1
|
Skhoun H, El Fessikh M, Khattab M, Mchich B, Agadr A, Abilkassem R, Dakka N, Flatters D, Camproux AC, Ouzzif Z, El Baghdadi J. A Novel NRAS Variant Near the Splice Junction in Moroccan Childhood Acute Lymphoblastic Leukemia: A Molecular Dynamics Study. Biochem Genet 2024:10.1007/s10528-024-10968-2. [PMID: 39514082 DOI: 10.1007/s10528-024-10968-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
The RAS genes are importantly implicated in oncogenesis and are frequently mutated in childhood acute lymphoblastic leukemia. This study is the first to our knowledge, to determine the mutational status of NRAS and KRAS genes in Moroccan pediatric acute lymphoblastic leukemia (ALL). Polymerase chain reaction and Sanger sequencing were performed for 45 ALL samples to explore the coding exons. The functional effect of the mutation was evaluated using in silico prediction tools and molecular modeling. We identified a novel variant c.290 G > C p.Arg97Thr within NRAS gene in a patient with T-ALL, which is a rare missense point mutation affecting the last base of exon 3. Analyses revealed that p.Arg97Thr impairs the adjacent splice site efficiency. Moreover, it leads to structural modifications at local and global levels of the protein through the loss of hydrogen bonds. Additionally, the molecular dynamics (MD) simulation showed that it slightly increases the stability of NRAS protein by locally decreasing the flexibility of the mutated region. No variant was detected within KRAS gene. R97 at NRAS gene is an overlapping splice site residue. Our findings suggest that the NRAS p.Arg97Thr variant may disrupt the splicing machinery and functions of the protein, thus playing a vital role in leukemogenesis. In addition, the highly druggable pocket may possibly be studied for its therapeutic implications.
Collapse
Affiliation(s)
- Hanaa Skhoun
- Genetics Unit, Military Hospital Mohammed V, Rabat, Morocco
- Laboratory of Human Pathologies Biology and Genomic Center of Human Pathologies, Department of Biology, Faculty of Sciences, Mohammed V University, Rabat, Morocco
| | - Meriem El Fessikh
- Genetics Unit, Military Hospital Mohammed V, Rabat, Morocco
- Laboratory of Human Pathologies Biology and Genomic Center of Human Pathologies, Department of Biology, Faculty of Sciences, Mohammed V University, Rabat, Morocco
| | - Mohammed Khattab
- Pediatric Hematology and Oncology Center, Children's Hospital, Rabat, Morocco
- Centre of Childhood Care and Prevention, Cheikh Zaid International University Hospital, Rabat, Morocco
| | - Basma Mchich
- Unité de Biologie Fonctionnelle Et Adaptative, Université Paris Cité, CNRS, INSERM, Paris, France
| | - Aomar Agadr
- Department of Pediatrics, Military Hospital Mohammed V, Faculty of Medicine and Pharmacy, University Mohammed V, Rabat, Morocco
| | - Rachid Abilkassem
- Department of Pediatrics, Military Hospital Mohammed V, Faculty of Medicine and Pharmacy, University Mohammed V, Rabat, Morocco
| | - Nadia Dakka
- Laboratory of Human Pathologies Biology and Genomic Center of Human Pathologies, Department of Biology, Faculty of Sciences, Mohammed V University, Rabat, Morocco
| | - Delphine Flatters
- Unité de Biologie Fonctionnelle Et Adaptative, Université Paris Cité, CNRS, INSERM, Paris, France
| | - Anne-Claude Camproux
- Unité de Biologie Fonctionnelle Et Adaptative, Université Paris Cité, CNRS, INSERM, Paris, France
| | - Zohra Ouzzif
- Laboratories Pole, Military Hospital Mohammed V, Rabat, Morocco
| | - Jamila El Baghdadi
- Genetics Unit, Military Hospital Mohammed V, Rabat, Morocco.
- Laboratories Pole, Military Hospital Mohammed V, Rabat, Morocco.
| |
Collapse
|
2
|
Acute Myeloid Leukemia in a Patient With X-linked Severe Combined Immunodeficiency. J Pediatr Hematol Oncol 2017; 39:e470-e472. [PMID: 28678090 DOI: 10.1097/mph.0000000000000892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Severe combined immunodeficiency (SCID) is a defect in the differentiation and function of T cells. An increased malignancy risk, mainly lymphatic malignancy, has been described in patients with SCID. We report a patient with X-linked SCID who developed acute myeloid leukemia, derived from the recipient with somatic NRAS mutation 4 months after cord blood transplantation (CBT). Loss of heterozygosity phenomenon of the recipient at 6q14 locus was observed at 2 months post-CBT and progressed to 6q deletion (6q-) chromosome abnormality. Somatic NRAS mutation was detected at 3 months post-CBT. Thus, 6q- and NRAS mutation were strongly associated with the leukemic transformation in our patient.
Collapse
|
3
|
Al-Kzayer LFY, Sakashita K, Al-Jadiry MF, Al-Hadad SA, Ghali HH, Uyen LTN, Liu T, Matsuda K, Abdulkadhim JMH, Al-Shujairi TA, Matti ZIIK, Sughayer MA, Rihani R, Madanat FF, Inoshita T, Kamata M, Koike K. Analysis of KRAS and NRAS Gene Mutations in Arab Asian Children With Acute Leukemia: High Frequency of RAS Mutations in Acute Lymphoblastic Leukemia. Pediatr Blood Cancer 2015. [PMID: 26222068 DOI: 10.1002/pbc.25683] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
BACKGROUND KRAS and NRAS gene mutations are frequently observed in childhood leukemia. The objective of this study was to determine the frequency of RAS mutations and the association between RAS mutations and other genetic aberrations in Arab Asian children with acute lymphoblastic leukemia (ALL) or acute myeloid leukemia (AML). METHODS Diagnostic samples of 485 patients (<18 years) with acute leukemia from Iraq and Jordan were obtained, using Flinders Technology Associates filter papers. Polymerase chain reaction and direct sequencing were performed in Japan. RESULTS RAS mutations were detected in 86/318 (27%) of ALL cases and 35/167 (21%) of AML cases. The frequency of NRAS mutation was similar to that of KRAS mutation in ALL. Two RAS mutations were detected in nine patients. Among 264 Iraqi patients with ALL, RAS mutation was significantly associated with lower initial white blood cell count. Of 57 patients with chimeric transcripts, only two patients with either TEL-AML1 or E2A-PBX1 had KRAS mutation. The frequency of NRAS mutation was four times higher than that of KRAS mutation in AML. FAB-M4 and M5 subsets were associated with RAS mutation. Among 134 Iraqi patients with AML, 18 patients had RAS mutations and other genetic aberrations. In particular, 9 of 25 (36%) with MLL-rearrangement had RAS mutations. CONCLUSION The prevalence of oncogenic RAS mutations was higher among Arab Asian children than in other countries. RAS mutations in AML were found to coexist with other genetic aberrations, particularly MLL rearrangement.
Collapse
Affiliation(s)
| | - Kazuo Sakashita
- Department of Pediatrics, Shinshu University School of Medicine, Matsumoto, Nagano, Japan
| | - Mazin Faisal Al-Jadiry
- Department of Pediatrics, College of Medicine, Baghdad University, Baghdad Medical City, Baghdad, Iraq.,Department of Pediatric Oncology, Children's Welfare Teaching Hospital, Baghdad Medical City, Baghdad, Iraq
| | - Salma Abbas Al-Hadad
- Department of Pediatrics, College of Medicine, Baghdad University, Baghdad Medical City, Baghdad, Iraq.,Department of Pediatric Oncology, Children's Welfare Teaching Hospital, Baghdad Medical City, Baghdad, Iraq
| | - Hasanein Habeeb Ghali
- Department of Pediatrics, College of Medicine, Baghdad University, Baghdad Medical City, Baghdad, Iraq.,Department of Pediatric Oncology, Children's Welfare Teaching Hospital, Baghdad Medical City, Baghdad, Iraq
| | - Le T N Uyen
- Department of Pediatrics, Shinshu University School of Medicine, Matsumoto, Nagano, Japan
| | - Tingting Liu
- Department of Pediatrics, Shinshu University School of Medicine, Matsumoto, Nagano, Japan
| | - Kazuyuki Matsuda
- Department of Laboratory Medicine, Shinshu University Hospital, Matsumoto, Nagano, Japan
| | | | | | - Zead Ismael I K Matti
- Department of Pediatric Oncology, Central Teaching Hospital for Children, Baghdad, Iraq
| | - Maher A Sughayer
- Department of Pathology, King Hussein Cancer Center, Amman, Jordan
| | - Rawad Rihani
- Department of Pediatrics, King Hussein Cancer Center, Amman, Jordan
| | - Faris F Madanat
- Department of Pediatrics, King Hussein Cancer Center, Amman, Jordan
| | | | - Minoru Kamata
- Japan Chernobyl Foundation, Matsumoto, Nagano, Japan
| | - Kenichi Koike
- Department of Pediatrics, Shinshu University School of Medicine, Matsumoto, Nagano, Japan
| |
Collapse
|
4
|
Frequency of KRAS mutations in adult Korean patients with acute myeloid leukemia. Int J Hematol 2013; 98:549-57. [PMID: 24105326 DOI: 10.1007/s12185-013-1446-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 09/11/2013] [Accepted: 09/11/2013] [Indexed: 01/26/2023]
Abstract
Mutation of KRAS genes occurs with a frequency of 0.5-32 % in AML. In the present study, mutations of KRAS codon 12, 13, and 61 were detected by pyrosequencing and direct sequencing in AML. Seven KRAS mutations (7/123, 5.7 %) were detected. The most common mutation was a G-to-A transition in the second base of KRAS codon 13. No mutations were detected in KRAS codon 61. Combinations of KRAS and FLT3 mutation were not found in the same patient. There was no statistically significant difference between patients with KRAS mutations and patients with wild-type KRAS in terms of sex, age, CBC at diagnosis, CD34 positivity, MPO positivity, FLT3 mutation, karyotype, progression-free survival, and overall survival, although this may be attributable to the small sample size. To our knowledge, this is the first report of the detection of KRAS mutation in Asian AML patients using pyrosequencing and direct sequencing. These two methods showed identical efficiencies in their ability to detect KRAS mutations in 84 patients.
Collapse
|
5
|
Lassen LB, Ballarín-González B, Schmitz A, Füchtbauer A, Pedersen FS, Füchtbauer EM. Nras overexpression results in granulocytosis, T-cell expansion and early lethality in mice. PLoS One 2012; 7:e42216. [PMID: 22876308 PMCID: PMC3410918 DOI: 10.1371/journal.pone.0042216] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Accepted: 07/02/2012] [Indexed: 12/12/2022] Open
Abstract
NRAS is a proto-oncogene involved in numerous myeloid malignancies. Here, we report on a mouse line bearing a single retroviral long terminal repeat inserted into Nras. This genetic modification resulted in an increased level of wild type Nras mRNA giving the possibility of studying the function and activation of wild type NRAS. Flow cytometry was used to show a variable but significant increase of immature myeloid cells in spleen and thymus, and of T-cells in the spleen. At an age of one week, homozygous mice began to retard compared to their wild type and heterozygous littermates. Two weeks after birth, animals started to progressively lose weight and die before weaning. Heterozygous mice showed a moderate increase of T-cells and granulocytes but survived to adulthood and were fertile. In homozygous and heterozygous mice Gfi1 and Gcsf mRNA levels were upregulated, possibly explaining the increment in immature myeloid cells detected in these mice. The short latency period indicates that Nras overexpression alone is sufficient to cause dose-dependent granulocytosis and T-cell expansion.
Collapse
Affiliation(s)
| | | | - Alexander Schmitz
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
- Department of Haematology, Aalborg Hospital, Aarhus University Hospital, Denmark
| | - Annette Füchtbauer
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Finn Skou Pedersen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | | |
Collapse
|
6
|
Mutational analysis of K-ras codon 12 in blood samples of patients with acute myeloid leukemia. Leuk Res 2010; 34:883-91. [DOI: 10.1016/j.leukres.2010.02.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2009] [Revised: 02/02/2010] [Accepted: 02/22/2010] [Indexed: 11/17/2022]
|
7
|
Ortega MM, Faria RMD, Shitara ES, Assis AM, Albuquerque DM, Oliveira JSR, Noguti MAE, Faria JR, Costa FF, Lima CSP. N-RAS and K-RAS gene mutations in Brazilian patients with multiple myeloma. Leuk Lymphoma 2006; 47:285-9. [PMID: 16321859 DOI: 10.1080/10428190500300969] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Point mutations affecting codons 12, 13 (exon 1) and 61 (exon 2) of the N-RAS gene and codons 12 and 13 (exon 1) of the K-RAS gene are identified in approximately 30.0% and 10.0%, respectively, of multiple myeloma (MM) patients living in the northern hemisphere. To date, there are no reports about the prevalence of RAS gene mutations in MM Brazilian patients, and this comprised the aim of the present study. DNA from bone marrow aspirates of 252 patients with MM (139 males and 113 females; aged 59.33 +/- 11.95 years) were investigated for whole exons 1 and 2 of the N-RAS gene and whole exon 1 of the K-RAS gene by direct sequencing of DNA amplified in vitro by the polymerase chain reaction. Fifty-three out of 252 (21.03%) MM patients presented RAS mutations. Heterozygous mutations at codons 4, 10 (exon 1), 61 and 65 (exon 2) of the N-RAS gene were identified in seven out of 252 (2.78%) patients. K-RAS heterozygous mutations at codons 7, 12, 13 (exon 1) were seen in 46 out of 252 (18.25%) patients. To the best of our knowledge, the mutation at codon 7 of K-RAS gene is reported for the first time in MM. Taken together, these results suggest that Brazilian MM patients are characterized by: (i) a low prevalence of RAS mutation and (ii) RAS mutations located at distinct regions of the critical codons of the N-RAS and K-RAS genes.
Collapse
Affiliation(s)
- Manoela M Ortega
- Department of Internal Medicine, State University of Campinas, Campinas, São Paulo, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Liang DC, Shih LY, Fu JF, Li HY, Wang HI, Hung IJ, Yang CP, Jaing TH, Chen SH, Liu HC. K-Ras mutations and N-Ras mutations in childhood acute leukemias with or without mixed-lineage leukemia gene rearrangements. Cancer 2006; 106:950-6. [PMID: 16404744 DOI: 10.1002/cncr.21687] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND It is believed that Ras mutations drive the proliferation of leukemic cells. The objective of this study was to investigate the association of Ras mutations with childhood acute lymphoblastic leukemia (ALL) and acute myeloid leukemia (AML) with special reference to the presence or absence of mixed-lineage leukemia gene (MLL) rearrangements. METHODS Bone marrow samples from 313 children with B-precursor ALL and 130 children with de novo AML were studied at diagnosis. Southern blot analysis was used to detect MLL rearrangements, and reverse transcriptase-polymerase chain reaction (RT-PCR) analysis was used to detect common MLL fusion transcripts. Complementary DNA panhandle PCR was used to identify the infrequent or unknown MLL partner genes. DNA PCR or RT-PCR followed by direct sequencing was performed to detect mutations at codons 12, 13, and 61 of the N-Ras and K-Ras genes. RESULTS Twenty of 313 patients with B-precursor ALL and 17 of 130 patients with de novo AML had MLL rearrangements. N-Ras mutations were detected in 2 of 20 patients with MLL-positive ALL and in 27 of 293 patients with MLL-negative ALL (P = 1.000). N-Ras mutations were detected in 2 of 17 patients with MLL-positive AML and in 14 of 113 patients with MLL-negative AML (P = 1.000). K-Ras mutations were present in 8 of 20 patients with MLL-positive ALL compared with 32 of 293 patients with MLL-negative ALL (P = 0.001). K-Ras mutations were detected in 3 of 17 patients with MLL-positive AML compared with 5 of 113 patients with MLL-negative AML (P = 0.069). CONCLUSIONS Ras mutations were detected in 20.8% of patients with childhood B-precursor ALL and in 17.7% of patients with childhood AML. MLL-positive B-precursor ALL was associated closely with Ras mutations (50%), especially with K-Ras mutations (40%), whereas MLL-positive AML was not associated with Ras mutations.
Collapse
Affiliation(s)
- Der-Cherng Liang
- Division of Pediatric Hematology-Oncology, Mackay Memorial Hospital, Taipei, Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Marchese R, Muleti A, Pasqualetti P, Bucci B, Stigliano A, Brunetti E, De Angelis M, Mazzoni G, Tocchi A, Brozzetti S. Low correspondence between K-ras mutations in pancreatic cancer tissue and detection of K-ras mutations in circulating DNA. Pancreas 2006; 32:171-7. [PMID: 16552337 DOI: 10.1097/01.mpa.0000202938.63084.e3] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
OBJECTIVE K-ras is the most frequently mutated gene in pancreatic cancer; reported rates range from 70% to 90%. The aim of this study was to evaluate the correspondence between K-ras mutations in pancreatic cancer tissue and in circulating DNA and the value of K-ras mutations as serological marker. METHODS The research was conducted in 30 patients with pancreatic cancer in whom both plasma and neoplastic tissues were available. Such research was extended to circulating DNA isolated from 40 patients with chronic pancreatitis. Mutations in codon 12 were examined by mutant allele-specific amplification method and by direct sequencing. Serum values of routinely used tumor markers such as carbohydrate antigen (Ca) 19.9, carcinoembryonic antigen, Ca 50, and Ca 242 have been tested in all the patients enrolled in this study. RESULTS K-ras mutations were detected in 70% of neoplastic tissue samples, but no mutated DNA resulted in circulating DNA samples. The 60% of patients with tissue K-ras mutation showed elevation of some tumor markers among Ca 19.9, carcinoembryonic antigen, Ca 50, and Ca 242. As a whole, these last showed low sensitivity (20%-56.67%) and specificity (56.67%-77.5%) when compared with chronic pancreatitis. CONCLUSION Over the years, there has been no change in the direction of an earlier diagnosis by serological markers, and also, these data indicate that K-ras mutation in serum is an unsatisfactory method for the detection in patients with pancreatic cancer as well as in patients with high risk of progression toward neoplastic pancreatic disease.
Collapse
Affiliation(s)
- Rodolfo Marchese
- FBF S. Pietro Hospital AFaR Research Centre, University of Rome La Sapienza, Rome, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Wilson RK, Ley TJ, Cole FS, Milbrandt JD, Clifton S, Fulton L, Fewell G, Minx P, Sun H, McLellan M, Pohl C, Mardis ER. Mutational profiling in the human genome. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2004; 68:23-9. [PMID: 15338599 DOI: 10.1101/sqb.2003.68.23] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- R K Wilson
- Washington University School of Medicine, St. Louis, Missouri 63108, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Shen SW, Dolnikov A, Passioura T, Millington M, Wotherspoon S, Rice A, MacKenzie KL, Symonds G. Mutant N-ras preferentially drives human CD34+ hematopoietic progenitor cells into myeloid differentiation and proliferation both in vitro and in the NOD/SCID mouse. Exp Hematol 2004; 32:852-60. [PMID: 15345287 DOI: 10.1016/j.exphem.2004.06.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2004] [Revised: 05/25/2004] [Accepted: 06/03/2004] [Indexed: 12/01/2022]
Abstract
OBJECTIVES Ras oncogene mutations are the most frequently observed genetic abnormality (20-40% of patients) in acute myeloid leukemia (AML), and in the preleukemic conditions myelodysplastic syndrome (MDS) and myeloproliferative disorder (MPD). We have previously shown that mutant N-ras (N-rasm) can induce myeloproliferative disorders and apoptosis in a murine reconstitution system. In the present study we investigated the effect of N-rasm in human primary hematopoietic progenitor cells (HPC). METHODS Cord blood CD34+ hematopoietic progenitor cells (HPC) were transduced with retroviral vectors containing green fluorescence protein (GFP) alone, or in combination with N-rasm. Cells were then cultured in vitro with a cytokine supplement or cocultured with murine stroma MS-5 cells. The in vivo behavior of transduced cells was examined in the NOD/SCID mouse model. RESULTS N-rasm-transduced cells exhibited greater proliferative capacity; a higher frequency of granulocyte-macrophage colony-forming unit (CFU-GM); and an increase in myelomonocytic lineage cells with a concomitant decrease in lymphoid and erythroid cells. Analysis of transduced HPC in NOD/SCID mice revealed higher bone marrow engraftment by N-rasm HPC and increased numbers of myeloid lineage cells. CONCLUSIONS The results demonstrate that N-rasm in HPC induces myeloproliferation both in vitro and in the NOD/SCID mouse model as a primary event that does not appear to be dependent on cooperating transforming events.
Collapse
Affiliation(s)
- Sylvie W Shen
- Children's Cancer Institute Australia for Medical Research, Randwick, NSW, Australia
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Shih LY, Huang CF, Wang PN, Wu JH, Lin TL, Dunn P, Kuo MC. Acquisition of FLT3 or N-ras mutations is frequently associated with progression of myelodysplastic syndrome to acute myeloid leukemia. Leukemia 2004; 18:466-75. [PMID: 14737077 DOI: 10.1038/sj.leu.2403274] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The role of internal tandem duplication of fms-like tyrosine kinase 3 (FLT3/ITD), mutations at tyrosine kinase domain (FLT3/TKD) and N-ras mutations in the transformation of myelodysplastic syndrome (MDS) to AML was investigated in 82 MDS patients who later progressed to AML; 70 of them had paired marrow samples at diagnosis of MDS and AML available for comparative analysis. Five of the 82 patients had FLT3/ITD at presentation. Of the 70 paired samples, seven patients acquired FLT3/ITD during AML evolution. The incidence of FLT3/ITD at diagnosis of MDS was significantly lower than that at AML transformation (3/70 vs 10/70, P<0.001). FLT3/ITD(+) patients progressed to AML more rapidly than FLT3/ITD(-) patients (2.5+/-0.5 vs 11.9+/-1.5 months, P=0.114). FLT3/ITD(+) patients had a significantly shorter survival than FLT3/ITD(-) patients (5.6+/-1.3 vs 18.0+/-1.7 months, P=0.0008). After AML transformation, FLT3/ITD was also associated with an adverse prognosis. One patient had FLT3/TKD mutation (D835Y) at both MDS and AML stages. Additional three acquired FLT3/TKD (one each with D835 H, D835F and I836S) at AML transformation. Five of the 70 matched samples had N-ras mutation at diagnosis of MDS compared to 15 at AML transformation (P<0.001), one lost and 11 gained N-ras mutations at AML progression. Coexistence of FLT3/TKD and N-ras mutations was found in two AML samples. N-ras mutations had no prognostic impact either at the MDS or AML stage. Our results show that one-third of MDS patients acquire activating mutations of FLT3 or N-ras gene during AML evolution and FLT3/ITD predicts a poor outcome in MDS.
Collapse
Affiliation(s)
- L-Y Shih
- Department of Internal Medicine, Division of Hematology-Oncology, Chang Gung Memorial Hospital, Taipei, Taiwan.
| | | | | | | | | | | | | |
Collapse
|
13
|
Selleri C, Maciejewski JP, Montuori N, Ricci P, Visconte V, Serio B, Luciano L, Rotoli B. Involvement of nitric oxide in farnesyltransferase inhibitor-mediated apoptosis in chronic myeloid leukemia cells. Blood 2003; 102:1490-8. [PMID: 12714496 DOI: 10.1182/blood-2003-01-0178] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The mechanism of action of farnesyltransferase inhibitors (FTIs) has not been fully clarified. We investigated the cytotoxic effects of various FTIs in chronic myeloid leukemia (CML), using LAMA cells and marrow cells from 40 CML patients in chronic phase. FTI-mediated cytotoxic effect was observed in LAMA cells and in 65% of primary CML cells, whereas marrow cells from controls were only weakly affected. Cytotoxic effects were partially related to enhanced apoptosis; however, Fas-receptor (FasR) and Fas-ligand (FasL) expression were not modified by FTIs. Susceptibility to FTI-mediated inhibition did not correlate with FasR/FasL expression in CD34+ CML cells. Moreover, intra-cellular activation of caspase-1 and -8 were not altered by FTIs, and their blockade did not reverse FTI toxicity. However, we observed FTI-induced activation of caspase-3, and its inhibition partially reverted FTI-induced apoptosis. FTIs did not modulate bcl2, bclxL, and bclxS expression, whereas they increased inducible nitric oxide (iNOS) mRNA and protein levels, resulting in higher NO production. Furthermore, C3 exoenzyme, a Rho inhibitor, significantly increased iNOS expression in CML cells, suggesting that FTIs may up-regulate NO formation at least partially through FTI-mediated inhibition of Rho. We conclude that FTIs induce selective apoptosis in CML cells via activation of iNOS and caspase-3.
Collapse
MESH Headings
- Alkyl and Aryl Transferases/antagonists & inhibitors
- Antigens, CD34/immunology
- Apoptosis/drug effects
- Bone Marrow Cells/metabolism
- Caspase 3
- Caspase Inhibitors
- Caspases/metabolism
- Enzyme Activation/drug effects
- Enzyme Inhibitors/pharmacology
- Farnesyltranstransferase
- Humans
- K562 Cells
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/enzymology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Neoplastic Stem Cells/metabolism
- Nitric Oxide/biosynthesis
- Nitric Oxide/metabolism
- Nitric Oxide Synthase/biosynthesis
- Nitric Oxide Synthase/metabolism
- Nitric Oxide Synthase Type II
- Protein Serine-Threonine Kinases/antagonists & inhibitors
- Proto-Oncogene Proteins c-bcl-2/metabolism
- RNA, Messenger/biosynthesis
- fas Receptor/metabolism
- rhoA GTP-Binding Protein/antagonists & inhibitors
- rhoB GTP-Binding Protein/antagonists & inhibitors
Collapse
Affiliation(s)
- Carmine Selleri
- Division of Hematology, Federico II University, Naples, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Morgan MA, Ganser A, Reuter CWM. Therapeutic efficacy of prenylation inhibitors in the treatment of myeloid leukemia. Leukemia 2003; 17:1482-98. [PMID: 12886235 DOI: 10.1038/sj.leu.2403024] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Farnesyltransferase inhibitors (FTIs) represent a new class of anticancer agents that specifically target post-translational farnesylation of various proteins that mediate several cellular processes such as signal transduction, growth, differentiation, angiogenesis and apoptosis. These compounds were originally designed to block oncogenic RAS-induced tumor growth by impeding RAS localization to the membrane, but it is now evident that FTIs also affect processing of several other proteins. The need for novel therapies in myeloid leukemia is underscored by the high rate of treatment failure due to high incidences of relapse- and treatment-related toxicities. As RAS deregulation is important in the pathogenesis of myeloid leukemias, targeting of RAS signaling may provide a new therapeutic strategy. Several FTIs (eg BMS-214662, L-778,123, R-115777 and SCH66336) have entered phase I and phase II clinical trials in myeloid leukemias. This review discusses recent clinical results, potential combination therapies, mechanisms of resistance and the clinical challenges of toxicities associated with prenylation inhibitors.
Collapse
Affiliation(s)
- M A Morgan
- Department of Hematology and Oncology, Hannover Medical School, Hannover, Germany
| | | | | |
Collapse
|
15
|
Abstract
Acute myeloid leukemia (AML) remains the most common form of leukemia and the most common cause of leukemia death. Although conventional chemotherapy can cure between 25 and 45% of AML patients, most patients will either die of relapse or die from the complications associated with treatment. Thus, more specific and less toxic treatments for AML patients are needed. Recently, a small molecular inhibitor (STI571 or Gleevec) that targets the BCR-ABL gene was found to have a dramatic clinical effect in patients with chronic myelogenous leukemia (CML). These results have encouraged investigators to search for additional small molecular inhibitors and other targeted therapies that may be applicable to other forms of leukemia. In this review, we examine some of the signaling pathways that are aberrantly regulated in AML, focusing on the tyrosine kinase/RAS/MAP kinase and JAK/STAT pathways. After reviewing these two pathways, we explore some of the targeted therapies directed at these pathways that are under development for AML, many of which are already in clinical trials.
Collapse
Affiliation(s)
- Derek L Stirewalt
- Clinical Research Division, Fred Hutchinson Cancer Research Center, The Division of Oncology, University of Washington, Seattle 98109, USA.
| | | | | |
Collapse
|
16
|
Smith ML, Snaddon J, Neat M, Cambal-Parrales M, Arch R, Lister TA, Fitzgibbon J. Mutation of BRAF is uncommon in AML FAB type M1 and M2. Leukemia 2003; 17:274-5. [PMID: 12529696 DOI: 10.1038/sj.leu.2402787] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2002] [Accepted: 09/12/2002] [Indexed: 11/09/2022]
|
17
|
Forbes LV, Gale RE, Pizzey A, Pouwels K, Nathwani A, Linch DC. An activating mutation in the transmembrane domain of the granulocyte colony-stimulating factor receptor in patients with acute myeloid leukemia. Oncogene 2002; 21:5981-9. [PMID: 12203110 DOI: 10.1038/sj.onc.1205767] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2002] [Revised: 06/14/2002] [Accepted: 06/14/2002] [Indexed: 11/09/2022]
Abstract
To date, constitutively activating point mutations reported in hematopoietic growth factor receptors in patients with acute myeloid leukemia (AML) have been restricted to receptors with intrinsic tyrosine kinase activity such as c-kit and FLT3. We describe here a Thr617Asn mutation in the transmembrane domain of the non-tyrosine kinase receptor for granulocyte colony-stimulating factor (G-CSF) in the blast cells of two out of 555 AML patients examined. The mutant receptor conferred growth factor independence on factor-dependent Ba/F3 cells. In the absence of ligand, immunoblotting showed weak phosphorylation of JAK2, STAT3, ERKs 1 and 2 and the receptor itself, and there was approximately 70% of maximal growth in a proliferation assay. All signals were significantly enhanced in the presence of G-CSF. Retroviral transduction of mutant receptor into primary hematopoietic CD34+ cells induced G-CSF independent myeloid differentiation as assessed by the development of neutrophils and surface expression of CD11b and CD14. These results confirm the importance of the transmembrane domain for receptor function and suggest that introduction of an asparagine residue can cause sufficient stabilization of helix-helix interactions in the absence of ligand to activate downstream signaling pathways involved in directing proliferation and differentiation.
Collapse
Affiliation(s)
- Louisa V Forbes
- Department of Haematology, University College London, London WC1E 6HX, UK
| | | | | | | | | | | |
Collapse
|
18
|
Appelbaum FR, Rowe JM, Radich J, Dick JE. Acute myeloid leukemia. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2002:62-86. [PMID: 11722979 DOI: 10.1182/asheducation-2001.1.62] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Through the hard work of a large number of investigators, the biology of acute myeloid leukemia (AML) is becoming increasingly well understood, and as a consequence, new therapeutic targets have been identified and new model systems have been developed for testing novel therapies. How these new therapies can be most effectively studied in the clinic and whether they will ultimately improve cure rates are questions of enormous importance. In this article, Dr. Jacob Rowe presents a summary of the current state-of-the-art therapy for adult AML. His contribution emphasizes the fact that AML is not a single disease, but a number of related diseases each distinguished by unique cytogenetic markers which in turn help determine the most appropriate treatment. Dr. Jerald Radich continues on this theme, emphasizing how these cytogenetic abnormalities, as well as other mutations, give rise to abnormal signal transduction and how these abnormal pathways may represent ideal targets for the development of new therapeutics. A third contribution by Dr. Frederick Appelbaum describes how AML might be made the target of immunologic attack. Specifically, strategies using antibody-based or cell-based immunotherapies are described including the use of unmodified antibodies, drug conjugates, radioimmunoconjugates, non-ablative allogeneic transplantation, T cell adoptive immunotherapy and AML vaccines. Finally, Dr. John Dick provides a review of the development of the NOD/SCID mouse model of human AML emphasizing both what it has taught us about the biology of the disease as well as how it can be used to test new therapies. Taken together, these reviews are meant to help us understand more about where we are in the treatment of AML, where we can go and how we might get there.
Collapse
Affiliation(s)
- F R Appelbaum
- Fred Hutchinson Cancer Research Center, Seattle, WA 98109-1024, USA
| | | | | | | |
Collapse
|
19
|
Alvarez S, MacGrogan D, Calasanz MJ, Nimer SD, Jhanwar SC. Frequent gain of chromosome 19 in megakaryoblastic leukemias detected by comparative genomic hybridization. Genes Chromosomes Cancer 2001; 32:285-93. [PMID: 11579469 DOI: 10.1002/gcc.1192] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Acute megakaryocytic leukemia is a rare subtype of AML that is often difficult to diagnose; it is most commonly associated with Down syndrome in children. To identify chromosomal imbalances and rearrangements associated with acute megakaryocytic leukemia, we used G-banding, comparative genomic hybridization (CGH), and whole chromosome painting (WCP) on a variety of primary patients' samples and leukemia cell lines. The most common abnormality was gain of chromosome 19 or arm 19q, which was detected by CGH in four of 12 (33.3%) primary samples and nine of 11 (81.8%) cell lines. In none of the primary samples was this abnormality detected by G-banding analysis. WCP was used to define further the nature of the chromosome 19 gain in the cell lines, which was found to be due to the presence of additional 19q material on marker chromosomes or to cryptic translocations involving 19q. The most common chromosomal loss--detected only in the cell lines--was deletion of chromosomal band 13q14, which was seen in six of 11 (54.5%) cell lines. Other recurrent changes included gains of 1p, 6p, 8q, 11q, 15q, 17q, and 21q and losses of 2, 4q, 5q, 7q, 9p, and 11p. Combining conventional and molecular cytogenetic analyses defined recurrent clonal chromosomal abnormalities, which will aid in the identification of critical genes that are abnormal in acute megakaryocytic leukemia cells.
Collapse
Affiliation(s)
- S Alvarez
- Laboratory of Molecular Aspects of Hematopoiesis, Sloan-Kettering Institute for Cancer Research, New York, New York 10021, USA
| | | | | | | | | |
Collapse
|
20
|
O'Gorman DM, McKenna SL, McGahon AJ, Cotter TG. Inhibition of PI3-kinase sensitises HL60 human leukaemia cells to both chemotherapeutic drug- and Fas-induced apoptosis by a JNK independent pathway. Leuk Res 2001; 25:801-11. [PMID: 11489474 DOI: 10.1016/s0145-2126(01)00024-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Increasing resistance to chemotherapeutic regimes remains a serious problem in the treatment of acute myeloid leukaemia. We have shown that phosphatidylinositol (PI) 3-kinase inhibition significantly sensitises the AML derived cell line, HL60 to chemotherapeutic drug- and Fas-induced apoptosis. PI3-kinase inhibition significantly potentiates cytotoxic drug-induced c-jun N-terminal kinase (JNK) activation, reported to be a requirement for apoptosis. However, JNK inhibition does not enhance cell viability following treatment with drug and inhibitor. Furthermore, PI3-kinase inhibition significantly increases sensitivity to apoptosis mediated by an exogenous receptor agonist, again by a JNK independent mechanism. These results suggest that PI3-kinase inhibitors could be of significant therapeutic importance, lowering the threshold for apoptosis induced by both chemotherapy and cell-mediated immune response.
Collapse
Affiliation(s)
- D M O'Gorman
- Tumour Biology Laboratory, Department of Biochemistry, University College Cork, Prospect Row, Cork, Ireland
| | | | | | | |
Collapse
|
21
|
Invernizzi R, Pecci A, Bellotti L, Ascari E. Expression of p53, bcl-2 and ras oncoproteins and apoptosis levels in acute leukaemias and myelodysplastic syndromes. Leuk Lymphoma 2001; 42:481-9. [PMID: 11699413 DOI: 10.3109/10428190109064605] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
We analysed by immunocytochemistry the expression of p53, bcl-2 and ras proteins in bone marrow blasts from 59 patients with acute leukaemia (AL), 36 myeloid (AML) and 23 lymphoid (ALL), and from 22 patients with myelodysplastic syndrome (MDS); our aim was to examine if abnormalities in their expression were associated with peculiar biological and clinical findings, or with an altered apoptosis rate, as measured by TUNEL technique. The oncoproteins were expressed with extreme variability, without significant differences among the various morphological or immunological AL subtypes. The mean percentages of bcl-2+ blasts were significantly higher in AML than in MDS (p = 0.01), and in MDS with bone marrow blastosis than in the forms without excess of blasts (p = 0.007). The lowest percentages of apoptotic cells were observed in ALL (mean 1%, p = 0.006), whereas in MDS the apoptotic index was higher (16.7%) than in AML (8.6%) and than in the normal controls (10.8%). but the difference tended to be statistically significant only for cases of refractory anaemia. Whereas in AML and MDS the apoptotic rate was independent of the oncoprotein expression, in ALL there was a significant linear relationship between TUNEL and ras positivity (p = 0.01). Among AML patients treated with intensive polychemotherapy, no differences were observed in oncoprotein expression and apoptotic rate between responders and resistant cases. In conclusion, our data are in agreement with the hypothesis that decreased apoptosis and enhanced cell survival are associated with AL, whereas a high level of apoptosis may be responsible for the ineffective hematopoiesis in MDS; abnormal expression of oncoproteins, even if not strictly related to apoptosis level, may influence disease behaviour.
Collapse
Affiliation(s)
- R Invernizzi
- Università di Pavia, IRCCS Policlinico S. Matteo, Pavia, Italy
| | | | | | | |
Collapse
|
22
|
Morgan MA, Dolp O, Reuter CW. Cell-cycle-dependent activation of mitogen-activated protein kinase kinase (MEK-1/2) in myeloid leukemia cell lines and induction of growth inhibition and apoptosis by inhibitors of RAS signaling. Blood 2001; 97:1823-34. [PMID: 11238126 DOI: 10.1182/blood.v97.6.1823] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Disruption of the RAS-to-mitogen-activated protein kinase (MAPK/ERK) signaling pathway, either directly through activating RAS gene mutations or indirectly through other genetic aberrations, plays an important role in the molecular pathogenesis of myeloid leukemias. Constitutive activation of ERK-1/2 and MEK-1/2, which elicit oncogenic transformation in fibroblasts, has recently been observed in acute myeloid leukemias (AML). In this study, the activation of the RAS-to-MAPK cascade in 14 AML and 5 chronic myeloid leukemia (CML) cell lines is examined and correlated with the effects of a panel of 9 RAS signaling inhibitors on cell viability, colony formation, cell-cycle progression, and induction of apoptosis. Activation of MEK, ERK, and the transcription factors CREB-1, ATF-1, and c-Myc is demonstrated in the majority of the cell lines (9 of 14 AML and 2 of 5 CML cell lines). Although activation of the ERK cascade did not always correlate with the presence of activating RAS mutations or BCR-Abl, it is linked to the G0/G1 and the G2/M phase of the cell cycle. In contrast to most inhibitors (eg, B581, Cys-4-Abs-Met, FPT-2, FTI-276, and FTS), a significant growth inhibition was only observed for FTI-277 (19 of 19), FPT-3 (10 of 19), and the MEK inhibitors U0126 (19 of 19) and PD098059 (8 of 19). Treatment of NB-4 cells with FTI-277 primarily resulted in a G2/M block, whereas treatment with FPT-3 and U0126 led to induction of apoptosis. FTI-277 revealed strong toxicity toward normal purified CD34+ cells. The results suggest differences in the mechanisms of action and support a potential therapeutic usefulness of these inhibitors in the treatment of myeloid leukemias.
Collapse
Affiliation(s)
- M A Morgan
- Department of Hematology and Oncology, Section Molecular Biology, University of Ulm, Germany
| | | | | |
Collapse
|
23
|
Abstract
Drug resistance, to date, has primarily been attributed to increased drug export or detoxification mechanisms. Despite correlations between drug export and drug resistance, it is increasingly apparent that such mechanisms cannot fully account for chemoresistance in neoplasia. It is now widely accepted that chemotherapeutic drugs kill tumour cells by inducing apoptosis, a genetically regulated cell death programme. Evidence is emerging that the exploitation of survival pathways, which may have contributed to disease development in the first instance, may also be important in the development of the chemoresistance. This review discusses the components of and associations between multiple signalling cascades and their possible contribution to the development of neoplasia and the chemoresistant phenotype.
Collapse
Affiliation(s)
- D M O'Gorman
- Department of Biochemistry, University College Cork, Ireland
| | | |
Collapse
|
24
|
Zambon C, Navaglia F, Basso D, Gallo N, Greco E, Piva MG, Fogar P, Pasquali C, Pedrazzoli S, Plebani M. ME-PCR for the identification of mutated K-ras in serum and bile of pancreatic cancer patients: an unsatisfactory technique for clinical applications. Clin Chim Acta 2000; 302:35-48. [PMID: 11074062 DOI: 10.1016/s0009-8981(00)00351-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Our aim was to assess the clinical reliability of mutated K-ras detection in serum or bile for the diagnosis of pancreatic cancer using ME-PCR. DNA was extracted from 1 ml serum obtained from 29 patients with pancreatic cancer and 12 control subjects. ME-PCR was optimized using a mixture of normal DNA added with different amounts of mutated DNA. The analysis of sera obtained from the 29 patients and of bile obtained from 11 pancreatic cancer patients demonstrated the presence of mutated K-ras in two (6.9%) and four cases (36%). By contrast K-ras was not amplifiable in any of the 12 serum samples obtained from healthy controls. In conclusion the DNA obtained from pancreatic cancer patients' sera is suitable for K-ras amplification and for the identification of codon 12 point mutations. However ME-PCR alone has an unsatisfactory sensitivity for the detection of pancreatic cancer using serum DNA as starting template.
Collapse
Affiliation(s)
- C Zambon
- Department of Laboratory Medicine, University of Padova, Padova, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Jackson MA, Stack HF, Rice JM, Waters MD. A review of the genetic and related effects of 1,3-butadiene in rodents and humans. Mutat Res 2000; 463:181-213. [PMID: 11018742 DOI: 10.1016/s1383-5742(00)00056-9] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In this paper, the metabolism and genetic toxicity of 1,3-butadiene (BD) and its oxidative metabolites in humans and rodents is reviewed with attention to newer data that have been published since the latest evaluation of BD by the International Agency for Research on Cancer (IARC). The oxidative metabolism of BD in mice, rats and humans is compared with emphasis on the major pathways leading to the reactive intermediates 1,2-epoxy-3-butene (EB), 1,2:3, 4-diepoxybutane (DEB), and 3,4-epoxy-1,2-butanediol (EBdiol). Results from recent studies of DNA and hemoglobin adducts indicate that EBdiol may play a more significant role in the toxicity of BD than previously thought. All three metabolites are capable of reacting with macromolecules, such as DNA and hemoglobin, and have been shown to induce a variety of genotoxic effects in mice and rats as well as in human cells in vitro. DEB is clearly the most potent of these genotoxins followed by EB, which in turn is more potent than EBdiol. Studies of mutations in lacI and lacZ mice and of the Hprt mutational spectrum in rodents and humans show that mutations at G:C base pairs are critical events in the mutagenicity of BD. In-depth analyses of the mutational spectra induced by BD and/or its oxidative metabolites should help to clarify which metabolite(s) are associated with specific mutations in each animal species and which mutational events contribute to BD-induced carcinogenicity. While the quantitative relationship between exposure to BD, its genotoxicity, and the induction of cancer in occupationally exposed humans remains to be fully established, there is sufficient data currently available to demonstrate that 1,3-butadiene is a probable human carcinogen.
Collapse
Affiliation(s)
- M A Jackson
- Alpha-Gamma Technologies Inc., Raleigh, NC 27609, USA
| | | | | | | |
Collapse
|
26
|
Abstract
A series of alterations in the cellular genome affecting the expression or function of genes controlling cell growth and differentiation is considered to be the main cause of cancer. These mutational events include activation of oncogenes and inactivation of tumor suppressor genes. The elucidation of human cancer at the molecular level allows the design of rational, mechanism-based therapeutic agents that antagonize the specific activity of biochemical processes that are essential to the malignant phenotype of cancer cells. Because the frequency of RAS mutations is among the highest for any gene in human cancers, development of inhibitors of the Ras–mitogen-activated protein kinase pathway as potential anticancer agents is a very promising pharmacologic strategy. Inhibitors of Ras signaling have been shown to revert Ras-dependent transformation and cause regression of Ras-dependent tumors in animal models. The most promising new class of these potential cancer therapeutics are the farnesyltransferase inhibitors. The development of these compounds has been driven by the observation that oncogenic Ras function is dependent upon posttranslational modification, which enables membrane binding. In contrast to many conventional chemotherapeutics, farnesyltransferase inhibitors are remarkably specific and have been demonstrated to cause no gross systemic toxicity in animals. Some orally bioavailable inhibitors are presently being evaluated in phase II clinical trials. This review presents an overview on some inhibitors of the Ras signaling pathway, including their specificity and effectiveness in vivo. Because Ras signaling plays a crucial role in the pathogenesis of some hematologic malignancies, the potential therapeutic usefulness of these inhibitors is discussed.
Collapse
|
27
|
Targeting the Ras signaling pathway: a rational, mechanism-based treatment for hematologic malignancies? Blood 2000. [DOI: 10.1182/blood.v96.5.1655] [Citation(s) in RCA: 201] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractA series of alterations in the cellular genome affecting the expression or function of genes controlling cell growth and differentiation is considered to be the main cause of cancer. These mutational events include activation of oncogenes and inactivation of tumor suppressor genes. The elucidation of human cancer at the molecular level allows the design of rational, mechanism-based therapeutic agents that antagonize the specific activity of biochemical processes that are essential to the malignant phenotype of cancer cells. Because the frequency of RAS mutations is among the highest for any gene in human cancers, development of inhibitors of the Ras–mitogen-activated protein kinase pathway as potential anticancer agents is a very promising pharmacologic strategy. Inhibitors of Ras signaling have been shown to revert Ras-dependent transformation and cause regression of Ras-dependent tumors in animal models. The most promising new class of these potential cancer therapeutics are the farnesyltransferase inhibitors. The development of these compounds has been driven by the observation that oncogenic Ras function is dependent upon posttranslational modification, which enables membrane binding. In contrast to many conventional chemotherapeutics, farnesyltransferase inhibitors are remarkably specific and have been demonstrated to cause no gross systemic toxicity in animals. Some orally bioavailable inhibitors are presently being evaluated in phase II clinical trials. This review presents an overview on some inhibitors of the Ras signaling pathway, including their specificity and effectiveness in vivo. Because Ras signaling plays a crucial role in the pathogenesis of some hematologic malignancies, the potential therapeutic usefulness of these inhibitors is discussed.
Collapse
|
28
|
Abstract
Dyshaemopoiesis is a heterogeneous disease that may be classified into non-clonal and clonal dyshaemopoiesis. Non-clonal dyshaemopoiesis comprises reversible disorders with DNA synthesis impairment in dividing cells of the bone marrow by avitaminosis through various mechanisms or direct DNA damage from multiple causes. Complete haematologic recovery is obtained after vitamin supplementation or suppression of a myelotoxic agent. On the contrary, clonal dyshaemopoiesis is a group of chronic and usually irreversible diseases that may culminate in acute leukaemia (AL). These so called myelodysplastic syndromes (MDS) and their variants may be classified as primary, secondary and other diseases with doubtful clonality. A detailed classification of dyshaemopoiesis in adults may offer partial help in the diagnosis and management of dyshaemopoiesis. Pathobiological studies in progress allow better understanding of MDS and consequently the establishment of new modalities of treatment.
Collapse
Affiliation(s)
- J Gardais
- Laboratoire d'Hématologie, Centre Hospitalier Universitaire, 49033 Cedex 01, Angers, France
| |
Collapse
|
29
|
O'Gorman DM, McKenna SL, McGahon AJ, Knox KA, Cotter TG. Sensitisation of HL60 human leukaemic cells to cytotoxic drug-induced apoptosis by inhibition of PI3-kinase survival signals. Leukemia 2000; 14:602-11. [PMID: 10764145 DOI: 10.1038/sj.leu.2401726] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Drug resistance remains a serious limiting factor in the treatment of acute myeloid leukaemia (AML) either at initial presentation or following primary or subsequent relapses. Using specific kinase inhibitors, this study has investigated the contribution of the Ras/PI3-kinase regulated survival pathways to drug resistance and suppression of apoptosis in a cell line derived from AML (HL60). Inhibition of the Raf/MAP-kinase (ERK) pathway with a specific MAP-kinase inhibitor, apigenin did not sensitise HL60 cells to drug-induced apoptosis, indicating a lack of involvement in chemoresistance. In contrast, the PI3-kinase inhibitors, LY294002 and wortmannin, did induce a significant increase in apoptosis in combination with cytotoxic drugs. The contribution of downstream mediators of PI3-kinase, p70S6-kinase and PKB/Akt were then investigated. While inhibition of p70S6-kinase with rapamycin did not increase drug-induced apoptosis, PI3-kinase inhibition resulted in notable dephosphorylation of PKB, suggesting that the PI3-kinase/PKB survival pathway may play a major role in chemoresistance in AML. This pathway has been reported to mediate heterodimer interactions with the proapoptotic regulator, Bad. In contrast to previous studies, we found no evidence of Bad binding to anti-apoptotic Bcl-2, Bcl-XL or McI-1, or of alterations in Bax heterodimers. This suggests that alternative targets of PI3-kinase/PKB, distinct from the Bcl-2 family may be responsible for contributing to survival factor-mediated drug resistance in AML.
Collapse
Affiliation(s)
- D M O'Gorman
- Department of Biochemistry, University College Cork, Ireland, UK
| | | | | | | | | |
Collapse
|
30
|
Carmical JR, Zhang M, Nechev L, Harris CM, Harris TM, Lloyd RS. Mutagenic potential of guanine N2 adducts of butadiene mono- and diolepoxide. Chem Res Toxicol 2000; 13:18-25. [PMID: 10649962 DOI: 10.1021/tx9901332] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
To explore the role of guanine N(2) adducts of stereoisomeric butadiene metabolites in butadiene-induced mutagenesis, 11-mer deoxyoligonucleotides were prepared containing adducts of (R)- and (S)-monoepoxide and (R,R)- and (S,S)-diolepoxide. These adducted oligonucleotides were utilized in both in vivo and in vitro experiments designed to examine the mutagenic potency of each and their replication by Escherichia coli polymerases. Each of the four adducted deoxyoligonucleotides was ligated into a single-stranded M13mp7L2 vector and transfected into E. coli. The resulting plaques were screened for misincorporation at position 2 of the N-ras 12 codon. Although the mutagenic frequencies were low, different relative mutagenicities of the various stereoisomers were discernible. In addition, the biological effects of each adduct on the three major E. coli polymerases were determined via primer extension assays. The adducted 11-mers were ligated into a 60-mer linear DNA molecule to provide a sufficiently long template for primer elongation. All four guanine adducts were determined to be blocking to each of the three polymerases via primer extension assays.
Collapse
Affiliation(s)
- J R Carmical
- Departments of Preventative Medicine and Community Health and Sealy Center for Molecular Science, The University of Texas Medical Branch, Galveston, Texas 77555, USA
| | | | | | | | | | | |
Collapse
|