1
|
Li G, Wang J, Wu W, Wang M, Han X, Zhang Z, Tang C. Proteomic Analysis of the Supernatant from Bone Marrow Mesenchymal Stem Cells under High Glucose Conditions. J Proteome Res 2024; 23:344-355. [PMID: 38113133 DOI: 10.1021/acs.jproteome.3c00588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Diabetes mellitus hinders the process of bone regeneration by inhibiting the function of mesenchymal stem cells (MSCs) through elevated glucose levels, thereby impeding osteointegration. The stem cell niche (SCN) plays a crucial role in determining the fate of stem cells by integrating various signals. However, the precise mechanism by which high glucose levels affect the SCN and subsequently influence the function of MSCs remains unclear. In this study, we employed proteomic analysis to identify proteins with altered expression in the extracellular matrix (ECM), aiming to elucidate the underlying mechanism. Three cell supernatants were collected from bone marrow mesenchymal stem cells (BMSCs) or BMSCs stimulated with high glucose (BMSCs+Hg). A total of 590 differentially expressed proteins were identified, which were found to be associated with the ECM, including aging, autophagy, and osteogenic differentiation. The findings of our study indicate that elevated glucose levels exert an influence on the molecular aspects of the SCN, potentially contributing to a better comprehension of the underlying mechanism.
Collapse
Affiliation(s)
- Guoqing Li
- Department of Dental Implantology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing 210029, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing 210029, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing 210029, China
| | - Jiaohong Wang
- Department of Dental Implantology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing 210029, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing 210029, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing 210029, China
| | - Wei Wu
- Department of Dental Implantology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing 210029, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing 210029, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing 210029, China
| | - Mingxi Wang
- Department of Dental Implantology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing 210029, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing 210029, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing 210029, China
| | - Xiao Han
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing 210029, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing 210029, China
| | - Zhewei Zhang
- Department of Dental Implantology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing 210029, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing 210029, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing 210029, China
| | - Chunbo Tang
- Department of Dental Implantology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing 210029, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing 210029, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing 210029, China
| |
Collapse
|
2
|
Krenn PW, Montanez E, Costell M, Fässler R. Integrins, anchors and signal transducers of hematopoietic stem cells during development and in adulthood. Curr Top Dev Biol 2022; 149:203-261. [PMID: 35606057 DOI: 10.1016/bs.ctdb.2022.02.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Hematopoietic stem cells (HSCs), the apex of the hierarchically organized blood cell production system, are generated in the yolk sac, aorta-gonad-mesonephros region and placenta of the developing embryo. To maintain life-long hematopoiesis, HSCs emigrate from their site of origin and seed in distinct microenvironments, called niches, of fetal liver and bone marrow where they receive supportive signals for self-renewal, expansion and production of hematopoietic progenitor cells (HPCs), which in turn orchestrate the production of the hematopoietic effector cells. The interactions of hematopoietic stem and progenitor cells (HSPCs) with niche components are to a large part mediated by the integrin superfamily of adhesion molecules. Here, we summarize the current knowledge regarding the functional properties of integrins and their activators, Talin-1 and Kindlin-3, for HSPC generation, function and fate decisions during development and in adulthood. In addition, we discuss integrin-mediated mechanosensing for HSC-niche interactions, ex vivo protocols aimed at expanding HSCs for therapeutic use, and recent approaches targeting the integrin-mediated adhesion in leukemia-inducing HSCs in their protecting, malignant niches.
Collapse
Affiliation(s)
- Peter W Krenn
- Department of Molecular Medicine, Max Planck Institute of Biochemistry, Martinsried, Germany; Department of Biosciences and Medical Biology, Cancer Cluster Salzburg, Paris-Lodron University of Salzburg, Salzburg, Austria.
| | - Eloi Montanez
- Department of Physiological Sciences, Faculty of Medicine and Health Sciences, University of Barcelona and Bellvitge Biomedical Research Institute, L'Hospitalet del Llobregat, Barcelona, Spain
| | - Mercedes Costell
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universitat de València, Burjassot, Spain; Institut Universitari de Biotecnologia i Biomedicina, Universitat de València, Burjassot, Spain
| | - Reinhard Fässler
- Department of Molecular Medicine, Max Planck Institute of Biochemistry, Martinsried, Germany
| |
Collapse
|
3
|
The extracellular matrix of hematopoietic stem cell niches. Adv Drug Deliv Rev 2022; 181:114069. [PMID: 34838648 PMCID: PMC8860232 DOI: 10.1016/j.addr.2021.114069] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/18/2021] [Accepted: 11/21/2021] [Indexed: 12/21/2022]
Abstract
Comprehensive overview of different classes of ECM molecules in the HSC niche. Overview of current knowledge on role of biophysics of the HSC niche. Description of approaches to create artificial stem cell niches for several application. Importance of considering ECM in drug development and testing.
Hematopoietic stem cells (HSCs) are the life-long source of all types of blood cells. Their function is controlled by their direct microenvironment, the HSC niche in the bone marrow. Although the importance of the extracellular matrix (ECM) in the niche by orchestrating niche architecture and cellular function is widely acknowledged, it is still underexplored. In this review, we provide a comprehensive overview of the ECM in HSC niches. For this purpose, we first briefly outline HSC niche biology and then review the role of the different classes of ECM molecules in the niche one by one and how they are perceived by cells. Matrix remodeling and the emerging importance of biophysics in HSC niche function are discussed. Finally, the application of the current knowledge of ECM in the niche in form of artificial HSC niches for HSC expansion or targeted differentiation as well as drug testing is reviewed.
Collapse
|
4
|
Liu D, Wang S, Zhang J, Xiao W, Miao CH, Konkle BA, Wan XF, Li L. Site-Specific N- and O-Glycosylation Analysis of Human Plasma Fibronectin. Front Chem 2021; 9:691217. [PMID: 34211961 PMCID: PMC8239226 DOI: 10.3389/fchem.2021.691217] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 05/21/2021] [Indexed: 11/13/2022] Open
Abstract
Human plasma fibronectin is an adhesive protein that plays a crucial role in wound healing. Many studies had indicated that glycans might mediate the expression and functions of fibronectin, yet a comprehensive understanding of its glycosylation is still missing. Here, we performed a comprehensive N- and O-glycosylation mapping of human plasma fibronectin and quantified the occurrence of each glycoform in a site-specific manner. Intact N-glycopeptides were enriched by zwitterionic hydrophilic interaction chromatography, and N-glycosite sites were localized by the 18O-labeling method. O-glycopeptide enrichment and O-glycosite identification were achieved by an enzyme-assisted site-specific extraction method. An RP–LC–MS/MS system functionalized with collision-induced dissociation and stepped normalized collision energy (sNCE)-HCD tandem mass was applied to analyze the glycoforms of fibronectin. A total of 6 N-glycosites and 53 O-glycosites were identified, which were occupied by 38 N-glycoforms and 16 O-glycoforms, respectively. Furthermore, 77.31% of N-glycans were sialylated, and O-glycosylation was dominated by the sialyl-T antigen. These site-specific glycosylation patterns on human fibronectin can facilitate functional analyses of fibronectin and therapeutics development.
Collapse
Affiliation(s)
- Ding Liu
- Department of Chemistry, Georgia State University, Atlanta, GA, United States
| | - Shuaishuai Wang
- Department of Chemistry, Georgia State University, Atlanta, GA, United States
| | - Junping Zhang
- School of Medicine, Indiana University, Indianapolis, IN, United States
| | - Weidong Xiao
- School of Medicine, Indiana University, Indianapolis, IN, United States
| | - Carol H Miao
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA, United States
| | | | - Xiu-Feng Wan
- Center for Influenza and Emerging Infectious Diseases, University of Missouri, Columbia, MO, United States.,Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO, United States.,Bond Life Sciences Center, University of Missouri, Columbia, MO, United States.,Department of Electrical Engineering & Computer Science, College of Engineering, University of Missouri, Columbia, MO, United States
| | - Lei Li
- Department of Chemistry, Georgia State University, Atlanta, GA, United States
| |
Collapse
|
5
|
Tang D, Wang E, Xu Y, Liang C, Liu C, Lin X, Li J. Is hyperglycemia the only risk factor for implant in type 2 diabetics during the healing period? Oral Dis 2020; 27:1551-1563. [PMID: 33078488 DOI: 10.1111/odi.13685] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 10/02/2020] [Accepted: 10/09/2020] [Indexed: 12/30/2022]
Abstract
OBJECTIVE To determine whether risk factors other than hyperglycemia lead to failed osseointegration in patients with type 2 diabetes mellitus (T2DM) during the healing period. MATERIALS AND METHODS We compared the success rates between patients with and without T2DM during the healing period at our center. Bone marrow mesenchymal stem cells (BMSCs) were cultured from subjects. Proteomics was used to detect differentially expressed proteins (DEPs) among the DM failure (DM-F), DM success (DM-S), and control (Con) groups. The correlation between the expression levels of nine target DEPs and medium glucose concentrations was investigated. RESULTS Higher failure rates were observed in the T2DM patients. Fifty-two DEPs were found between the DM-F and DM-S groups. Seventy-three DEPs were found between the DM-F and Con groups. Forty-three DEPs were found between the DM-S and Con groups. Five target DEPs were expressed at the same levels in the medium with different glucose concentrations. Gene ontology annotation and functional enrichment analysis suggest that the DEPs detected in the DM-F group may affect the biological function and regulatory potential of BMSCs. CONCLUSIONS The DEPs detected in the DM-F group can be intervention targets for to prevent implant failure in T2DM patients. Risk factors besides hyperglycemia may affect osseointegration during healing period.
Collapse
Affiliation(s)
- Dezheng Tang
- Department of Dental Implant Center, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Entang Wang
- Department of Dental Implant Center, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Yifan Xu
- Department of Dental Implant Center, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Chao Liang
- Department of Dental Implant Center, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Changying Liu
- Department of Dental Implant Center, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Xiao Lin
- Department of Dental Implant Center, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Jun Li
- Department of Dental Implant Center, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China
| |
Collapse
|
6
|
Avsar M, Tambas M, Yalniz Z, Akdeniz D, Tuncer SB, Kilic S, Sukruoglu Erdogan O, Ciftci R, Dagoglu N, Vatansever S, Yazici H. The expression level of fibulin-2 in the circulating RNA (ctRNA) of epithelial tumor cells of peripheral blood and tumor tissue of patients with metastatic lung cancer. Mol Biol Rep 2019; 46:4001-4008. [PMID: 31069614 DOI: 10.1007/s11033-019-04846-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 04/30/2019] [Indexed: 11/28/2022]
Abstract
The Fibulins are a recently discovered family of extracellular matrix proteins. In this study, expression levels of the fibulin-2 (FBLN2) gene and its role in the formation of different metastatic foci were investigated in lung cancer patients. We analyzed 106 lung cancer patients and eight paraffin-embedded tissues, and 27 ethnical-, age- and sex-matched healthy controls for expression levels of the FBLN2 gene. cDNAs obtained from the enriched epithelial cells of peripheral blood lymphocytes and tumor tissues of patients were amplified with specific primers for the target FBLN2 gene and HPRT1 housekeeping gene using quantitative real-time polymerase chain reaction. FBLN2 gene expression levels of the enriched epithelial cells of peripheral blood lymphocytes were found to be decreased approximately twofold in all subsets of patients compared to healthy controls. Our results indicate a significant difference between patient subgroups and controls [F(4.124) = 14.846, p0.05] among patient subgroups: bone metastases versus non-metastatic groups (p = 0.997), bone versus brain metastases (p = 0994), bone metastases versus two primary tumors (p = 0.999), brain metastases versus two primary tumors (p = 0.999), brain metastases versus non-metastatic (p = 0.755), non-metastatic versus two primary tumors (p = 0.996), non-metastatic versus all other metastatic patients (p = 0.731). Moreover, we found a 50-fold upregulation of FBLN2 gene expression in paraffin-embedded tissues compared with the enriched epithelial cells of peripheral blood lymphocytes of patients. In the study, the enriched epithelial cells of peripheral blood lymphocytes of decreased FBLN2 expression was found to be correlated with metastasis. The fibulin-2 molecules might induce the metastatic potential through interaction with the other molecules in the microenvironment, nevertheless, it is needed further research whether the importance of FBLN2 on lung cancer oncogenesis and as a biomarker for metastatic lung cancer.
Collapse
Affiliation(s)
- Mukaddes Avsar
- Department of Cancer Genetics, Institute of Oncology, Istanbul University, Capa - Fatih, 34093, Istanbul, Turkey
| | - Makbule Tambas
- Department of Radiation Oncology, Institute of Oncology, Istanbul University, Istanbul, Turkey
| | - Zubeyde Yalniz
- Department of Cancer Genetics, Institute of Oncology, Istanbul University, Capa - Fatih, 34093, Istanbul, Turkey
| | - Demet Akdeniz
- Department of Cancer Genetics, Institute of Oncology, Istanbul University, Capa - Fatih, 34093, Istanbul, Turkey
| | - Seref Bugra Tuncer
- Department of Cancer Genetics, Institute of Oncology, Istanbul University, Capa - Fatih, 34093, Istanbul, Turkey
| | - Seda Kilic
- Department of Cancer Genetics, Institute of Oncology, Istanbul University, Capa - Fatih, 34093, Istanbul, Turkey
| | - Ozge Sukruoglu Erdogan
- Department of Cancer Genetics, Institute of Oncology, Istanbul University, Capa - Fatih, 34093, Istanbul, Turkey
| | - Rumeysa Ciftci
- Department of Medical Oncology, Institute of Oncology, Istanbul University, Istanbul, Turkey
| | - Nergiz Dagoglu
- Department of Radiation Oncology, Institute of Oncology, Istanbul University, Istanbul, Turkey
| | - Sezai Vatansever
- Department of Medical Oncology, Institute of Oncology, Istanbul University, Istanbul, Turkey
| | - Hulya Yazici
- Department of Cancer Genetics, Institute of Oncology, Istanbul University, Capa - Fatih, 34093, Istanbul, Turkey.
| |
Collapse
|
7
|
Tan H, Zhang J, Fu D, Zhu Y. Loss of fibulin-2 expression is involved in the inhibition of breast cancer invasion and forms a new barrier in addition to the basement membrane. Oncol Lett 2017; 14:2663-2668. [PMID: 28928811 PMCID: PMC5588154 DOI: 10.3892/ol.2017.6539] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 02/13/2017] [Indexed: 11/05/2022] Open
Abstract
Previous studies have demonstrated that fibulin-2 may facilitate cancer cell invasion and metastasis during tumor progression. In the present study, immunohistochemical analyses of fibulin-2 and collagen IV expression in 35 patients with breast cancer were performed to define their localization and association with breast cancer tissue. Fibulin-2 was revealed to be expressed in all tissues surrounding the breast ducts and blood vessels in normal breast tissue, while its expression was not integrated in invasive ductal carcinoma or terminal duct-lobular unit. In malignant breast tissue, collagen IV was integrated around the duct, while fibulin-2 was expressed around collagen IV and was incomplete. These results demonstrated that fibulin-2 was associated with breast cancer invasion. Fibulin-2 expression decreased prior to basement membrane (BM) degradation, indicating that fibulin-2 forms an additional barrier around the BM. Therefore, it was proposed that fibulin-2 composes the general BM, which differs from the traditional BM. These results provide insight into extracellular matrix components and the involvement of fibulin-2 in tumor invasion and metastasis. Fibulin-2 was involved in the process of breast cancer development. It performed an important role in prevention of cancer cell penetration and metastasis.
Collapse
Affiliation(s)
- Haosheng Tan
- Clinical Medical School, Yangzhou University, Yangzhou, Jiangsu 225001, P.R. China
| | - Jiaxin Zhang
- Clinical Medical School, Yangzhou University, Yangzhou, Jiangsu 225001, P.R. China
| | - Deyuan Fu
- Clinical Medical School, Yangzhou University, Yangzhou, Jiangsu 225001, P.R. China
| | - Yuxiang Zhu
- Clinical Medical School, Yangzhou University, Yangzhou, Jiangsu 225001, P.R. China
| |
Collapse
|
8
|
Hang Pham LB, Yoo YR, Park SH, Back SA, Kim SW, Bjørge I, Mano J, Jang JH. Investigating the effect of fibulin-1 on the differentiation of human nasal inferior turbinate-derived mesenchymal stem cells into osteoblasts. J Biomed Mater Res A 2017; 105:2291-2298. [PMID: 28445604 DOI: 10.1002/jbm.a.36095] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 03/16/2017] [Accepted: 04/20/2017] [Indexed: 12/12/2022]
Abstract
Many extracellular matrix proteins have positive influences on the adhesion, proliferation, and differentiation of stem cells into specific cell linages. Fibulin-1 (FBLN1), a member of a growing family of extracellular glycoproteins, contributes to the structure of the extracellular matrix. Here, we investigated the effect of FBLN1 on the ability of human nasal inferior turbinate-derived mesenchymal stem cells (hTMSCs) to undergo osteogenic differentiation. After we generated recombinant FBLN1, the characteristics of FBLN1-treated hTMSCs were evaluated using MTT assay, ALP and mineralization activities, and quantitative real-time PCR. FBLN1 significantly enhanced the adhesion activity (p < 0.001) and proliferation of hTMSCs (p < 0.05). The ALP and mineralization activities of cells were dramatically increased (p < 0.01) after 9 and 12 days of FBLN1 treatment, respectively. This indicated the ability of FBLN1 to induce hTMSCs to differentiate into osteoblasts. Furthermore, increasing the mRNA levels of osteogenic marker genes, such as a transcriptional coactivator with a PDZ-binding motif (TAZ), alkaline phosphatase (ALP), collagen type I (Col I), and osteocalcin (OCN), improved bone repair and regeneration. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 2291-2298, 2017.
Collapse
Affiliation(s)
- Le B Hang Pham
- Department of Biochemistry, Inha University School of Medicine, Incheon, 22212, Korea
| | - Yie-Ri Yoo
- Department of Biochemistry, Inha University School of Medicine, Incheon, 22212, Korea
| | - Sun Hwa Park
- Department of Biomedical Science, The Catholic University of Korea, College of Medicine, Seoul Korea
| | - Sang A Back
- Department of Biomedical Science, The Catholic University of Korea, College of Medicine, Seoul Korea
| | - Sung Won Kim
- Department of Biomedical Science, The Catholic University of Korea, College of Medicine, Seoul Korea.,Department of Otolaryngology-Head and Neck Surgery, The Catholic University of Korea College of Medicine, Seoul Korea
| | - Isabel Bjørge
- Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - João Mano
- Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Jun-Hyeog Jang
- Department of Biochemistry, Inha University School of Medicine, Incheon, 22212, Korea
| |
Collapse
|
9
|
DiScipio RG, Liddington RC, Schraufstatter IU. Fibulin-1 purification from human plasma using affinity chromatography on Factor H-Sepharose. Protein Expr Purif 2016; 121:118-24. [PMID: 26826315 DOI: 10.1016/j.pep.2016.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 01/22/2016] [Indexed: 10/22/2022]
Abstract
A method is reported to purify Fibulin-1 from human plasma resulting in a 36% recovery. The steps involve removal of the cryoglobulin and the vitamin K dependent proteins followed by polyethylene glycol and ammonium sulfate precipitations, DEAE-Sephadex column chromatography and finally Factor H-Sepharose affinity purification. The procedure is designed to be integrated into an overall scheme for the isolation of over 30 plasma proteins from a single batch of human plasma. Results from mass spectroscopy, SDS-PAGE, and Western blotting indicate that human plasma Fibulin-1 is a single chain of the largest isotype. Functional binding assays demonstrated calcium ion dependent interaction of Fibulin-1 for fibrinogen, fibronectin, and Factor H. The procedure described is the first to our knowledge that enables a large scale purification of Fibulin-1 from human plasma.
Collapse
Affiliation(s)
- Richard G DiScipio
- Torrey Pines Institute for Molecular Studies, 3550 General Atomics Court, San Diego, CA 92121, United States.
| | - Robert C Liddington
- Sanford-Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines RD La Jolla, CA 92037, United States
| | - Ingrid U Schraufstatter
- Torrey Pines Institute for Molecular Studies, 3550 General Atomics Court, San Diego, CA 92121, United States
| |
Collapse
|
10
|
Simvastatin Increases Fibulin-2 Expression in Human Coronary Artery Smooth Muscle Cells via RhoA/Rho-Kinase Signaling Pathway Inhibition. PLoS One 2015. [PMID: 26207907 PMCID: PMC4514789 DOI: 10.1371/journal.pone.0133875] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The composition and structure of the extracellular matrix (ECM) in the vascular wall and in the atherosclerotic plaque are important factors that determine plaque stability. Statins can stabilize atherosclerotic plaques by modulating ECM protein expression. Fibulins are important components of the ECM. We evaluated the in vitro effect of simvastatin on the expression of fibulin-1, -2, -4 and -5 in human coronary artery smooth muscle cells (SMCs) and the mechanisms involved. Cells were incubated with simvastatin (0.05–1 μM), mevalonate (100 and 200 μM), geranylgeranyl pyrophosphate (GGPP) (15 μM), farnesyl pyrophosphate (FPP) (15 μM), the Rho kinase (ROCK) inhibitor Y-27632 (15 and 20 μM), the Rac-1 inhibitor (another member of Rho family) NSC23766 (100 μM), arachidonic acid (a RhoA/ROCK activator, 25–100 μM) and other fatty acids that are not activators of RhoA/ROCK (25–100 μM). Gene expression was analyzed by quantitative real-time PCR, and fibulin protein levels were analyzed by western blotting and ELISA. Simvastatin induced a significant increase in mRNA and protein levels of fibulin-2 at 24 hours of incubation (p<0.05), but it did not affect fibulin-1, -4, and -5 expression. Mevalonate and GGPP were able to reverse simvastatin’s effect, while FPP did not. In addition, Y-27632, but not NSC23766, significantly increased fibulin-2 expression. Furthermore, activation of the RhoA/ROCK pathway with arachidonic acid decreased fibulin-2 mRNA. Simvastatin increased mRNA levels and protein expression of the ECM protein fibulin-2 through a RhoA and Rho-Kinase-mediated pathway. This increase could affect the composition and structure of the ECM.
Collapse
|
11
|
Role of tyrosine-sulfated proteins in retinal structure and function. Exp Eye Res 2015; 133:126-31. [PMID: 25819460 DOI: 10.1016/j.exer.2014.07.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 06/30/2014] [Accepted: 07/08/2014] [Indexed: 01/13/2023]
Abstract
The extracellular matrix (ECM) plays a significant role in cellular and retinal health. The study of retinal tyrosine-sulfated proteins is an important first step toward understanding the role of ECM in retinal health and diseases. These secreted proteins are members of the retinal ECM. Tyrosine sulfation was shown to be necessary for the development of proper retinal structure and function. The importance of tyrosine sulfation is further demonstrated by the evolutionary presence of tyrosylprotein sulfotransferases, enzymes that catalyze proteins' tyrosine sulfation, and the compensatory abilities of these enzymes. Research has identified four tyrosine-sulfated retinal proteins: fibulin 2, vitronectin, complement factor H (CFH), and opticin. Vitronectin and CFH regulate the activation of the complement system and are involved in the etiology of some cases of age-related macular degeneration. Analysis of the role of tyrosine sulfation in fibulin function showed that sulfation influences the protein's ability to regulate growth and migration. Although opticin was recently shown to exhibit anti-angiogenic properties, it is not yet determined what role sulfation plays in that function. Future studies focusing on identifying all of the tyrosine-sulfated retinal proteins would be instrumental in determining the impact of sulfation on retinal protein function in retinal homeostasis and diseases.
Collapse
|
12
|
Danan-Gotthold M, Golan-Gerstl R, Eisenberg E, Meir K, Karni R, Levanon EY. Identification of recurrent regulated alternative splicing events across human solid tumors. Nucleic Acids Res 2015; 43:5130-44. [PMID: 25908786 PMCID: PMC4446417 DOI: 10.1093/nar/gkv210] [Citation(s) in RCA: 119] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2014] [Accepted: 03/02/2015] [Indexed: 12/21/2022] Open
Abstract
Cancer is a complex disease that involves aberrant gene expression regulation. Discriminating the modified expression patterns driving tumor biology from the many that have no or little contribution is important for understanding cancer molecular basis. Recurrent deregulation patterns observed in multiple cancer types are enriched for such driver events. Here, we studied splicing alterations in hundreds of matched tumor and normal RNA-seq samples of eight solid cancer types. We found hundreds of cassette exons for which splicing was altered in multiple cancer types and identified a set of highly frequent altered splicing events. Specific splicing regulators, including RBFOX2, MBNL1/2 and QKI, appear to account for many splicing alteration events in multiple cancer types. Together, our results provide a first global analysis of regulated splicing alterations in cancer and identify common events with a potential causative role in solid tumor development.
Collapse
Affiliation(s)
- Miri Danan-Gotthold
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 52900, Israel
| | - Regina Golan-Gerstl
- Department of Biochemistry and Molecular Biology, the Institute for Medical Research Israel-Canada, Hebrew University-Hadassah Medical School, Ein Karem, 91120 Jerusalem, Israel
| | - Eli Eisenberg
- Raymond and Beverly Sackler School of Physics and Astronomy and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| | - Keren Meir
- Department of Pathology, Hadassah Medical Center, Hebrew University, Jerusalem, Israel
| | - Rotem Karni
- Department of Biochemistry and Molecular Biology, the Institute for Medical Research Israel-Canada, Hebrew University-Hadassah Medical School, Ein Karem, 91120 Jerusalem, Israel
| | - Erez Y Levanon
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 52900, Israel
| |
Collapse
|
13
|
Selection and identification of ligand peptides targeting a model of castrate-resistant osteogenic prostate cancer and their receptors. Proc Natl Acad Sci U S A 2015; 112:3776-81. [PMID: 25762070 DOI: 10.1073/pnas.1500128112] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
We performed combinatorial peptide library screening in vivo on a novel human prostate cancer xenograft that is androgen-independent and induces a robust osteoblastic reaction in bonelike matrix and soft tissue. We found two peptides, PKRGFQD and SNTRVAP, which were enriched in the tumors, targeted the cell surface of androgen-independent prostate cancer cells in vitro, and homed to androgen receptor-null prostate cancer in vivo. Purification of tumor homogenates by affinity chromatography on these peptides and subsequent mass spectrometry revealed a receptor for the peptide PKRGFQD, α-2-macroglobulin, and for SNTRVAP, 78-kDa glucose-regulated protein (GRP78). These results indicate that GRP78 and α-2-macroglobulin are highly active in osteoblastic, androgen-independent prostate cancer in vivo. These previously unidentified ligand-receptor systems should be considered for targeted drug development against human metastatic androgen-independent prostate cancer.
Collapse
|
14
|
Cooley MA, Harikrishnan K, Oppel JA, Miler SF, Barth JL, Haycraft CJ, Reddy SV, Scott Argraves W. Fibulin-1 is required for bone formation and Bmp-2-mediated induction of Osterix. Bone 2014; 69:30-8. [PMID: 25201465 PMCID: PMC4385289 DOI: 10.1016/j.bone.2014.07.038] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 07/22/2014] [Accepted: 07/27/2014] [Indexed: 01/16/2023]
Abstract
The extracellular matrix protein Fibulin-1 (Fbln1) has been shown to be involved in numerous processes including cardiovascular and lung development. Here we have examined the role of Fbln1 in bone formation. Alizarin red staining of skulls from Fbln1-deficient mice showed reduced mineralization of both membranous and endochondral bones. MicroCT (μCT) analysis of the calvarial bones (i.e., frontal, parietal and interparietal bones collectively) indicated that bone volume in Fbln1 nulls at neonatal stage P0 were reduced by 22% (p=0.015). Similarly, Fbln1 null frontal bones showed a 16% (p=0.035) decrease in bone volume, with a reduction in the interfrontal bone, and a discontinuity in the leading edge of the frontal bone. To determine whether Fbln1 played a role in osteoblast differentiation during bone formation, qPCR was used to measure the effects of Fbln1 deficiency on the expression of Osterix (Osx), a transcription factor essential for osteoblast differentiation. This analysis demonstrated that Osx mRNA was significantly reduced in Fbln1-deficient calvarial bones at developmental stages E16.5 (p=0.049) and E17.5 (p=0.022). Furthermore, the ability of Bmp-2 to induce Osx expression was significantly diminished in Fbln1-deficient mouse embryo fibroblasts. Together, these findings indicate that Fbln1 is a new positive modulator of the formation of membranous bone and endochondral bone in the skull, acting as a positive regulator of Bmp signaling.
Collapse
Affiliation(s)
- Marion A Cooley
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA; Department of Oral Health Sciences, Medical University of South Carolina, Charleston, SC 29425, USA.
| | - Keerthi Harikrishnan
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - James A Oppel
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Sloan F Miler
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Jeremy L Barth
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Courtney J Haycraft
- Department of Oral Health Sciences, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Sakamuri V Reddy
- Charles P. Darby Children's Research Institute, Medical University of South Carolina, Charleston, SC 29425, USA
| | - W Scott Argraves
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
15
|
Vierkotten S, Muether PS, Fauser S. Overexpression of HTRA1 leads to ultrastructural changes in the elastic layer of Bruch's membrane via cleavage of extracellular matrix components. PLoS One 2011; 6:e22959. [PMID: 21829675 PMCID: PMC3149070 DOI: 10.1371/journal.pone.0022959] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Accepted: 07/02/2011] [Indexed: 12/01/2022] Open
Abstract
Variants in the chromosomal region 10q26 are strongly associated with an increased risk for age-related macular degeneration (AMD). Two potential AMD genes are located in this region: ARMS2 and HTRA1 (high-temperature requirement A1). Previous studies have suggested that polymorphisms in the promotor region of HTRA1 result in overexpression of HTRA1 protein. This study investigated the role of HTRA1 overexpression in the pathogenesis of AMD. Transgenic Htra1 mice overexpressing the murine protein in the retinal pigment epithelium (RPE) layer of the retina were generated and characterized by transmission electron microscopy, immunofluorescence staining and Western Blot analysis. The elastic layer of Bruch's membrane (BM) in the Htra1 transgenic mice was fragmented and less continuous than in wild type (WT) controls. Recombinant HTRA1 lacking the N-terminal domain cleaved various extracellular matrix (ECM) proteins. Subsequent Western Blot analysis revealed an overexpression of fibronectin fragments and a reduction of fibulin 5 and tropoelastin in the RPE/choroid layer in transgenic mice compared to WT. Fibulin 5 is essential for elastogenesis by promoting elastic fiber assembly and maturation. Taken together, our data implicate that HTRA1 overexpression leads to an altered elastogenesis in BM through fibulin 5 cleavage. It highlights the importance of ECM related proteins in the development of AMD and links HTRA1 to other AMD risk genes such as fibulin 5, fibulin 6, ARMS2 and TIMP3.
Collapse
Affiliation(s)
- Sarah Vierkotten
- Center of Ophthalmology, University of Cologne, Cologne, Germany
| | | | - Sascha Fauser
- Center of Ophthalmology, University of Cologne, Cologne, Germany
- * E-mail:
| |
Collapse
|
16
|
Chan CYX, Masui O, Krakovska O, Belozerov VE, Voisin S, Ghanny S, Chen J, Moyez D, Zhu P, Evans KR, McDermott JC, Siu KWM. Identification of differentially regulated secretome components during skeletal myogenesis. Mol Cell Proteomics 2011; 10:M110.004804. [PMID: 21343469 DOI: 10.1074/mcp.m110.004804] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Myogenesis is a well-characterized program of cellular differentiation that is exquisitely sensitive to the extracellular milieu. Systematic characterization of the myogenic secretome (i.e. the ensemble of secreted proteins) is, therefore, warranted for the identification of novel secretome components that regulate both the pluripotency of these progenitor mesenchymal cells, and also their commitment and passage through the differentiation program. Previously, we have successfully identified 26 secreted proteins in the mouse skeletal muscle cell line C2C12 (1). In an effort to attain a more comprehensive picture of the regulation of myogenesis by its extracellular milieu, quantitative profiling employing stable isotope labeling by amino acids in cell culture was implemented in conjunction with two parallel high throughput online reverse phase liquid chromatography-tandem mass spectrometry systems. In summary, 34 secreted proteins were quantified, 30 of which were shown to be differentially expressed during muscle development. Intriguingly, our analysis has revealed several novel up- and down-regulated secretome components that may have critical biological relevance for both the maintenance of pluripotency and the passage of cells through the differentiation program. In particular, the altered regulation of secretome components, including follistatin-like protein-1, osteoglycin, spondin-2, and cytokine-induced apoptosis inhibitor-1, along with constitutively expressed factors, such as fibulin-2, illustrate dynamic changes in the secretome that take place when differentiation to a specific lineage occurs.
Collapse
Affiliation(s)
- C Y X'avia Chan
- Department of Biology, York University, 4700 Keele Street, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Hergeth SP, Aicher WK, Essl M, Schreiber TD, Sasaki T, Klein G. Characterization and functional analysis of osteoblast-derived fibulins in the human hematopoietic stem cell niche. Exp Hematol 2008; 36:1022-34. [PMID: 18468769 DOI: 10.1016/j.exphem.2008.03.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2007] [Revised: 03/14/2008] [Accepted: 03/17/2008] [Indexed: 11/27/2022]
Abstract
OBJECTIVE In the bone marrow stem cell niche, osteoblasts lining the endosteum are of major importance in supporting hematopoietic stem cell maintenance. Our objective was to analyze expression of the fibulins, highly conserved calcium-binding glycoproteins, which are components of the extracellular matrix of human osteoblasts, and to provide insights into their functional interactions with hematopoietic progenitor cells. MATERIALS AND METHODS Expression of the fibulins by human osteoblasts was determined by reverse transcription polymerase chain reaction analysis and by immunofluorescence staining and immunoblotting using fibulin-specific antisera. Recombinant fibulins were used in cell proliferation and differentiation assays with human CD34(+) hematopoietic progenitor cells. Adhesive interactions of CD34(+) cells with fibulins were investigated using cell-adhesion assays. RESULTS Human osteoblasts strongly express and secrete fibulin-1 and -2. Whereas fibulin-1 is secreted in its intact form, fibulin-2 synthesized by human osteoblasts undergoes rapid proteolytic degradation. The matrix metalloproteinase-2, which is constitutively expressed by the osteoblasts, seems to be responsible for fibulin-2 degradation. Fibulin-1 showed an inhibitory effect on short-term CD34(+) hematopoietic progenitor cell proliferation. Both fibulin-1 and fibulin-2 were able to diminish erythroid and myeloid colony formation. The CD34(+) cell line KG1a strongly attached to fibulin-2, whereas magnetic-activated cell sorted CD34(+) hematopoietic progenitors did not adhere to either fibulin-1 or fibulin-2. On the other hand, fibulin-1 can strongly interfere with CD34(+) cell adhesion to fibronectin. CONCLUSION Fibulins seem to be important components of the extracellular matrix of osteoblasts and are likely to negatively influence the proliferation rate of stem cells and the overall adhesive properties of the endosteal stem cell niche.
Collapse
Affiliation(s)
- Sonja P Hergeth
- Section for Transplantation Immunology and Immunohematology, Center for Medical Research, University Medical Clinic, Tübingen, Germany
| | | | | | | | | | | |
Collapse
|
18
|
Yi CH, Smith DJ, West WW, Hollingsworth MA. Loss of fibulin-2 expression is associated with breast cancer progression. THE AMERICAN JOURNAL OF PATHOLOGY 2007; 170:1535-45. [PMID: 17456760 PMCID: PMC1854949 DOI: 10.2353/ajpath.2007.060478] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Fibulin-2, an extracellular matrix protein expressed by normal epithelia, was found to be down-regulated in several breast cancer cell lines. Fibulin-2 protein expression was also decreased in breast cancer tissue samples as evaluated by immunohistochemistry. Reintroduction of Fibulin-2 into breast cancer cell lines that do not express Fibulin-2 reduced cancer cell motility and invasion in vitro but had no effect on cell growth and adhesion properties. Together with evidence that Fibulin-2 contributes to wound healing and inhibits smooth muscle cell migration, our findings suggest that loss of Fibulin-2 expression may facilitate migration and invasion in breast cancer.
Collapse
Affiliation(s)
- Chun-Hui Yi
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198-6805, USA
| | | | | | | |
Collapse
|
19
|
Goldberg JL, Laughlin MJ, Pompili VJ. Umbilical cord blood stem cells: Implications for cardiovascular regenerative medicine. J Mol Cell Cardiol 2007; 42:912-20. [PMID: 17368666 DOI: 10.1016/j.yjmcc.2007.02.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2006] [Revised: 01/09/2007] [Accepted: 02/07/2007] [Indexed: 11/16/2022]
Abstract
The treatment of cardiovascular disease has benefited from advances in pharmacologic and intravascular intervention reducing the morbidity and mortality associated with this disease. To address the need in managing clinically complex vascular disease with limited therapeutic options studies have focused on cellular therapy as a means to augment compensatory mechanisms and to potentially prevent escalation and advancement of disease. Umbilical cord blood (UCB) is a rich source of hematopoietic stem cells (HSC) and thus may be a potential source of cells for this type of therapy. UCB can be collected at no risk to the donor, is immediately available, has a wider availability of HLA phenotypes with a possible lower immune reactivity and does not provoke ethically charged debates. Moreover, stem cells isolated from patients with chronic disease have impairment of their reparative abilities thus limiting their therapeutic impact. The potential of UCB HSC in augmenting this process has been studied extensively both in vitro and in vivo and has shown a benefit in acute and chronic vascular ischemia. Although studies suggest efficacy with no obvious safety concerns the mechanism for this therapeutic effect is unknown.
Collapse
Affiliation(s)
- Jonathan L Goldberg
- Department of Medicine, Case Western Reserve University, School of Medicine, Cleveland, OH 44106-7284, USA
| | | | | |
Collapse
|
20
|
Xiang Y, Sekine T, Nakamura H, Imajoh-Ohmi S, Fukuda H, Yudoh K, Masuko-Hongo K, Nishioka K, Kato T. Fibulin-4 is a target of autoimmunity predominantly in patients with osteoarthritis. THE JOURNAL OF IMMUNOLOGY 2006; 176:3196-204. [PMID: 16493080 DOI: 10.4049/jimmunol.176.5.3196] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Autoimmunity to chondrocyte-producing proteins has been reported in patients with osteoarthritis (OA) as well as in those with rheumatoid arthritis (RA). To answer whether or not OA-specific autoimmunity exist, we performed screening of chondrocyte-producing autoantigens by two-dimensional electrophoresis and Western blotting with each of 20 OA and 20 RA serum samples. We identified an apparently OA-specific autoantigen spot with a molecular mass of 52 kDa and a Isoelectric point of 4.1 as fibulin-4 by mass fingerprinting. By preparing recombinant proteins of fibulin-4, we determined prevalence of the autoantibodies to fibulin-4 in 92 patients with OA, 67 patients with RA, 40 patients with systemic lupus erythematosus, and 43 patients with systemic scleroderma. As a result, the IgG type anti-fibulin-4 autoantibodies were detected in 23.9% of sera from patients with OA, in 8.9% of sera from patients with RA, in 2.5% of sera from patients with systemic lupus erythematosus, and in 9.3% of sera from patients with systemic scleroderma. Furthermore, we immunized DBA/1J, ICR, BALB/c, and C57BL/6 mice with the recombinant fibulin-4 proteins to investigate arthritogenecity of fibulin-4. As a result, mild synovitis was detected in all of the four strains. In addition, we demonstrated expression of fibulin-4 in chondrocytes at both mRNA and protein levels in vivo and in vitro by RT-PCR, Western blotting, and immunohistochemistry. Taken together, fibulin-4, expressed in chondrocytes and recognized as an autoantigen mainly in OA rather than in RA, may play pathogenic roles in OA.
Collapse
Affiliation(s)
- Yang Xiang
- Department of Bioregulation and Proteomics, Institute of Medical Science, St. Marianna University School of Medicine, Kawasaki, Kanagawa, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Urzúa U, Roby KF, Gangi LM, Cherry JM, Powell JI, Munroe DJ. Transcriptomic analysis of an in vitro murine model of ovarian carcinoma: functional similarity to the human disease and identification of prospective tumoral markers and targets. J Cell Physiol 2006; 206:594-602. [PMID: 16245302 DOI: 10.1002/jcp.20522] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Ovarian cancer is an aggressive disease of poor prognostic when detected at advanced stage. It is widely accepted that the ovarian surface epithelium plays a central role in disease etiology, but little is known about disease progression at the molecular level. To identify genes involved in ovarian tumorigenesis, we carried out a genome-wide transcriptomic analysis of six spontaneously transformed mouse ovarian surface epithelial (MOSE) cell lines, an in vitro model for human ovarian carcinoma. Loess normalization followed by statistical analysis with control of multiple testing resulted in 509 differentially expressed genes using an adjusted P-value < or = 0.05 as cut-off. The top 20 differentially expressed genes included 10 genes (Spp1, Cyp1b1, Btg1, Cfh, Mt1, Mt2, Igfbp5, Gstm1, Gstm2, and Esr1) implicated in various aspects of ovarian carcinomas, and other 3 genes (Gsto1, Lcn7, and Alcam) associated to breast cancer. Upon functional analysis, the majority of alterations affected genes involved in glutathione metabolism and MAPK signaling pathways. Interestingly, over 20% of the aberrantly expressed genes were related to extracellular components, suggestive of potential markers of disease progression. In addition, we identified the genes Pura, Cnn3, Arpc1b, Map4k4, Tgfb1i4, and Crsp2 correlated to in vivo tumorigenic parameters previously reported for these cells. Taken together, our findings support the utility of MOSE cells in studying ovarian cancer biology and as a source of novel diagnostic and therapeutic targets.
Collapse
Affiliation(s)
- Ulises Urzúa
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Universidad de Chile, Independencia, Santiago, Chile.
| | | | | | | | | | | |
Collapse
|
22
|
Edlundh-Rose E, Kupershmidt I, Gustafsson AC, Parasassi T, Serafino A, Bracci-Laudiero L, Greco G, Krasnowska EK, Romano MC, Lundeberg T, Nilsson P, Lundeberg J. Gene Expression Analysis of Human Epidermal Keratinocytes after N-Acetyl L-Cysteine Treatment Demonstrates Cell Cycle Arrest and Increased Differentiation. Pathobiology 2005; 72:203-12. [PMID: 16127296 DOI: 10.1159/000086790] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2004] [Accepted: 02/07/2005] [Indexed: 02/04/2023] Open
Abstract
OBJECTIVES Several cancer prevention programmes have previously been executed using treatment of antioxidant compounds. The antioxidant N-acetyl L-cysteine (NAC), a membrane-permeable aminothiol, is a sulfhydryl reductant reducing oxidised glutathione, as well as being a precursor of intracellular cysteine and glutathione. A previous report based on the cellular response to NAC treatment showed that NAC induced a 10-fold more rapid differentiation in normal primary keratinocytes as well as a reversion of a colon carcinoma cell line from neoplastic proliferation to apical-basolateral differentiation. In order to investigate molecular events underlying the changes in proliferation and differentiation induced by NAC treatment, we performed global gene expression analysis of normal human epidermal keratinocytes in a time series. METHODS Treated samples were compared to untreated samples through a reference design using a spotted cDNA array comprising approximately 30,000 features. B statistics was used to identify differentially expressed genes, and RT-PCR of a selected set of genes was performed to verify differential expression. RESULTS The number of differentially expressed genes increased over time, starting with 0 at 30 min, 73 at 3 h and increasing to 952 genes at 48 h. Results of the expression analysis showed arrest of the cell cycle and an upregulation of cytoskeletal reorganisation, implicating increased differentiation. A comparison to gene ontology groups indicated downregulation of a large number of genes involved in cell proliferation and regulation of the cell cycle. CONCLUSIONS A significant fraction of the differentially expressed genes could be classified according to their role in the differentiation process, demonstrating that NAC regulates the conversion from proliferation to differentiation at a transcriptional level.
Collapse
Affiliation(s)
- Esther Edlundh-Rose
- Department of Biotechnology, AlbaNova University Center, Royal Institute of Technology, and Rehabilitation Medicine, Karolinska University Hospital, Stockholm, Sweden
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
Early clinical reports outlining outcomes for primarily pediatric patients undergoing UCB transplantation point to delayed time to hematopoietic recovery and favorable incidence and severity of GvHD. Recently, clinical reports in adult patients identified the feasibility of UCB transplantation for those patients lacking an available histocompatible-related or unrelated adult donor Intensive clinical and laboratory research is ongoing focused on strategies to foster UCB allogeneic donor engraftment thereby allowing wider application of this stem cell source for patients requiring allogeneic transplantation.
Collapse
Affiliation(s)
- W Tse
- Medicine and Pathology, Case Western Reserve University, University Hospitals Comprehensive Cancer Center, Cleveland, Ohio, USA
| | | |
Collapse
|
24
|
White SL, Gharbi S, Bertani MF, Chan HL, Waterfield MD, Timms JF. Cellular responses to ErbB-2 overexpression in human mammary luminal epithelial cells: comparison of mRNA and protein expression. Br J Cancer 2004; 90:173-81. [PMID: 14710226 PMCID: PMC2395336 DOI: 10.1038/sj.bjc.6601458] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Microarray analysis offers a powerful tool for studying the mechanisms of cellular transformation, although the correlation between mRNA and protein expression is largely unknown. In this study, a microarray analysis was performed to compare transcription in response to overexpression of the ErbB-2 receptor tyrosine kinase in a model mammary luminal epithelial cell system, and in response to the ErbB-specific growth factor heregulin β1. We sought to validate mRNA changes by monitoring changes at the protein level using a parallel proteomics strategy, and report a surprisingly high correlation between transcription and translation for the subset of genes studied. We further characterised the identified targets and relate differential expression to changes in the biological properties of ErbB-2-overexpressing cells. We found differential regulation of several key cell cycle modulators, including cyclin D2, and downregulation of a large number of interferon-inducible genes, consistent with increased proliferation of the ErbB-2-overexpressing cells. Furthermore, differential expression of genes involved in extracellular matrix modelling and cellular adhesion was linked to altered adhesion of these cells. Finally, we provide evidence for enhanced autocrine activation of MAPK signalling and the AP-1 transcription complex. Together, we have identified changes that are likely to drive proliferation and anchorage-independent growth of ErbB-2- overexpressing cancer cells.
Collapse
Affiliation(s)
- S L White
- Ludwig Institute for Cancer Research, Wing 1.1, Cruciform Building, Gower Street, London WCIE 6BT, UK
| | - S Gharbi
- Ludwig Institute for Cancer Research, Wing 1.1, Cruciform Building, Gower Street, London WCIE 6BT, UK
| | - M F Bertani
- Ludwig Institute for Cancer Research, Wing 1.1, Cruciform Building, Gower Street, London WCIE 6BT, UK
| | - H-L Chan
- Ludwig Institute for Cancer Research, Wing 1.1, Cruciform Building, Gower Street, London WCIE 6BT, UK
| | - M D Waterfield
- Ludwig Institute for Cancer Research, Wing 1.1, Cruciform Building, Gower Street, London WCIE 6BT, UK
| | - J F Timms
- Ludwig Institute for Cancer Research, Wing 1.1, Cruciform Building, Gower Street, London WCIE 6BT, UK
- Ludwig Institute for Cancer Research, Wing 1.1, Cruciform Building, Gower Street, London WCIE 6BT, UK. E-mail:
| |
Collapse
|
25
|
Okada H, Nakajima T, Yoshimura T, Yasuda K, Kanzaki H. Microarray analysis of genes controlled by progesterone in human endometrial stromal cells in vitro. Gynecol Endocrinol 2003; 17:271-80. [PMID: 14503970 DOI: 10.1080/gye.17.4.271.280] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
The steroid hormone progesterone is a key factor in establishment and maintenance of pregnancy in the human endometrium. To obtain a global view and identify new target genes for progesterone in human endometrial stromal cells in short-term (3 days) culture, we used a screening strategy to analyze the expression of nearly 1000 human genes by DNA microarray analysis. The results showed that six genes were up-regulated (at least a two-fold increase), and 27 genes were down-regulated (at least a two-fold decrease) after progesterone treatment compared with control. Progesterone stimulated the expression of the interleukin (IL)-1 receptor type 1, fibulin-1, fibulin-2, microsomal glutathione S-transferase 1, fumarylacetoacetate hydrolase and orphan G protein-coupled receptor (RDC1). Progesterone inhibited the expression of insulin-like growth factor binding protein-5, heparin-binding epidermal growth factor-like growth factor, and IL-13 receptor alpha2. In addition, progesterone inhibited the expression of genes involved in immune modulators, DNA/chromatin-related proteins, signal transduction, transcription factors, transport proteins, enzyme, receptor and structural proteins. Our results demonstrate that microarray analysis can be used to identify progesterone-regulated genes in endometrial stromal cells, thus contributing to a more detailed understanding of the molecular mechanisms in response to progesterone in the endometrium during the preparatory period for implantation.
Collapse
Affiliation(s)
- H Okada
- Department of Obstetrics and Gynecology, Kansai Medical University, Moriguchi, Osaka 570-8507, Japan
| | | | | | | | | |
Collapse
|
26
|
Tremain N, Korkko J, Ibberson D, Kopen GC, DiGirolamo C, Phinney DG. MicroSAGE analysis of 2,353 expressed genes in a single cell-derived colony of undifferentiated human mesenchymal stem cells reveals mRNAs of multiple cell lineages. Stem Cells 2002; 19:408-18. [PMID: 11553849 DOI: 10.1634/stemcells.19-5-408] [Citation(s) in RCA: 195] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Mesenchymal stem cells (MSCs) isolated from the bone marrow of adult organisms are capable of differentiating into adipocytes, chondrocytes, myoblasts, osteoblasts, and hematopoiesis-supporting stroma. We recently demonstrated that MSCs also adopt glial cell fates when transplanted into the developing central nervous system and hence can produce tissue elements derived from a separate embryonic layer. Despite these remarkable properties, it has been difficult to establish specific criteria to characterize MSCs. Using a modified protocol for micro-serial analysis of gene expression, we cataloged 2,353 unique genes expressed by a single cell-derived colony of undifferentiated human MSCs. This analysis revealed that the MSC colony simultaneously expressed transcripts characteristic of various mesenchymal cell lineages including chondrocytes, myoblasts, osteoblasts, and hematopoiesis-supporting stroma. Therefore, the profile of expressed transcripts reflects the developmental potential of the cells. Additionally, the MSC colony expressed mRNAs characteristic of endothelial, epithelial and neuronal cell lineages, a combination that provides a unique molecular signature for the cells. Other expressed transcripts included various products involved in wound repair as well as several neurotrophic factors. A total of 268 novel transcripts were also identified, one of which is the most abundantly expressed mRNA in MSCs. This study represents the first extensive gene expression analysis of MSCs and as such reveals new insight into the biology, ontogeny, and in vivo function of the cells.
Collapse
Affiliation(s)
- N Tremain
- Center for Gene Therapy, Tulane University of the Health Sciences, New Orleans, Louisiana 70112, USA
| | | | | | | | | | | |
Collapse
|
27
|
Twal WO, Czirok A, Hegedus B, Knaak C, Chintalapudi MR, Okagawa H, Sugi Y, Argraves WS. Fibulin-1 suppression of fibronectin-regulated cell adhesion and motility. J Cell Sci 2001; 114:4587-98. [PMID: 11792823 DOI: 10.1242/jcs.114.24.4587] [Citation(s) in RCA: 110] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Fibulin-1 is an extracellular matrix protein often associated with fibronectin (FN) in vivo. In this study, the ability of fibulin-1 to modulate adhesion, spreading and motility-promoting activities of FN was investigated. Fibulin-1 was found to have pronounced inhibitory effects on the cell attachment and spreading promoted by FN. Fibulin-1 was also found to inhibit the motility of a variety of cell types on FN substrata. For example, the FN-dependent haptotactic motility of breast carcinoma (MDA MB231) cells, epidermal carcinoma (A431), melanoma (A375 SM), rat pulmonary aortic smooth muscle cells (PAC1) and Chinese hamster ovary (CHO) cells was inhibited by the presence of fibulin-1 bound to FN-coated Boyden chamber membranes. Cells transfected to overproduce fibulin-1 displayed reduced velocity, distance of movement and persistence time on FN substrata. Similarly, the incorporation of fibulin-1 into FN-containing type I collagen gels inhibited the invasion of endocardial cushion mesenchymal cells migrating from cultured embryonic heart explants. By contrast, incorporation of fibulin-1 into collagen gels lacking FN had no effect on the migration of endocardial cushion cells.
These results suggest that the motility-suppressive effects of fibulin-1 might be FN specific. Furthermore, such effects are cell-type specific, in that the migration of gingival fibroblasts and endothelial cells on FN substrata is not responsive to fibulin-1. Additional studies found that the mechanism for the motility-suppressive effects of fibulin-1 does not involve perturbations of interactions between α5β1 or α4 integrins, or heparan sulfate proteoglycans with FN. However, fibulin-1 was found to inhibit extracellular signal regulated kinase (ERK) activation and to suppress phosphorylation of myosin heavy chain. This ability to influence signal transduction cascades that modulate the actin-myosin motor complex might be the basis for the effects of fibulin-1 on adhesion and motility.
Collapse
Affiliation(s)
- W O Twal
- Medical University of South Carolina, Department of Cell Biology, 171 Ashley Avenue, Charleston, SC 29425-2204, USA
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Gu YC, Talts JF, Gullberg D, Timpl R, Ekblom M. Glucocorticoids down-regulate the extracellular matrix proteins fibronectin, fibulin-1 and fibulin-2 in bone marrow stroma. Eur J Haematol 2001; 67:176-84. [PMID: 11737251 DOI: 10.1034/j.1600-0609.2001.5790528.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Glucocorticoids regulate hematopoietic cell interactions with the bone marrow microenvironment, but the molecules involved in the regulation are still largely unknown. We have studied the effect of glucocorticoids on mRNA expression and protein synthesis of the major extracellular matrix adhesion protein fibronectin and three other extracellular proteins, fibulin-1, fibulin-2 and nidogen-1, in mouse bone marrow cultures and in a hematopoiesis supporting the stromal MC3T3-G2/PA6 cell line. Glucocorticoids suppressed mRNA expression and protein synthesis of fibronectin, fibulin-1 and fibulin-2, but not nidogen-1, in adherent cells of bone marrow cultures, as shown by Northern blot analysis and immunoprecipitation. mRNA levels of all four proteins were down-regulated by dexamethasone in MC3T3-G2/PA6 cells, indicating a direct glucocorticoid effect on cells synthesizing extracellular matrix proteins. Dexamethasone down-regulated fibronectin mRNA rapidly, within 2 h of treatment, in the stromal cells. This effect did not require mRNA or protein synthesis, as shown by Northern blot analysis after treatment by actinomycin D and cycloheximide. Interferon-alpha, which also has been reported to modulate haematopoietic cell-matrix interactions, did not affect mRNA expression of the proteins in MC3T3-G2/PA6 cells. Our results indicate that glucocorticoids down-regulate expression of several mesenchymal-type extracellular matrix molecules in bone marrow, but with a variable effect on different proteins. Thus one mechanism by which glucocorticoids regulate haematopoiesis may be by altering the relative proportions of extracellular matrix proteins.
Collapse
Affiliation(s)
- Y C Gu
- Department of Cell and Molecular Biology, Lund University, Sweden
| | | | | | | | | |
Collapse
|