1
|
Choi S, Kim EH, Kim D, Park HJ, Gil J, Bian Y, Bae ON. Polyhexamethylene guanidine-phosphate enhances pro-coagulant activity of human erythrocytes and venous thrombosis in rats through phosphatidylserine externalization. JOURNAL OF HAZARDOUS MATERIALS 2025; 492:138303. [PMID: 40250271 DOI: 10.1016/j.jhazmat.2025.138303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 04/09/2025] [Accepted: 04/14/2025] [Indexed: 04/20/2025]
Abstract
Polyhexamethylene guanidine-phosphate (PHMG-p) is a main compound used as a humidifier disinfectant, but the systemic health effects of PHMG-p still need to be explored. The circulatory and blood system is the organ that comes into contact with compounds absorbed into the body after inhalation exposure, resulting in various health problems, including cardiovascular diseases. This study examined the impact of PHMG-p on erythrocytes (red blood cells; RBCs), which are essential for sustaining circulatory health and are directly associated with thrombotic risks. We demonstrated that PHMG-p could enhance the thrombotic risk by promoting pro-coagulant activity and reducing erythrocyte deformability. In PHMG-p-exposed erythrocytes, phosphatidylserine externalization in the outer membrane and microvesicle generation were significantly increased under sub-hemolytic conditions, along with the morphological alterations in the erythrocytes. Exposure to PHMG-p induced erythrocyte phosphatidylserine externalization, leading to enhanced pro-coagulant activity, which was characterized by increased adhesion to vascular endothelial cells, elevated thrombin generation, and decreased deformability. Notably, calcium chelation effectively inhibited PS externalization and thrombin generation, highlighting the pivotal role of calcium influx in PHMG-p-induced thrombogenic alterations. Moreover, intratracheal instillation of PHMG-p promoted phosphatidylserine externalization and thrombin generation in rat erythrocytes, leading to a significant increase in thrombus formation, thereby corroborating the link between in vitro findings and the increased thrombotic risk observed in vivo. These findings suggest that PHMG-p may increase pro-thrombotic risk by promoting RBC pro-coagulant activity through calcium influx-driven PS externalization.
Collapse
Affiliation(s)
- Sungbin Choi
- College of Pharmacy Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan 15588, Republic of Korea
| | - Eun-Hye Kim
- College of Pharmacy Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan 15588, Republic of Korea; College of Pharmacy, Kyungsung University, Busan 48434, Republic of Korea
| | - Donghyun Kim
- College of Pharmacy Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan 15588, Republic of Korea
| | - Han Jin Park
- College of Pharmacy Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan 15588, Republic of Korea
| | - Junkyung Gil
- College of Pharmacy Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan 15588, Republic of Korea
| | - Yiying Bian
- School of Public Health, China Medical University, Shenyang 110122, China
| | - Ok-Nam Bae
- College of Pharmacy Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan 15588, Republic of Korea.
| |
Collapse
|
2
|
Ngotho P, Dantzler Press K, Peedell M, Muasya W, Omondi BR, Otoboh SE, Gomez J, Coronado L, Seydel KB, Kapulu M, Laufer M, Taylor T, Bousema T, Marti M. Reversible host cell surface remodelling limits immune recognition and maximizes survival of Plasmodium falciparum gametocytes. PLoS Pathog 2025; 21:e1013110. [PMID: 40354414 PMCID: PMC12091884 DOI: 10.1371/journal.ppat.1013110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 05/20/2025] [Accepted: 04/08/2025] [Indexed: 05/14/2025] Open
Abstract
Reducing malaria transmission has been a major pillar of control programmes and is considered crucial for achieving malaria elimination. Gametocytes, the transmissible forms of the P. falciparum parasite, arise during the blood stage of the parasite and develop through 5 morphologically distinct stages. Immature gametocytes (stage I-IV) sequester and develop in the extravascular niche of the bone marrow and possibly spleen. Only mature stage V gametocytes re-enter peripheral circulation to be taken up by mosquitoes for successful onward transmission. We have recently shown that immature, but not mature gametocytes are targets of host immune responses and identified putative target surface antigens. We hypothesize that these antigens play a role in gametocyte sequestration and contribute to acquired transmission-reducing immunity. Here we demonstrate that surface antigen expression, serum reactivity by human IgG, and opsonic phagocytosis by macrophages all show similar dynamics during gametocyte maturation, i.e., peaking in the immature stages and tapering off in mature gametocytes. Moreover, the switch in surface reactivity coincides with reversal in phosphatidylserine (PS) surface exposure, a marker for red blood cell age and clearance. PS is exposed on the surface of a proportion of immature gametocyte-infected RBCs (as well as in late asexual stages) but is removed from the surface in later gametocyte stages (IV-V). Using parasite reverse genetics and drug perturbations, we confirm that parasite protein export into the host cell and phospholipid scramblase activity are required for the observed surface modifications in asexual and sexual P. falciparum stages. Based on these findings we propose that the reversible surface remodelling allows (i) immature gametocyte sequestration in bone marrow followed by (ii) mature gametocyte release into peripheral circulation (and immune evasion due to loss of surface antigens), therefore contributing to mature gametocyte survival in vivo and onward transmission to mosquitoes. Importantly, blocking scramblase activity during gametocyte maturation results in efficient clearance of mature gametocytes, revealing a potential path for transmission blocking interventions. Our studies have important implications for our understanding of parasite biology and form a starting point for novel intervention strategies to simultaneously reduce parasite burden and transmission.
Collapse
Affiliation(s)
- Priscilla Ngotho
- Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, United Kingdom
- Institute of Parasitology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Kathleen Dantzler Press
- Department of Medicine, Stanford University School of Medicine, Stanford, California, United States of America
| | - Megan Peedell
- Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, United Kingdom
- Institute of Parasitology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - William Muasya
- Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, United Kingdom
| | - Brian Roy Omondi
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Stanley E. Otoboh
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Jahiro Gomez
- Instituto de Investigaciones Científicas y Servicios de alta Tecnología de Panamá, Panamá City, Panamá
| | - Lorena Coronado
- Instituto de Investigaciones Científicas y Servicios de alta Tecnología de Panamá, Panamá City, Panamá
| | - Karl B. Seydel
- Department of Osteopathic Medical Specialties, College of Osteopathic Medicine, Michigan State University, East Lansing, Michigan, United States of America
- Blantyre Malaria Project, Kamuzu University of Health Sciences, Blantyre, Malawi
| | | | - Miriam Laufer
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine Baltimore, Maryland, United States of America
| | - Terrie Taylor
- Department of Osteopathic Medical Specialties, College of Osteopathic Medicine, Michigan State University, East Lansing, Michigan, United States of America
- Blantyre Malaria Project, Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Teun Bousema
- Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Matthias Marti
- Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, United Kingdom
- Institute of Parasitology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| |
Collapse
|
3
|
Perrone P, D’Angelo S. Gut Microbiota Modulation Through Mediterranean Diet Foods: Implications for Human Health. Nutrients 2025; 17:948. [PMID: 40289944 PMCID: PMC11944315 DOI: 10.3390/nu17060948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 03/05/2025] [Accepted: 03/06/2025] [Indexed: 04/30/2025] Open
Abstract
The Mediterranean diet (MD) is widely recognized for its health benefits, particularly in modulating gut microbiota composition and reducing the risk of metabolic, cardiovascular, and neurodegenerative diseases. Characterized by a high intake of plant-based foods, monounsaturated fats, and polyphenols, primarily from extra virgin olive oil, the MD fosters the growth of beneficial gut bacteria such as Bifidobacterium, Faecalibacterium prausnitzii, and Roseburia, which produce short-chain fatty acids that enhance gut barrier integrity, reduce inflammation, and improve metabolic homeostasis. Clinical and preclinical studies have proved that the MD is associated with increased microbial diversity, reduced pro-inflammatory bacteria, and improved markers of insulin sensitivity, lipid metabolism, and cognitive function. Additionally, the MD positively influences the gut microbiota in various conditions, including obesity, cardiovascular disease, and neurodegeneration, potentially mitigating systemic inflammation and enhancing neuroprotective mechanisms. Emerging evidence suggests that MD variants, such as the Green-MD, and their integration with probiotics can further optimize gut microbiota composition and metabolic parameters. While the beneficial impact of the MD on the gut microbiota and overall health is well supported, further long-term clinical trials are needed to better understand individual variability and improve dietary interventions tailored to different populations.
Collapse
Affiliation(s)
| | - Stefania D’Angelo
- Department of Medical, Movement, and Wellbeing Sciences, Parthenope University of Naples, 80133 Naples, Italy;
| |
Collapse
|
4
|
Gural A, Pajić-Lijaković I, Barshtein G. Mechanical Stimulation of Red Blood Cells Aging: Focusing on the Microfluidics Application. MICROMACHINES 2025; 16:259. [PMID: 40141870 PMCID: PMC11945212 DOI: 10.3390/mi16030259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 02/23/2025] [Accepted: 02/24/2025] [Indexed: 03/28/2025]
Abstract
Human red blood cells (RBCs) are highly differentiated cells, essential in almost all physiological processes. During their circulation in the bloodstream, RBCs are exposed to varying levels of shear stress ranging from 0.1-10 Pa under physiological conditions to 50 Pa in arterial stenotic lesions. Moreover, the flow of blood through splenic red pulp and through artificial organs is associated with brief exposure to even higher levels of shear stress, reaching up to hundreds of Pa. As a result of this exposure, some properties of the cytosol, the cytoskeleton, and the cell membrane may be significantly affected. In this review, we aim to systematize the available information on RBC response to shear stress by focusing on reported changes in various red cell properties. We pay special attention to the results obtained using microfluidics, since these devices allow the researcher to accurately simulate blood flow conditions in the capillaries and spleen.
Collapse
Affiliation(s)
- Alexander Gural
- Blood Bank, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel;
| | - Ivana Pajić-Lijaković
- Department of Chemical Engineering, Faculty of Technology and Metallurgy, University of Belgrade, 11000 Belgrade, Serbia;
| | - Gregory Barshtein
- Department of Biochemistry, The Faculty of Medicine, Hebrew University, Jerusalem 91120, Israel
| |
Collapse
|
5
|
Perrone P, Notariale R, Lettieri G, Mele L, La Pietra V, Piscopo M, Manna C. Protective effects of olive oil antioxidant phenols on mercury-induced phosphatidylserine externalization in erythrocyte membrane: Insights into scramblase and flippase activity. Free Radic Biol Med 2025; 227:42-51. [PMID: 39613047 DOI: 10.1016/j.freeradbiomed.2024.11.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 11/21/2024] [Accepted: 11/26/2024] [Indexed: 12/01/2024]
Abstract
In several physiopathological processes, phosphatidylserine (PS), normally sequestered to the inner leaflet of the plasma membrane, becomes exposed to the cell surface. In erythrocytes (RBC), PS externalization is a crucial event for the removal of aged/damaged cells but can also be associated with increased prothrombotic activity. Structurally related olive oil antioxidants, including hydroxytyrosol (HT), are able to significantly reduce the percentage of PS-exposing RBC, when cells are exposed to toxic compounds such as the heavy metal mercury (Hg). The aim of the present study was to identify the molecular mechanisms underlying the protective effect, with a focus on two different phospholipid translocases, the ATP-dependent flippase ATP11C and the calcium-dependent scramblase PLSCR1, which are responsible for PS internalization and exposure, respectively. In addition to HT, its monophenol analogue, tyrosol, and its in vivo metabolite, homovanillic alcohol, were also tested. Our investigation revealed that exposure of human intact RBC to HgCl2 induced a decrease in flippase activity and an increase in scramblase activity, and that all the selected phenols restored the control activity, regardless of their different scavenging properties. Interestingly, all phenols restored the ATP level of control cells, which were significantly reduced by HgCl2 treatment. Conversely, no variation in intracellular calcium was observed under our experimental conditions. Additionally, all phenols restored the glutathione levels, significantly reduced in the presence of HgCl2. In line with the data on the enzymatic activity, Western blotting analysis indicated changes in the membrane expression of the two enzymes, alterations prevented by antioxidant pre-treatment. Finally, molecular docking analysis suggests that the tested antioxidants may be able to directly interact with ATP11C. Our findings provide an experimental basis for the use of olive oil bioactive compounds in nutritional/nutraceutical strategies for the prevention of Hg-related toxicity, particularly in relation to the cardiovascular tissues.
Collapse
Affiliation(s)
- Pasquale Perrone
- Department of Precision Medicine, School of Medicine, University of Campania "Luigi Vanvitelli", 80138, Naples, Italy.
| | - Rosaria Notariale
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy.
| | - Gennaro Lettieri
- Department of Biology, University of Naples Federico II, 80126, Naples, Italy.
| | - Luigi Mele
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Italy.
| | - Valeria La Pietra
- Department of Pharmacy, University of Naples Federico II, via D. Montesano 49, 80131, Napoli, NA, Italy.
| | - Marina Piscopo
- Department of Biology, University of Naples Federico II, 80126, Naples, Italy.
| | - Caterina Manna
- Department of Precision Medicine, School of Medicine, University of Campania "Luigi Vanvitelli", 80138, Naples, Italy.
| |
Collapse
|
6
|
Perrone P, Ortega-Luna R, Manna C, Álvarez-Ribelles Á, Collado-Diaz V. Increased Adhesiveness of Blood Cells Induced by Mercury Chloride: Protective Effect of Hydroxytyrosol. Antioxidants (Basel) 2024; 13:1576. [PMID: 39765902 PMCID: PMC11673208 DOI: 10.3390/antiox13121576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/13/2024] [Accepted: 12/18/2024] [Indexed: 01/11/2025] Open
Abstract
Mercury (Hg) is a highly toxic environmental contaminant that can harm human health, ultimately leading to endothelial dysfunction. Hg toxicity is partially mediated by the exposure of the cell membrane's surface of erythrocytes (RBCs) to phosphatidylserine (PS). In the context of these challenges, hydroxytyrosol, a phenolic compound of olive oil, has the ability to mitigate the toxic effects of Hg. This study aims to analyze the effect of Hg on the adhesion of RBCs and polymorphonuclear cells (PMNs) to the vascular endothelium and the potential protective effect of hydroxytyrosol, as these interactions are crucial in the development of cardiovascular diseases (CVDs). RBCs, PMNs, and human vein endothelial cells (HUVECs) were treated with increasing concentrations of HgCl2 and, in some cases, with hydroxytyrosol, and their adhesion to HUVECs and the expression of adhesion molecules were subsequently analyzed. Our results demonstrate that HgCl2 significantly increases the adhesion of both RBCs (2.72 ± 0.48 S.E.M., p-value < 0.02) and PMNs (11.19 ± 1.96 S.E.M., p-value < 0.05) to HUVECs and that their adhesiveness is significantly reduced following treatment with hydroxytyrosol (RBCs, 1.2 ± 1.18 S.E.M., p-value < 0.02 and PMNs, 4.04 ± 1.35 S.E.M., p-value < 0.06). Interestingly, HgCl2 does not alter the expression of adhesion molecules on either HUVECs or RBCs, suggesting that reduced exposure to PS is a key factor in hydroxytyrosol protection against HgCl2-induced RBC adhesion to the endothelium. On the other hand, HgCl2 induces increased expression of several PMN adhesion molecules (CD11b 215.4 ± 30.83 S.E.M. p-value < 0.01), while hydroxytyrosol inhibits their expression (e.g., CD11b 149 ± 14.35 S.E.M., p-value < 0.03), which would seem to be the mechanism by which hydroxytyrosol restricts PMN-endothelium interactions. These results provide new insights into the molecular mechanisms through which hydroxytyrosol mitigates the harmful effects of Hg on cardiovascular health, highlighting its potential as a therapeutic agent that can reduce the cardiovascular risk related to heavy metal exposure.
Collapse
Affiliation(s)
- Pasquale Perrone
- Department of Precision Medicine, School of Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy;
| | - Raquel Ortega-Luna
- Departamento de Farmacología, Facultad de Medicina, Universidad de Valencia, 46010 Valencia, Spain; (R.O.-L.); (V.C.-D.)
| | - Caterina Manna
- Department of Precision Medicine, School of Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy;
| | - Ángeles Álvarez-Ribelles
- Departamento de Farmacología, Facultad de Medicina, Universidad de Valencia, 46010 Valencia, Spain; (R.O.-L.); (V.C.-D.)
- Centro de Investigación Biomédica en Red en Enfermedades Hepáticas y Digestivas (CIBERehd), 28029 Madrid, Spain
| | - Victor Collado-Diaz
- Departamento de Farmacología, Facultad de Medicina, Universidad de Valencia, 46010 Valencia, Spain; (R.O.-L.); (V.C.-D.)
| |
Collapse
|
7
|
Restivo I, Giardina IC, Barone R, Cilla A, Burgio S, Allegra M, Tesoriere L, Attanzio A. Indicaxanthin prevents eryptosis induced by cigarette smoke extract by interfering with active Fas-mediated signaling. Biofactors 2024; 50:997-1008. [PMID: 38520710 DOI: 10.1002/biof.2051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/19/2024] [Indexed: 03/25/2024]
Abstract
A physiological mechanism of programmed cell death called eryptosis occurs in aged or damaged red blood cells (RBCs). Dysregulated eryptosis contributes to abnormal microcirculation and prothrombotic risk. Cigarette smoke extract (CSE) induces a p38 MAPK-initiated, Fas-mediated eryptosis, activating the death-inducing signaling complex (DISC). Indicaxanthin (Ind) from cactus pear fruits, is a bioavailable dietary phytochemical in humans and it is able to incorporate into RBCs enhancing their defense against numerous stimuli. This in vitro work shows that Ind, at concentrations that mimic plasma concentrations after a fruit meal, protects erythrocytes from CSE-induced eryptosis. CSE from commercial cigarettes was prepared in aqueous solution using an impinger air sampler and nicotine content was determined. RBCs were treated with CSE for 3 h in the absence or presence of increasing concentrations of Ind (from 1 to 5 μM). Cytofluorimetric measurements indicated that Ind reduced CSE-induced phosphatidylserine externalization and ceramide formation in a concentration-dependent manner. Confocal microscopy visualization and coimmunoprecipitation experiments revealed that Ind prevented both CSE-triggered Fas aggregation and FasL/FADD/caspase 8 recruitment in the membrane, indicating inhibition of DISC assembly. Ind inhibited the phosphorylation of p38 MAPK, caspase-8/caspase-3 cleavage, and caspase-3 activity induced by CSE. Finally, Ind reduced CSE-induced ATP depletion and restored aminophospholipid translocase activity impaired by CSE treatment. In conclusion, Ind concentrations comparable to nutritionally relevant plasma concentrations, can prevent Fas-mediated RBC death signaling induced by CSE, which suggests that dietary intake of cactus pear fruits may limit the deleterious effects of cigarette smoking.
Collapse
Affiliation(s)
- Ignazio Restivo
- Department of Biological, Chemical and Pharmaceutical Science and Technologies, Università degli Studi di Palermo, Palermo, Italy
| | - Ilenia Concetta Giardina
- Department of Biological, Chemical and Pharmaceutical Science and Technologies, Università degli Studi di Palermo, Palermo, Italy
| | - Rosario Barone
- Department of Biomedicine, Neuroscience and Advanced Diagnostics, Section of Human Anatomy, Università di Palermo, Palermo, Italy
| | - Antonio Cilla
- Nutrition and Food Science Area, Faculty of Pharmacy and Food Sciences, University of Valencia, Burjassot, Valencia, Spain
| | - Stefano Burgio
- Department of Biomedicine, Neuroscience and Advanced Diagnostics, Section of Human Anatomy, Università di Palermo, Palermo, Italy
| | - Mario Allegra
- Department of Biological, Chemical and Pharmaceutical Science and Technologies, Università degli Studi di Palermo, Palermo, Italy
| | - Luisa Tesoriere
- Department of Biological, Chemical and Pharmaceutical Science and Technologies, Università degli Studi di Palermo, Palermo, Italy
| | - Alessandro Attanzio
- Department of Biological, Chemical and Pharmaceutical Science and Technologies, Università degli Studi di Palermo, Palermo, Italy
| |
Collapse
|
8
|
Ngotho P, Press KD, Peedell M, Muasya W, Omondi BR, Otoboh SE, Seydel KB, Kapulu M, Laufer M, Taylor T, Bousema T, Marti M. Reversible host cell surface remodelling limits immune recognition and maximizes transmission of Plasmodium falciparum gametocytes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.30.591837. [PMID: 38746342 PMCID: PMC11092622 DOI: 10.1101/2024.04.30.591837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Reducing malaria transmission has been a major pillar of control programmes and is considered crucial for achieving malaria elimination. Gametocytes, the transmissible forms of the P. falciparum parasite, arise during the blood stage of the parasite and develop through 5 morphologically distinct stages. Immature gametocytes (stage I-IV) sequester and develop in the extravascular niche of the bone marrow and possibly spleen. Only mature stage V gametocytes re-enter peripheral circulation to be taken up by mosquitoes for successful onward transmission. We have recently shown that immature, but not mature gametocytes are targets of host immune responses and identified putative target surface antigens. We hypothesize that these antigens play a role in gametocyte sequestration and contribute to acquired transmission-reducing immunity. Here we demonstrate that surface antigen expression, serum reactivity by human IgG, and opsonic phagocytosis by macrophages all show similar dynamics during gametocyte maturation, i.e., on in immature and off in mature gametocytes. Moreover, the switch in surface reactivity coincides with reversal in phosphatidylserine (PS) surface exposure, a marker for red blood cell age and clearance. PS is exposed on the surface of immature gametocytes (as well as in late asexual stages) but is removed from the surface in later gametocyte stages (IV-V). Using parasite reverse genetics and drug perturbations, we confirm that parasite protein export into the host cell and phospholipid scramblase activity are required for the observed surface modifications in asexual and sexual P. falciparum stages. These findings suggest that the dynamic surface remodelling allows (i) immature gametocyte sequestration in bone marrow and (ii) mature gametocyte release into peripheral circulation and immune evasion, therefore contributing to mature gametocyte survival in vivo and onward transmission to mosquitoes. Importantly, blocking scramblase activity during gametocyte maturation results in efficient clearance of mature gametocytes, revealing a potential path for transmission blocking interventions. Our studies have important implications for our understanding of parasite biology and form a starting point for novel intervention strategies to simultaneously reduce parasite burden and transmission.
Collapse
Affiliation(s)
- Priscilla Ngotho
- Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, United Kingdom
- Institute of Parasitology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | | | - Megan Peedell
- Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, United Kingdom
- Institute of Parasitology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - William Muasya
- Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, United Kingdom
| | - Brian Roy Omondi
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Stanley E. Otoboh
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Karl B. Seydel
- Department of Osteopathic Medical Specialties, College of Osteopathic Medicine, Michigan State University, East Lansing, Michigan, United States
- Blantyre Malaria Project, Kamuzu University of Health Sciences, Blantyre, Malawi
| | | | - Miriam Laufer
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine Baltimore, MD, United States
| | - Terrie Taylor
- Department of Osteopathic Medical Specialties, College of Osteopathic Medicine, Michigan State University, East Lansing, Michigan, United States
- Blantyre Malaria Project, Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Teun Bousema
- Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Matthias Marti
- Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, United Kingdom
- Institute of Parasitology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| |
Collapse
|
9
|
Liang P, Zhang Y, Wan YCS, Ma S, Dong P, Lowry AJ, Francis SJ, Khandelwal S, Delahunty M, Telen MJ, Strouse JJ, Arepally GM, Yang H. Deciphering and disrupting PIEZO1-TMEM16F interplay in hereditary xerocytosis. Blood 2024; 143:357-369. [PMID: 38033286 PMCID: PMC10862370 DOI: 10.1182/blood.2023021465] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 11/07/2023] [Accepted: 11/19/2023] [Indexed: 12/02/2023] Open
Abstract
ABSTRACT Cell-surface exposure of phosphatidylserine (PS) is essential for phagocytic clearance and blood clotting. Although a calcium-activated phospholipid scramblase (CaPLSase) has long been proposed to mediate PS exposure in red blood cells (RBCs), its identity, activation mechanism, and role in RBC biology and disease remain elusive. Here, we demonstrate that TMEM16F, the long-sought-after RBC CaPLSase, is activated by calcium influx through the mechanosensitive channel PIEZO1 in RBCs. PIEZO1-TMEM16F functional coupling is enhanced in RBCs from individuals with hereditary xerocytosis (HX), an RBC disorder caused by PIEZO1 gain-of-function channelopathy. Enhanced PIEZO1-TMEM16F coupling leads to an increased propensity to expose PS, which may serve as a key risk factor for HX clinical manifestations including anemia, splenomegaly, and postsplenectomy thrombosis. Spider toxin GsMTx-4 and antigout medication benzbromarone inhibit PIEZO1, preventing force-induced echinocytosis, hemolysis, and PS exposure in HX RBCs. Our study thus reveals an activation mechanism of TMEM16F CaPLSase and its pathophysiological function in HX, providing insights into potential treatment.
Collapse
Affiliation(s)
- Pengfei Liang
- Department of Biochemistry, Duke University School of Medicine, Durham, NC
| | - Yang Zhang
- Department of Biochemistry, Duke University School of Medicine, Durham, NC
| | - Yui Chun S. Wan
- Department of Biochemistry, Duke University School of Medicine, Durham, NC
| | - Shang Ma
- Children’s Research Institute, UT Southwestern Medical Center, Dallas, TX
| | - Ping Dong
- Department of Biochemistry, Duke University School of Medicine, Durham, NC
| | - Augustus J. Lowry
- Department of Biochemistry, Duke University School of Medicine, Durham, NC
| | - Samuel J. Francis
- Department of Surgery, Duke University School of Medicine, Durham, NC
| | - Sanjay Khandelwal
- Department of Medicine, Duke University School of Medicine, Durham, NC
| | - Martha Delahunty
- Department of Medicine, Duke University School of Medicine, Durham, NC
| | - Marilyn J. Telen
- Department of Medicine, Duke University School of Medicine, Durham, NC
| | - John J. Strouse
- Department of Medicine, Duke University School of Medicine, Durham, NC
| | | | - Huanghe Yang
- Department of Biochemistry, Duke University School of Medicine, Durham, NC
- Department of Neurobiology, Duke University School of Medicine, Durham, NC
| |
Collapse
|
10
|
Grenier JMP, El Nemer W, De Grandis M. Red Blood Cell Contribution to Thrombosis in Polycythemia Vera and Essential Thrombocythemia. Int J Mol Sci 2024; 25:1417. [PMID: 38338695 PMCID: PMC10855956 DOI: 10.3390/ijms25031417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 01/18/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024] Open
Abstract
Polycythemia vera (PV) and essential thrombocythemia (ET) are myeloproliferative neoplasms (MPN) characterized by clonal erythrocytosis and thrombocytosis, respectively. The main goal of therapy in PV and ET is to prevent thrombohemorrhagic complications. Despite a debated notion that red blood cells (RBCs) play a passive and minor role in thrombosis, there has been increasing evidence over the past decades that RBCs may play a biological and clinical role in PV and ET pathophysiology. This review summarizes the main mechanisms that suggest the involvement of PV and ET RBCs in thrombosis, including quantitative and qualitative RBC abnormalities reported in these pathologies. Among these abnormalities, we discuss increased RBC counts and hematocrit, that modulate blood rheology by increasing viscosity, as well as qualitative changes, such as deformability, aggregation, expression of adhesion proteins and phosphatidylserine and release of extracellular microvesicles. While the direct relationship between a high red cell count and thrombosis is well-known, the intrinsic defects of RBCs from PV and ET patients are new contributors that need to be investigated in depth in order to elucidate their role and pave the way for new therapeutical strategies.
Collapse
Affiliation(s)
- Julien M. P. Grenier
- Etablissement Français du Sang PACA-Corse, Aix Marseille University, CNRS, ADES UMR 7268, 13005 Marseille, France
- Laboratoire d’Excellence GR-Ex, 75015 Paris, France
| | - Wassim El Nemer
- Etablissement Français du Sang PACA-Corse, Aix Marseille University, CNRS, ADES UMR 7268, 13005 Marseille, France
- Laboratoire d’Excellence GR-Ex, 75015 Paris, France
| | - Maria De Grandis
- Etablissement Français du Sang PACA-Corse, Aix Marseille University, CNRS, ADES UMR 7268, 13005 Marseille, France
- Laboratoire d’Excellence GR-Ex, 75015 Paris, France
| |
Collapse
|
11
|
Impact of Enhanced Phagocytosis of Glycated Erythrocytes on Human Endothelial Cell Functions. Cells 2022; 11:cells11142200. [PMID: 35883644 PMCID: PMC9351689 DOI: 10.3390/cells11142200] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/21/2022] [Accepted: 07/08/2022] [Indexed: 12/11/2022] Open
Abstract
Diabetes is associated with a high mortality rate due to vascular complications. Chronic hyperglycemia in diabetes leads to enhanced oxidative stress and glycation. Here, we explored the impact of glycation on human erythrocyte characteristics and capacity to affect endothelial cell function following erythrophagocytosis. Native and glucose-mediated glycated erythrocytes were prepared and characterized in terms of structural and deformability modifications. Erythrocyte preparations were tested for their binding and phagocytosis capacity as well as the potential functional consequences on human endothelial cell lines and primary cultures. Oxidative modifications were found to be enhanced in glycated erythrocytes after determination of their deformability, advanced glycation end-product content and eryptosis. Erythrophagocytosis by endothelial cells was significantly increased when incubated in the presence of glycated erythrocytes. In addition, higher iron accumulation, oxidative stress and impaired endothelial cell permeability were evidenced in cells previously incubated with glycated erythrocytes. When cultured under flow conditions, cellular integrity was disrupted by glycated erythrocytes at microvessel bifurcations, areas particularly prone to vascular complications. This study provides important new data on the impact of glycation on the structure of erythrocytes and their ability to alter endothelial cell function. Increased erythrophagocytosis may have a deleterious impact on endothelial cell function with adverse consequences on diabetic vascular complications.
Collapse
|
12
|
Dao M, MacDonald I, Asaro RJ. Erythrocyte flow through the interendothelial slits of the splenic venous sinus. Biomech Model Mechanobiol 2021; 20:2227-2245. [PMID: 34535857 DOI: 10.1007/s10237-021-01503-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 07/12/2021] [Indexed: 10/20/2022]
Abstract
The flow patterns of red blood cells through the spleen are intimately linked to clearance of senescent RBCs, with clearance principally occurring within the open flow through the red pulp and slits of the venous sinus system that exists in humans, rats, and dogs. Passage through interendothelial slits (IESs) of the sinus has been shown by MacDonald et al. (Microvasc Res 33:118-134, 1987) to be mediated by the caliber, i.e., slit opening width, of these slits. IES caliber within a given slit of a given sinus section has been shown to operate in an asynchronous manner. Here, we describe a model and simulation results that demonstrate how the supporting forces exerted on the sinus by the reticular meshwork of the red pulp, combined with asymmetrical contractility of stress fibers within the endothelial cells comprising the sinus, describe this vital and intriguing behavior. These results shed light on the function of the sinus slits in species such as humans, rats, and dogs that possess sinusoidal sinuses. Instead of assuming a passive mechanical filtering mechanism of the IESs, our proposed model provides a mechanically consistent explanation for the dynamically modulated IES opening/filtering mechanism observed in vivo. The overall perspective provided is also consistent with the view that IES passage serves as a self-protective mechanism in RBC vesiculation and inclusion removal.
Collapse
Affiliation(s)
- Ming Dao
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Ian MacDonald
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry Western University, London, ON, Canada
| | - R J Asaro
- Department of Structural Engineering, University of California, San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
13
|
Ex Vivo Activation of Red Blood Cell Senescence by Plasma from Sickle-Cell Disease Patients: Correlation between Markers and Adhesion Consequences during Acute Disease Events. Biomolecules 2021; 11:biom11070963. [PMID: 34208829 PMCID: PMC8301992 DOI: 10.3390/biom11070963] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/23/2021] [Accepted: 06/24/2021] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND: Blood transfusion remains a key treatment for managing occlusive episodes and painful crises in sickle-cell disease (SCD). In that clinical context, red blood cells (RBCs) from donors and transfused to patients, may be affected by plasma components in the recipients’ blood. Senescence lesion markers appear on the red cells after transfusion, shortening the RBC lifespan in circulation. In the specific context of SCD, senescence signals can also trigger the occlusive painful events, typical of the disease. This work follows through our previous data that described a RBC senescence process, rapidly detected after challenge with SCD pathological plasmas. In this clinical context, we wanted here to further explore the characteristics and physiologic consequences of AA RBC lesions associated with senescence, as lesions caused by RBCs after transfusion may have adverse consequences for SCD patients. METHODS: Plasma samples from SCD patients, with acute symptoms (n = 20) or steady-state disease (n = 34) were co-incubated with donor AA RBCs from blood units for 24 to 48 h. Specific markers signing RBC senescence were quantified after the incubation with SCD plasma samples. The physiologic in-flow adhesion was investigated on senescent RBCs, an in vitro technic into biochips that mimic adherence of RBCs during the occlusive events of SCD. RESULTS: Senescence markers on AA RBCs, together with their in-flow adhesion to the plasma-bridging protein thrombospondin, were associated with the clinical status of the SCD patients from whom plasma was obtained. In these experiments, the highest values were obtained for SCD acute plasma samples. Adhesion of senescent RBCs into biochips, which is not reversed by a pre-treatment with recombinant Annexin V, can be reproduced with the use of chemical agents acting on RBC membrane channels that regulate either Ca2+ entry or modulating RBC hydration. CONCLUSION: We found that markers on red cells are correlated, and that the senescence induced by SCD plasma provokes the adhesion of RBCs to the vessel wall protein thrombospondin. In-flow adhesion of senescent red cells after plasma co-incubations can be reproduced with the use of modulators of RBC membrane channels; activating the Piezo1 Ca2+ mechanosensitive channel provokes RBC adhesion of normal (non-senescent) RBCs, while blocking the Ca2+-dependent K+ Gardos channel, can reverse it. Clinically modulating the RBC adhesion to vascular wall proteins might be a promising avenue for the treatment of painful occlusive events in SCD.
Collapse
|
14
|
Notariale R, Infantino R, Palazzo E, Manna C. Erythrocytes as a Model for Heavy Metal-Related Vascular Dysfunction: The Protective Effect of Dietary Components. Int J Mol Sci 2021; 22:6604. [PMID: 34203038 PMCID: PMC8235350 DOI: 10.3390/ijms22126604] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/16/2021] [Accepted: 06/18/2021] [Indexed: 12/17/2022] Open
Abstract
Heavy metals are toxic environmental pollutants associated with severe ecological and human health risks. Among them is mercury (Hg), widespread in air, soil, and water, due to its peculiar geo-biochemical cycle. The clinical consequences of Hg exposure include neurotoxicity and nephrotoxicity. Furthermore, increased risk for cardiovascular diseases is also reported due to a direct effect on cardiovascular tissues, including endothelial cells, recently identified as important targets for the harmful action of heavy metals. In this review, we will discuss the rationale for the potential use of erythrocytes as a surrogate model to study Hg-related toxicity on the cardiovascular system. The toxic effects of Hg on erythrocytes have been amply investigated in the last few years. Among the observed alterations, phosphatidylserine exposure has been proposed as an underlying mechanism responsible for Hg-induced increased proatherogenic and prothrombotic activity of these cells. Furthermore, following Hg-exposure, a decrease in NOS activity has also been reported, with consequent lowering of NO bioavailability, thus impairing endothelial function. An additional mechanism that may induce a decrease in NO availability is the generation of an oxidative microenvironment. Finally, considering that chronic Hg exposure mainly occurs through contaminated foods, the protective effect of dietary components is also discussed.
Collapse
Affiliation(s)
- Rosaria Notariale
- Department of Precision Medicine, School of Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy;
| | - Rosmara Infantino
- Department of Experimental Medicine, Division of Pharmacology, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (R.I.); (E.P.)
| | - Enza Palazzo
- Department of Experimental Medicine, Division of Pharmacology, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (R.I.); (E.P.)
| | - Caterina Manna
- Department of Precision Medicine, School of Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy;
| |
Collapse
|
15
|
Turpin C, Catan A, Meilhac O, Bourdon E, Canonne-Hergaux F, Rondeau P. Erythrocytes: Central Actors in Multiple Scenes of Atherosclerosis. Int J Mol Sci 2021; 22:ijms22115843. [PMID: 34072544 PMCID: PMC8198892 DOI: 10.3390/ijms22115843] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 05/26/2021] [Accepted: 05/26/2021] [Indexed: 12/16/2022] Open
Abstract
The development and progression of atherosclerosis (ATH) involves lipid accumulation, oxidative stress and both vascular and blood cell dysfunction. Erythrocytes, the main circulating cells in the body, exert determinant roles in the gas transport between tissues. Erythrocytes have long been considered as simple bystanders in cardiovascular diseases, including ATH. This review highlights recent knowledge concerning the role of erythrocytes being more than just passive gas carriers, as potent contributors to atherosclerotic plaque progression. Erythrocyte physiology and ATH pathology is first described. Then, a specific chapter delineates the numerous links between erythrocytes and atherogenesis. In particular, we discuss the impact of extravasated erythrocytes in plaque iron homeostasis with potential pathological consequences. Hyperglycaemia is recognised as a significant aggravating contributor to the development of ATH. Then, a special focus is made on glycoxidative modifications of erythrocytes and their role in ATH. This chapter includes recent data proposing glycoxidised erythrocytes as putative contributors to enhanced atherothrombosis in diabetic patients.
Collapse
Affiliation(s)
- Chloé Turpin
- Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), INSERM, UMR 1188, Université de La Réunion, 97400 Saint Denis, France; (C.T.); (A.C.); (O.M.); (E.B.)
| | - Aurélie Catan
- Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), INSERM, UMR 1188, Université de La Réunion, 97400 Saint Denis, France; (C.T.); (A.C.); (O.M.); (E.B.)
| | - Olivier Meilhac
- Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), INSERM, UMR 1188, Université de La Réunion, 97400 Saint Denis, France; (C.T.); (A.C.); (O.M.); (E.B.)
- Centre Hospitalier Universitaire de La Réunion, 97400 Saint Denis, France
| | - Emmanuel Bourdon
- Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), INSERM, UMR 1188, Université de La Réunion, 97400 Saint Denis, France; (C.T.); (A.C.); (O.M.); (E.B.)
| | | | - Philippe Rondeau
- Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), INSERM, UMR 1188, Université de La Réunion, 97400 Saint Denis, France; (C.T.); (A.C.); (O.M.); (E.B.)
- Correspondence: ; Tel.: +262(0)-2-62-93-88-43; Fax: +262-(0)-2-62-93-88-01
| |
Collapse
|
16
|
Asaro RJ, Cabrales P. Red Blood Cells: Tethering, Vesiculation, and Disease in Micro-Vascular Flow. Diagnostics (Basel) 2021; 11:diagnostics11060971. [PMID: 34072241 PMCID: PMC8228733 DOI: 10.3390/diagnostics11060971] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 05/12/2021] [Accepted: 05/14/2021] [Indexed: 12/14/2022] Open
Abstract
The red blood cell has become implicated in the progression of a range of diseases; mechanisms by which red cells are involved appear to include the transport of inflammatory species via red cell-derived vesicles. We review this role of RBCs in diseases such as diabetes mellitus, sickle cell anemia, polycythemia vera, central retinal vein occlusion, Gaucher disease, atherosclerosis, and myeloproliferative neoplasms. We propose a possibly unifying, and novel, paradigm for the inducement of RBC vesiculation during vascular flow of red cells adhered to the vascular endothelium as well as to the red pulp of the spleen. Indeed, we review the evidence for this hypothesis that links physiological conditions favoring both vesiculation and enhanced RBC adhesion and demonstrate the veracity of this hypothesis by way of a specific example occurring in splenic flow which we argue has various renderings in a wide range of vascular flows, in particular microvascular flows. We provide a mechanistic basis for membrane loss and the formation of lysed red blood cells in the spleen that may mediate their turnover. Our detailed explanation for this example also makes clear what features of red cell deformability are involved in the vesiculation process and hence require quantification and a new form of quantitative indexing.
Collapse
Affiliation(s)
- Robert J. Asaro
- Department of Structural Engineering, University of California, San Diego, CA 92093, USA
- Correspondence: ; Tel.: +1-619-890-6888; Fax: +1-858-534-6373
| | - Pedro Cabrales
- Department of Bioengineering, University of California, San Diego, CA 92093, USA;
| |
Collapse
|
17
|
Asaro RJ, Zhu Q, MacDonald IC. Tethering, evagination, and vesiculation via cell-cell interactions in microvascular flow. Biomech Model Mechanobiol 2020; 20:31-53. [PMID: 32656697 DOI: 10.1007/s10237-020-01366-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 06/25/2020] [Indexed: 12/13/2022]
Abstract
Vesiculation is a ubiquitous process undergone by most cell types and serves a variety of vital cell functions; vesiculation from erythrocytes, in particular, is a well-known example and constitutes a self-protection mechanism against premature clearance, inter alia. Herein, we explore a paradigm that red blood cell derived vesicles may form within the microvascular, in intense shear flow, where cells become adhered to either other cells or the extracellular matrix, by forming tethers or an evagination. Adherence may be enhanced, or caused, by diseased states or chemical anomalies as are discussed herein. The mechanisms for such processes are detailed via numerical simulations that are patterned directly from video-recorded cell microflow within the splenic venous sinus (MacDonald et al. 1987), as included, e.g., as Supplementary Material. The mechanisms uncovered highlight the necessity of accounting for remodeling of the erythrocyte's membrane skeleton and, specifically, for the time scales associated with that process that is an integral part of cell deformation. In this way, the analysis provides pointed, and vital, insights into the notion of what the, often used phrase, cell deformability actually entails in a more holistic manner. The analysis also details what data are required to make further quantitative descriptions possible and suggests experimental pathways for acquiring such.
Collapse
Affiliation(s)
- Robert J Asaro
- Department of Structural Engineering, University of California, San Diego, CA, USA.
| | - Qiang Zhu
- Department of Structural Engineering, University of California, San Diego, CA, USA
| | - Ian C MacDonald
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| |
Collapse
|
18
|
Shamova EV, Gorudko IV, Grigorieva DV, Sokolov AV, Kokhan AU, Melnikova GB, Yafremau NA, Gusev SA, Sveshnikova AN, Vasilyev VB, Cherenkevich SN, Panasenko OM. The effect of myeloperoxidase isoforms on biophysical properties of red blood cells. Mol Cell Biochem 2019; 464:119-130. [PMID: 31754972 DOI: 10.1007/s11010-019-03654-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 11/08/2019] [Indexed: 12/18/2022]
Abstract
Myeloperoxidase (MPO), an oxidant-producing enzyme, stored in azurophilic granules of neutrophils has been recently shown to influence red blood cell (RBC) deformability leading to abnormalities in blood microcirculation. Native MPO is a homodimer, consisting of two identical protomers (monomeric MPO) connected by a single disulfide bond but in inflammatory foci as a result of disulfide cleavage monomeric MPO (hemi-MPO) can also be produced. This study investigated if two MPO isoforms have distinct effects on biophysical properties of RBCs. We have found that hemi-MPO, as well as the dimeric form, bind to the glycophorins A/B and band 3 protein on RBC's plasma membrane, that lead to reduced cell resistance to osmotic and acidic hemolysis, reduction in cell elasticity, significant changes in cell volume, morphology, and the conductance of RBC plasma membrane ion channels. Furthermore, we have shown for the first time that both dimeric and hemi-MPO lead to phosphatidylserine (PS) exposure on the outer leaflet of RBC membrane. However, the effects of hemi-MPO on the structural and functional properties of RBCs were lower compared to those of dimeric MPO. These findings suggest that the ability of MPO protein to influence RBC's biophysical properties depends on its conformation (dimeric or monomeric isoform). It is intriguing to speculate that hemi-MPO appearance in blood during inflammation can serve as a regulatory mechanism addressed to reduce abnormalities on RBC response, induced by dimeric MPO.
Collapse
Affiliation(s)
| | | | | | - Alexey V Sokolov
- FSBSI "Institute of Experimental Medicine", St. Petersburg, Russia
- Saint-Petersburg State University, St. Petersburg, Russia
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | | | - Galina B Melnikova
- A.V. Luikov Heat and Mass Transfer Institute of the National Academy of Sciences of Belarus, Minsk, Belarus
| | - Nikolai A Yafremau
- State Institution "N.N. Alexandrov Republican Scientific and Practical Center of Oncology and Medical Radiology", Minsk, Belarus
| | - Sergey A Gusev
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | | | - Vadim B Vasilyev
- FSBSI "Institute of Experimental Medicine", St. Petersburg, Russia
- Saint-Petersburg State University, St. Petersburg, Russia
| | | | - Oleg M Panasenko
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
- Pirogov Russian National Research Medical University, Moscow, Russia
| |
Collapse
|
19
|
Catan A, Turpin C, Diotel N, Patche J, Guerin-Dubourg A, Debussche X, Bourdon E, Ah-You N, Le Moullec N, Besnard M, Veerapen R, Rondeau P, Meilhac O. Aging and glycation promote erythrocyte phagocytosis by human endothelial cells: Potential impact in atherothrombosis under diabetic conditions. Atherosclerosis 2019; 291:87-98. [PMID: 31704555 DOI: 10.1016/j.atherosclerosis.2019.10.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 10/16/2019] [Accepted: 10/25/2019] [Indexed: 12/25/2022]
Abstract
BACKGROUND AND AIMS Atherothrombotic plaques of type 2 diabetic (T2D) patients are characterized by an increased neovascularization and intraplaque hemorrhage. The clearance of erythrocytes may be carried out by vascular cells. We explored the potential of human endothelial cells to bind and phagocyte in vitro aged and/or glycated erythrocytes as well as erythrocytes obtained from diabetic patients. METHODS Fresh, aged and glycated-aged erythrocytes from healthy volunteers and T2D patients were tested for their binding and phagocytosis capacity as well as the potential functional consequences on endothelial cells (viability, proliferation and wound healing capacity). Immunohistochemistry was also performed in human carotid atherothrombotic samples (from patients with or without T2D). RESULTS Aging and glycation of erythrocytes induced phosphatidylserine (PS) exposure and oxidative stress leading to enhanced endothelial cell binding and engulfment. Phagocytosis by endothelial cells was more pronounced with aged and glycated erythrocytes than with fresh ones. Phagocytosis was enhanced with T2D versus healthy erythrocytes. Furthermore, endothelial wound healing potential was significantly blunted after exposure to glycated-aged versus fresh erythrocytes. Finally, we show that interactions between erythrocytes and endothelial cells and their potential phagocytosis may occur in vivo, in atherothrombotic conditions, in neovessels and in the luminal endothelial lining. CONCLUSIONS Endothelial cells may play an important role in erythrocyte clearance in an atherothrombotic environment. Under diabetic conditions, erythrocyte glycation favors their engulfment by endothelial cells and may participate in endothelial dysfunction, thereby promoting vulnerable atherothrombotic plaques to rupture.
Collapse
Affiliation(s)
- Aurélie Catan
- Université de la Réunion, Inserm, UMR 1188 Diabète athérothrombose Thérapies Réunion Océan Indien (DéTROI), Sainte-Clotilde, F-97490, France
| | - Chloé Turpin
- Université de la Réunion, Inserm, UMR 1188 Diabète athérothrombose Thérapies Réunion Océan Indien (DéTROI), Sainte-Clotilde, F-97490, France
| | - Nicolas Diotel
- Université de la Réunion, Inserm, UMR 1188 Diabète athérothrombose Thérapies Réunion Océan Indien (DéTROI), Sainte-Clotilde, F-97490, France
| | - Jessica Patche
- Université de la Réunion, Inserm, UMR 1188 Diabète athérothrombose Thérapies Réunion Océan Indien (DéTROI), Sainte-Clotilde, F-97490, France
| | | | | | - Emmanuel Bourdon
- Université de la Réunion, Inserm, UMR 1188 Diabète athérothrombose Thérapies Réunion Océan Indien (DéTROI), Sainte-Clotilde, F-97490, France
| | | | | | | | - Reuben Veerapen
- Clinique Sainte Clotilde, Groupe de santé Clinifutur, Saint Denis, France
| | - Philippe Rondeau
- Université de la Réunion, Inserm, UMR 1188 Diabète athérothrombose Thérapies Réunion Océan Indien (DéTROI), Sainte-Clotilde, F-97490, France
| | - Olivier Meilhac
- Université de la Réunion, Inserm, UMR 1188 Diabète athérothrombose Thérapies Réunion Océan Indien (DéTROI), Sainte-Clotilde, F-97490, France; CHU de La Réunion, Saint-Denis, Saint-Pierre, France.
| |
Collapse
|
20
|
Pretini V, Koenen MH, Kaestner L, Fens MHAM, Schiffelers RM, Bartels M, Van Wijk R. Red Blood Cells: Chasing Interactions. Front Physiol 2019; 10:945. [PMID: 31417415 PMCID: PMC6684843 DOI: 10.3389/fphys.2019.00945] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 07/09/2019] [Indexed: 12/13/2022] Open
Abstract
Human red blood cells (RBC) are highly differentiated cells that have lost all organelles and most intracellular machineries during their maturation process. RBC are fundamental for the nearly all basic physiologic dynamics and they are key cells in the body's respiratory system by being responsible for the oxygen transport to all cells and tissues, and delivery of carbon dioxide to the lungs. With their flexible structure RBC are capable to deform in order to travel through all blood vessels including very small capillaries. Throughout their in average 120 days lifespan, human RBC travel in the bloodstream and come in contact with a broad range of different cell types. In fact, RBC are able to interact and communicate with endothelial cells (ECs), platelets, macrophages, and bacteria. Additionally, they are involved in the maintenance of thrombosis and hemostasis and play an important role in the immune response against pathogens. To clarify the mechanisms of interaction of RBC and these other cells both in health and disease as well as to highlight the role of important key players, we focused our interest on RBC membrane components such as ion channels, proteins, and phospholipids.
Collapse
Affiliation(s)
- Virginia Pretini
- Department of Clinical Chemistry and Haematology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
- Theoretical Medicine and Biosciences, Saarland University, Homburg, Germany
| | - Mischa H. Koenen
- Department of Laboratory of Translational Immunology and Department of Pediatric Immunology, Wilhelmina Children’s Hospital, University Medical Centre Utrecht, Utrecht, Netherlands
| | - Lars Kaestner
- Theoretical Medicine and Biosciences, Saarland University, Homburg, Germany
- Experimental Physics, Saarland University, Saarbrücken, Germany
| | - Marcel H. A. M. Fens
- Department of Pharmaceutics, Utrecht Institute of Pharmaceutical Sciences (UIPS), Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Raymond M. Schiffelers
- Department of Clinical Chemistry and Haematology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Marije Bartels
- Paediatric Haematology Department, Wilhelmina Children’s Hospital, University Medical Centre Utrecht, Utrecht, Netherlands
| | - Richard Van Wijk
- Department of Clinical Chemistry and Haematology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
21
|
Bian Y, An GJ, Kim K, Ngo T, Shin S, Bae ON, Lim KM, Chung JH. Ginsenoside Rg3, a component of ginseng, induces pro-thrombotic activity of erythrocytes via hemolysis-associated phosphatidylserine exposure. Food Chem Toxicol 2019; 131:110553. [PMID: 31163221 DOI: 10.1016/j.fct.2019.05.061] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 05/19/2019] [Accepted: 05/31/2019] [Indexed: 12/19/2022]
Abstract
Ginseng and its active gradient, ginsenoside Rg3 (Rg3), are widely used for a variety of health benefits, but concerns over their misuses are increasing. Previously, it has been reported that Rg3 can cause hemolysis, but its health outcome remains unknown. Here, we demonstrated that Rg3 could promote the procoagulant activity of erythrocytes through the process of hemolysis, ultimately leading to increased thrombosis. In freshly isolated human erythrocytes, Rg3 caused pore formation and fragmentation of the erythrocyte membrane. Confocal microscopy observation and flow cytometric analysis revealed that remnant erythrocyte fragments after the exposure to Rg3 expressed phosphatidylserine (PS), which can promote blood coagulation through providing assembly sites for coagulation complexes. Rat in vivo experiments further confirmed that intravenous administration of Rg3 produced PS-bearing erythrocyte debris and increased thrombosis. Collectively, we demonstrated that Rg3 could induce the procoagulant activity of erythrocytes by generating PS-bearing erythrocyte debris through hemolysis, which might provoke thrombosis.
Collapse
Affiliation(s)
- Yiying Bian
- College of Pharmacy, Seoul National University, Seoul, 151-742, South Korea.
| | - Gwang-Jin An
- College of Pharmacy, Seoul National University, Seoul, 151-742, South Korea.
| | - Keunyoung Kim
- College of Pharmacy, Seoul National University, Seoul, 151-742, South Korea.
| | - Thien Ngo
- College of Pharmacy, Seoul National University, Seoul, 151-742, South Korea.
| | - Sue Shin
- Department of Laboratory Medicine, Boramae Hospital, Seoul, 156-707, South Korea.
| | - Ok-Nam Bae
- College of Pharmacy, Hanyang University, Ansan, Gyeonggi-do, 426-791, South Korea.
| | - Kyung-Min Lim
- College of Pharmacy, Ewha Womans University, Seoul, 03760, South Korea.
| | - Jin-Ho Chung
- College of Pharmacy, Seoul National University, Seoul, 151-742, South Korea.
| |
Collapse
|
22
|
Martínez-Vieyra V, Rodríguez-Varela M, García-Rubio D, De la Mora-Mojica B, Méndez-Méndez J, Durán-Álvarez C, Cerecedo D. Alterations to plasma membrane lipid contents affect the biophysical properties of erythrocytes from individuals with hypertension. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1861:182996. [PMID: 31150634 DOI: 10.1016/j.bbamem.2019.05.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 05/15/2019] [Accepted: 05/23/2019] [Indexed: 12/17/2022]
Abstract
Genetic and environmental factors may contribute to high blood pressure, which is termed essential hypertension. Hypertension is a major independent risk factor for cardiovascular disease, stroke and renal failure; thus, elucidation of the etiopathology of hypertension merits further research. We recently reported that the platelets and neutrophils of patients with hypertension exhibit altered biophysical characteristics. In the present study, we assessed whether the major structural elements of erythrocyte plasma membranes are altered in individuals with hypertension. We compared the phospholipid (phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, sphingosine) and cholesterol contents of erythrocytes from individuals with hypertension (HTN) and healthy individuals (HI) using LC/MS-MS. HTN erythrocytes contained higher phosphatidylcholine, phosphatidylethanolamine and phosphatidylserine contents and a lower cholesterol content than HI erythrocytes. Furthermore, atomic force microscopy revealed important morphological changes in HTN erythrocytes, which reflected the increased membrane fragility and fluidity and higher levels of oxidative stress observed in HTN erythrocytes using spectrophotofluorometry, flow cytometry and spectrometry. This study reveals that alterations to the lipid contents of erythrocyte plasma membranes occur in hypertension, and these alterations in lipid composition result in morphological and physiological abnormalities that modify the dynamic properties of erythrocytes and contribute to the pathophysiology of hypertension.
Collapse
Affiliation(s)
- Vette Martínez-Vieyra
- Laboratorio de Hematobiología, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, CDMX, Mexico
| | - Mario Rodríguez-Varela
- Instituto de Ciencias Aplicadas y Tecnología, Universidad Nacional Autónoma de México, CDMX, Mexico
| | - Diana García-Rubio
- Laboratorio de Hematobiología, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, CDMX, Mexico
| | | | | | - Carlos Durán-Álvarez
- Instituto de Ciencias Aplicadas y Tecnología, Universidad Nacional Autónoma de México, CDMX, Mexico
| | - Doris Cerecedo
- Laboratorio de Hematobiología, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, CDMX, Mexico.
| |
Collapse
|
23
|
Bachg AC, Horsthemke M, Skryabin BV, Klasen T, Nagelmann N, Faber C, Woodham E, Machesky LM, Bachg S, Stange R, Jeong HW, Adams RH, Bähler M, Hanley PJ. Phenotypic analysis of Myo10 knockout (Myo10 tm2/tm2) mice lacking full-length (motorized) but not brain-specific headless myosin X. Sci Rep 2019; 9:597. [PMID: 30679680 PMCID: PMC6345916 DOI: 10.1038/s41598-018-37160-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 12/04/2018] [Indexed: 01/04/2023] Open
Abstract
We investigated the physiological functions of Myo10 (myosin X) using Myo10 reporter knockout (Myo10tm2) mice. Full-length (motorized) Myo10 protein was deleted, but the brain-specific headless (Hdl) isoform (Hdl-Myo10) was still expressed in homozygous mutants. In vitro, we confirmed that Hdl-Myo10 does not induce filopodia, but it strongly localized to the plasma membrane independent of the MyTH4-FERM domain. Filopodia-inducing Myo10 is implicated in axon guidance and mice lacking the Myo10 cargo protein DCC (deleted in colorectal cancer) have severe commissural defects, whereas MRI (magnetic resonance imaging) of isolated brains revealed intact commissures in Myo10tm2/tm2 mice. However, reminiscent of Waardenburg syndrome, a neural crest disorder, Myo10tm2/tm2 mice exhibited pigmentation defects (white belly spots) and simple syndactyly with high penetrance (>95%), and 24% of mutant embryos developed exencephalus, a neural tube closure defect. Furthermore, Myo10tm2/tm2 mice consistently displayed bilateral persistence of the hyaloid vasculature, revealed by MRI and retinal whole-mount preparations. In principle, impaired tissue clearance could contribute to persistence of hyaloid vasculature and syndactyly. However, Myo10-deficient macrophages exhibited no defects in the phagocytosis of apoptotic or IgG-opsonized cells. RNA sequence analysis showed that Myo10 was the most strongly expressed unconventional myosin in retinal vascular endothelial cells and expression levels increased 4-fold between P6 and P15, when vertical sprouting angiogenesis gives rise to deeper layers. Nevertheless, imaging of isolated adult mutant retinas did not reveal vascularization defects. In summary, Myo10 is important for both prenatal (neural tube closure and digit formation) and postnatal development (hyaloid regression, but not retinal vascularization).
Collapse
Affiliation(s)
- Anne C Bachg
- Institut für Molekulare Zellbiologie, Westfälische Wilhelms-Universität Münster, 48149, Münster, Germany
| | - Markus Horsthemke
- Institut für Molekulare Zellbiologie, Westfälische Wilhelms-Universität Münster, 48149, Münster, Germany
| | - Boris V Skryabin
- Department of Medicine, Transgenic Animal and Genetic Engineering Models (TRAM), Westfälische Wilhelms-Universität Münster, 48149, Münster, Germany
| | - Tim Klasen
- Department of Clinical Radiology, Westfälische Wilhelms-Universität Münster, 48149, Münster, Germany
| | - Nina Nagelmann
- Department of Clinical Radiology, Westfälische Wilhelms-Universität Münster, 48149, Münster, Germany
| | - Cornelius Faber
- Department of Clinical Radiology, Westfälische Wilhelms-Universität Münster, 48149, Münster, Germany
| | - Emma Woodham
- Cancer Research UK Beatson Institute, Glasgow University College of Medical, Veterinary and Life Sciences Garscube Estate, Glasgow, G61 1BD, United Kingdom
| | - Laura M Machesky
- Cancer Research UK Beatson Institute, Glasgow University College of Medical, Veterinary and Life Sciences Garscube Estate, Glasgow, G61 1BD, United Kingdom
| | - Sandra Bachg
- Department of Regenerative Musculoskeletal Medicine, Institute of Musculoskeletal Medicine (IMM), University Hospital Münster, 48149, Münster, Germany
| | - Richard Stange
- Department of Regenerative Musculoskeletal Medicine, Institute of Musculoskeletal Medicine (IMM), University Hospital Münster, 48149, Münster, Germany
| | - Hyun-Woo Jeong
- Max Planck Institute for Molecular Biomedicine, Department of Tissue Morphogenesis, and University of Münster, Faculty of Medicine, 48149, Münster, Germany
| | - Ralf H Adams
- Max Planck Institute for Molecular Biomedicine, Department of Tissue Morphogenesis, and University of Münster, Faculty of Medicine, 48149, Münster, Germany
| | - Martin Bähler
- Institut für Molekulare Zellbiologie, Westfälische Wilhelms-Universität Münster, 48149, Münster, Germany
| | - Peter J Hanley
- Institut für Molekulare Zellbiologie, Westfälische Wilhelms-Universität Münster, 48149, Münster, Germany.
| |
Collapse
|
24
|
Boulet C, Doerig CD, Carvalho TG. Manipulating Eryptosis of Human Red Blood Cells: A Novel Antimalarial Strategy? Front Cell Infect Microbiol 2018; 8:419. [PMID: 30560094 PMCID: PMC6284368 DOI: 10.3389/fcimb.2018.00419] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 11/14/2018] [Indexed: 12/13/2022] Open
Abstract
Malaria is a major global health burden, affecting over 200 million people worldwide. Resistance against all currently available antimalarial drugs is a growing threat, and represents a major and long-standing obstacle to malaria eradication. Like many intracellular pathogens, Plasmodium parasites manipulate host cell signaling pathways, in particular programmed cell death pathways. Interference with apoptotic pathways by malaria parasites is documented in the mosquito and human liver stages of infection, but little is known about this phenomenon in the erythrocytic stages. Although mature erythrocytes have lost all organelles, they display a form of programmed cell death termed eryptosis. Numerous features of eryptosis resemble those of nucleated cell apoptosis, including surface exposure of phosphatidylserine, cell shrinkage and membrane ruffling. Upon invasion, Plasmodium parasites induce significant stress to the host erythrocyte, while delaying the onset of eryptosis. Many eryptotic inducers appear to have a beneficial effect on the course of malaria infection in murine models, but major gaps remain in our understanding of the underlying molecular mechanisms. All currently available antimalarial drugs have parasite-encoded targets, which facilitates the emergence of resistance through selection of mutations that prevent drug-target binding. Identifying host cell factors that play a key role in parasite survival will provide new perspectives for host-directed anti-malarial chemotherapy. This review focuses on the interrelationship between Plasmodium falciparum and the eryptosis of its host erythrocyte. We summarize the current knowledge in this area, highlight the different schools of thoughts and existing gaps in knowledge, and discuss future perspectives for host-directed therapies in the context of antimalarial drug discovery.
Collapse
Affiliation(s)
- Coralie Boulet
- Molecular Parasitology Laboratory, Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, VIC, Australia
| | - Christian D Doerig
- Infection and Immunity Program, Biomedicine Discovery Institute, Department of Microbiology, Monash University, Clayton, VIC, Australia
| | - Teresa G Carvalho
- Molecular Parasitology Laboratory, Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, VIC, Australia
| |
Collapse
|
25
|
Attanzio A, Frazzitta A, Vasto S, Tesoriere L, Pintaudi AM, Livrea MA, Cilla A, Allegra M. Increased eryptosis in smokers is associated with the antioxidant status and C-reactive protein levels. Toxicology 2018; 411:43-48. [PMID: 30385265 DOI: 10.1016/j.tox.2018.10.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 10/18/2018] [Accepted: 10/26/2018] [Indexed: 01/10/2023]
Abstract
Cigarette smoking has been linked with oxidative stress and inflammation. In turn, eryptosis, the suicidal erythrocyte death similar to apoptosis that can be triggered by oxidative stress, has been associated with chronic inflammatory diseases including atherosclerosis. However, the link between smoking and eryptosis has not been explored so far. The aim of the present study was to determine the level of eryptotic erythrocytes in healthy male smokers (n = 21) compared to non-smokers (n = 21) and assess its relationship with systemic inflammation (CRP) as well as with antioxidant defense (GSH) and their resistance to ex-vivo induced hemolysis. Smoking caused an increase in phosphatidylserine translocation outside the erythrocyte membrane (hallmark of eryptosis), significantly correlated to the plasma level of CRP (r = 0.546) and GSH concentration in erythrocytes (r=-0.475). With respect to non-smokers, smokers show a marginal increase of total leucocytes and erythrocyte volume, no modifications of the RBC resistance to oxidative stress-induced hemolysis and hematological and lipid parameters unvaried. We conclude that the inflammatory status (high CRP levels) and RBC oxidative stress (low GSH levels) caused by cigarette smoking are associated with an increase of eryptotic erythrocytes, a yet unknown relationship potentially involved with atherosclerosis and cardiovascular disease in smokers.
Collapse
Affiliation(s)
- Alessandro Attanzio
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 28, 90123, Palermo, Italy
| | - Anna Frazzitta
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 28, 90123, Palermo, Italy
| | - Sonya Vasto
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 28, 90123, Palermo, Italy
| | - Luisa Tesoriere
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 28, 90123, Palermo, Italy
| | - Anna Maria Pintaudi
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 28, 90123, Palermo, Italy
| | - Maria Antonia Livrea
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 28, 90123, Palermo, Italy
| | - Antonio Cilla
- Nutrition and Food Science Area, Faculty of Pharmacy, University of Valencia, Avda. Vicente Andrés Estellés s/n, 46100, Burjassot (Valencia), Spain.
| | - Mario Allegra
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 28, 90123, Palermo, Italy
| |
Collapse
|
26
|
Horsthemke M, Wilden J, Bachg AC, Hanley PJ. Time-lapse 3D Imaging of Phagocytosis by Mouse Macrophages. J Vis Exp 2018. [PMID: 30394377 DOI: 10.3791/57566] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Phagocytosis plays a key role in host defense, as well as in tissue development and maintenance, and involves rapid, receptor-mediated rearrangements of the actin cytoskeleton to capture, envelop and engulf large particles. Although phagocytic receptors, downstream signaling pathways, and effectors, such as Rho GTPases, have been identified, the dynamic cytoskeletal remodeling of specific receptor-mediated phagocytic events remain unclear. Four decades ago, two distinct mechanisms of phagocytosis, exemplified by Fcγ receptor (FcγR)- and complement receptor (CR)-mediated phagocytosis, were identified using scanning electron microscopy. Binding of immunoglobulin G (IgG)-opsonized particles to FcγRs triggers the protrusion of thin membrane extensions, which initially form a so-called phagocytic cup around the particle before it becomes completely enclosed and retracted into the cell. In contrast, complement opsonized particles appear to sink into the phagocyte following binding to complement receptors. These two modes of phagocytosis, phagocytic cup formation and sinking in, have become well established in the literature. However, the distinctions between the two modes have become blurred by reports that complement receptor-mediated phagocytosis may induce various membrane protrusions. With the availability of high resolution imaging techniques, phagocytosis assays are required that allow real-time 3D (three dimensional) visualization of how specific phagocytic receptors mediate the uptake of individual particles. More commonly used approaches for the study of phagocytosis, such as end-point assays, miss the opportunity to understand what is happening at the interface of particles and phagocytes. Here we describe phagocytic assays, using time-lapse spinning disk confocal microscopy, that allow 3D imaging of single phagocytic events. In addition, we describe assays to unambiguously image Fcγ receptor- or complement receptor-mediated phagocytosis.
Collapse
|
27
|
Nicolay JP, Thorn V, Daniel C, Amann K, Siraskar B, Lang F, Hillgruber C, Goerge T, Hoffmann S, Gorzelanny C, Huck V, Mess C, Obser T, Schneppenheim R, Fleming I, Schneider MF, Schneider SW. Cellular stress induces erythrocyte assembly on intravascular von Willebrand factor strings and promotes microangiopathy. Sci Rep 2018; 8:10945. [PMID: 30026593 PMCID: PMC6053440 DOI: 10.1038/s41598-018-28961-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 07/01/2018] [Indexed: 11/17/2022] Open
Abstract
Microangiopathy with subsequent organ damage represents a major complication in several diseases. The mechanisms leading to microvascular occlusion include von Willebrand factor (VWF), notably the formation of ultra-large von Willebrand factor fibers (ULVWFs) and platelet aggregation. To date, the contribution of erythrocytes to vascular occlusion is incompletely clarified. We investigated the platelet-independent interaction between stressed erythrocytes and ULVWFs and its consequences for microcirculation and organ function under dynamic conditions. In response to shear stress, erythrocytes interacted strongly with VWF to initiate the formation of ULVWF/erythrocyte aggregates via the binding of Annexin V to the VWF A1 domain. VWF-erythrocyte adhesion was attenuated by heparin and the VWF-specific protease ADAMTS13. In an in vivo model of renal ischemia/reperfusion injury, erythrocytes adhered to capillaries of wild-type but not VWF-deficient mice and later resulted in less renal damage. In vivo imaging in mice confirmed the adhesion of stressed erythrocytes to the vessel wall. Moreover, enhanced eryptosis rates and increased VWF binding were detected in blood samples from patients with chronic renal failure. Our study demonstrates that stressed erythrocytes have a pronounced binding affinity to ULVWFs. The discovered mechanisms suggest that erythrocytes are essential for the pathogenesis of microangiopathies and renal damage by actively binding to ULVWFs.
Collapse
Affiliation(s)
- Jan P Nicolay
- Department of Dermatology, Venereology and Allergy, University Medical Center Mannheim, Ruprecht-Karls-University of Heidelberg, Mannheim, Germany. .,Division of Immunogenetics, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Verena Thorn
- Department of Dermatology, Venereology and Allergy, University Medical Center Mannheim, Ruprecht-Karls-University of Heidelberg, Mannheim, Germany
| | - Christoph Daniel
- Department of Nephropathology, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Kerstin Amann
- Department of Nephropathology, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | | | - Florian Lang
- Department of Physiology, University of Tübingen, Tübingen, Germany
| | - Carina Hillgruber
- Department of Dermatology, University Hospital Münster, Münster, Germany
| | - Tobias Goerge
- Department of Dermatology, University Hospital Münster, Münster, Germany
| | - Stefan Hoffmann
- Institute of Plant Biology and Biotechnology (IBBP), Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Christian Gorzelanny
- Department of Dermatology, Venereology and Allergy, University Medical Center Mannheim, Ruprecht-Karls-University of Heidelberg, Mannheim, Germany.,Department of Dermatology and Venerology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Volker Huck
- Department of Dermatology, Venereology and Allergy, University Medical Center Mannheim, Ruprecht-Karls-University of Heidelberg, Mannheim, Germany.,Department of Dermatology and Venerology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christian Mess
- Department of Dermatology and Venerology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tobias Obser
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Reinhard Schneppenheim
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ingrid Fleming
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, Germany
| | | | - Stefan W Schneider
- Department of Dermatology and Venerology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
28
|
Anti-cancer activity of Annexin V in murine melanoma model by suppressing tumor angiogenesis. Oncotarget 2018; 8:42602-42612. [PMID: 28402934 PMCID: PMC5522091 DOI: 10.18632/oncotarget.16645] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 02/28/2017] [Indexed: 12/15/2022] Open
Abstract
Annexin V, a protein with high affinity to phosphatidylserine (PS) in a calcium dependent manner, has been widely used to probe apoptosis. Annexin V in inhibiting engulfment of apoptotic cells by macrophages had been reported to increase the immunogenicity of tumor cells undergoing apoptosis. However, far less is known about its multiple properties, especially in cancer therapies. Here we found that Annexin V had a good anti-tumor activity in murine melanomaxenograft model. Treatment with Annexin V showed significant reduction in tumor size and remarkable tumor necrosis areas. The serum level of VEGF was downregualted by Annexin V both in normal mice and mice bearing tumor, suggesting that its new role on impeding tumor angiogenesis. In Silico analysis using Oncomine database, we also found the negative correlation of AnnexinV and VEGF both in skin and melanoma. The decreased Annexin V expression shows linearity relation with the elevated VEGF expression. These data provided a possibility that Annexin V can be used as a novel angiogenesis inhibitor in tumor therapy.
Collapse
|
29
|
Totino PR, Lopes SC. Insights into the Cytoadherence Phenomenon of Plasmodium vivax: The Putative Role of Phosphatidylserine. Front Immunol 2017; 8:1148. [PMID: 28979260 PMCID: PMC5611623 DOI: 10.3389/fimmu.2017.01148] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 08/30/2017] [Indexed: 12/11/2022] Open
Abstract
Plasmodium vivax is the most geographically widespread and the dominant human malaria parasite in most countries outside of sub-Saharan Africa and, although it was classically recognized to cause benign infection, severe cases and deaths caused by P. vivax have remarkably been reported. In contrast to Plasmodium falciparum, which well-known ability to bind to endothelium and placental tissue and form rosettes is related to severity of the disease, it has been a dogma that P. vivax is unable to undergo cytoadherent phenomena. However, some studies have demonstrated that red blood cells (RBCs) infected by P. vivax can cytoadhere to host cells, while the molecules participating in this host–parasite interaction are still a matter of speculation. In the present overview, we address the evidences currently supporting the adhesive profile of P. vivax and, additionally, discuss the putative role of phosphatidylserine—a cell membrane phospholipid with cytoadhesive properties that has been detected on the surface of Plasmodium-parasitized RBCs.
Collapse
Affiliation(s)
- Paulo Renato Totino
- Laboratory of Malaria Research, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | | |
Collapse
|
30
|
The Effect of Sepsis on the Erythrocyte. Int J Mol Sci 2017; 18:ijms18091932. [PMID: 28885563 PMCID: PMC5618581 DOI: 10.3390/ijms18091932] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 08/31/2017] [Accepted: 09/04/2017] [Indexed: 12/25/2022] Open
Abstract
Sepsis induces a wide range of effects on the red blood cell (RBC). Some of the effects including altered metabolism and decreased 2,3-bisphosphoglycerate are preventable with appropriate treatment, whereas others, including decreased erythrocyte deformability and redistribution of membrane phospholipids, appear to be permanent, and factors in RBC clearance. Here, we review the effects of sepsis on the erythrocyte, including changes in RBC volume, metabolism and hemoglobin's affinity for oxygen, morphology, RBC deformability (an early indicator of sepsis), antioxidant status, intracellular Ca2+ homeostasis, membrane proteins, membrane phospholipid redistribution, clearance and RBC O₂-dependent adenosine triphosphate efflux (an RBC hypoxia signaling mechanism involved in microvascular autoregulation). We also consider the causes of these effects by host mediated oxidant stress and bacterial virulence factors. Additionally, we consider the altered erythrocyte microenvironment due to sepsis induced microvascular dysregulation and speculate on the possible effects of RBC autoxidation. In future, a better understanding of the mechanisms involved in sepsis induced erythrocyte pathophysiology and clearance may guide improved sepsis treatments. Evidence that small molecule antioxidants protect the erythrocyte from loss of deformability, and more importantly improve septic patient outcome suggest further research in this area is warranted. While not generally considered a critical factor in sepsis, erythrocytes (and especially a smaller subpopulation) appear to be highly susceptible to sepsis induced injury, provide an early warning signal of sepsis and are a factor in the microvascular dysfunction that has been associated with organ dysfunction.
Collapse
|
31
|
Orthogonal near-infrared upconversion co-regulated site-specific O 2 delivery and photodynamic therapy for hypoxia tumor by using red blood cell microcarriers. Biomaterials 2017; 125:90-100. [DOI: 10.1016/j.biomaterials.2017.02.017] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 02/13/2017] [Accepted: 02/13/2017] [Indexed: 12/27/2022]
|
32
|
Cilla A, Alegría A, Attanzio A, Garcia-Llatas G, Tesoriere L, Livrea MA. Dietary phytochemicals in the protection against oxysterol-induced damage. Chem Phys Lipids 2017; 207:192-205. [PMID: 28267434 DOI: 10.1016/j.chemphyslip.2017.03.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 03/02/2017] [Indexed: 02/06/2023]
Abstract
The intake of fruits and vegetables is associated with reduced incidence of many chronic diseases. These foods contain phytochemicals that often possess antioxidant and free radical scavenging capacity and show anti-inflammatory action, which are also the basis of other bioactivities and health benefits, such as anticancer, anti-aging, and protective action for cardiovascular diseases, diabetes mellitus, obesity and neurodegenerative disorders. Many factors can be included in the etiopathogenesis of all of these multifactorial diseases that involve oxidative stress, inflammation and/or cell death processes, oxysterols, i.e. cholesterol oxidation products (COPs) as well as phytosterol oxidation products (POPs), among others. These oxidized lipids result from either spontaneous and/or enzymatic oxidation of cholesterol/phytosterols on the steroid nucleus or on the side chain and their critical roles in the pathophysiology of the abovementioned diseases has become increasingly evident. In this context, many studies investigated the potential of dietary phytochemicals (polyphenols, carotenoids and vitamins C and E, among others) to protect against oxysterol toxicity in various cell models mimicking pathophysiological conditions. This review, summarizing the mechanisms involved in the chemopreventive effect of phytochemicals against the injury by oxysterols may constitute a step forward to consider the importance of preventive strategies on a nutritional point of view to decrease the burden of many age-related chronic diseases.
Collapse
Affiliation(s)
- Antonio Cilla
- Nutrition and Food Science Area, Faculty of Pharmacy, University of Valencia, Avda. Vicente Andrés Estellés s/n, 46100, Burjassot, Valencia, Spain.
| | - Amparo Alegría
- Nutrition and Food Science Area, Faculty of Pharmacy, University of Valencia, Avda. Vicente Andrés Estellés s/n, 46100, Burjassot, Valencia, Spain
| | - Alessandro Attanzio
- Dipartimento Scienze e Technologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, Palermo, Italy
| | - Guadalupe Garcia-Llatas
- Nutrition and Food Science Area, Faculty of Pharmacy, University of Valencia, Avda. Vicente Andrés Estellés s/n, 46100, Burjassot, Valencia, Spain
| | - Luisa Tesoriere
- Dipartimento Scienze e Technologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, Palermo, Italy
| | - Maria A Livrea
- Dipartimento Scienze e Technologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, Palermo, Italy.
| |
Collapse
|
33
|
Lee H, Lee K, Lee BK, Priezzhev AV, Shin S. Effect of shear-induced platelet activation on red blood cell aggregation. Clin Hemorheol Microcirc 2017; 66:97-104. [PMID: 28211801 DOI: 10.3233/ch-16191] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Mechanical shear stress is one of the important factors for platelet activation. Although shear stress has been frequently utilized in many applications of diagnostic bio-equipment, there has been little consideration as to whether shear stress induces platelet activation and consequently alters hemorheological characteristics. Therefore, we investigated the effect of shear-induced platelet activation on red blood cell (RBC) aggregation. The hypothesis of the present research is as follows: Platelets activated by high shear stress secrete substances, which can affect hemorheological characteristics to promote RBC aggregation. In our study, an increase in RBC aggregation indices (critical shear stress (CSS) and aggregation index (AI)) by shear-induced platelet activation was observed. Significantly, an increase of 19% in CSS was observed. However, deformability remained unchanged. These phenomena could be a result of the increased cellular adhesion force on RBC membranes due to secreted substances from activated platelets. Therefore, since high shear application results in the unexpected effect on RBC aggregation, conditions for shear application in diagnostic bio-equipment are to be carefully determined.
Collapse
Affiliation(s)
- Hoyoon Lee
- School of Mechanical Engineering, Korea University, Seoul, Korea
| | - Kisung Lee
- Department of Experimental Physics, University of Saarland, Saarbrücken, Germany.,Faculty of Physics, Lomonosov Moscow State University, Moscow, Russia
| | - Byoung-Kwon Lee
- Department of Internal Medicine, GangNam Severance Hospital, Yonsei University, Seoul, Korea
| | - Alexander V Priezzhev
- Faculty of Physics, Lomonosov Moscow State University, Moscow, Russia.,Faculty of Physics and International Laser Centre, Lomonosov Moscow State University, Moscow, Russia
| | - Sehyun Shin
- School of Mechanical Engineering, Korea University, Seoul, Korea
| |
Collapse
|
34
|
Abed M, Thiel C, Towhid S, Alzoubi K, Honisch S, Lang F, Königsrainer A. Stimulation of Erythrocyte Cell Membrane Scrambling by C-Reactive Protein. Cell Physiol Biochem 2017; 41:806-818. [DOI: 10.1159/000458745] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 01/25/2017] [Indexed: 12/29/2022] Open
Abstract
Background: Eryptosis, the suicidal erythrocyte death characterized by cell shrinkage and phosphatidylserine-translocation, is triggered by fever and inflammation. Signaling includes increased cytosolic Ca2+-activity ([Ca2+]i), caspase activation, and ceramide. Inflammation is associated with increased plasma concentration of C-reactive protein (CRP). The present study explored whether CRP triggers eryptosis. Methods: Phosphatidylserine abundance at the cell surface was estimated from annexin-V-binding, cell volume from forward scatter, [Ca2+]i from Fluo3-fluorescence, ceramide abundance and caspase-3-activity utilizing FITC-conjugated antibodies. Moreover, blood was drawn from patients with acute appendicitis (9♀,11♂) and healthy volunteers (10♀,10♂) for determination of CRP, blood count and phosphatidylserine. Results: A 48h CRP treatment significantly increased the percentage of annexin-V-binding cells (≥5µg/ml), [Ca2+]i (≥5µg/ml), ceramide (20µg/ml) and caspase-activity (20µg/ml). Annexin-V-binding was significantly blunted by caspase inhibitor zVAD (10µM). The percentage of phosphatidylserine-exposing erythrocytes in freshly drawn blood was significantly higher in appendicitis patients (1.83±0.21%) than healthy volunteers (0.81±0.09%), and significantly higher following a 24h incubation of erythrocytes from healthy volunteers to patient plasma than to plasma from healthy volunteers. The percentage of phosphatidylserine-exposing erythrocytes correlated with CRP plasma concentration. Conclusion: C-reactive protein triggers eryptosis, an effect at least partially due to increase of [Ca2+]i, increase of ceramide abundance and caspase activation.
Collapse
|
35
|
Almasry M, Jemaà M, Mischitelli M, Lang F, Faggio C. Camalexin-Induced Cell Membrane Scrambling and Cell Shrinkage in Human Erythrocytes. Cell Physiol Biochem 2017; 41:731-741. [DOI: 10.1159/000458733] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 01/28/2017] [Indexed: 12/22/2022] Open
Abstract
Background/Aims: The thaliana phytoalexin Camalexin has been proposed for the treatment of malignancy. Camalexin counteracts tumor growth in part by stimulation of suicidal death or apoptosis of tumor cells. Similar to apoptosis of nucleated cells, erythrocytes may enter suicidal death or eryptosis, which is characterized by cell shrinkage and cell membrane scrambling with phosphatidylserine translocation to the erythrocyte surface. Cellular mechanisms contributing to the complex machinery executing eryptosis include increase of cytosolic Ca2+ activity ([Ca2+]i), oxidative stress, ceramide, protein kinase C and caspases. The present study explored, whether Camalexin induces eryptosis and, if so, to shed light on mechanisms involved. Methods: Phosphatidylserine exposure at the cell surface was estimated from annexin-V-binding, cell volume from forward scatter, [Ca2+]i from Fluo-3 fluorescence, ROS formation from DCFDA dependent fluorescence, and ceramide abundance utilizing specific antibodies. Results: A 48 hours exposure of human erythrocytes to Camalexin significantly increased the percentage of annexin-V-binding cells (≥ 10 µg/ml), significantly decreased forward scatter (≥ 5 µg/ml) and significantly increased Fluo-3-fluorescence (≥ 10 µg/ml), but did not significantly modify DCFDA fluorescence or ceramide abundance. The effect of Camalexin on annexin-V-binding was significantly blunted by removal of extracellular Ca2+, by kinase inhibitors staurosporine (1 µM) and chelerythrine (10 µM), as well as by caspase inhibitors zVAD (10 µM) and zIETD-fmk (50 µM). Conclusions: Camalexin triggers cell shrinkage and phospholipid scrambling of the erythrocyte cell membrane, an effect at least in part depending on Ca2+ entry, as well as staurosporine and chelerythrine sensitive kinase(s) as well as zVAD and zIETD-fmk sensitive caspase(s).
Collapse
|
36
|
Barber BE, Grigg MJ, William T, Yeo TW, Anstey NM. Intravascular haemolysis with haemoglobinuria in a splenectomized patient with severe Plasmodium knowlesi malaria. Malar J 2016; 15:462. [PMID: 27613607 PMCID: PMC5017000 DOI: 10.1186/s12936-016-1514-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2016] [Accepted: 09/02/2016] [Indexed: 12/29/2022] Open
Abstract
Background Haemoglobinuria is an uncommon complication of severe malaria, reflecting acute intravascular haemolysis and potentially leading to acute kidney injury. It can occur early in the course of infection as a consequence of a high parasite burden, or may occur following commencement of anti-malarial treatment. Treatment with quinine has been described as a risk factor; however the syndrome may also occur following treatment with intravenous artesunate. In Malaysia, Plasmodium knowlesi is the most common cause of severe malaria, often associated with high parasitaemia. Asplenic patients may be at additional increased risk of intravascular haemolysis. Case presentation A 61 years old asplenic man was admitted to a tertiary referral hospital in Sabah, Malaysia, with severe knowlesi malaria characterized by hyperparasitaemia (7.9 %), jaundice, respiratory distress, metabolic acidosis, and acute kidney injury. He was commenced on intravenous artesunate, but1 day later developed haemoglobinuria, associated with a 22 % reduction in admission haemoglobin. Additional investigations, including a cell-free haemoglobin of 10.2 × 105 ng/mL and an undetectable haptoglobin, confirmed intravascular haemolysis. The patient continued on intravenous artesunate for a total of 48 h prior to substitution with artemether–lumefantrine, and made a good recovery with resolution of his haemoglobinuria and improvement of his kidney function by day 3. Conclusions An asplenic patient with hyperparasitaemic severe knowlesi malaria developed haemoglobinuria after treatment with intravenous artesunate. There are plausible mechanisms for increased haemolysis with hyperparasitaemia, and following both splenectomy and artesunate. Although in this case the patient made a rapid recovery, knowlesi malaria patients with this unusual complication should be closely monitored for potential deterioration.
Collapse
Affiliation(s)
- Bridget E Barber
- Menzies School of Health Research and Charles Darwin University, PO Box 41096, Casuarina, NT, 0810, Australia. .,Infectious Diseases Society Sabah-Menzies School of Health Research Clinical Research Unit, 88586, Kota Kinabalu, Sabah, Malaysia.
| | - Matthew J Grigg
- Menzies School of Health Research and Charles Darwin University, PO Box 41096, Casuarina, NT, 0810, Australia.,Infectious Diseases Society Sabah-Menzies School of Health Research Clinical Research Unit, 88586, Kota Kinabalu, Sabah, Malaysia
| | - Timothy William
- Infectious Diseases Society Sabah-Menzies School of Health Research Clinical Research Unit, 88586, Kota Kinabalu, Sabah, Malaysia.,Queen Elizabeth Hospital Clinical Research Centre, 88586, Kota Kinabalu, Sabah, Malaysia.,Jesselton Medical Centre, 88300, Kota Kinabalu, Sabah, Malaysia
| | - Tsin W Yeo
- Menzies School of Health Research and Charles Darwin University, PO Box 41096, Casuarina, NT, 0810, Australia.,Infectious Diseases Society Sabah-Menzies School of Health Research Clinical Research Unit, 88586, Kota Kinabalu, Sabah, Malaysia.,Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 639798, Singapore
| | - Nicholas M Anstey
- Menzies School of Health Research and Charles Darwin University, PO Box 41096, Casuarina, NT, 0810, Australia.,Infectious Diseases Society Sabah-Menzies School of Health Research Clinical Research Unit, 88586, Kota Kinabalu, Sabah, Malaysia
| |
Collapse
|
37
|
Villa CH, Cines DB, Siegel DL, Muzykantov V. Erythrocytes as Carriers for Drug Delivery in Blood Transfusion and Beyond. Transfus Med Rev 2016; 31:26-35. [PMID: 27707522 DOI: 10.1016/j.tmrv.2016.08.004] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 08/01/2016] [Accepted: 08/12/2016] [Indexed: 10/20/2022]
Abstract
Red blood cells (RBCs) are innate carriers that can also be engineered to improve the pharmacokinetics and pharmacodynamics of many drugs, particularly biotherapeutics. Successful loading of drugs, both internally and on the external surface of RBCs, has been demonstrated for many drugs including anti-inflammatory, antimicrobial, and antithrombotic agents. Methods for internal loading of drugs within RBCs are now entering clinical use. Although internal loading can result in membrane disruption that may compromise biocompatibility, surface loading using either affinity or chemical ligands offers a diverse set of approaches for the production of RBC drug carriers. A wide range of surface determinants is potentially available for this approach, although there remains a need to characterize the effects of coupling agents to these surface proteins. Somewhat surprisingly, recent data also suggest that red cell-mediated delivery may confer tolerogenic immune effects. Questions remaining before widespread application of these technologies include determining the optimal loading protocol, source of RBCs, and production logistics, as well as addressing regulatory hurdles. Red blood cell drug carriers, after many decades of progress, are now poised to enter the clinic and broaden the potential application of RBCs in blood transfusion.
Collapse
Affiliation(s)
- Carlos H Villa
- Department of Pathology and Laboratory Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA.
| | - Douglas B Cines
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Don L Siegel
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | | |
Collapse
|
38
|
Tzounakas VL, Kriebardis AG, Georgatzakou HT, Foudoulaki-Paparizos LE, Dzieciatkowska M, Wither MJ, Nemkov T, Hansen KC, Papassideri IS, D'Alessandro A, Antonelou MH. Glucose 6-phosphate dehydrogenase deficient subjects may be better "storers" than donors of red blood cells. Free Radic Biol Med 2016; 96:152-65. [PMID: 27094493 DOI: 10.1016/j.freeradbiomed.2016.04.005] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 04/04/2016] [Accepted: 04/09/2016] [Indexed: 02/04/2023]
Abstract
Storage of packed red blood cells (RBCs) is associated with progressive accumulation of lesions, mostly triggered by energy and oxidative stresses, which potentially compromise the effectiveness of the transfusion therapy. Concerns arise as to whether glucose 6-phosphate dehydrogenase deficient subjects (G6PD(-)), ~5% of the population in the Mediterranean area, should be accepted as routine donors in the light of the increased oxidative stress their RBCs suffer from. To address this question, we first performed morphology (scanning electron microscopy), physiology and omics (proteomics and metabolomics) analyses on stored RBCs from healthy or G6PD(-) donors. We then used an in vitro model of transfusion to simulate transfusion outcomes involving G6PD(-) donors or recipients, by reconstituting G6PD(-) stored or fresh blood with fresh or stored blood from healthy volunteers, respectively, at body temperature. We found that G6PD(-) cells store well in relation to energy, calcium and morphology related parameters, though at the expenses of a compromised anti-oxidant system. Additional stimuli, mimicking post-transfusion conditions (37°C, reconstitution with fresh healthy blood, incubation with oxidants) promoted hemolysis and oxidative lesions in stored G6PD(-) cells in comparison to controls. On the other hand, stored healthy RBC units showed better oxidative parameters and lower removal signaling when reconstituted with G6PD(-) fresh blood compared to control. Although the measured parameters of stored RBCs from the G6PD deficient donors appeared to be acceptable, the results from the in vitro model of transfusion suggest that G6PD(-) RBCs could be more susceptible to hemolysis and oxidative stresses post-transfusion. On the other hand, their chronic exposure to oxidative stress might make them good recipients, as they better tolerate exposure to oxidatively damaged long stored healthy RBCs.
Collapse
Affiliation(s)
- Vassilis L Tzounakas
- Department of Cell Biology and Biophysics, Faculty of Biology, NKUA, Athens 15784, Greece
| | - Anastasios G Kriebardis
- Laboratory of Hematology and Transfusion Medicine, Department of Medical Laboratories, Faculty of Health and Caring Professions, Technological and Educational Institute of Athens, Athens 12210, Greece
| | - Hara T Georgatzakou
- Department of Cell Biology and Biophysics, Faculty of Biology, NKUA, Athens 15784, Greece
| | | | - Monika Dzieciatkowska
- Department of Biochemistry and Molecular Genetics, University of Colorado, School of Medicine-Anschutz Medical Campus, Aurora, 80045 CO, USA
| | - Matthew J Wither
- Department of Biochemistry and Molecular Genetics, University of Colorado, School of Medicine-Anschutz Medical Campus, Aurora, 80045 CO, USA
| | - Travis Nemkov
- Department of Biochemistry and Molecular Genetics, University of Colorado, School of Medicine-Anschutz Medical Campus, Aurora, 80045 CO, USA
| | - Kirk C Hansen
- Department of Biochemistry and Molecular Genetics, University of Colorado, School of Medicine-Anschutz Medical Campus, Aurora, 80045 CO, USA
| | - Issidora S Papassideri
- Department of Cell Biology and Biophysics, Faculty of Biology, NKUA, Athens 15784, Greece
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado, School of Medicine-Anschutz Medical Campus, Aurora, 80045 CO, USA.
| | - Marianna H Antonelou
- Department of Cell Biology and Biophysics, Faculty of Biology, NKUA, Athens 15784, Greece.
| |
Collapse
|
39
|
Signoretto E, Zierle J, Bhuyan AAM, Castagna M, Lang F. Ceranib-2-induced suicidal erythrocyte death. Cell Biochem Funct 2016; 34:359-66. [PMID: 27291470 DOI: 10.1002/cbf.3196] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 05/12/2016] [Accepted: 05/16/2016] [Indexed: 12/30/2022]
Abstract
Ceramide is known to trigger apoptosis of nucleated cells and eryptosis of erythrocytes. Eryptosis is characterized by cell shrinkage and cell membrane scrambling with phosphatidylserine translocation to the erythrocyte surface. Besides ceramide, stimulators of eryptosis include increase of cytosolic Ca(2+) -activity ([Ca(2+) ]i ) and oxidative stress. Ceramide is degraded by acid ceramidase and inhibition of the enzyme similarly triggers apoptosis. The present study explored, whether ceramidase inhibitor Ceranib-2 induces eryptosis. Flow cytometry was employed to quantify phosphatidylserine-exposure at the cell surface from annexin-V-binding, cell volume from forward scatter, [Ca(2+) ]i from Fluo3-fluorescence, reactive oxygen species (ROS) from DCF dependent fluorescence, and ceramide abundance utilizing specific antibodies. Hemolysis was estimated from hemoglobin concentration in the supernatant. A 48 h exposure of human erythrocytes to Ceranib-2 significantly increased the percentage of annexin-V-binding cells (≥50 μM) and the percentage of hemolytic cells (≥10 μM) without significantly modifying forward scatter. Ceranib-2 significantly increased Fluo3-fluorescence, DCF fluorescence and ceramide abundance. The effect of Ceranib-2 on annexin-V-binding was not significantly blunted by removal of extracellular Ca(2+) . Ceranib-2 triggers phospholipid scrambling of the erythrocyte cell membrane, an effect at least in part due to increase of ceramide abundance and induction of oxidative stress, but not dependent on Ca(2+) entry. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Elena Signoretto
- Departments of Physiology and Cardiology & Cardiovascular Medicine, Eberhard-Karls-University of Tuebingen, Tuebingen, Germany.,Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milano, Italy
| | - Jens Zierle
- Departments of Physiology and Cardiology & Cardiovascular Medicine, Eberhard-Karls-University of Tuebingen, Tuebingen, Germany
| | - Abdulla Al Mamun Bhuyan
- Departments of Physiology and Cardiology & Cardiovascular Medicine, Eberhard-Karls-University of Tuebingen, Tuebingen, Germany
| | - Michela Castagna
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milano, Italy
| | - Florian Lang
- Departments of Physiology and Cardiology & Cardiovascular Medicine, Eberhard-Karls-University of Tuebingen, Tuebingen, Germany
| |
Collapse
|
40
|
Chadebech P, de Ménorval MA, Bodivit G, Mekontso-Dessap A, Pakdaman S, Jouard A, Galactéros F, Bierling P, Habibi A, Pirenne F. Evidence of benefits from using fresh and cryopreserved blood to transfuse patients with acute sickle cell disease. Transfusion 2016; 56:1730-8. [PMID: 27184475 DOI: 10.1111/trf.13636] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 02/26/2016] [Accepted: 03/27/2016] [Indexed: 01/11/2023]
Abstract
BACKGROUND The transfusion of red blood cell (RBC) concentrates is the main treatment for acute vaso-occlusive symptoms in sickle cell disease (SCD). Units of packed RBCs (pRBCs) must retain optimal characteristics for transfusion throughout the storage period. Transfused RBCs interact with the plasma and the endothelium that lines blood vessels and may be the target of immune-hematologic conflict if the patient produces antibodies against RBCs. Questions remain concerning the benefit-risk balance of RBC transfusions, in particular about the shelf-life of the units. STUDY DESIGN AND METHODS Plasma samples from 33 hemoglobin SS patients with SCD who had severe acute-phase symptoms or were in steady-state were put in contact with 10 fresh-stored and older stored samples from the same 10 RBC units. The factors affecting RBC survival (phosphatidylserine exposure, cytosolic calcium influx, cell size reduction) were analyzed. RESULTS We show that the effects of plasma samples from patients with SCD on pRBCs depend on the clinical condition of the patients and the duration of red cell storage. Signs of RBC senescence were correlated with the clinical status of the patient from whom the plasma sample was obtained. A decrease in RBC size and an increase in phosphatidylserine exposure were correlated with the duration of RBC storage. The behavior of cryopreserved pRBCs was similar to that of fresh refrigerated RBCs when challenged with patient plasma samples. CONCLUSION The key points of this study are that the clinical condition of patients with SCD can negatively affect the integrity of pRBCs for transfusion, and those effects increase with longer storage. Also, cryopreserved pRBCs behave similarly to fresh RBCs when challenged with plasma samples from patients with SCD in acute phase. Our data provide the first evidence that fresh RBCs stored for short periods may be of greater benefit to patients with SCD than RBCs that have been refrigerated for longer periods, particularly for those who have acute symptoms of SCD.
Collapse
Affiliation(s)
- Philippe Chadebech
- Etablissement Français du Sang, Île-de-France, Hôpital Henri-Mondor.,IMRB-INSERM U955, Equipe 2-Transfusion et Maladies du Globule Rouge, Institut Mondor, Créteil, France.,Laboratoire d'Excellence GR-Ex, Paris, France
| | - Marie-Amélie de Ménorval
- Etablissement Français du Sang, Île-de-France, Hôpital Henri-Mondor.,IMRB-INSERM U955, Equipe 2-Transfusion et Maladies du Globule Rouge, Institut Mondor, Créteil, France.,Laboratoire d'Excellence GR-Ex, Paris, France
| | - Gwellaouen Bodivit
- Etablissement Français du Sang, Île-de-France, Hôpital Henri-Mondor.,IMRB-INSERM U955, Equipe 2-Transfusion et Maladies du Globule Rouge, Institut Mondor, Créteil, France.,Laboratoire d'Excellence GR-Ex, Paris, France
| | | | - Sadaf Pakdaman
- Etablissement Français du Sang, Île-de-France, Hôpital Henri-Mondor.,IMRB-INSERM U955, Equipe 2-Transfusion et Maladies du Globule Rouge, Institut Mondor, Créteil, France.,Laboratoire d'Excellence GR-Ex, Paris, France
| | - Alicia Jouard
- Etablissement Français du Sang, Île-de-France, Hôpital Henri-Mondor.,IMRB-INSERM U955, Equipe 2-Transfusion et Maladies du Globule Rouge, Institut Mondor, Créteil, France.,Laboratoire d'Excellence GR-Ex, Paris, France
| | - Frédéric Galactéros
- Centre de Référence des Syndromes Drépanocytaires Majeurs, Hôpital Henri-Mondor, AP-HP, Université Paris-Est
| | - Philippe Bierling
- Etablissement Français du Sang, Île-de-France, Hôpital Henri-Mondor.,IMRB-INSERM U955, Equipe 2-Transfusion et Maladies du Globule Rouge, Institut Mondor, Créteil, France.,Laboratoire d'Excellence GR-Ex, Paris, France
| | - Anoosha Habibi
- Centre de Référence des Syndromes Drépanocytaires Majeurs, Hôpital Henri-Mondor, AP-HP, Université Paris-Est
| | - France Pirenne
- Etablissement Français du Sang, Île-de-France, Hôpital Henri-Mondor.,IMRB-INSERM U955, Equipe 2-Transfusion et Maladies du Globule Rouge, Institut Mondor, Créteil, France.,Laboratoire d'Excellence GR-Ex, Paris, France.,UPEC, Université Paris-Est, Créteil, France
| |
Collapse
|
41
|
Manzur-Jattin F, Álvarez-Ortega N, Moneriz-Pretell C, Corrales-Santander H, Cantillo-García K. Eriptosis: mecanismos moleculares y su implicación en la enfermedad aterotrombótica. REVISTA COLOMBIANA DE CARDIOLOGÍA 2016. [DOI: 10.1016/j.rccar.2015.09.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
42
|
Carelli-Alinovi C, Ficarra S, Russo AM, Giunta E, Barreca D, Galtieri A, Misiti F, Tellone E. Involvement of acetylcholinesterase and protein kinase C in the protective effect of caffeine against β-amyloid-induced alterations in red blood cells. Biochimie 2016; 121:52-9. [DOI: 10.1016/j.biochi.2015.11.022] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 11/22/2015] [Indexed: 02/04/2023]
|
43
|
Villa CH, Muzykantov VR, Cines DB. The emerging role for red blood cells in haemostasis: opportunity for intervention. ACTA ACUST UNITED AC 2016. [DOI: 10.1111/voxs.12197] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- C. H. Villa
- Department of Pathology and Laboratory Medicine; The Perelman School of Medicine, University of Pennsylvania; Philadelphia PA USA
| | - V. R. Muzykantov
- Department of Pharmacology and Center for Targeted Therapeutics and Translational Nanomedicine of the Institute for Translational Medicine and Therapeutics; The Perelman School of Medicine; University of Pennsylvania; Philadelphia PA USA
| | - D. B. Cines
- Department of Pathology and Laboratory Medicine; The Perelman School of Medicine, University of Pennsylvania; Philadelphia PA USA
| |
Collapse
|
44
|
Officioso A, Manna C, Alzoubi K, Lang F. Bromfenvinphos induced suicidal death of human erythrocytes. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2016; 126:58-63. [PMID: 26778435 DOI: 10.1016/j.pestbp.2015.07.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2015] [Revised: 07/23/2015] [Accepted: 07/23/2015] [Indexed: 06/05/2023]
Abstract
The organophosphorus pesticide bromfenvinphos ((E,Z)-O,O-diethyl-O-[1-(2,4-dichlorophenyl)-2-bromovinyl] phosphate) has been shown to decrease hematocrit and hemoglobin levels in blood presumably by triggering oxidative stress of erythrocytes. Oxidative stress is known to activate erythrocytic Ca(2+) permeable unselective cation channels leading to Ca(2+) entry and increase of cytosolic Ca(2+) activity ([Ca(2+)]i), which in turn triggers eryptosis, the suicidal death characterized by cell shrinkage and cell membrane scrambling with phosphatidylserine translocation to the erythrocyte surface. The present study explored, whether and how bromfenvinphos induces eryptosis. To this end, phosphatidylserine exposure at the cell surface was estimated from annexin-V-binding, cell volume from forward scatter, hemolysis from hemoglobin release, [Ca(2+)]i from Fluo3-fluorescence, and ROS formation from DCFDA dependent fluorescence. As a result, a 48hour exposure of human erythrocytes to bromfenvinphos (≥100μM) significantly increased the percentage of annexin-V-binding cells, significantly decreased forward scatter, significantly increased Fluo3-fluorescence, and significantly increased DCFDA fluorescence. The effect of bromfenvinphos on annexin-V-binding and forward scatter was significantly blunted, but not abolished by removal of extracellular Ca(2+). In conclusion, bromfenvinphos triggers cell shrinkage and phospholipid scrambling of the erythrocyte cell membrane, an effect in part due to stimulation of ROS formation and Ca(2+) entry.
Collapse
Affiliation(s)
- Arbace Officioso
- Department of Physiology, University of Tübingen, Gmelinstr. 5, 72076 Tuebingen, Germany; Department of Biochemistry, Biophysics and General Pathology, School of Medicine and Surgery, Second University of Naples, Via L. De Crecchio 7, 80138 Naples, Italy
| | - Caterina Manna
- Department of Biochemistry, Biophysics and General Pathology, School of Medicine and Surgery, Second University of Naples, Via L. De Crecchio 7, 80138 Naples, Italy
| | - Kousi Alzoubi
- Department of Physiology, University of Tübingen, Gmelinstr. 5, 72076 Tuebingen, Germany
| | - Florian Lang
- Department of Physiology, University of Tübingen, Gmelinstr. 5, 72076 Tuebingen, Germany.
| |
Collapse
|
45
|
Attanasio P, Bissinger R, Haverkamp W, Pieske B, Wutzler A, Lang F. Enhanced suicidal erythrocyte death in acute cardiac failure. Eur J Clin Invest 2015; 45:1316-24. [PMID: 26479159 DOI: 10.1111/eci.12555] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 10/15/2015] [Indexed: 12/11/2022]
Abstract
BACKGROUND A common complication of acute cardiac failure (AHF) is anaemia, which negatively influences the clinical outcome. Causes of anaemia include enhanced eryptosis, a suicidal erythrocyte death characterized by cell shrinkage and cell membrane scrambling with phosphatidylserine translocation. Signalling triggering eryptosis include oxidative stress, increase of cytosolic Ca(2+) -activity ([Ca(2+) ]i ) and ceramide. The present study explored whether AHF is associated with accelerated eryptosis. MATERIALS AND METHODS Erythrocytes were drawn from healthy volunteers (n = 10) and patients hospitalized for AHF (n = 22). Phosphatidylserine exposure was estimated from annexin-V-binding, cell volume from forward scatter, [Ca(2+) ]i from Fluo3-fluorescence, ceramide abundance utilizing specific antibodies and reactive oxygen species (ROS) abundance from 2',7'-dichlorodihydrofluorescein diacetate (DCFDA) fluorescence, as determined by flow cytometry. RESULTS In AHF-patients, haemoglobin concentration (11·5 ± 0·5 g/dL), and haematocrit (35·6 ± 1·2%) were significantly lower than haemoglobin concentration (14·1 ± 0·4 g/dL), and haematocrit (40·1 ± 1·0%) in healthy volunteers, even though reticulocyte number was significantly higher in AHF patients (2·3 ± 0·3%) than in healthy volunteers (1·1 ± 0·2%). The percentage of erythrocytes exposing phosphatidylserine was significantly higher in AHF patients (1·8 ± 0·1%) than in healthy volunteers (1·2 ± 0·2%). The forward scatter was significantly lower and the ROS abundance significantly larger in AHF patients than in healthy volunteers. In erythrocytes drawn from healthy volunteers, phosphatidylserine and ROS abundance was increased to significantly higher values following a 24 h treatment with plasma from AHF patients than with plasma from healthy volunteers. CONCLUSION AHF leads to anaemia despite increased reticulocyte number and at least partially due to enhanced eryptosis. Underlying mechanisms include oxidative stress imposed by a plasma borne component.
Collapse
Affiliation(s)
- Philipp Attanasio
- Department of Cardiology, Charité, Campus Virchow Berlin, Berlin, Germany
| | - Rosi Bissinger
- Department of Physiology, University of Tübingen, Tübingen, Germany
| | - Wilhelm Haverkamp
- Department of Cardiology, Charité, Campus Virchow Berlin, Berlin, Germany
| | - Burkert Pieske
- Department of Cardiology, Charité, Campus Virchow Berlin, Berlin, Germany
| | - Alexander Wutzler
- Department of Cardiology, Charité, Campus Virchow Berlin, Berlin, Germany
| | - Florian Lang
- Department of Physiology, University of Tübingen, Tübingen, Germany
| |
Collapse
|
46
|
Lang E, Bissinger R, Fajol A, Salker MS, Singh Y, Zelenak C, Ghashghaeinia M, Gu S, Jilani K, Lupescu A, Reyskens KMSE, Ackermann TF, Föller M, Schleicher E, Sheffield WP, Arthur JSC, Lang F, Qadri SM. Accelerated apoptotic death and in vivo turnover of erythrocytes in mice lacking functional mitogen- and stress-activated kinase MSK1/2. Sci Rep 2015; 5:17316. [PMID: 26611568 PMCID: PMC4661433 DOI: 10.1038/srep17316] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 10/28/2015] [Indexed: 12/25/2022] Open
Abstract
The mitogen- and stress-activated kinase MSK1/2 plays a decisive role in apoptosis. In analogy to apoptosis of nucleated cells, suicidal erythrocyte death called eryptosis is characterized by cell shrinkage and cell membrane scrambling leading to phosphatidylserine (PS) externalization. Here, we explored whether MSK1/2 participates in the regulation of eryptosis. To this end, erythrocytes were isolated from mice lacking functional MSK1/2 (msk−/−) and corresponding wild-type mice (msk+/+). Blood count, hematocrit, hemoglobin concentration and mean erythrocyte volume were similar in both msk−/− and msk+/+ mice, but reticulocyte count was significantly increased in msk−/− mice. Cell membrane PS exposure was similar in untreated msk−/− and msk+/+ erythrocytes, but was enhanced by pathophysiological cell stressors ex vivo such as hyperosmotic shock or energy depletion to significantly higher levels in msk−/− erythrocytes than in msk+/+ erythrocytes. Cell shrinkage following hyperosmotic shock and energy depletion, as well as hemolysis following decrease of extracellular osmolarity was more pronounced in msk−/− erythrocytes. The in vivo clearance of autologously-infused CFSE-labeled erythrocytes from circulating blood was faster in msk−/− mice. The spleens from msk−/− mice contained a significantly greater number of PS-exposing erythrocytes than spleens from msk+/+ mice. The present observations point to accelerated eryptosis and subsequent clearance of erythrocytes leading to enhanced erythrocyte turnover in MSK1/2-deficient mice.
Collapse
Affiliation(s)
- Elisabeth Lang
- Department of Physiology, University of Tübingen, Gmelinstr. 5, 72076 Tübingen, Germany.,Department of Gastroenterology, Hepatology and Infectious Diseases, University of Düsseldorf, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Rosi Bissinger
- Department of Physiology, University of Tübingen, Gmelinstr. 5, 72076 Tübingen, Germany
| | - Abul Fajol
- Department of Physiology, University of Tübingen, Gmelinstr. 5, 72076 Tübingen, Germany
| | - Madhuri S Salker
- Department of Physiology, University of Tübingen, Gmelinstr. 5, 72076 Tübingen, Germany
| | - Yogesh Singh
- Department of Physiology, University of Tübingen, Gmelinstr. 5, 72076 Tübingen, Germany
| | - Christine Zelenak
- Charité Medical University Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Mehrdad Ghashghaeinia
- Department of Physiology, University of Tübingen, Gmelinstr. 5, 72076 Tübingen, Germany
| | - Shuchen Gu
- Department of Physiology, University of Tübingen, Gmelinstr. 5, 72076 Tübingen, Germany.,Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Kashif Jilani
- Department of Physiology, University of Tübingen, Gmelinstr. 5, 72076 Tübingen, Germany.,Department of Biochemistry, University of Agriculture, 38040 Faisalabad, Pakistan
| | - Adrian Lupescu
- Department of Physiology, University of Tübingen, Gmelinstr. 5, 72076 Tübingen, Germany
| | - Kathleen M S E Reyskens
- MRC Phosphorylation Unit, University of Dundee, Dow Street, Dundee DD1 5EH, United Kingdom.,Division of Cell Signaling and Immunology, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, United Kingdom
| | - Teresa F Ackermann
- Department of Physiology, University of Tübingen, Gmelinstr. 5, 72076 Tübingen, Germany
| | - Michael Föller
- Department of Physiology, University of Tübingen, Gmelinstr. 5, 72076 Tübingen, Germany.,nstitute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Von-Danckelmann-Platz 2, 06120 Halle (Saale), Germany
| | - Erwin Schleicher
- Department of Internal Medicine, University of Tübingen, Otfried-Müller-Straβe 10, 72076 Tübingen, Germany
| | - William P Sheffield
- Department of Pathology and Molecular Medicine, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S4K1, Canada.,Centre for Innovation, Canadian Blood Services, 1280 Main Street West, Hamilton, Ontario L8S4K1, Canada
| | - J Simon C Arthur
- MRC Phosphorylation Unit, University of Dundee, Dow Street, Dundee DD1 5EH, United Kingdom.,Division of Cell Signaling and Immunology, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, United Kingdom
| | - Florian Lang
- Department of Physiology, University of Tübingen, Gmelinstr. 5, 72076 Tübingen, Germany
| | - Syed M Qadri
- Department of Physiology, University of Tübingen, Gmelinstr. 5, 72076 Tübingen, Germany.,Department of Pathology and Molecular Medicine, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S4K1, Canada.,Centre for Innovation, Canadian Blood Services, 1280 Main Street West, Hamilton, Ontario L8S4K1, Canada
| |
Collapse
|
47
|
Bissinger R, Malik A, Bouguerra G, Zhou Y, Singh Y, Abbès S, Lang F. Triggering of Suicidal Erythrocyte Death by the Antibiotic Ionophore Nigericin. Basic Clin Pharmacol Toxicol 2015; 118:381-9. [DOI: 10.1111/bcpt.12503] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 10/06/2015] [Indexed: 12/13/2022]
Affiliation(s)
- Rosi Bissinger
- Department of Physiology; University of Tuebingen; Tuebingen Germany
| | - Abaid Malik
- Department of Physiology; University of Tuebingen; Tuebingen Germany
| | - Ghada Bouguerra
- Department of Physiology; University of Tuebingen; Tuebingen Germany
- Laboratoire d'Hématologie Moléculaire et Cellulaire; Institut Pasteur de Tunis; Université de Tunis-El Manar; Tunis Tunisia
| | - Yuetao Zhou
- Department of Physiology; University of Tuebingen; Tuebingen Germany
| | - Yogesh Singh
- Department of Physiology; University of Tuebingen; Tuebingen Germany
| | - Salem Abbès
- Laboratoire d'Hématologie Moléculaire et Cellulaire; Institut Pasteur de Tunis; Université de Tunis-El Manar; Tunis Tunisia
| | - Florian Lang
- Department of Physiology; University of Tuebingen; Tuebingen Germany
| |
Collapse
|
48
|
Mruwat R, Kivity S, Landsberg R, Yedgar S, Langier S. Phospholipase A2-dependent Release of Inflammatory Cytokines by Superantigen-Stimulated Nasal Polyps of Patients with Chronic Rhinosinusitis. Am J Rhinol Allergy 2015; 29:e122-8. [DOI: 10.2500/ajra.2015.29.4224] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Background Chronic rhinosinusitis (CRS) is an inflammatory/allergic disease with unclear pathophysiology, but it has been linked to an imbalance in the production of eicosanoids, which are metabolites of arachidonic acid, and results from phospholipids hydrolysis by phospholipase A2 (PLA2). As of yet, the role of PLA2 in CRS has hardly been studied, except for a report that group II PLA2 expression is elevated in interleukin (IL) 1β or tumor necrosis factor α-stimulated CRS nasal tissues with and without polyps. The PLA2 families include extracellular (secretory) and intracellular isoforms, which are involved in the regulation of inflammatory processes in different ways. Here we comprehensively investigated the expression of PLA2s, particularly those reported to be involved in respiratory disorders, in superantigen (SAE)-stimulated nasal polyps from patients with CRS with polyps, and determined their role in inflammatory cytokine production by inhibition of PLA2 expression. Methods The release of IL-5, IL-13, IL-17, and interferon γ by nasal polyps dispersed cells (NPDC) was determined concomitantly with PLA2 messenger RNA expression, under SAE stimulation, with or without dexamethasone, as a regulator of PLA2 expression. Results Stimulation of NPDCs by SAE-induced cytokine secretion with enhanced expression of several secretory PLA2 and Ca2+-independent PLA2, while suppressing cytosolic PLA2 expression. All these were reverted to the level of unstimulated NPDCs on treatment with dexamethasone. Conclusion This study further supports the key role of secretory PLA2 in the pathophysiology of respiratory disorders and presents secretory PLA2 inhibition as a therapeutic strategy for the treatment of CRS and airway pathologies in general.
Collapse
Affiliation(s)
- Rufayda Mruwat
- Department of Biochemistry, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | | | - Roee Landsberg
- Ear Nose and Throat Department, Tel Aviv Medical Center, Sackler School of Medicine, Tel Aviv University, Tel Aviv, lsrael
| | - Saul Yedgar
- Department of Biochemistry, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | | |
Collapse
|
49
|
Officioso A, Manna C, Alzoubi K, Lang F. Triggering of Erythrocyte Death by Triparanol. Toxins (Basel) 2015; 7:3359-71. [PMID: 26305256 PMCID: PMC4549755 DOI: 10.3390/toxins7083359] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 08/11/2015] [Accepted: 08/12/2015] [Indexed: 11/23/2022] Open
Abstract
The cholesterol synthesis inhibitor Triparanol has been shown to trigger apoptosis in several malignancies. Similar to the apoptosis of nucleated cells, erythrocytes may enter eryptosis, the suicidal death characterized by cell shrinkage and cell membrane scrambling with phosphatidylserine translocation to the erythrocyte surface. Triggers of eryptosis include oxidative stress which may activate erythrocytic Ca2+ permeable unselective cation channels with subsequent Ca2+ entry and increase of cytosolic Ca2+ activity ([Ca2+]i). The present study explored whether and how Triparanol induces eryptosis. To this end, phosphatidylserine exposure at the cell surface was estimated from annexin-V-binding, cell volume from forward scatter, hemolysis from hemoglobin release, [Ca2+]i from Fluo3-fluorescence, and ROS formation from 2’,7’-dichlorodihydrofluorescein diacetate (DCFDA) dependent fluorescence. As a result, a 48 h exposure of human erythrocytes to Triparanol (20 µM) significantly increased DCFDA fluorescence and significantly increased Fluo3-fluorescence. Triparanol (15 µM) significantly increased the percentage of annexin-V-binding cells, and significantly decreased the forward scatter. The effect of Triparanol on annexin-V-binding was significantly blunted, but not abolished by removal of extracellular Ca2+. In conclusion, Triparanol leads to eryptosis, the suicidal erythrocyte death characterized by cell shrinkage and phospholipid scrambling of the erythrocyte cell membrane. Triparanol is at least in part effective by stimulating ROS formation and Ca2+ entry.
Collapse
Affiliation(s)
- Arbace Officioso
- Department of Physiology, University of Tübingen, Gmelinstr. 5, 72076 Tuebingen, Germany.
- Department of Biochemistry, Biophysics and General Pathology, School of Medicine and Surgery, Second University of Naples, Via L. De Crecchio 7, 80138 Naples, Italy.
| | - Caterina Manna
- Department of Biochemistry, Biophysics and General Pathology, School of Medicine and Surgery, Second University of Naples, Via L. De Crecchio 7, 80138 Naples, Italy.
| | - Kousi Alzoubi
- Department of Physiology, University of Tübingen, Gmelinstr. 5, 72076 Tuebingen, Germany.
| | - Florian Lang
- Department of Physiology, University of Tübingen, Gmelinstr. 5, 72076 Tuebingen, Germany.
| |
Collapse
|
50
|
Abstract
The natural phosphoprotein phosphatase inhibitor cantharidin, primarily used for topical treatment of warts, has later been shown to trigger tumor cell apoptosis and is thus considered for the treatment of malignancy. Similar to apoptosis of tumor cells, erythrocytes may undergo eryptosis, a suicidal cell death characterized by cell shrinkage and translocation of cell membrane phosphatidylserine to the erythrocyte surface. Signaling of eryptosis includes increase of cytosolic Ca2+-activity ([Ca2+]i), ceramide, oxidative stress and dysregulation of several kinases. Phosphatidylserine abundance at the erythrocyte surface was quantified utilizing annexin-V-binding, cell volume from forward scatter, [Ca2+]i from Fluo3-fluorescence, ceramide from antibody binding, and reactive oxidant species (ROS) from 2′,7′-dichlorodihydrofluorescein diacetate (DCFDA) fluorescence. A 48 h treatment of human erythrocytes with cantharidin significantly increased the percentage of annexin-V-binding cells (≥10 μg/mL), significantly decreased forward scatter (≥25 μg/mL), significantly increased [Ca2+]i (≥25 μg/mL), but did not significantly modify ceramide abundance or ROS. The up-regulation of annexin-V-binding following cantharidin treatment was not significantly blunted by removal of extracellular Ca2+ but was abolished by kinase inhibitor staurosporine (1 μM) and slightly decreased by p38 inhibitor skepinone (2 μM). Exposure of erythrocytes to cantharidin triggers suicidal erythrocyte death with erythrocyte shrinkage and erythrocyte membrane scrambling, an effect sensitive to kinase inhibitors staurosporine and skepinone.
Collapse
|