collapse
|
19
|
MILANESI E, AJMONE-MARSAN P, BIGNOTTI E, LOSIO MN, BERNARDI J, CHEGDANI F, SONCINI M, FERRARI M. MOLECULAR DETECTION OF CELL LINE CROSS-CONTAMINATIONS USING AMPLIFIED FRAGMENT LENGTH POLYMORPHISM DNA FINGERPRINTING TECHNOLOGY. In Vitro Cell Dev Biol Anim 2003. [DOI: 10.1290/1543-706x(2003)039<0124:mdoclc>2.0.co;2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
20
|
van Haeringen WA, Den Bieman MG, Lankhorst AE, van Lith HA, van Zutphen LFM. Application of AFLP markers for QTL mapping in the rabbit. Genome 2002; 45:914-21. [PMID: 12416624 DOI: 10.1139/g02-060] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Two rabbit (Oryctolagus cuniculus) inbred strains (AX/JU and IIIVO/JU) have been used for genetic analysis of quantitative traits related to dietary cholesterol susceptibility. Application of the AFLP (amplified fragment length polymorphism) technique with 15 primer combinations revealed 226 polymorphisms between the 2 inbred strains. A total of 57 animals from a backcross progeny (IIIVO/JU x [IIIVO/JU x AX/JU]F1) were available for the genetic analysis. These backcross animals were fed a commercial pelleted diet fortified with 0.3% w/w cholesterol during a test period that lasted five weeks. A male genetic map could be constructed, consisting of 12 linkage groups and 103 AFLP markers. Linkage analysis between the cholesterol-related traits and marker loci revealed a significant LOD score for the relative weight of adrenal glands in males (LOD score = 3.83), whereas suggestive linkages were found for basal serum total cholesterol levels in females (LOD score = 2.69), for serum total cholesterol response (area under the curve) in males (LOD score = 2.21), and for hematocrit in males (LOD score = 3.24).
Collapse
|
21
|
Alves E, Castellanos C, Ovilo C, Silió L, Rodrı́guez C. Differentiation of the raw material of the Iberian pig meat industry based on the use of amplified fragment length polymorphism. Meat Sci 2002; 61:157-62. [DOI: 10.1016/s0309-1740(01)00179-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2001] [Revised: 10/03/2001] [Accepted: 10/14/2001] [Indexed: 11/16/2022]
|
22
|
Lee EJ, Yoshizawa K, Mannen H, Kikuchi H, Kikuchi T, Mizutani M, Tsuji S. Localization of the muscular dystrophy AM locus using a chicken linkage map constructed with the Kobe University resource family. Anim Genet 2002; 33:42-8. [PMID: 11849136 DOI: 10.1046/j.1365-2052.2002.00825.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A chicken linkage map, constructed with the Kobe University (KU) resource family, was used to locate the genetic locus for muscular dystrophy of abnormal muscle type (AM). The KU resource family is a backcross pedigree with 55 offspring produced from the mating of a White Leghorn F-line (WL-F) male and a hybrid female produced from a cross between the WL-F male and a female of the Fayoumi OPN line who was homozygous for the AM gene. In total, 872 loci were genotyped on the pedigree; 749 (86%) were informative and mapped to 38 linkage groups. These informative loci included 649 AFLPs, 93 MS, three functional genes, the AM locus, sex phenotype, and two red blood cell loci. The remaining 123 markers were unlinked. Nineteen of the 38 KU linkage groups were assigned to macrochromosomes 1-8 and 11 microchromosomes including chromosome W, while 19 linkage groups were unassigned. The total map was 3569 cM in length, with an average marker interval of 4.8 cM. The AM locus was mapped 130 cM from the distal end of chromosome 2q.
Collapse
Affiliation(s)
- E J Lee
- Laboratory of Animal Breeding and Genetics, Faculty of Agriculture, Kobe University, Kobe, 657-8501, Japan
| | | | | | | | | | | | | |
Collapse
|
23
|
Ajmone-Marsan P, Negrini R, Crepaldi P, Milanesi E, Gorni C, Valentini A, Cicogna M. Assessing genetic diversity in Italian goat populations using AFLP markers. Anim Genet 2001; 32:281-8. [PMID: 11683715 DOI: 10.1046/j.1365-2052.2001.00789.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Amplified fragment length polymorphism (AFLP) markers were used to investigate the genetic variation in a sample of seven goat (Capra hircus) populations. A total of 210 individuals (30 per population) were analysed using seven selected AFLP primer combinations that produced 219 clear polymorphisms. Four autochthonous goat breeds (Bionda dell'Adamello, Frisa, Orobica and Verzaschese), two primary populations, one from the Lombardy Alps (Val di Livo) and the other from Sardinia island (Sarda) and a reference cosmopolitan breed (Saanen) were included in the analysis. The expected heterozygosity (Het) did not differ significantly among breeds (range 0.21-0.24). No breed specific markers were identified. The variability at AFLP loci was largely maintained within breeds, as indicated by the coefficient of genetic differentiation (Gst) value (0.11). Dice similarities calculated between pairs of individuals belonging to the same or to different breeds largely overlapped. Bootstrapping on markers indicated that the coefficient of variation (CV) of the genetic indexes tested decreases only marginally by adding markers over 100 AFLPs. Cluster analysis based on standard genetic distance between breeds indicates that Sarda is the most distant population, while Bionda, Frisa, Verzaschese and Val di Livo seem to be highly related populations. Interestingly, Saanen is closer than Orobica to the other four goat populations of the Lombardy Alps. Principal co-ordinates analysis based on Dice similarities confirms these observations. Genetic diversity of the goat populations investigated confirms what is expected on the basis of their geographical location. Results from Orobica are not correlated with geographical distances and may reflect undocumented migrations and gene flows and identify an original genetic resource.
Collapse
Affiliation(s)
- P Ajmone-Marsan
- Istituto di Zootecnica, Università Cattolica del S. Cuore, Piacenza, Italy.
| | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
Amplified fragment length polymorphisms (AFLP) have been shown to be useful for linkage mapping in chickens and other domestic animals. It is often desirable to convert AFLP bands to sequence-tagged site (STS) markers, in particular, so that AFLP-based linkage information can be integrated with recombinant DNA clone-based maps. Sixteen chicken AFLP bands were excised from gels, re-amplified, cloned and analysed. All inserts proved to be EcoRI-TaqI fragments, which suggests that unlabelled TaqI-TaqI AFLP fragments do not amplify well, and therefore do not significantly contaminate AFLP bands. For eight of the AFLP, the cloned fragment was used to probe blots of AFLP reaction fingerprints, confirming that the predominant DNA clone indeed contained the polymorphic fragment. Flanking regions of selected AFLP fragments were isolated using Vectorette cloning. The results obtained suggest that the these chicken AFLP most commonly arise from sequence polymorphism at or near the TaqI site.
Collapse
Affiliation(s)
- C Knorr
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA
| | | | | |
Collapse
|
25
|
Tan YD, Wan C, Zhu Y, Lu C, Xiang Z, Deng HW. An amplified fragment length polymorphism map of the silkworm. Genetics 2001; 157:1277-84. [PMID: 11238411 PMCID: PMC1461547 DOI: 10.1093/genetics/157.3.1277] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The silkworm (Bombyx mori L.) is a lepidopteran insect with a long history of significant agricultural value. We have constructed the first amplified fragment length polymorphism (AFLP) genetic linkage map of the silkworm B. mori at a LOD score of 2.5. The mapping AFLP markers were genotyped in 47 progeny from a backcross population of the cross no. 782 x od100. A total of 1248 (60.7%) polymorphic AFLP markers were detected with 35 PstI/TaqI primer combinations. Each of the primer combinations generated an average of 35.7 polymorphic AFLP markers. A total of 545 (44%) polymorphic markers are consistent with the expected segregation ratio of 1:1 at the significance level of P = 0.05. Of the 545 polymorphic markers, 356 were assigned to 30 linkage groups. The number of markers on linkage groups ranged from 4 to 36. There were 21 major linkage groups with 7-36 markers and 9 relatively small linkage groups with 4-6 markers. The 30 linkage groups varied in length from 37.4 to 691.0 cM. The total length of this AFLP linkage map was 6512 cM. Genetic distances between two neighboring markers on the same linkage group ranged from 0.2 to 47 cM with an average of 18.2 cM. The sex-linked gene od was located between the markers P1T3B40 and P3T3B27 at the end of group 3, indicating that AFLP linkage group 3 was the Z (sex) chromosome. This work provides an essential basic map for constructing a denser linkage map and for mapping genes underlying agronomically important traits in the silkworm B. mori L.
Collapse
Affiliation(s)
- Y D Tan
- Laboratory of Molecular and Statistical Genetics, College of Life Science, Hunan Normal University, Changsha 410081, People's Republic of China
| | | | | | | | | | | |
Collapse
|
26
|
van Der Wurff AW, Chan YL, van Straalen NM, Schouten J. TE-AFLP: combining rapidity and robustness in DNA fingerprinting. Nucleic Acids Res 2000; 28:E105. [PMID: 11121492 PMCID: PMC115249 DOI: 10.1093/nar/28.24.e105] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
A new type of fingerprinting technique is presented, based on amplified fragment length polymorphism (AFLP). Rather than two endonucleases as in AFLP, we propose the use of three enzymes, hence the method is called three endonuclease (TE)-AFLP. Genomic DNA is digested and two sets of adapters are selectively ligated onto the restriction fragments in a single reaction volume. No adapters complementary to the ends generated by a frequent cutter are added. Due to the addition of a third endonuclease, the TE-AFLP method provides a high discriminatory power and a reduction in the number of bands. The latter makes it especially suitable for the analysis of complex genomes. TE-AFLP fingerprints are suitable for detection by automatic fluorescent sequencers and are obtained in less than half the time and at reduced costs compared to a typical AFLP. The reliability of this method was investigated by determining the influence of varying digestion, ligation and PCR components on the fingerprint. Moreover, cross-experiments to study inheritance of loci were performed with a primitive insect and with tomato strains. The features of TE-AFLP are discussed in comparison with conventional AFLP.
Collapse
Affiliation(s)
- A W van Der Wurff
- Institute of Ecological Science, Faculty of Biology, De Boelelaan 1087, 1081 HV Amsterdam, The Netherlands.
| | | | | | | |
Collapse
|
27
|
Groenen MA, Cheng HH, Bumstead N, Benkel BF, Briles WE, Burke T, Burt DW, Crittenden LB, Dodgson J, Hillel J, Lamont S, de Leon AP, Soller M, Takahashi H, Vignal A. A consensus linkage map of the chicken genome. Genome Res 2000; 10:137-47. [PMID: 10645958 PMCID: PMC310508 DOI: 10.1101/gr.10.1.137] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
A consensus linkage map has been developed in the chicken that combines all of the genotyping data from the three available chicken mapping populations. Genotyping data were contributed by the laboratories that have been using the East Lansing and Compton reference populations and from the Animal Breeding and Genetics Group of the Wageningen University using the Wageningen/Euribrid population. The resulting linkage map of the chicken genome contains 1889 loci. A framework map is presented that contains 480 loci ordered on 50 linkage groups. Framework loci are defined as loci whose order relative to one another is supported by odds greater then 3. The possible positions of the remaining 1409 loci are indicated relative to these framework loci. The total map spans 3800 cM, which is considerably larger than previous estimates for the chicken genome. Furthermore, although the physical size of the chicken genome is threefold smaller then that of mammals, its genetic map is comparable in size to that of most mammals. The map contains 350 markers within expressed sequences, 235 of which represent identified genes or sequences that have significant sequence identity to known genes. This improves the contribution of the chicken linkage map to comparative gene mapping considerably and clearly shows the conservation of large syntenic regions between the human and chicken genomes. The compact physical size of the chicken genome, combined with the large size of its genetic map and the observed degree of conserved synteny, makes the chicken a valuable model organism in the genomics as well as the postgenomics era. The linkage maps, the two-point lod scores, and additional information about the loci are available at web sites in Wageningen (http://www.zod.wau.nl/vf/ research/chicken/frame_chicken.html) and East Lansing (http://poultry.mph.msu.edu/).
Collapse
Affiliation(s)
- M A Groenen
- Animal Breeding and Genetics Group, Wageningen Institute of Animal Sciences, Wageningen University, 6709 PG Wageningen, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|