1
|
Identification of Two Novel EPOR Gene Variants in Primary Familial Polycythemia: Case Report and Literature Review. Genes (Basel) 2022; 13:genes13101686. [PMID: 36292571 PMCID: PMC9601602 DOI: 10.3390/genes13101686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/14/2022] [Accepted: 09/16/2022] [Indexed: 11/21/2022] Open
Abstract
Simple Summary Erythrocytosis can be caused by a wide variety of diseases. Some forms of erythrocytosis have an obvious cause, such as a kidney injury, or it may have an oncological cause, but in some patients, the origin of the disease is not entirely clear, and since the symptoms of an isolated erythrocytosis are not usually cumbersome, sometimes the diagnosis takes several months or years. In the present work, we report a couple of cases of familial erythrocytosis associated with novel variants in the erythropoietin receptor gene. This study serves as a reminder of the clinical and molecular study of this rare disease and expands the list of mutations associated with primary familial polycythemia. Abstract Primary familial and congenital polycythemia is a rare disease characterized by an increase in red cell mass that may be due to pathogenic variants in the EPO receptor (EPOR) gene. To date, 33 genetic variants have been reported to be associated. We analyzed the presence of EPOR variants in two patients with polycythemia in whom JAK2 pathogenic variants had been previously discarded. Molecular analysis of the EPOR gene was performed by Sanger sequencing of the coding regions and exon/intron boundaries of exon 8. We performed in vitro culture of erythroid progenitor cells. Segregation studies were done whenever possible. The two patients studied showed hypersensitivity to EPO in in vitro cultures. Analysis of the EPOR gene unveiled two novel pathogenic variants. Genetic testing of asymptomatic relatives could guarantee surveillance and proper management.
Collapse
|
2
|
McMullin MF. Genetic Background of Congenital Erythrocytosis. Genes (Basel) 2021; 12:genes12081151. [PMID: 34440325 PMCID: PMC8392557 DOI: 10.3390/genes12081151] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/23/2021] [Accepted: 07/26/2021] [Indexed: 01/14/2023] Open
Abstract
True erythrocytosis is present when the red cell mass is greater than 125% of predicted sex and body mass, which is reflected by elevated hemoglobin and hematocrit. Erythrocytosis can be primary or secondary and congenital or acquired. Congenital defects are often found in those diagnosed at a young age and with a family history of erythrocytosis. Primary congenital defects mainly include mutations in the Erythropoietin receptor gene but SH2B3 has also been implicated. Secondary congenital erythrocytosis can arise through a variety of genetic mechanisms, including mutations in the genes in the oxygen sensing pathway, with high oxygen affinity hemoglobin variants and mutations in other genes such as BPMG, where ultimately the production of erythropoietin is increased, resulting in erythrocytosis. Recently, mutations in PIEZ01 have been associated with erythrocytosis. In many cases, a genetic variant cannot be identified, leaving a group of patients with the label idiopathic erythrocytosis who should be the subject of future investigations. The clinical course in congenital erythrocytosis is hard to evaluate as these are rare cases. However, some of these patients may well present at a young age and with sometimes catastrophic thromboembolic events. There is little evidence to guide the management of congenital erythrocytosis but the use of venesection and low dose aspirin should be considered.
Collapse
|
3
|
Gangat N, Szuber N, Pardanani A, Tefferi A. JAK2 unmutated erythrocytosis: current diagnostic approach and therapeutic views. Leukemia 2021; 35:2166-2181. [PMID: 34021251 PMCID: PMC8324477 DOI: 10.1038/s41375-021-01290-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/28/2021] [Accepted: 05/06/2021] [Indexed: 02/08/2023]
Abstract
JAK2 unmutated or non-polycythemia vera (PV) erythrocytosis encompasses both hereditary and acquired conditions. A systematic diagnostic approach begins with documentation of historical hematocrit (Hct)/hemoglobin (Hgb) measurements and classification of the process as life-long/unknown duration or acquired. Further investigation in both categories is facilitated by determination of serum erythropoietin level (EPO). Workup for hereditary/congenital erythrocytosis requires documentation of family history and laboratory screening for high-oxygen affinity hemoglobin variants, 2, 3 biphosphoglycerate deficiency, and germline mutations that are known to alter cellular oxygen sensing (e.g., PHD2, HIF2A, VHL) or EPO signaling (e.g., EPOR mutations); the latter is uniquely associated with subnormal EPO. Acquired erythrocytosis is often elicited by central or peripheral hypoxia resulting from cardiopulmonary disease/high-altitude dwelling or renal artery stenosis, respectively; EPO in the former instance is often normal (compensated by negative feed-back). Other conditions associated with acquired erythrocytosis include EPO-producing tumors and the use of drugs that promote erythropoiesis (e.g., testosterone, erythropoiesis stimulating agents). "Idiopathic erythrocytosis" loosely refers to an otherwise not explained situation. Historically, management of non-PV erythrocytosis has been conflicted by unfounded concerns regarding thrombosis risk, stemming from limited phenotypic characterization, save for Chuvash polycythemia, well-known for its thrombotic tendency. In general, cytoreductive therapy should be avoided and phlebotomy is seldom warranted where frequency is determined by symptom control rather than Hct threshold. Although not supported by hard evidence, cardiovascular risk optimization and low-dose aspirin use are often advised. Application of modern genetic tests and development of controlled therapeutic intervention trials are needed to advance current clinical practice.
Collapse
Affiliation(s)
- Naseema Gangat
- grid.66875.3a0000 0004 0459 167XDivision of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, MN USA
| | - Natasha Szuber
- grid.14848.310000 0001 2292 3357Department of Hematology, Université de Montréal, Montréal, QC Canada
| | - Animesh Pardanani
- grid.66875.3a0000 0004 0459 167XDivision of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, MN USA
| | - Ayalew Tefferi
- grid.66875.3a0000 0004 0459 167XDivision of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, MN USA
| |
Collapse
|
4
|
Aetiology of Myeloproliferative Neoplasms. Cancers (Basel) 2020; 12:cancers12071810. [PMID: 32640679 PMCID: PMC7408762 DOI: 10.3390/cancers12071810] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/03/2020] [Accepted: 07/04/2020] [Indexed: 12/17/2022] Open
Abstract
Myeloproliferative neoplasms (MPNs) have estimated annual incidence rates for polycythemia vera (PV), essential thrombocythemia (ET), and primary myelofibrosis of 0.84, 1.03, and 0.47 per 100,000. Prevalence is much higher, particularly for PV and ET, as mortality rates are relatively low. Patients are often concerned about why they developed an MPN and epidemiological studies enable the identification of potential causative factors. Previous work in small heterogeneous studies has identified a variety of risk factors associated with MPNs including family history of MPN, autoimmune conditions, some occupational exposures, and blood donation. At a population level, germline predisposition factors in various populations have been associated with MPNs. The pilot MOSAICC (Myeloproliferative Neoplasm: An In-depth Case-Control) study is one of the largest epidemiological studies in MPN ever carried out to date. It demonstrated the most effective methods for carrying out a significant epidemiological study in this patient group including the best way of recruiting controls, as well as how to evaluate occupational and lifestyle exposures, evaluate symptoms, and collect biological samples. Significant results linked to MPNs in the pilot study of 106 patients included smoking, obesity, and childhood socioeconomic status. The methodology is now in place for a much larger ongoing MOSAICC study which should provide further insight into the potential causes of MPNs.
Collapse
|
5
|
Anbinselvam A, Sidharthan N, Vidyadharan G, Kurian J, Biswas L. Mutation profile of JAK2, EPOR and CALR genes in polycythemia patients. Blood Cells Mol Dis 2020; 82:102414. [PMID: 32070814 DOI: 10.1016/j.bcmd.2020.102414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 02/08/2020] [Accepted: 02/10/2020] [Indexed: 11/19/2022]
Affiliation(s)
- Arularasan Anbinselvam
- Centre for Nanosciences and Molecular Medicine, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham, Kochi 682041, India
| | - Neeraj Sidharthan
- Department of Medical Oncology, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham, Kochi 682041, India
| | - Geeta Vidyadharan
- Department of Pathology, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham, Kochi 682041, India
| | - Jessy Kurian
- Department of Molecular Biology, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham, Kochi 682041, India
| | - Lalitha Biswas
- Centre for Nanosciences and Molecular Medicine, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham, Kochi 682041, India.
| |
Collapse
|
6
|
Peroni E, Bertozzi I, Gherlinzoni F, Stefani PM, Lombardi A, Biagetti G, Fabris F, Randi ML. Two novel missense mutations in EPOR gene causes erythrocytosis in two unrelated patients. Br J Haematol 2016; 180:908-911. [PMID: 27982410 DOI: 10.1111/bjh.14486] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Edoardo Peroni
- Clinica Medica 1, Department of Medicine - DIMED, University of Padua, Padua, Italy
| | - Irene Bertozzi
- Clinica Medica 1, Department of Medicine - DIMED, University of Padua, Padua, Italy
| | | | | | - AnnaMaria Lombardi
- Clinica Medica 1, Department of Medicine - DIMED, University of Padua, Padua, Italy
| | - Giacomo Biagetti
- Clinica Medica 1, Department of Medicine - DIMED, University of Padua, Padua, Italy
| | - Fabrizio Fabris
- Clinica Medica 1, Department of Medicine - DIMED, University of Padua, Padua, Italy
| | - Maria L Randi
- Clinica Medica 1, Department of Medicine - DIMED, University of Padua, Padua, Italy
| |
Collapse
|
7
|
Gross M, Ben-Califa N, McMullin MF, Percy MJ, Bento C, Cario H, Minkov M, Neumann D. Polycythaemia-inducing mutations in the erythropoietin receptor (EPOR): mechanism and function as elucidated by epidermal growth factor receptor-EPOR chimeras. Br J Haematol 2014; 165:519-28. [DOI: 10.1111/bjh.12782] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Accepted: 12/27/2013] [Indexed: 12/27/2022]
Affiliation(s)
- Mor Gross
- Department of Cell and Developmental Biology; Sackler Faculty of Medicine; Tel-Aviv University; Tel Aviv Israel
| | - Nathalie Ben-Califa
- Department of Cell and Developmental Biology; Sackler Faculty of Medicine; Tel-Aviv University; Tel Aviv Israel
| | | | | | - Celeste Bento
- Department of Haematology; Centro Hospitalar e Universitário de Coimbra; Coimbra Portugal
| | - Holger Cario
- Department of Paediatrics and Adolescent Medicine; University Medical Centre Ulm; Ulm Germany
| | - Milen Minkov
- Department of Haematology/Oncology; St. Anna Children's Hospital; Medical University of Vienna; Vienna Austria
| | - Drorit Neumann
- Department of Cell and Developmental Biology; Sackler Faculty of Medicine; Tel-Aviv University; Tel Aviv Israel
| |
Collapse
|
8
|
Ribeiro IF, Miranda-Vilela AL, Klautau-Guimarães MDN, Grisolia CK. The influence of erythropoietin (EPO T → G) and α-actinin-3 (ACTN3 R577X) polymorphisms on runners' responses to the dietary ingestion of antioxidant supplementation based on pequi oil ( Caryocar brasiliense Camb.): a before-after study. JOURNAL OF NUTRIGENETICS AND NUTRIGENOMICS 2014; 6:283-304. [PMID: 24504226 DOI: 10.1159/000357947] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Accepted: 12/11/2013] [Indexed: 12/19/2022]
Abstract
BACKGROUND/AIMS As diet can affect an individual's genes and these can affect response to supplementation, we aimed to investigate the influence of erythropoietin (EPO T→G) and α-actinin-3 (ACTN3 R577X) polymorphisms on plasma lipid peroxidation, hemogram and biochemical dosages of creatine kinase, aspartate aminotransferase, alanine aminotransferase and C-reactive protein (including high-sensitivity C-reactive protein) of runners (n = 123) before and after 14 days of 400 mg pequi oil supplementation, a natural carotenoid-rich oil, after races under closely comparable conditions. METHODS/RESULTS Blood samples were taken immediately after racing to perform the tests. Before pequi oil supplementation, EPO polymorphism influenced erythrogram and plateletgram results, suggesting an aerobic advantage for the TG genotype and a disadvantage for the GG genotype as regards possible microvascular complications, while no association was found for ACTN3 polymorphism with endurance performance. Both polymorphisms influenced the runners' response to pequi oil: significant responses were observed for the EPO TT genotype in erythrocyte, hematocrit, mean corpuscular hemoglobin and mean corpuscular hemoglobin concentration values, and for the TT and TG genotypes in red blood cell distribution width values. Significant differences were also observed in the plateletgram for the TT and TG genotypes. ACTN3 mainly influenced aspartate aminotransferase and creatine kinase values: heterozygotes had a significant reduction in aspartate aminotransferase values and homozygous individuals (XX) in creatine kinase values after pequi oil supplementation. CONCLUSION These results emphasize the importance of studying nutrigenomic effects on athletes' performance.
Collapse
Affiliation(s)
- Ieler Ferreira Ribeiro
- Department of Genetics and Morphology, Institute of Biological Sciences, University of Brasília, Brasília, Brazil
| | | | | | | |
Collapse
|
9
|
Jang JH, Seo JY, Jang J, Jung CW, Lee KO, Kim SH, Kim HJ. Hereditary gene mutations in Korean patients with isolated erythrocytosis. Ann Hematol 2014; 93:931-5. [PMID: 24482100 DOI: 10.1007/s00277-014-2006-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Accepted: 01/03/2014] [Indexed: 02/02/2023]
Abstract
Most cases of erythrocytosis occur secondary to chronic tissue hypoxia or as a clonal disease such as polycythemia vera with somatic mutations in the Janus kinase 2 (JAK2) gene. Rarely, erythrocytosis is caused by hereditary gene mutations. This study investigated hereditary gene mutations in 38 unrelated Korean patients with isolated erythrocytosis without (1) JAK2 mutation and (2) secondary causes of erythrocytosis other than smoking history. Direct sequencing analyses were performed on six genes associated with hereditary erythrocytosis [HBB, exon 2 and exon 3 of HBA2, VHL, EGLN1 (previously PHD2), exon 12 of EPAS1 (previously HIF2A), and exons 5-8 of EPOR]. As a result, mutations were detected in five patients (three never smokers and two current smokers) out of 38 patients (13.2 %). The mutations detected in those five patients were EPOR:p.W439*, EPOR:p.G212C, HBB:p.H98Q (or conventionally H97Q, Hb Malmö [β 97(FG4) His > Gln]), HBB:p.V138M (V137M), and EGLN1:p.L279Tfs43*, all in heterozygous state. No patient had mutations in HBA2, VHL, or in EPAS1. This study indicates that workup for hereditary gene mutations is needed for isolated erythrocytosis with or without smoking history.
Collapse
Affiliation(s)
- Ja-Hyun Jang
- Department of Laboratory Medicine & Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, 50 Irwon-dong, Gangnam-gu, Seoul, South Korea, 135-710
| | | | | | | | | | | | | |
Collapse
|
10
|
Abstract
The idiopathic erythrocytosis (IE) group of disorders is defined by an absolute increase in red cell mass and hematocrit without elevation of the megakaryocytic or granulocytic lineages. It is associated with a wide range of serum erythropoietin (Epo) levels and broadly falls into groups of raised/inappropriately normal or low/undetectable Epo levels. A spectrum of molecular defects has been described in association with IE, which reflects the heterogeneity of this disorder. To date the most common identified cause of IE has been mutations in the von Hippel Landau (VHL) protein, which results in aberrant oxygen sensing and dysregulated Epo production. Studying the molecular basis of IE will provide insights into the control of Epo synthesis and Epo-induced signaling pathways.
Collapse
Affiliation(s)
- M J Percy
- Department of Haematology, Belfast City Hospital, Floor C, Lisburn Road, Belfast, Northern Ireland, UK
| |
Collapse
|
11
|
Mutations in the transmembrane and juxtamembrane domains enhance IL27R transforming activity. Biochem J 2011; 438:155-64. [PMID: 21631431 DOI: 10.1042/bj20110351] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Cytokines and their receptors regulate haemopoiesis by controlling cellular growth, survival and differentiation. Thus it is not surprising that mutations of cytokine receptors contribute to the formation of haemopoietic disorders, including cancer. We recently identified transforming properties of IL27R, the ligand-binding component of the receptor for interleukin-27. Although wild-type IL27R exhibits transforming properties in haemopoietic cells, in the present study we set out to determine if the transforming activity of IL27R could be enhanced by mutation. We identified three mutations of IL27R that enhance its transforming activity. One of these mutations is a phenylalanine to cysteine mutation at residue 523 (F523C) in the transmembrane domain of the receptor. The two other mutations identified involve deletions of amino acids in the cytoplasmic juxtamembrane region of the receptor. Expression of each of these mutant IL27R proteins led to rapid cytokine-independent transformation in haemopoietic cells. Moreover, the rate of transformation induced by these mutants was significantly greater than that induced by wild-type IL27R. Expression of these IL27R mutants also induced enhanced activation of JAK (Janus kinase)/STAT (signal transducer and activator of transcription) signalling compared with wild-type. An activating deletion mutation of IL27R enhanced homodimerization of the receptor by a mechanism that may involve disulfide bonding. These transforming IL27R mutants displayed equal or greater transforming activity than bona fide haemopoietic oncogenes such as BCR-ABL (breakpoint cluster region-Abelson murine leukaemia viral oncogene homologue) and JAK2-V617F. Since IL27R is expressed on haemopoietic stem cells, lymphoid cells and myeloid cells, including acute myeloid leukaemia blast cells, mutation of this receptor has the potential to contribute to a variety of haemopoietic neoplasms.
Collapse
|
12
|
O'Rourke K, Fairbairn DJ, Jackson KA, Morris KL, Tey SK, Kennedy GA. A novel mutation of the erythropoietin receptor gene associated with primary familial and congenital polycythaemia. Int J Hematol 2011; 93:542-544. [PMID: 21437635 DOI: 10.1007/s12185-011-0813-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2010] [Revised: 03/07/2011] [Accepted: 03/08/2011] [Indexed: 11/28/2022]
Affiliation(s)
- Kacey O'Rourke
- Department of Haematology, Royal Brisbane and Women's Hospital, Butterfield St, Herston, QLD, 4029, Australia.
| | - David J Fairbairn
- Department of Haematology, Royal Brisbane and Women's Hospital, Butterfield St, Herston, QLD, 4029, Australia
| | - Kathryn A Jackson
- Department of Haematology, Royal Brisbane and Women's Hospital, Butterfield St, Herston, QLD, 4029, Australia
| | - Kirk L Morris
- Department of Haematology, Royal Brisbane and Women's Hospital, Butterfield St, Herston, QLD, 4029, Australia
| | - Siok-Keen Tey
- Department of Haematology, Royal Brisbane and Women's Hospital, Butterfield St, Herston, QLD, 4029, Australia
| | - Glen A Kennedy
- Department of Haematology, Royal Brisbane and Women's Hospital, Butterfield St, Herston, QLD, 4029, Australia
| |
Collapse
|
13
|
Huang LJ, Shen YM, Bulut GB. Advances in understanding the pathogenesis of primary familial and congenital polycythaemia. Br J Haematol 2010; 148:844-52. [PMID: 20096014 DOI: 10.1111/j.1365-2141.2009.08069.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Primary familial and congenital polycythemia (PFCP) is an autosomal-dominant proliferative disorder characterized by erythrocytosis and hypersensitivity of erythroid progenitors to erythropoietin (Epo). Several lines of evidence suggest a causal role of truncated erythropoietin receptor (EpoR) in this disease. In this review, we discuss PFCP in the context of erythrocytosis and EpoR signalling. We focus on recent studies describing mechanisms underlying Epo-dependent EpoR down-regulation. One mechanism depends on internalization mediated through the p85 regulatory subunit of the Phosphoinositide 3-Kinase, and the other utilizes ubiquitin-based proteasomal degradation. Truncated PFCP EpoRs are not properly down-regulated upon stimulation, underscoring the importance of these mechanisms in the pathogenesis of PFCP.
Collapse
Affiliation(s)
- Lily J Huang
- Department of Cell Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-9039, USA.
| | | | | |
Collapse
|
14
|
McMullin MF. Idiopathic erythrocytosis: a disappearing entity. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2009; 2009:629-635. [PMID: 20008248 DOI: 10.1182/asheducation-2009.1.629] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Erythrocytosis results when there is an increased red cell mass and thus an increased hemoglobin. The causes can be divided into primary intrinsic defects of the erythroid progenitor cell and secondary defects, where factors external to the erythroid compartment are responsible. Both can then be further divided into congenital and acquired categories. Congenital causes include mutations of the erythropoietin receptor and defects of the oxygen-sensing pathway including VHL, PHD2 and HIF2A mutations. When fully investigated there remain a number of patients in whom no cause can be elucidated who are currently described as having idiopathic erythrocytosis. Investigation should start with a full history and examination. Having eliminated the common entity polycythemia vera, further direction for investigation is guided by the erythropoietin level. Clinical consequences of the various erythrocytoses are not clear, but in some groups thromboembolic events have been described in young patients. Evidence is lacking to define best management, but aspirin and venesection to a target hematocrit should be considered.
Collapse
Affiliation(s)
- Mary Frances McMullin
- Centre for Cancer Research and Cell Biology, Queen's University, Belfast, N. Ireland.
| |
Collapse
|
15
|
Rumi E. Familial chronic myeloproliferative disorders: the state of the art. Hematol Oncol 2008; 26:131-8. [DOI: 10.1002/hon.863] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
16
|
Affiliation(s)
- M F McMullin
- Department of Haematology, The Queen's University, Belfast, UK.
| |
Collapse
|
17
|
Abstract
Idiopathic erythrocytosis is an uncommon disease, and is defined by an increase in red blood cell mass. The differential diagnosis of erythrocytosis is extensive, and can be divided into primary and secondary forms. Primary erythrocytoses are due to intrinsic defects in erythroid precursor cells and are characterized by low erythropoietin levels. Secondary erythrocytoses are extrinsic to erythroid progenitors and are characterized by either high or inappropriately normal erythropoietin levels. A distinct subset of secondary erythrocytoses are due to genetic mutations in key proteins of the oxygen-sensing pathway. These proteins constitute the core molecular machinery of oxygen-sensing with respect to red blood cell control. Apart from assigning physiologic roles for these proteins, studies of these rare mutations have (i) revealed the exquisite sensitivity of this pathway to genetic perturbations, (ii) highlighted important functional regions of the proteins, and (iii) provided a basis for potentially targeting this pathway for therapeutic benefit.
Collapse
Affiliation(s)
- Frank S Lee
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, 605 Stellar Chance Labs, 422 Curie Boulevard, Philadelphia, PA 19104, USA.
| |
Collapse
|
18
|
Percy MJ, Furlow PW, Lucas GS, Li X, Lappin TRJ, McMullin MF, Lee FS. A gain-of-function mutation in the HIF2A gene in familial erythrocytosis. N Engl J Med 2008; 358:162-8. [PMID: 18184961 PMCID: PMC2295209 DOI: 10.1056/nejmoa073123] [Citation(s) in RCA: 250] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Hypoxia-inducible factor (HIF) alpha, which has three isoforms, is central to the continuous balancing of the supply and demand of oxygen throughout the body. HIF-alpha is a transcription factor that modulates a wide range of processes, including erythropoiesis, angiogenesis, and cellular metabolism. We describe a family with erythrocytosis and a mutation in the HIF2A gene, which encodes the HIF-2alpha protein. Our functional studies indicate that this mutation leads to stabilization of the HIF-2alpha protein and suggest that wild-type HIF-2alpha regulates erythropoietin production in adults.
Collapse
|
19
|
Percy MJ, Furlow PW, Beer PA, Lappin TRJ, McMullin MF, Lee FS. A novel erythrocytosis-associated PHD2 mutation suggests the location of a HIF binding groove. Blood 2007; 110:2193-6. [PMID: 17579185 PMCID: PMC1976349 DOI: 10.1182/blood-2007-04-084434] [Citation(s) in RCA: 125] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The molecular basis of the erythrocytosis group of red cell disorders is incompletely defined. Some cases are due to dysregulation of erythropoietin (Epo) synthesis. The hypoxia inducible transcription factor (HIF) tightly regulates Epo synthesis. HIF in turn is regulated through its alpha subunit, which under normoxic conditions is hydroxylated on specific prolines and targeted for degradation by the von Hippel Lindau (VHL) protein. Several mutations in VHL have been reported in erythrocytosis, but only 1 mutation in the HIF prolyl hydroxylase PHD2 (prolyl hydroxylase domain protein 2) has been described. Here, we report a novel PHD2 mutation, Arg371His, which causes decreased HIF binding, HIF hydroxylase, and HIF inhibitory activities. In the tertiary structure of PHD2, Arg371 lies close to the previously described Pro317Arg mutation site. These findings substantiate PHD2 as a critical enzyme controlling HIF and therefore Epo in humans, and furthermore suggest the location of an active site groove in PHD2 that binds HIF.
Collapse
Affiliation(s)
- Melanie J Percy
- Department of Haematology, Belfast City Hospital, Belfast, United Kingdom.
| | | | | | | | | | | |
Collapse
|
20
|
Skoda R. The genetic basis of myeloproliferative disorders. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2007; 2007:1-10. [PMID: 18024602 DOI: 10.1182/asheducation-2007.1.1] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
For many decades, myeloproliferative disorders (MPD) were largely neglected orphan diseases. The conceptual work of William Dameshek in 1951 provided the basis for understanding MPD as a continuum of related syndromes, possibly with a common pathogenetic cause. Recognition of the clonal origin of peripheral blood cells in MPD in 1976 and the ability to grow erythroid colonies in vitro in the absence of added growth factors in 1974 initiated the search for genetic alterations that might be responsible for myeloproliferation. Mutations in the genes for the erythropoietin receptor, thrombopoietin and the von Hippel-Lindau protein were found to cause familial syndromes resembling MPD, but despite their phenotypic similarities, none of these mutations were later found in patients with the sporadic form of MPD. The discovery of activating mutations in the Janus kinase 2 (JAK2) in most patients with MPD has fully transformed and energized the MPD field. Sensitive assays for detecting the JAK2-V617F mutation have become an essential part of the diagnostic work-up, and JAK2 now constitutes a prime target for developing specific inhibitors for the treatment of patients with MPD. Despite this progress, many questions remain unsolved, including how a single JAK2 mutation causes three different MPD phenotypes, what other genes might be involved in the pathogenesis, and what are the factors determining the progression to acute leukemia.
Collapse
Affiliation(s)
- Radek Skoda
- Department of Research, University Hospital Basel, Hebelstrasse 20, CH-4031 Basel, Switzerland.
| |
Collapse
|
21
|
Abstract
By definition, myeloproliferative disorders (MPDs) are caused by an acquired somatic mutation of a hematopoietic progenitor/stem cell and have sporadic occurrence. However, well-documented families exist with first-degree relatives acquiring one or several MPDs. It is reasonable to assume that the germ-line mutation(s) or genetic background must facilitate or predispose for one or several somatic mutation(s) that lead to the MPD that is indistinguishable from the sporadic form. This is best documented in familial polycythemia vera (PV), which appears to be inherited as an autosomal dominant disorder with incomplete penetrance. However, there are also families wherein members develop any combination of MPDs, including PV, essential thrombocythemia (ET), chronic myelocytic leukemia (CML), and idiopathic myelofibrosis (IMF). A separate group of familial diseases is the familial thrombocythemias, wherein germ-line mutations in the genes for thrombopoietin or its receptor, MPL, cause polyclonal hereditary thrombocythemia, which may be clinically indistinguishable from ET. Patients with the congenital polycythemic condition "primary familial and congenital polycythemia" (PFCP) have characteristically decreased erythropoietin (Epo) levels similar to PV, hypersensitive erythroid progenitors, and low Epo levels; as such, this condition is often confused with PV. Therefore, PFCP will also be discussed here, while other congenital polycythemic states such as the Chuvash polycythemia that have elevated or inappropriately normal Epo levels will be omitted from this review in view of their distinct phenotype and unique laboratory features.
Collapse
Affiliation(s)
- Radek Skoda
- Department of Research, Experimental Hematology, University of Basel, Hebelstrasse 20, 4031 Basel, Switzerland.
| | | |
Collapse
|
22
|
McMullin MF, Bareford D, Campbell P, Green AR, Harrison C, Hunt B, Oscier D, Polkey MI, Reilly JT, Rosenthal E, Ryan K, Pearson TC, Wilkins B. Guidelines for the diagnosis, investigation and management of polycythaemia/erythrocytosis. Br J Haematol 2005; 130:174-95. [PMID: 16029446 DOI: 10.1111/j.1365-2141.2005.05535.x] [Citation(s) in RCA: 205] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Mary F McMullin
- Department of Haematology, Queen's University, Belfast, Belfast City Hospital, Belfast, UK
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Cario H. Childhood polycythemias/erythrocytoses: classification, diagnosis, clinical presentation, and treatment. Ann Hematol 2004; 84:137-45. [PMID: 15599750 DOI: 10.1007/s00277-004-0985-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2004] [Accepted: 11/05/2004] [Indexed: 11/29/2022]
Abstract
Polycythemias or erythrocytoses in childhood and adolescence are very rare. Systematic data on the clinical presentation and laboratory evaluations as well as on treatment regimens are sparse. The diagnostic program in absolute erythrocytosis includes extensive clinical, hematological, biochemical, and molecular biological examinations which should be applied following a stepwise algorithm. Absolute erythrocytoses are usually subdivided into primary and secondary forms. Primary erythrocytosis is a condition in which the erythropoietic compartment is expanding independently of extrinsic influences or by responding inadequately to them. Primary erythrocytoses include primary familial and congenital polycythemia (PFCP) due to mutations of the erythropoietin (Epo) receptor gene and the myeloproliferative disorder polycythemia vera. Secondary erythrocytoses are driven by hormonal factors (predominantly by Epo) extrinsic to the erythroid compartment. The increased Epo secretion may represent either a physiologic response to tissue hypoxia, an abnormal autonomous Epo production, or a dysregulation of the oxygen-dependent Epo synthesis. Congenital secondary erythrocytoses are caused, e.g., by hemoglobin variants with increased oxygen affinity, by 2,3-bisphosphoglycerate deficiency, or by mutations in the von Hippel-Lindau gene associated with a disturbed oxygen-dependent regulation of Epo synthesis.
Collapse
Affiliation(s)
- H Cario
- Department of Pediatrics, University Hospital Ulm, Prittwitzstrasse 43, 89075 Ulm, Germany.
| |
Collapse
|
24
|
Van Maerken T, Hunninck K, Callewaert L, Benoit Y, Laureys G, Verlooy J. Familial and congenital polycythemias: a diagnostic approach. J Pediatr Hematol Oncol 2004; 26:407-16. [PMID: 15218413 DOI: 10.1097/00043426-200407000-00002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The rare absolute polycythemias with an innate and hereditary character can be grouped together under the heading "familial and congenital polycythemias" (FCPs). Primary forms, due to an intrinsic defect in the erythroid progenitor cells, and secondary forms, resulting from extrinsic factors such as an elevated erythropoietin level, have both been reported. Despite the widely divergent characteristics of the different FCPs, the range of possible diagnoses is much more restricted and the distribution of disorders markedly different compared with polycythemias in general. Therefore, in FCP, one can argue against following the algorithm of the Polycythemia Vera Study Group for the evaluation of an elevated hematocrit level, following instead a more specific algorithm. In this article the authors describe a child with primary FCP, review the different FCPs, and propose an adapted work-up scheme.
Collapse
Affiliation(s)
- Tom Van Maerken
- Department of Pediatric Hematology-Oncology, University Hospital Ghent, Belgium
| | | | | | | | | | | |
Collapse
|
25
|
Percy MJ, Mooney SM, McMullin MF, Flores A, Lappin TRJ, Lee FS. A common polymorphism in the oxygen-dependent degradation (ODD) domain of hypoxia inducible factor-1alpha (HIF-1alpha) does not impair Pro-564 hydroxylation. Mol Cancer 2003; 2:31. [PMID: 14521712 PMCID: PMC212228 DOI: 10.1186/1476-4598-2-31] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2003] [Accepted: 09/09/2003] [Indexed: 01/12/2023] Open
Abstract
Background The hypoxia-inducible factor (HIF) transcription complex, which is activated by low oxygen tension, controls a diverse range of cellular processes including angiogenesis and erythropoiesis. Under normoxic conditions, the α subunit of HIF is rapidly degraded in a manner dependent on hydroxylation of two conserved proline residues at positions 402 and 564 in HIF-1α in the oxygen-dependent degradation (ODD) domain. This allows subsequent recognition by the von Hippel-Lindau (VHL) tumor suppressor protein, which targets HIF for degradation by the ubiquitin-proteasome pathway. Under hypoxic conditions, prolyl hydroxylation of HIF is inhibited, allowing it to escape VHL-mediated degradation. The transcriptional regulation of the erythropoietin gene by HIF raises the possibility that HIF may play a role in disorders of erythropoiesis, such as idiopathic erythrocytosis (IE). Results Patients with IE were screened for changes in the HIF-1α coding sequence, and a change in the ODD domain that converts Pro-582 to Ser was identified in several patients. This same change, however, was also detected at a significant frequency, 0.073, in unaffected controls compared to 0.109 in the IE patient group. In vitro hydroxylation assays examining this amino acid change failed to reveal a discernible effect on HIF hydroxylation at Pro-564. Conclusion The Pro582Ser change represents a common polymorphism of HIF-1α that does not impair HIF-1α prolyl hydroxylation. Although the Pro582Ser polymorphism is located in the ODD domain of HIF-1α it does not diminish the association of HIF-1α with VHL. Thus, it is unlikely that this polymorphism accounts for the erythrocytosis in the group of IE patients studied.
Collapse
Affiliation(s)
- Melanie J Percy
- Department of Haematology, Belfast City Hospital, Belfast, Northern Ireland, BT9 7AB, UK
| | - Sharon M Mooney
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Mary Frances McMullin
- Department of Haematology, Queen's University, Belfast, Northern Ireland, BT9 7AB, UK
| | - Adrian Flores
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Terence RJ Lappin
- Department of Haematology, Queen's University, Belfast, Northern Ireland, BT9 7AB, UK
| | - Frank S Lee
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| |
Collapse
|
26
|
Abstract
More than a century has elapsed since the appearance of the modern descriptions of polycythemia vera (PV). During this time, much has been learned regarding disease pathogenesis and PV-associated molecular aberrations. New information has allowed amendments to traditional diagnostic criteria. Phlebotomy remains the cornerstone treatment of PV, whereas myelosuppressive agents may augment the benefit of using phlebotomy for thrombosis prevention in high-risk patients. Excessive aspirin use is contraindicated in PV, although the use of lower-dose aspirin has been shown to be safe and effective in alleviating microvascular symptoms including erythromelalgia and headaches. Recent studies have shown the utility of selective serotonin receptor antagonists for treating PV-associated pruritus. Nevertheless, many questions remain unanswered. What is the specific genetic mutation or altered molecular pathway that is causally related to the disease? In the absence of a specific molecular marker, how is a working diagnosis of PV made? What evidence supports current practice in the management of PV? This article summarizes both old and new information on PV; proposes a modern diagnostic algorithm to formulate a working diagnosis; and provides recommendations for patient management, relying whenever possible on an evidence-based approach.
Collapse
Affiliation(s)
- Ayalew Tefferi
- Division of Hematology and Internal Medicine, Mayo Clinic, Rochester, Minn 55905, USA.
| |
Collapse
|
27
|
Arcasoy MO, Karayal AF, Segal HM, Sinning JG, Forget BG. A novel mutation in the erythropoietin receptor gene is associated with familial erythrocytosis. Blood 2002; 99:3066-9. [PMID: 11929803 DOI: 10.1182/blood.v99.8.3066] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Primary familial erythrocytosis (familial polycythemia) is a rare myeloproliferative disorder with an autosomal dominant mode of inheritance. We studied a new kindred with autosomal dominantly inherited familial erythrocytosis. The molecular basis for the observed phenotype of isolated erythrocytosis is heterozygosity for a novel nonsense mutation affecting codon 399 in exon 8 of the erythropoietin receptor (EPOR) gene, encoding an EpoR peptide that is truncated by 110 amino acids at its C-terminus. The new EPOR gene mutation 5881G>T was found to segregate with isolated erythrocytosis in the affected family and this mutation represents the most extensive EpoR truncation reported to date, associated with familial erythrocytosis. Erythroid progenitors from an affected individual displayed Epo hypersensitivity in in vitro methylcellulose cultures, as indicated by more numerous erythroid burst-forming unit-derived colonies in low Epo concentrations compared to normal controls. Expression of mutant EpoR in interleukin 3-dependent hematopoietic cells was associated with Epo hyperresponsiveness compared to cells expressing wild-type EpoR.
Collapse
Affiliation(s)
- Murat O Arcasoy
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA.
| | | | | | | | | |
Collapse
|
28
|
Kralovics R, Prchal JT. Genetic heterogeneity of primary familial and congenital polycythemia. Am J Hematol 2001; 68:115-21. [PMID: 11559951 DOI: 10.1002/ajh.1162] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Primary familial and congenital polycythemia (PFCP) is an inherited disorder of erythroid progenitor cells resulting in elevated erythrocyte mass. Several mutations of the erythropoietin receptor (EPOR) gene have been associated with PFCP, although in a few families the linkage between the EPOR gene and PFCP has been excluded. To examine the role of EPOR mutations in the pathogenesis of PFCP, we studied 43 unrelated PFCP subjects. Erythroid culture data were available in 26 subjects, and in all these subjects, we observed hypersensitivity of erythroid progenitors to erythropoietin (EPO). We screened all EPOR gene exons for mutations using ribonuclease cleavage assay and protein truncation test. We detected five mutations in exon VIII of the EPOR gene, four of which we reported earlier. A new EPOR gene mutation was found (G5959T) that changes codon 425 GAG to a termination codon, resulting in truncation of the EPOR by 84 amino acids. The G5959T mutation was found to segregate with the disease in the affected family and represents another example of a nonsense mutation associated with PFCP. We also report the first intronic mutation (A2706T) of the EPOR gene. The finding of only five disease-causing mutations in our PFCP patient pool of 43 subjects (12%) indicates that EPOR gene mutations are not the major genetic defect associated with PFCP. The hypersensitivity of erythroid progenitors to EPO seen in all examined PFCP subjects suggests a dominant lesion of an as yet unidentified gene either at the level of the EPOR signaling pathway or another erythropoiesis regulating pathway.
Collapse
Affiliation(s)
- R Kralovics
- Department of Medicine, Baylor College of Medicine, Houston, Texas 77030, USA
| | | |
Collapse
|
29
|
Motohashi T, Nakamura Y, Osawa M, Hiroyama T, Iwama A, Shibuya A, Nakauchi H. Increased cell surface expression of C-terminal truncated erythropoietin receptors in polycythemia. Eur J Haematol 2001; 67:88-93. [PMID: 11722595 DOI: 10.1034/j.1600-0609.2001.t01-1-00446.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Primary familial and congenital polycythemia (PFCP) is a disorder characterized by an increased number of erythrocytes despite normal blood oxygen pressure and a normal serum erythropoietin (EPO) level. Recent studies revealed that erythroid progenitor cells from certain individuals with PFCP express various forms of EPO receptor (EPOR) truncated at the terminal carboxyl site (EPOR-TTC(PFCP)). EPOR-TTC(PFCP) can transmit EPO-mediated proliferative signals more efficiently than can full-length EPOR (EPOR-F), at least partly because of defective recruitment of SHP-1 phosphatase to these receptors. In agreement with previous studies, Ba/F3 transfectants expressing EPOR-TTC(PFCP) showed higher proliferative responses to EPO. In those transfectants, we found that EPOR-TTC(PFCP) was expressed more abundantly on the cell surface than was EPOR-F. This tendency was confirmed by a transient-expression experiment using COS7 cells. Since expression levels of EPOR protein were not significantly different among these transfectants, differences in cell surface expression were likely dependent on post-translational mechanism(s). In addition to defective recruitment of SHP-1 to EPOR-TTC(PFCP), more efficient transport and expression on the cell surface appear to serve as mechanisms responsible for increased EPO-responsiveness of erythroid progenitor cells in PFCP.
Collapse
Affiliation(s)
- T Motohashi
- Department of Immunology, Institute of Basic Medical Sciences, University of Tsukuba and CREST (JST), Tsukuba, Ibaraki, Japan
| | | | | | | | | | | | | |
Collapse
|
30
|
Pearson TC, Messinezy M. Idiopathic erythrocytosis, diagnosis and clinical management. PATHOLOGIE-BIOLOGIE 2001; 49:170-7. [PMID: 11317965 DOI: 10.1016/s0369-8114(00)00025-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
By definition, idiopathic erythrocytosis (IE) applies to a group of patients characterised by having a measured RCM above their predicted normal range (an absolute erythrocytosis) and following investigation do not have a form of primary or secondary erythrocytosis. Patients with IE are heterogenous. The possibilities include physiological variation, 'early' polycythaemia vera (10-15% develop clear features of PV over a few years), unrecognized congenital erythrocytosis, unrecognized or unrecognizable secondary acquired erythrocytosis or a currently undescribed form of primary or secondary erythrocytosis. Patients are more commonly male with a median age at presentation of 55-60 years. Approximately half of the patients present with vascular occlusive complications. Retrospective evidence indicates that vascular occlusion occurs less frequently when the PCV is controlled at normal levels. Venesection is the treatment of choice to lower the PCV. As a general approach to management, all patients with a PCV above 0.54 should be venesected to a PCV less than 0.45. This target PCV should also apply to patients with lesser degrees of raised PCV who have additional other risk factors for vascular occlusion.
Collapse
Affiliation(s)
- T C Pearson
- Department of Haematological Medicine, Guy's, King's and St Thomas' School of Medicine, St Thomas' Hospital, London SE1 7EH, UK
| | | |
Collapse
|
31
|
Wojchowski DM, Gregory RC, Miller CP, Pandit AK, Pircher TJ. Signal transduction in the erythropoietin receptor system. Exp Cell Res 1999; 253:143-56. [PMID: 10579919 DOI: 10.1006/excr.1999.4673] [Citation(s) in RCA: 162] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Events relayed via the single transmembrane receptor for erythropoietin (Epo) are essential for the development of committed erythroid progenitor cells beyond the colony-forming unit-erythroid stage, and this clearly involves Epo's inhibition of programmed cell death (PCD). Less well resolved, however, are issues regarding the precise nature of Epo-dependent antiapoptotic mechanisms, the extent to which Epo might also promote mitogenesis and/or terminal erythroid differentiation, and the essential vs modulatory nature of certain Epo receptor cytoplasmic subdomains, signal transducing factors, and downstream pathways. Accordingly, this review focuses on the following aspects of Epo signal transduction: (1) Epo receptor/Jak2 activation mechanisms; (2) the critical vs dispensable nature of (P)Y sites and SH2 domain-encoding effectors in survival, growth, and differentiation responses; (3) primary mechanisms by which Epo inhibits PCD; (4) the integration of signals relayed by coexpressed and possibly directly interacting cytokine receptors; and (5) predictions regarding effector function which are provided by the association of certain primary and familial polycythemias with mutated human Epo receptor forms.
Collapse
Affiliation(s)
- D M Wojchowski
- Program in Cell & Developmental Biology, Pennsylvania State University, University Park, Pennsylvania, 16802, USA.
| | | | | | | | | |
Collapse
|
32
|
Goyal RK, Longmore GD. Abnormalities of cytokine receptor signalling contributing to diseases of red blood cell production. Ann Med 1999; 31:208-16. [PMID: 10442676 DOI: 10.3109/07853899909115980] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The production of erythroid cells is a dynamic and exquisitely regulated process. The mature red cell is only the final phase of a complex but orderly series of genetic events that are initiated at the time a multipotent stem cell becomes committed to expressing the erythroid programme. Aberrations either in the intrinsic generation and/or amplification of functional erythroid cells or in the regulatory influences of microenvironment or cytokines form the basis for a number of blood diseases. In this review we focus upon abnormalities in red blood cell production and discuss how alterations in cytokine regulation of red blood cell production may contribute to these disease processes. We discuss clinical states in which blood red cell numbers are altered, including primary familial and congenital polycythaemia, the myeloproliferative disorder polycythaemia vera, erythroleukaemia, and Diamond-Blackfan anaemia. These disorders are briefly described and evidence supporting a potential role of specific cytokine receptor signalling defects as contributing to these phenotypes is discussed.
Collapse
Affiliation(s)
- R K Goyal
- Department of Pediatrics, University of Pittsburgh, PA, USA
| | | |
Collapse
|
33
|
Abstract
This review will discuss evidence for the role of the erythropoietin (Epo) receptor in the development of erythrocytosis and other hematological disorders. The possible causative role of mutations of other genes in the pathogenesis of idiopathic erythrocytosis will be considered. Polycythemia vera (PV) is a myeloproliferative disorder that is caused by an undefined stem cell abnormality, characterized by a significant erythrocytosis, leukocytosis, and thrombocytosis. However, erythrocytosis may arise from apparent (or relative) polycythemia in which the hematocrit is raised due to a low plasma volume. In such cases the red cell mass is normal. A group of disorders with increased red cell mass caused by stimulation of erythrocyte production is known as secondary polycythemia. Investigation of such patients may reveal a congenital abnormality such as high affinity hemoglobin or an acquired abnormality caused, for example, by smoking, renal vascular impairment, or an Epo-producing tumor. Even after thorough examination there remains a cohort of patients for whom no definite cause for the erythrocytosis can be established. A careful clinical history may reveal whether this idiopathic erythrocytosis is likely to be congenital and/or familial, in which case the term "primary familial and congenital polycythemia" is sometimes applied. Access to a range of laboratory investigations may define the molecular pathophysiology. We will now discuss how this process can be investigated.
Collapse
Affiliation(s)
- M F McMullin
- Department of Haematology, The Queen's University of Belfast, The Royal Victoria Hospital, Northern Ireland.
| | | |
Collapse
|
34
|
Pearson TC. Diagnosis and classification of erythrocytoses and thrombocytoses. BAILLIERE'S CLINICAL HAEMATOLOGY 1998; 11:695-720. [PMID: 10640213 DOI: 10.1016/s0950-3536(98)80035-8] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
An erythrocytosis describes an increased peripheral blood packed cell volume (PCV) and is deemed to be absolute or apparent depending on whether or not the measured red cell mass (RCM) is above the reference range. This reference range must be related to the individual's height and weight to avoid erroneous interpretations using ml/kg total body weight expressions in obesity. Absolute erythrocytoses are divided into primary, where the erythropoietic compartment is intrinsically abnormal, secondary, where the erythropoietic compartment is normal but is responding to external pathological events leading to an increased erythropoietin drive, and idiopathic, where neither a primary nor a secondary erythrocytosis can be established. Both primary and secondary erythrocytoses have congenital and acquired forms. The only form of primary acquired erythrocytosis that has been defined is the clonal myeloproliferative disorder, polycythaemia vera (PV). Modified diagnostic markers for PV are proposed. Thrombocytoses can be classified into primary, where megakaryopoiesis is intrinsically abnormal, secondary, where megakaryopoiesis is normal but increased platelet production is a reaction to some other unrelated pathology, and finally idiopathic. This latter new group would be used for patients not satisfying the criteria for primary or secondary thrombocytoses, if these were more precise and rigidly used than currently is the case. While theoretically congenital and acquired forms of primary and secondary thrombocytoses might exist, only one cause of secondary congenital thrombocytosis has been established, and primary congenital thrombocytosis has not yet been precisely defined. Primary (essential) thrombocythaemia (PT) is one of the forms of primary acquired thrombocytoses. The diagnostic criteria of PT traditionally involve the exclusion of secondary thrombocytoses and other myeloproliferative disorders but marrow histology could hold a key positive diagnostic role if objective histological features of PT were agreed.
Collapse
Affiliation(s)
- T C Pearson
- Department of Haematological Medicine, Guy's Hospital Medical School, London, UK
| |
Collapse
|
35
|
Kralovics R, Sokol L, Prchal JT. Absence of polycythemia in a child with a unique erythropoietin receptor mutation in a family with autosomal dominant primary polycythemia. J Clin Invest 1998; 102:124-9. [PMID: 9649565 PMCID: PMC509073 DOI: 10.1172/jci2886] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Primary familial and congenital polycythemia (PFCP or familial erythrocytosis) is a rare proliferative disorder of erythroid progenitor cells, characterized by elevated erythrocyte mass and hemoglobin concentration, hypersensitivity of erythroid progenitors to erythropoietin (EPO), and autosomal dominant inheritance or sporadic occurrence. A number of EPO receptor (EPOR) mutations were found in subjects with PFCP; most of these mutations resulted in the truncation of the COOH-terminal of the EPOR protein. We studied a family with autosomal dominant inheritance of PFCP in which four subjects were affected in three generations. We screened the affected individuals for EPOR gene mutations using SSCP analysis and found a C5964G mutation in exon VIII that changes tyrosine codon 426 to a translation termination codon resulting in an EPOR protein truncated by 83 amino acids. The mutant C5964G-EPOR exhibited hypersensitive EPO-dependent proliferation compared to the wild-type EPOR when tested in a murine interleukin-3-dependent myeloid cell line (FDC-P1). We also examined the segregation of the mutation with PFCP in the family and found that a child in the third generation inherited the mutation without having laboratory evidence of polycythemia. Further in vitro analysis of the erythroid progenitor cells of this affected child revealed that the progenitor cells were hypersensitive to EPO (a hallmark of PFCP) suggesting the presence of the disease at the level of progenitor cells. Failure of this child to develop polycythemia suggests the existence of as yet unidentified environmental or genetic factors that may suppress disease development.
Collapse
Affiliation(s)
- R Kralovics
- University of Alabama at Birmingham, Division of Hematology/Oncology, Birmingham, Alabama 35294-0006, USA.
| | | | | |
Collapse
|