1
|
Sasaki K, Umeda M, Sakai A, Yamazaki S, Tanaka N. Transformation assay in Bhas 42 cells: a model using initiated cells to study mechanisms of carcinogenesis and predict carcinogenic potential of chemicals. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, ENVIRONMENTAL CARCINOGENESIS & ECOTOXICOLOGY REVIEWS 2015; 33:1-35. [PMID: 25803194 DOI: 10.1080/10590501.2014.967058] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Transformation assays using cultured cells have been applied to the study of carcinogenesis. Although various cell systems exist, few cell types such as BALB/c 3T3 subclones and Syrian hamster embryo cells have been used to study chemically induced two-stage carcinogenesis. Bhas 42 cells were established as a clone by the transfection with the v-Ha-ras gene into mouse BALB/c 3T3 A31-1-1 cells and their subsequent selection based on their sensitivity to 12-O-tetradecanoylphorbol-13-acetate. Using Bhas 42 cells, transformed foci were induced by the treatment with nongenotoxic carcinogens, most of which act as tumor promoters. Therefore, Bhas 42 cells were considered to be a model of initiated cells. Subsequently, not only nongenotoxic carcinogens but also genotoxic carcinogens, most of which act as tumor initiators, were found to induce transformed foci by the modification of the protocol. Furthermore, transformation of Bhas 42 cells was induced by the transfection with genes of oncogenic potential. We interpret this high sensitivity of Bhas 42 cells to various types of carcinogenic stimuli to be related to the multistage model of carcinogenesis, as the transfection of v-Ha-ras gene further advances the parental BALB/c 3T3 A31-1-1 cells toward higher transforming potential. Thus, we propose that Bhas 42 cells are a novel and sensitive cell line for the analysis of carcinogenesis and can be used for the detection of not only carcinogenic substances but also gene alterations related to oncogenesis. This review will address characteristics of Bhas 42 cells, the transformation assay protocol, validation studies, and the various chemicals tested in this assay.
Collapse
Affiliation(s)
- Kiyoshi Sasaki
- a Laboratory of Cell Carcinogenesis, Division of Alternative Toxicology Tests , Hatano Research Institute, Food and Drug Safety Center , Hadano , Kanagawa , Japan
| | | | | | | | | |
Collapse
|
2
|
New tumor necrosis factor-alpha-inducing protein released from Helicobacter pylori for gastric cancer progression. J Cancer Res Clin Oncol 2004. [PMID: 15616827 DOI: 10.1007/s00432-004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE To investigate the association between Helicobacter pylori infection and its inflammatory reaction in gastritis, gastric ulcer, and gastric cancer, a new tumor necrosis factor-alpha (TNF-alpha)-inducing protein of H. pylori was studied. METHODS The HP0596 gene of H. pylori was identified as the TNF-alpha-inducing protein (Tipalpha) gene from genome sequence of H. pylori strain 26695. Using recombinant Tipalpha (rTipalpha) and deleted Tipalpha (rdel-Tipalpha) proteins, the latter of which lacks six amino acids containing two cysteines in the N-terminal domain, we examined their activities in TNF-alpha gene expression and NF-kappaB activation in both Bhas 42 (v-H-ras transfected BALB/3T3) cells and mouse gastric epithelial cell line MGT-40, and in vitro transformation of Bhas 42 cells. RESULTS Tipalpha protein as a homodimer form (38 kDa) was found in both extracts and culture medium of various H. pylori strains. rTipalpha significantly induced TNF-alpha gene expression and NF-kappaB activation in both Bhas 42 cells and MGT-40, and induced in vitro transformation of Bhas 42 cells. However, rdel-Tipalpha did not. Treatment with MG-132, a proteasome inhibitor, inhibited translocation of NF-kappaB p65, and abrogated TNF-alpha induction induced by Tipalpha protein. CONCLUSION Tipalpha is a new carcinogenic factor released from H. pylori mediated through NF-kappaB activation.
Collapse
|
3
|
Suganuma M, Kurusu M, Suzuki K, Nishizono A, Murakami K, Fujioka T, Fujiki H. New tumor necrosis factor-alpha-inducing protein released from Helicobacter pylori for gastric cancer progression. J Cancer Res Clin Oncol 2004; 131:305-13. [PMID: 15616827 DOI: 10.1007/s00432-004-0652-x] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2004] [Accepted: 10/25/2004] [Indexed: 02/07/2023]
Abstract
PURPOSE To investigate the association between Helicobacter pylori infection and its inflammatory reaction in gastritis, gastric ulcer, and gastric cancer, a new tumor necrosis factor-alpha (TNF-alpha)-inducing protein of H. pylori was studied. METHODS The HP0596 gene of H. pylori was identified as the TNF-alpha-inducing protein (Tipalpha) gene from genome sequence of H. pylori strain 26695. Using recombinant Tipalpha (rTipalpha) and deleted Tipalpha (rdel-Tipalpha) proteins, the latter of which lacks six amino acids containing two cysteines in the N-terminal domain, we examined their activities in TNF-alpha gene expression and NF-kappaB activation in both Bhas 42 (v-H-ras transfected BALB/3T3) cells and mouse gastric epithelial cell line MGT-40, and in vitro transformation of Bhas 42 cells. RESULTS Tipalpha protein as a homodimer form (38 kDa) was found in both extracts and culture medium of various H. pylori strains. rTipalpha significantly induced TNF-alpha gene expression and NF-kappaB activation in both Bhas 42 cells and MGT-40, and induced in vitro transformation of Bhas 42 cells. However, rdel-Tipalpha did not. Treatment with MG-132, a proteasome inhibitor, inhibited translocation of NF-kappaB p65, and abrogated TNF-alpha induction induced by Tipalpha protein. CONCLUSION Tipalpha is a new carcinogenic factor released from H. pylori mediated through NF-kappaB activation.
Collapse
Affiliation(s)
- Masami Suganuma
- Saitama Cancer Center, Ina Kitaadachi-gun, 362-0806 Saitama, Japan.
| | | | | | | | | | | | | |
Collapse
|
4
|
Elsässer A, Franzen M, Kohlmann A, Weisser M, Schnittger S, Schoch C, Reddy VA, Burel S, Zhang DE, Ueffing M, Tenen DG, Hiddemann W, Behre G. The fusion protein AML1-ETO in acute myeloid leukemia with translocation t(8;21) induces c-jun protein expression via the proximal AP-1 site of the c-jun promoter in an indirect, JNK-dependent manner. Oncogene 2003; 22:5646-57. [PMID: 12944913 DOI: 10.1038/sj.onc.1206673] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Overexpression of proto-oncogene c-jun and constitutive activation of the Jun N-terminal kinase (JNK) signaling pathway have been implicated in the leukemic transformation process. However, c-jun expression and the role of the JNK signaling pathway have not been investigated in primary acute myeloid leukemia (AML) cells with frequently observed balanced rearrangements such as t(8;21). In the present study, we report elevated c-jun mRNA expression in AML patient bone marrow cells with t(8;21), t(15;17) or inv(16), and a high correlation in mRNA expression levels of AML1-ETO and c-jun within t(8;21)-positive AML patient cells. In myeloid U937 cells, c-jun mRNA and protein expression increase upon inducible expression of AML1-ETO. AML1-ETO transactivates the human c-jun promoter through the proximal activator protein (AP-1) site by activating the JNK pathway. Overexpression of JNK-inhibitor JIP-1 and chemical JNK inhibitors reduce the transactivation capacity of AML1-ETO on the c-jun promoter and the proapoptotic function of AML1-ETO in U937 cells. An autocrine mechanism involving granulocyte-colony stimulating factor (G-CSF) and G-CSF receptor (G-CSF-R) might participate in AML1-ETO mediated JNK-signaling, because AML1-ETO induces G-CSF and G-CSF-R expression, and G-CSF-R-neutralizing antibodies reduce AML1-ETO-induced JNK phosphorylation. These data suggest a model in which AML1-ETO induces proto-oncogene c-jun expression via the proximal AP-1 site of the c-jun promoter in a JNK-dependent manner.
Collapse
MESH Headings
- Chromosomes, Human, Pair 21
- Chromosomes, Human, Pair 8
- Core Binding Factor Alpha 2 Subunit
- Genes, jun
- Granulocyte Colony-Stimulating Factor/physiology
- Humans
- JNK Mitogen-Activated Protein Kinases
- Leukemia, Myeloid, Acute/genetics
- Mitogen-Activated Protein Kinases/physiology
- Oncogene Proteins, Fusion/genetics
- Phosphorylation
- Promoter Regions, Genetic
- Proto-Oncogene Mas
- Proto-Oncogene Proteins c-jun/genetics
- RUNX1 Translocation Partner 1 Protein
- Signal Transduction
- Transcription Factor AP-1/physiology
- Transcription Factors/genetics
- Transcriptional Activation
- Translocation, Genetic
- U937 Cells
Collapse
Affiliation(s)
- Annika Elsässer
- Department of Internal Medicine III, University Hospital Grosshadern, Ludwig-Maximilians-University Munich, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Shimotohno K, Watashi K, Tsuchihara K, Fukuda K, Marusawa H, Hijikata M. Hepatitis C virus and its roles in cell proliferation. J Gastroenterol 2003; 37 Suppl 13:50-4. [PMID: 12109666 DOI: 10.1007/bf02990100] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Hepatitis C virus (HCV) causes chronic hepatitis and is linked to the development of hepatocellular carcinoma (HCC). The role of HCV infection in the development of HCC remains to be clarified. We analyzed the effect of HCV core protein on modulation of cell proliferation. HCV core protein was shown to have at least two functions: activation of the Ras/Raf signaling pathway and anti-apototic function.
Collapse
Affiliation(s)
- Kunitada Shimotohno
- Department of Viral Oncology, Institute for Virus Research, Kyoto University, Japan
| | | | | | | | | | | |
Collapse
|
6
|
Fukuyama T, Sueoka E, Sugio Y, Otsuka T, Niho Y, Akagi K, Kozu T. MTG8 proto-oncoprotein interacts with the regulatory subunit of type II cyclic AMP-dependent protein kinase in lymphocytes. Oncogene 2001; 20:6225-32. [PMID: 11593431 DOI: 10.1038/sj.onc.1204794] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2001] [Revised: 06/16/2001] [Accepted: 07/05/2001] [Indexed: 11/09/2022]
Abstract
AML1-MTG8 chimeric oncogene is generated in acute myelogenous leukemia with t(8;21), and seems to be responsible for the pathogenesis of the disease. However, the role of MTG8 is ambiguous. Here we found that MTG8 interacted with the regulatory subunit of type II cyclic AMP-dependent protein kinase (PKA RIIalpha). The binding site of MTG8 was NHR3 domain, and that of RIIalpha was the N-terminus for interacting with PKA anchoring proteins (AKAPs). NHR3 contains a putative alpha-amphipathic helix which is characteristic in binding of AKAPs with RII. Indirect immunofluorescence microscopy showed that MTG8 and RIIalpha were overlapped at the centrosome-Golgi area in lymphocytes. These findings suggest that MTG8 may function as an AKAP at the centrosome-Golgi area in lymphocytes.
Collapse
Affiliation(s)
- T Fukuyama
- Saitama Cancer Center Research Institute, Saitama 362-0806, Japan
| | | | | | | | | | | | | |
Collapse
|
7
|
MESH Headings
- Animals
- Chromosomes, Human, Pair 21
- Chromosomes, Human, Pair 8
- Core Binding Factor Alpha 2 Subunit
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/physiology
- Humans
- Leukemia, Myeloid, Acute/etiology
- Leukemia, Myeloid, Acute/genetics
- Models, Genetic
- Multigene Family
- Oncogene Proteins, Fusion/genetics
- Oncogene Proteins, Fusion/metabolism
- Oncogene Proteins, Fusion/physiology
- Proto-Oncogene Proteins
- RUNX1 Translocation Partner 1 Protein
- Structure-Activity Relationship
- Transcription Factors/genetics
- Transcription Factors/physiology
- Transcription, Genetic
- Translocation, Genetic
Collapse
Affiliation(s)
- J D Licht
- Derald H. Ruttenberg Cancer Center and Department of Medicine, Mount Sinai School of Medicine, Box 1130, One Gustave L. Levy Place, New York, NY 10029, USA.
| |
Collapse
|
8
|
Ikonomov OC, Petrov T, Soden K, Shisheva A, Manji HK. Lithium treatment in ovo: effects on embryonic heart rate, natural death of ciliary ganglion neurons, and brain expression of a highly conserved chicken homolog of human MTG8/ETO. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2000; 123:13-24. [PMID: 11020546 DOI: 10.1016/s0165-3806(00)00074-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Understanding the action of the mood stabilizer lithium is dependent on availability of experimental models where lithium treatment at clinically relevant concentrations induces marked phenotypic and genotypic changes. Here we report on such changes in the chicken embryo. Lithium chloride (0.6 mM), applied in ovo 60 h after incubation, markedly delayed the heart rate increase observed from ED2.5 to ED5, and induced the brain expression of a new chicken gene cETO from ED7 to ED15. At the same time the overall developmental dynamics and embryo survival, or the expression of chicken gephyrin were not significantly affected. Furthermore, lithium treatment (0.3 mM, 48 h after incubation) abolished the difference in neuronal number between ED12 ciliary ganglia developing in the presence or absence of postganglionic target muscles. We show that cETO is a close homologue of the human transcription factor MTG8/ETO; named after its location on chromosome 8, and participation in chromosomal translocation 8;21 in myeloid leukemia. The mRNA and protein levels of ETO and gephyrin had a parallel course in chicken brain development suggesting that the expression of both genes is regulated mainly at the level of gene transcription. However, the patterns of expression were markedly different. ETO peaked at ED7 and decreased five-fold at ED15. In contrast, gephyrin levels increased five-fold from ED7 to ED15. We propose that the induction of ETO expression, in concert with lithium-induced upregulation of other genes, such as PEBP2beta and bcl-2, is participating in the neuroprotective effect of chronic lithium treatment.
Collapse
Affiliation(s)
- O C Ikonomov
- Laboratory of Molecular Pathophysiology, Department of Psychiatry and Behavioral Neurosciences, Wayne State University, School of Medicine, 4237 Scott Hall, 540 E. Canfield, Detroit, MI 48201, USA.
| | | | | | | | | |
Collapse
|
9
|
Abstract
Hepatitis C virus is a major causative agent of chronic hepatitis and the development of hepatocellular carcinoma. However, the roles of this virus in these diseases remain to be clarified, although it is likely that cytotoxic T lymphocytes (CTL) play crucial roles in the clearance of virus-infected cells, thus causing inflammation. In many, cases the clearance is not sufficient to eradicate all infected cells. This may be due to insufficient activation of CTL. In addition, it is also likely that the virus has some mechanism to escape from clearance. One such mechanism may be the suppression of apoptosis by activation of NF-kB or mitogenic function by virus proteins, and these functions may also be linked to the development of hepatocellular carcinoma.
Collapse
Affiliation(s)
- K Shimotohno
- Institute for Virus Research, Kyoto University, Japan.
| |
Collapse
|
10
|
Melnick AM, Westendorf JJ, Polinger A, Carlile GW, Arai S, Ball HJ, Lutterbach B, Hiebert SW, Licht JD. The ETO protein disrupted in t(8;21)-associated acute myeloid leukemia is a corepressor for the promyelocytic leukemia zinc finger protein. Mol Cell Biol 2000; 20:2075-86. [PMID: 10688654 PMCID: PMC110824 DOI: 10.1128/mcb.20.6.2075-2086.2000] [Citation(s) in RCA: 114] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The ETO protein was originally identified by its fusion to the AML-1 transcription factor in translocation (8;21) associated with the M2 form of acute myeloid leukemia (AML). The resulting AML-1-ETO fusion is an aberrant transcriptional regulator due to the ability of ETO, which does not bind DNA itself, to recruit the transcriptional corepressors N-CoR, SMRT, and Sin3A and histone deacetylases. The promyelocytic leukemia zinc finger (PLZF) protein is a sequence-specific DNA-binding transcriptional factor fused to retinoic acid receptor alpha in acute promyelocytic leukemia associated with the (11;17)(q23;q21) translocation. PLZF also mediates transcriptional repression through the actions of corepressors and histone deacetylases. We found that ETO is one of the corepressors recruited by PLZF. The PLZF and ETO proteins associate in vivo and in vitro, and ETO can potentiate transcriptional repression by PLZF. The N-terminal portion of ETO forms complexes with PLZF, while the C-terminal region, which was shown to bind to N-CoR and SMRT, is required for the ability of ETO to augment transcriptional repression by PLZF. The second repression domain (RD2) of PLZF, not the POZ/BTB domain, is necessary to bind to ETO. Corepression by ETO was completely abrogated by histone deacetylase inhibitors. This identifies ETO as a cofactor for a sequence-specific transcription factor and indicates that, like other corepressors, it functions through the action of histone deactylase.
Collapse
Affiliation(s)
- A M Melnick
- Department of Medicine, Mount Sinai School of Medicine, New York, New York 10029, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Downing JR. The AML1-ETO chimaeric transcription factor in acute myeloid leukaemia: biology and clinical significance. Br J Haematol 1999; 106:296-308. [PMID: 10460585 DOI: 10.1046/j.1365-2141.1999.01377.x] [Citation(s) in RCA: 167] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- J R Downing
- Department of Pathology and Laboratory Medicine, St Jude Children's Research Hospital, Memphis, Tennessee, USA.
| |
Collapse
|
12
|
Tsuchihara K, Hijikata M, Fukuda K, Kuroki T, Yamamoto N, Shimotohno K. Hepatitis C virus core protein regulates cell growth and signal transduction pathway transmitting growth stimuli. Virology 1999; 258:100-7. [PMID: 10329572 DOI: 10.1006/viro.1999.9694] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To investigate the transforming potential of hepatitis C virus (HCV), HCV core protein was produced in BALB/3T3 A31-I-1 cells. The cells expressing HCV core gene cooperatively with the v-H-ras gene showed loss of contact inhibition, morphological alterations, and anchorage-independent and serum-independent growth. The cells producing HCV core protein showed enhanced growth against stimulus of growth factor. In addition, antisense oligodeoxynucleotides against mRNA encoding HCV core protein suppressed the growth of HCV core-producing cells. Furthermore, HCV core protein activated mitogen-activated protein kinase and serum response element, which respond to growth stimuli. From these results, we concluded that HCV core protein is involved in the acquisition of cell growth advantage.
Collapse
Affiliation(s)
- K Tsuchihara
- Department of Molecular Virology, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8519, Japan
| | | | | | | | | | | |
Collapse
|
13
|
Komori A, Sueoka E, Fujiki H, Ishii M, Kozu T. Association of MTG8 (ETO/CDR), a leukemia-related protein, with serine/threonine protein kinases and heat shock protein HSP90 in human hematopoietic cell lines. Jpn J Cancer Res 1999; 90:60-8. [PMID: 10076566 PMCID: PMC5925983 DOI: 10.1111/j.1349-7006.1999.tb00666.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
A proto-oncogene, MTG8 (ETO/CDR), is disrupted in the t(8;21) translocation associated with acute myeloid leukemia, and the gene product, MTG8, is a phosphoprotein capable of cell transformation in concert with v-H-ras. To obtain insight into functional regulation of MTG8 by phosphorylation, we studied protein kinases that interact with, and phosphorylate, MTG8 in vitro. Recombinant MTG8 protein was first found to be associated with two serine/threonine protein kinases in cell extracts from both HEL cells and a leukemic cell line carrying t(8;21). A cytoplasmic protein kinase of 61 kDa (MTG8N-kinase) phosphorylated the amino-terminal of MTG8, and another of 52 kDa (MTG8C-kinase) phosphorylated the carboxyl-terminal domain. In addition, we demonstrated that heat shock protein 90 (HSP90) specifically binds to the amino-terminal domain of MTG8 in vitro and in vivo. Thus, our results shed new light on post-translational regulation of MTG8, perturbation of which, in AML1-MTG8 protein, probably contributes to leukemogenesis.
Collapse
Affiliation(s)
- A Komori
- Saitama Cancer Center Research Institute
| | | | | | | | | |
Collapse
|