1
|
Meier R, Greve G, Zimmer D, Bresser H, Berberich B, Langova R, Stomper J, Rubarth A, Feuerbach L, Lipka DB, Hey J, Grüning B, Brors B, Duyster J, Plass C, Becker H, Lübbert M. The antileukemic activity of decitabine upon PML/RARA-negative AML blasts is supported by all-trans retinoic acid: in vitro and in vivo evidence for cooperation. Blood Cancer J 2022; 12:122. [PMID: 35995769 PMCID: PMC9395383 DOI: 10.1038/s41408-022-00715-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 07/03/2022] [Accepted: 07/29/2022] [Indexed: 12/02/2022] Open
Abstract
The prognosis of AML patients with adverse genetics, such as a complex, monosomal karyotype and TP53 lesions, is still dismal even with standard chemotherapy. DNA-hypomethylating agent monotherapy induces an encouraging response rate in these patients. When combined with decitabine (DAC), all-trans retinoic acid (ATRA) resulted in an improved response rate and longer overall survival in a randomized phase II trial (DECIDER; NCT00867672). The molecular mechanisms governing this in vivo synergism are unclear. We now demonstrate cooperative antileukemic effects of DAC and ATRA on AML cell lines U937 and MOLM-13. By RNA-sequencing, derepression of >1200 commonly regulated transcripts following the dual treatment was observed. Overall chromatin accessibility (interrogated by ATAC-seq) and, in particular, at motifs of retinoic acid response elements were affected by both single-agent DAC and ATRA, and enhanced by the dual treatment. Cooperativity regarding transcriptional induction and chromatin remodeling was demonstrated by interrogating the HIC1, CYP26A1, GBP4, and LYZ genes, in vivo gene derepression by expression studies on peripheral blood blasts from AML patients receiving DAC + ATRA. The two drugs also cooperated in derepression of transposable elements, more effectively in U937 (mutated TP53) than MOLM-13 (intact TP53), resulting in a “viral mimicry” response. In conclusion, we demonstrate that in vitro and in vivo, the antileukemic and gene-derepressive epigenetic activity of DAC is enhanced by ATRA.
Collapse
Affiliation(s)
- Ruth Meier
- Department of Medicine I (Hematology, Oncology and Stem Cell Transplantation), Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Gabriele Greve
- Institute of Genetic Epidemiology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Dennis Zimmer
- Department of Medicine I (Hematology, Oncology and Stem Cell Transplantation), Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Helena Bresser
- Department of Medicine I (Hematology, Oncology and Stem Cell Transplantation), Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Bettina Berberich
- Department of Medicine I (Hematology, Oncology and Stem Cell Transplantation), Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Ralitsa Langova
- Division of Applied Bioinformatics, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Faculty of Bioscience, University of Heidelberg, Heidelberg, Germany
| | - Julia Stomper
- Department of Medicine I (Hematology, Oncology and Stem Cell Transplantation), Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Anne Rubarth
- Department of Medicine I (Hematology, Oncology and Stem Cell Transplantation), Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Lars Feuerbach
- Division of Applied Bioinformatics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Daniel B Lipka
- Section Translational Cancer Epigenomics, Division of Translational Medical Oncology, German Cancer Research Center (DKFZ) & National Center for Tumor Diseases (NCT), Heidelberg, Germany.,Faculty of Medicine, Otto-von-Guericke-University, Magdeburg, Germany.,German Cancer Consortium (DKTK), Core Center Heidelberg, Heidelberg, Germany
| | - Joschka Hey
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Björn Grüning
- Bioinformatics Group, Department of Computer Science, University of Freiburg, Freiburg, Germany
| | - Benedikt Brors
- Division of Applied Bioinformatics, German Cancer Research Center (DKFZ), Heidelberg, Germany.,German Cancer Consortium (DKTK), Core Center Heidelberg, Heidelberg, Germany.,National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Justus Duyster
- Department of Medicine I (Hematology, Oncology and Stem Cell Transplantation), Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Partner Site Freiburg, Freiburg, Germany
| | - Christoph Plass
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Heiko Becker
- Department of Medicine I (Hematology, Oncology and Stem Cell Transplantation), Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Michael Lübbert
- Department of Medicine I (Hematology, Oncology and Stem Cell Transplantation), Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany. .,German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Partner Site Freiburg, Freiburg, Germany.
| |
Collapse
|
2
|
Sandoval JE, Ramabadran R, Stillson N, Sarah L, Fujimori DG, Goodell MA, Reich N. First-in-Class Allosteric Inhibitors of DNMT3A Disrupt Protein-Protein Interactions and Induce Acute Myeloid Leukemia Cell Differentiation. J Med Chem 2022; 65:10554-10566. [PMID: 35866897 DOI: 10.1021/acs.jmedchem.2c00725] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We previously identified two structurally related pyrazolone (compound 1) and pyridazine (compound 2) allosteric inhibitors of DNMT3A through screening of a small chemical library. Here, we show that these compounds bind and disrupt protein-protein interactions (PPIs) at the DNMT3A tetramer interface. This disruption is observed with distinct partner proteins and occurs even when the complexes are acting on DNA, which better reflects the cellular context. Compound 2 induces differentiation of distinct myeloid leukemia cell lines including cells with mutated DNMT3A R882. To date, small molecules targeting DNMT3A are limited to competitive inhibitors of AdoMet or DNA and display extreme toxicity. Our work is the first to identify small molecules with a mechanism of inhibition involving the disruption of PPIs with DNMT3A. Ongoing optimization of compounds 1 and 2 provides a promising basis to induce myeloid differentiation and treatment of diseases that display aberrant PPIs with DNMT3A, such as acute myeloid leukemia.
Collapse
Affiliation(s)
- Jonathan E Sandoval
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106-9510, United States
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, California 93106-9510, United States
| | - Raghav Ramabadran
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, Texas 77030, United States
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, United States
- Interdepartmental Program in Integrative Molecular and Biomedical Sciences, Baylor College of Medicine, Houston, Texas 77030, United States
| | - Nathaniel Stillson
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106-9510, United States
| | - Letitia Sarah
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, California 94158, United States
| | - Danica Galonić Fujimori
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, California 94158, United States
| | - Margaret A Goodell
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, Texas 77030, United States
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, United States
| | - Norbert Reich
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106-9510, United States
| |
Collapse
|
3
|
Adhikari S, Bhattacharya A, Adhikary S, Singh V, Gadad S, Roy S, Das C. The paradigm of drug resistance in cancer: an epigenetic perspective. Biosci Rep 2022; 42:BSR20211812. [PMID: 35438143 PMCID: PMC9069444 DOI: 10.1042/bsr20211812] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 03/24/2022] [Accepted: 03/24/2022] [Indexed: 12/12/2022] Open
Abstract
Innate and acquired resistance towards the conventional therapeutic regimen imposes a significant challenge for the successful management of cancer for decades. In patients with advanced carcinomas, acquisition of drug resistance often leads to tumor recurrence and poor prognosis after the first therapeutic cycle. In this context, cancer stem cells (CSCs) are considered as the prime drivers of therapy resistance in cancer due to their 'non-targetable' nature. Drug resistance in cancer is immensely influenced by different properties of CSCs such as epithelial-to-mesenchymal transition (EMT), a profound expression of drug efflux pump genes, detoxification genes, quiescence, and evasion of apoptosis, has been highlighted in this review article. The crucial epigenetic alterations that are intricately associated with regulating different mechanisms of drug resistance, have been discussed thoroughly. Additionally, special attention is drawn towards the epigenetic mechanisms behind the interaction between the cancer cells and their microenvironment which assists in tumor progression and therapy resistance. Finally, we have provided a cumulative overview of the alternative treatment strategies and epigenome-modifying therapies that show the potential of sensitizing the resistant cells towards the conventional treatment strategies. Thus, this review summarizes the epigenetic and molecular background behind therapy resistance, the prime hindrance of present day anti-cancer therapies, and provides an account of the novel complementary epi-drug-based therapeutic strategies to combat drug resistance.
Collapse
Affiliation(s)
- Swagata Adhikari
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India
- Homi Bhaba National Institute, Mumbai 400094, India
| | - Apoorva Bhattacharya
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India
| | - Santanu Adhikary
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S.C. Mullick Road, Kolkata 700032, India
| | - Vipin Singh
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India
- Homi Bhaba National Institute, Mumbai 400094, India
| | - Shrikanth S. Gadad
- Department of Molecular and Translational Medicine, Center of Emphasis in Cancer, Texas Tech University Health Sciences Center El Paso, El Paso, TX, U.S.A
- Mays Cancer Center, UT Health San Antonio MD Anderson Cancer Center, San Antonio, TX 78229, U.S.A
| | - Siddhartha Roy
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S.C. Mullick Road, Kolkata 700032, India
| | - Chandrima Das
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India
- Homi Bhaba National Institute, Mumbai 400094, India
| |
Collapse
|
4
|
Luo Y, Zhang W. WITHDRAWN: DNMT inhibitor (decitabine) attenuates tuberculosis-induced spine injury by modulating the expression of microRNA-155 and matrix metalloproteinase-13 via suppressing the hypermethylation of IDH mutant. Biochem Biophys Res Commun 2022. [DOI: 10.1016/j.bbrc.2022.03.081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
5
|
Ultimate Precision: Targeting Cancer But Not Normal Self-Replication. Lung Cancer 2021. [DOI: 10.1007/978-3-030-74028-3_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
6
|
Quagliano A, Gopalakrishnapillai A, Barwe SP. Understanding the Mechanisms by Which Epigenetic Modifiers Avert Therapy Resistance in Cancer. Front Oncol 2020; 10:992. [PMID: 32670880 PMCID: PMC7326773 DOI: 10.3389/fonc.2020.00992] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 05/19/2020] [Indexed: 12/19/2022] Open
Abstract
The development of resistance to anti-cancer therapeutics remains one of the core issues preventing the improvement of survival rates in cancer. Therapy resistance can arise in a multitude of ways, including the accumulation of epigenetic alterations in cancer cells. By remodeling DNA methylation patterns or modifying histone proteins during oncogenesis, cancer cells reorient their epigenomic landscapes in order to aggressively resist anti-cancer therapy. To combat these chemoresistant effects, epigenetic modifiers such as DNA hypomethylating agents, histone deacetylase inhibitors, histone demethylase inhibitors, along with others have been used. While these modifiers have achieved moderate success when used either alone or in combination with one another, the most positive outcomes were achieved when they were used in conjunction with conventional anti-cancer therapies. Epigenome modifying drugs have succeeded in sensitizing cancer cells to anti-cancer therapy via a variety of mechanisms: disrupting pro-survival/anti-apoptotic signaling, restoring cell cycle control and preventing DNA damage repair, suppressing immune system evasion, regulating altered metabolism, disengaging pro-survival microenvironmental interactions and increasing protein expression for targeted therapies. In this review, we explore different mechanisms by which epigenetic modifiers induce sensitivity to anti-cancer therapies and encourage the further identification of the specific genes involved with sensitization to facilitate development of clinical trials.
Collapse
Affiliation(s)
- Anthony Quagliano
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, United States
- Department of Biological Sciences, University of Delaware, Newark, DE, United States
| | - Anilkumar Gopalakrishnapillai
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, United States
- Department of Biological Sciences, University of Delaware, Newark, DE, United States
| | - Sonali P. Barwe
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, United States
- Department of Biological Sciences, University of Delaware, Newark, DE, United States
| |
Collapse
|
7
|
Gao Y, Li L, Zhang W, Ru X, Hou L, Wang Y. Clinical efficacy of cytarabine + aclarubicin + recombinant human granulocyte colony-stimulating factor regimen combined with decitabine for adult acute myeloid leukemia. ALL LIFE 2020. [DOI: 10.1080/26895293.2020.1776773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Affiliation(s)
- Ying Gao
- Department of Hematology, Shaanxi Provincial People's Hospital, Xi'an, People’s Republic of China
| | - Lan Li
- Department of Hematology, Shaanxi Provincial People's Hospital, Xi'an, People’s Republic of China
| | - Weihua Zhang
- Department of Hematology, Shaanxi Provincial People's Hospital, Xi'an, People’s Republic of China
| | - Xingli Ru
- Department of Hematology, Shaanxi Provincial People's Hospital, Xi'an, People’s Republic of China
| | - Limin Hou
- Department of Hematology, Shaanxi Provincial People's Hospital, Xi'an, People’s Republic of China
| | - Yi Wang
- Department of Hematology, Shaanxi Provincial People's Hospital, Xi'an, People’s Republic of China
| |
Collapse
|
8
|
Montgomery M, Srinivasan A. Epigenetic Gene Regulation by Dietary Compounds in Cancer Prevention. Adv Nutr 2019; 10:1012-1028. [PMID: 31100104 PMCID: PMC6855955 DOI: 10.1093/advances/nmz046] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 03/07/2019] [Accepted: 04/03/2019] [Indexed: 02/06/2023] Open
Abstract
Traditionally, cancer has been viewed as a set of diseases that are driven by the accumulation of genetic mutations, but we now understand that disruptions in epigenetic regulatory mechanisms are prevalent in cancer as well. Unlike genetic mutations, however, epigenetic alterations are reversible, making them desirable therapeutic targets. The potential for diet, and bioactive dietary components, to target epigenetic pathways in cancer is now widely appreciated, but our understanding of how to utilize these compounds for effective chemopreventive strategies in humans is in its infancy. This review provides a brief overview of epigenetic regulation and the clinical applications of epigenetics in cancer. It then describes the capacity for dietary components to contribute to epigenetic regulation, with a focus on the efficacy of dietary epigenetic regulators as secondary cancer prevention strategies in humans. Lastly, it discusses the necessary precautions and challenges that will need to be overcome before the chemopreventive power of dietary-based intervention strategies can be fully harnessed.
Collapse
Affiliation(s)
- McKale Montgomery
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK,Address correspondence to MM (E-mail: )
| | | |
Collapse
|
9
|
Dimopoulos K, Grønbæk K. Epigenetic therapy in hematological cancers. APMIS 2019; 127:316-328. [DOI: 10.1111/apm.12906] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 10/22/2018] [Indexed: 01/01/2023]
Affiliation(s)
- Konstantinos Dimopoulos
- Department of Hematology Rigshospitalet University Hospital Copenhagen Copenhagen Denmark
- Biotech Research and Innovation Centre (BRIC) Novo Nordisk Foundation Center for Stem Cell Biology DanStem Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark
| | - Kirsten Grønbæk
- Department of Hematology Rigshospitalet University Hospital Copenhagen Copenhagen Denmark
- Biotech Research and Innovation Centre (BRIC) Novo Nordisk Foundation Center for Stem Cell Biology DanStem Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark
| |
Collapse
|
10
|
Velcheti V, Schrump D, Saunthararajah Y. Ultimate Precision: Targeting Cancer but Not Normal Self-replication. Am Soc Clin Oncol Educ Book 2018; 38:950-963. [PMID: 30231326 DOI: 10.1200/edbk_199753] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Self-replication is the engine that drives all biologic evolution, including neoplastic evolution. A key oncotherapy challenge is to target this, the heart of malignancy, while sparing the normal self-replication mandatory for health and life. Self-replication can be demystified: it is activation of replication, the most ancient of cell programs, uncoupled from activation of lineage-differentiation, metazoan programs more recent in origin. The uncoupling can be physiologic, as in normal tissue stem cells, or pathologic, as in cancer. Neoplastic evolution selects to disengage replication from forward-differentiation where intrinsic replication rates are the highest, in committed progenitors that have division times measured in hours versus weeks for tissue stem cells, via partial loss of function in master transcription factors that activate terminal-differentiation programs (e.g., GATA4) or in the coactivators they use for this purpose (e.g., ARID1A). These loss-of-function mutations bias master transcription factor circuits, which normally regulate corepressor versus coactivator recruitment, toward corepressors (e.g., DNMT1) that repress rather than activate terminal-differentiation genes. Pharmacologic inhibition of the corepressors rebalances to coactivator function, activating lineage-differentiation genes that dominantly antagonize MYC (the master transcription factor coordinator of replication) to terminate malignant self-replication. Physiologic self-replication continues, because the master transcription factors in tissue stem cells activate stem cell, not terminal-differentiation, programs. Druggable corepressor proteins are thus the barriers between self-replicating cancer cells and the terminal-differentiation fates intended by their master transcription factor content. This final common pathway to oncogenic self-replication, being separate and distinct from the normal, offers the favorable therapeutic indices needed for clinical progress.
Collapse
Affiliation(s)
- Vamsidhar Velcheti
- From the Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH; Thoracic Oncology, National Cancer Institute, Bethesda, MD
| | - David Schrump
- From the Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH; Thoracic Oncology, National Cancer Institute, Bethesda, MD
| | - Yogen Saunthararajah
- From the Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH; Thoracic Oncology, National Cancer Institute, Bethesda, MD
| |
Collapse
|
11
|
Orsini M, Morceau F, Dicato M, Diederich M. Autophagy as a pharmacological target in hematopoiesis and hematological disorders. Biochem Pharmacol 2018; 152:347-361. [PMID: 29656115 DOI: 10.1016/j.bcp.2018.04.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 04/10/2018] [Indexed: 12/14/2022]
Abstract
Autophagy is involved in many cellular processes, including cell homeostasis, cell death/survival balance and differentiation. Autophagy is essential for hematopoietic stem cell survival, quiescence, activation and differentiation. The deregulation of this process is associated with numerous hematological disorders and pathologies, including cancers. Thus, the use of autophagy modulators to induce or inhibit autophagy emerges as a potential therapeutic approach for treating these diseases and could be particularly interesting for differentiation therapy of leukemia cells. This review presents therapeutic strategies and pharmacological agents in the context of hematological disorders. The pros and cons of autophagy modulators in therapy will also be discussed.
Collapse
Affiliation(s)
- Marion Orsini
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer, Hôpital Kirchberg, 9, rue Edward Steichen, L-2540 Luxembourg, Luxembourg
| | - Franck Morceau
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer, Hôpital Kirchberg, 9, rue Edward Steichen, L-2540 Luxembourg, Luxembourg
| | - Mario Dicato
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer, Hôpital Kirchberg, 9, rue Edward Steichen, L-2540 Luxembourg, Luxembourg
| | - Marc Diederich
- College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea.
| |
Collapse
|
12
|
Germano G, Morello G, Aveic S, Pinazza M, Minuzzo S, Frasson C, Persano L, Bonvini P, Viola G, Bresolin S, Tregnago C, Paganin M, Pigazzi M, Indraccolo S, Basso G. ZNF521 sustains the differentiation block in MLL-rearranged acute myeloid leukemia. Oncotarget 2018; 8:26129-26141. [PMID: 28412727 PMCID: PMC5432245 DOI: 10.18632/oncotarget.15387] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 01/31/2017] [Indexed: 12/31/2022] Open
Abstract
Zinc finger protein 521 (ZNF521) is a multiple zinc finger transcription factor and a strong candidate as regulator of hematopoietic stem cell homeostasis. Recently, independent gene expression profile studies have evidenced a positive correlation between ZNF521 mRNA overexpression and MLL-rearranged acute myeloid leukemia (AML), leaving open the question on the role of ZNF521 in this subtype of leukemia. In this study, we sought to analyze the effect of ZNF521 depletion on MLL-rearranged AML cell lines and MLL-AF9 xenograft primary cells. Knockdown of ZNF521 with short-hairpin RNA (shRNA) led to decreased leukemia proliferation, reduced colony formation and caused cell cycle arrest in MLL-rearranged AML cell lines. Importantly, we showed that loss of ZNF521 substantially caused differentiation of both MLL-rearranged cell lines and primary cells. Moreover, gene profile analysis in ZNF521-silenced THP-1 cells revealed a loss of MLL-AF9-directed leukemic signature and an increase of the differentiation program. Finally, we determined that both MLL-AF9 and MLL-ENL fusion proteins directly interacted with ZNF521 promoter activating its transcription. In conclusion, our findings identify ZNF521 as a critical effector of MLL fusion proteins in blocking myeloid differentiation and highlight ZNF521 as a potential therapeutic target for this subtype of leukemia.
Collapse
Affiliation(s)
- Giuseppe Germano
- Foundation Institute of Pediatric Research Città della Speranza, Padova, Italy
| | - Giulia Morello
- Foundation Institute of Pediatric Research Città della Speranza, Padova, Italy
| | - Sanja Aveic
- Foundation Institute of Pediatric Research Città della Speranza, Padova, Italy
| | - Marica Pinazza
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Italy
| | - Sonia Minuzzo
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Italy
| | - Chiara Frasson
- Department of Woman and Child Health, University of Padova, Italy
| | - Luca Persano
- Foundation Institute of Pediatric Research Città della Speranza, Padova, Italy
| | - Paolo Bonvini
- Foundation Institute of Pediatric Research Città della Speranza, Padova, Italy
| | - Giampietro Viola
- Department of Woman and Child Health, University of Padova, Italy
| | - Silvia Bresolin
- Department of Woman and Child Health, University of Padova, Italy
| | - Claudia Tregnago
- Department of Woman and Child Health, University of Padova, Italy
| | | | - Martina Pigazzi
- Department of Woman and Child Health, University of Padova, Italy
| | - Stefano Indraccolo
- Immunology and Molecular Oncology Unit, Istituto Oncologico Veneto IRCCS, Padova, Italy
| | - Giuseppe Basso
- Department of Woman and Child Health, University of Padova, Italy
| |
Collapse
|
13
|
Velcheti V, Radivoyevitch T, Saunthararajah Y. Higher-Level Pathway Objectives of Epigenetic Therapy: A Solution to the p53 Problem in Cancer. Am Soc Clin Oncol Educ Book 2017; 37:812-824. [PMID: 28561650 DOI: 10.1200/edbk_174175] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Searches for effective yet nontoxic oncotherapies are searches for exploitable differences between cancer and normal cells. In its core of cell division, cancer resembles normal life, coordinated by the master transcription factor MYC. Outside of this core, apoptosis and differentiation programs, which dominantly antagonize MYC to terminate cell division, necessarily differ between cancer and normal cells, as apoptosis is suppressed by biallelic inactivation of the master regulator of apoptosis, p53, or its cofactor p16/CDKN2A in approximately 80% of cancers. These genetic alterations impact therapy: conventional oncotherapy applies stress upstream of p53 to upregulate it and causes apoptosis (cytotoxicity)-a toxic, futile intent when it is absent or nonfunctional. Differentiation, on the other hand, cannot be completely suppressed because it is a continuum along which all cells exist. Neoplastic evolution stalls advances along this continuum at its most proliferative points-in lineage-committed progenitors that have division times measured in hours compared with weeks for tissue stem cells. This differentiation arrest is by mutations/deletions in differentiation-driving transcription factors or their coactivators that shift balances of gene-regulating protein complexes toward corepressors that repress instead of activate hundreds of terminal differentiation genes. That is, malignant proliferation without differentiation, also referred to as cancer "stem" cell self-renewal, hinges on druggable corepressors. Inhibiting these corepressors (e.g., DNMT1) releases p53-independent terminal differentiation in cancer stem cells but preserves self-renewal of normal stem cells that express stem cell transcription factors. Thus, epigenetic-differentiation therapies exploit a fundamental distinction between cancer and normal stem cell self-renewal and have a pathway of action downstream of genetic defects in cancer, affording favorable therapeutic indices needed for clinical progress.
Collapse
Affiliation(s)
- Vamsidhar Velcheti
- From the Department of Hematology & Medical Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH; Department of Quantitative Health Sciences, Cleveland Clinic, Cleveland, OH; Department of Translational Hematology & Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH
| | - Tomas Radivoyevitch
- From the Department of Hematology & Medical Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH; Department of Quantitative Health Sciences, Cleveland Clinic, Cleveland, OH; Department of Translational Hematology & Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH
| | - Yogen Saunthararajah
- From the Department of Hematology & Medical Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH; Department of Quantitative Health Sciences, Cleveland Clinic, Cleveland, OH; Department of Translational Hematology & Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH
| |
Collapse
|
14
|
A multicenter, randomized study of decitabine as epigenetic priming with induction chemotherapy in children with AML. Clin Epigenetics 2017; 9:108. [PMID: 29034009 PMCID: PMC5629751 DOI: 10.1186/s13148-017-0411-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 09/25/2017] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Decitabine is a deoxycytidine nucleoside derivative inhibitor of DNA-methyltransferases, which has been studied extensively and is approved for myelodysplastic syndrome in adults but with less focus in children. Accordingly, we conducted a phase 1 multicenter, randomized, open-label study to evaluate decitabine pre-treatment before standard induction therapy in children with newly diagnosed AML to assess safety and tolerability and explore a number of biologic endpoints. RESULTS Twenty-four patients were fully assessable for all study objectives per protocol (10 in Arm A = epigenetic priming induction, 14 in Arm B = standard induction). All patients experienced neutropenia and thrombocytopenia. The most common grade 3 and 4 non-hematologic adverse events observed were gastrointestinal toxicities and hypophosphatemia. Plasma decitabine PK were similar to previously reported adult data. Overall CR/CRi was similar for the two arms. MRD negativity at end-induction was 85% in Arm A versus 67% in Arm B patients. DNA methylation measured in peripheral blood over the course of treatment tracked with blast clearance and matched marrow aspirates at day 0 and day 21. Unlike end-induction marrow analyses, promoter methylation in blood identified an apparent reversal of response in the lone treatment failure, 1 week prior to the patient's marrow aspirate confirming non-response. Decitabine-induced effects on end-induction (day 35-43 following initiation of treatment) marrows in Arm A were reflected by changes in DNA methylation in matched paired marrow diagnostic aspirates. CONCLUSIONS This first-in-pediatrics trial demonstrates that decitabine prior to standard combination chemotherapy is feasible and well tolerated in children with newly diagnosed AML. Pre-treatment with decitabine may represent a newer therapeutic option for pediatric AML, especially as it appears to induce important epigenetic alterations. The novel biological correlates studied in this trial offer a clinically relevant window into disease progression and remission. Additional studies are needed to definitively assess whether decitabine can enhance durability responses in children with AML. TRIAL REGISTRATION NCT01177540.
Collapse
|
15
|
van Gils N, Verhagen HJMP, Smit L. Reprogramming acute myeloid leukemia into sensitivity for retinoic-acid-driven differentiation. Exp Hematol 2017; 52:12-23. [PMID: 28456748 DOI: 10.1016/j.exphem.2017.04.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 04/05/2017] [Accepted: 04/14/2017] [Indexed: 12/29/2022]
Abstract
The success of all-trans retinoic acid (ATRA) therapy for acute promyelocytic leukemia (APL) provides a rationale for using retinoic acid (RA)-based therapy for other subtypes of acute myeloid leukemia (AML). Recently, several studies showed that ATRA may drive leukemic cells efficiently into differentiation and/or apoptosis in a subset of AML patients with an NPM1 mutation, a FLT3-ITD, an IDH1 mutation, and patients overexpressing EVI-1. Because not all patients within these molecular subgroups respond to ATRA and clinical trials that tested ATRA response in non-APL AML patients have had disappointing results, the identification of additional biomarkers may help to identify patients who strongly respond to ATRA-based therapy. Searching for response biomarkers might also reveal novel RA-based combination therapies with an efficient differentiation/apoptosis-inducing effect in non-APL AML patients. Preliminary studies suggest that the epigenetic or transcriptional state of leukemia cells determines their susceptibility to ATRA. We hypothesize that reprogramming by inhibitors of epigenetic-modifying enzymes or by modulation of microRNA expression might sensitize non-APL AML cells for RA-based therapy. AML relapse is caused by a subpopulation of leukemia cells, named leukemic stem cells (LSCs), which are in a different epigenetic state than the total bulk of the AML. The survival of LSCs after therapy is the main cause of the poor prognosis of AML patients, and novel differentiation therapies should drive these LSCs into maturity. In this review, we summarize the current knowledge on the epigenetic aspects of susceptibility to RA-induced differentiation in APL and non-APL AML.
Collapse
Affiliation(s)
- Noortje van Gils
- Department of Hematology, VU University Medical Center, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Han J M P Verhagen
- Department of Hematology, VU University Medical Center, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Linda Smit
- Department of Hematology, VU University Medical Center, Cancer Center Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
16
|
Li Z, Weng H, Su R, Weng X, Zuo Z, Li C, Huang H, Nachtergaele S, Dong L, Hu C, Qin X, Tang L, Wang Y, Hong GM, Huang H, Wang X, Chen P, Gurbuxani S, Arnovitz S, Li Y, Li S, Strong J, Neilly MB, Larson RA, Jiang X, Zhang P, Jin J, He C, Chen J. FTO Plays an Oncogenic Role in Acute Myeloid Leukemia as a N 6-Methyladenosine RNA Demethylase. Cancer Cell 2017; 31:127-141. [PMID: 28017614 PMCID: PMC5234852 DOI: 10.1016/j.ccell.2016.11.017] [Citation(s) in RCA: 1064] [Impact Index Per Article: 152.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 06/02/2016] [Accepted: 11/21/2016] [Indexed: 12/30/2022]
Abstract
N6-Methyladenosine (m6A) represents the most prevalent internal modification in mammalian mRNAs. Despite its functional importance in various fundamental bioprocesses, the studies of m6A in cancer have been limited. Here we show that FTO, as an m6A demethylase, plays a critical oncogenic role in acute myeloid leukemia (AML). FTO is highly expressed in AMLs with t(11q23)/MLL rearrangements, t(15;17)/PML-RARA, FLT3-ITD, and/or NPM1 mutations. FTO enhances leukemic oncogene-mediated cell transformation and leukemogenesis, and inhibits all-trans-retinoic acid (ATRA)-induced AML cell differentiation, through regulating expression of targets such as ASB2 and RARA by reducing m6A levels in these mRNA transcripts. Collectively, our study demonstrates the functional importance of the m6A methylation and the corresponding proteins in cancer, and provides profound insights into leukemogenesis and drug response.
Collapse
Affiliation(s)
- Zejuan Li
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, IL 60637, USA; Department of Human Genetics, University of Chicago, Chicago, IL 60637, USA
| | - Hengyou Weng
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, IL 60637, USA; Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45219, USA
| | - Rui Su
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45219, USA
| | - Xiaocheng Weng
- Departments of Chemistry, Biochemistry and Molecular Biology, Institute for Biophysical Dynamics, Howard Hughes Medical Institute, University of Chicago, Chicago, IL 60637, USA; College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Hubei, Wuhan 430072, PR China
| | - Zhixiang Zuo
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, IL 60637, USA; Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45219, USA; Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Chenying Li
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45219, USA; Key Laboratory of Hematopoietic Malignancies, Department of Hematology, The First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Huilin Huang
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45219, USA
| | - Sigrid Nachtergaele
- Departments of Chemistry, Biochemistry and Molecular Biology, Institute for Biophysical Dynamics, Howard Hughes Medical Institute, University of Chicago, Chicago, IL 60637, USA
| | - Lei Dong
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45219, USA
| | - Chao Hu
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, IL 60637, USA; Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45219, USA; Key Laboratory of Hematopoietic Malignancies, Department of Hematology, The First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Xi Qin
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45219, USA
| | - Lichun Tang
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yungui Wang
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, IL 60637, USA; Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45219, USA; Key Laboratory of Hematopoietic Malignancies, Department of Hematology, The First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Gia-Ming Hong
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Hao Huang
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Xiao Wang
- Departments of Chemistry, Biochemistry and Molecular Biology, Institute for Biophysical Dynamics, Howard Hughes Medical Institute, University of Chicago, Chicago, IL 60637, USA
| | - Ping Chen
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Sandeep Gurbuxani
- Department of Pathology, University of Chicago, Chicago, IL 60637, USA
| | - Stephen Arnovitz
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Yuanyuan Li
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Shenglai Li
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Jennifer Strong
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45219, USA
| | - Mary Beth Neilly
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Richard A Larson
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Xi Jiang
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, IL 60637, USA; Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45219, USA
| | - Pumin Zhang
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jie Jin
- Key Laboratory of Hematopoietic Malignancies, Department of Hematology, The First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Chuan He
- Departments of Chemistry, Biochemistry and Molecular Biology, Institute for Biophysical Dynamics, Howard Hughes Medical Institute, University of Chicago, Chicago, IL 60637, USA.
| | - Jianjun Chen
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, IL 60637, USA; Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45219, USA.
| |
Collapse
|
17
|
Ma HS, Robinson TM, Small D. Potential role for all- trans retinoic acid in nonpromyelocytic acute myeloid leukemia. Int J Hematol Oncol 2016; 5:133-142. [PMID: 30302214 DOI: 10.2217/ijh-2016-0015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Accepted: 02/08/2017] [Indexed: 11/21/2022] Open
Abstract
All-trans retinoic acid (ATRA) has been very successful in the subtype of acute myelogenous leukemia known as acute promyelocytic leukemia due to targeted reactivation of retinoic acid signaling. There has been great interest in applying this form of differentiation therapy to other cancers, and numerous clinical trials have been initiated. However, ATRA as monotherapy has thus far shown little benefit in nonacute promyelocytic leukemia acute myelogenous leukemia. Here, we review the literature on the use of ATRA in combination with chemotherapy, epigenetic modifying agents and targeted therapy, highlighting specific patient populations where the addition of ATRA to existing therapies may provide benefit. Furthermore, we discuss the impact of recent whole genome sequencing efforts in leading the design of rational combinatorial approaches.
Collapse
Affiliation(s)
- Hayley S Ma
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Hospital, Baltimore, MD, USA
| | - Tara M Robinson
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Hospital, Baltimore, MD, USA
| | - Donald Small
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Hospital, Baltimore, MD, USA
| |
Collapse
|
18
|
Schneider BJ, Shah MA, Klute K, Ocean A, Popa E, Altorki N, Lieberman M, Schreiner A, Yantiss R, Christos PJ, Palmer R, You D, Viale A, Kermani P, Scandura JM. Phase I Study of Epigenetic Priming with Azacitidine Prior to Standard Neoadjuvant Chemotherapy for Patients with Resectable Gastric and Esophageal Adenocarcinoma: Evidence of Tumor Hypomethylation as an Indicator of Major Histopathologic Response. Clin Cancer Res 2016; 23:2673-2680. [PMID: 27836862 DOI: 10.1158/1078-0432.ccr-16-1896] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Revised: 10/05/2016] [Accepted: 10/25/2016] [Indexed: 11/16/2022]
Abstract
Purpose: Epigenetic silencing of tumor suppressor genes (TSG) is an acquired abnormality observed in cancer and is prototypically linked to DNA methylation. We postulated that pretreatment (priming) with 5-azacitidine would increase the efficacy of chemotherapy by reactivating TSGs. This study was conducted to identify a tolerable dose of 5-azacitidine prior to EOX (epirubicin, oxaliplatin, capecitabine) neoadjuvant chemotherapy in patients with locally advanced esophageal/gastric adenocarcinoma (EGC).Experimental Design: Eligible patients had untreated, locally advanced, resectable EGC, ECOG 0-2, and adequate organ function. 5-Azacitidine (V, 75 mg/m2) was given subcutaneously for 3 (dose level, DL 1) or 5 (DL 2) days prior to each 21-day cycle of EOX (E, 50 mg/m2; O, 130 mg/m2; X, 625 mg/m2 twice daily for 21 days). Standard 3+3 methodology guided V dose escalation. DNA methylation at control and biomarker regions was measured by digital droplet, bisulfite qPCR in tumor samples collected at baseline and at resection.Results: All subjects underwent complete resection of residual tumor (R0). Three of the 12 patients (25%) achieved a surgical complete response and 5 had partial responses. The overall response rate was 67%. The most common toxicities were gastrointestinal and hematologic. Hypomethylation of biomarker genes was observed at all dose levels and trended with therapeutic response.Conclusions: Neoadjuvant VEOX was well-tolerated with significant clinical and epigenetic responses, with preliminary evidence that priming with V prior to chemotherapy may augment chemotherapy efficacy. The recommended phase II trial schedule is 5-azacitidine 75 mg/m2 for 5 days followed by EOX chemotherapy every 21 days. Clin Cancer Res; 23(11); 2673-80. ©2016 AACR.
Collapse
Affiliation(s)
- Bryan J Schneider
- Division of Hematology/Oncology, Department of Internal Medicine, Weill Cornell Medical College, New York, New York.
| | - Manish A Shah
- Division of Hematology/Oncology, Department of Internal Medicine, Weill Cornell Medical College, New York, New York
| | - Kelsey Klute
- Division of Hematology/Oncology, Department of Internal Medicine, Weill Cornell Medical College, New York, New York
| | - Allyson Ocean
- Division of Hematology/Oncology, Department of Internal Medicine, Weill Cornell Medical College, New York, New York
| | - Elizabeta Popa
- Division of Hematology/Oncology, Department of Internal Medicine, Weill Cornell Medical College, New York, New York
| | - Nasser Altorki
- Department of Thoracic Surgery, Weill Cornell Medical College, New York, New York
| | - Michael Lieberman
- Department of Surgery, Weill Cornell Medical College, New York, New York
| | - Andrew Schreiner
- Department of Pathology, Weill Cornell Medical College, New York, New York
| | - Rhonda Yantiss
- Department of Pathology, Weill Cornell Medical College, New York, New York
| | - Paul J Christos
- Division of Biostatistics and Epidemiology, Department of Healthcare Policy and Research, Weill Cornell Medical College, New York, New York
| | - Romae Palmer
- Clinical Trials Office, Weill Cornell Medical College, New York, New York
| | - Daoqi You
- Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Agnes Viale
- Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Pouneh Kermani
- Division of Hematology/Oncology, Department of Internal Medicine, Weill Cornell Medical College, New York, New York
| | - Joseph M Scandura
- Division of Hematology/Oncology, Department of Internal Medicine, Weill Cornell Medical College, New York, New York
- Division of Regenerative Medicine, Department of Internal Medicine; Weill Cornell Medical College, New York, New York
| |
Collapse
|
19
|
Nachliely M, Sharony E, Kutner A, Danilenko M. Novel analogs of 1,25-dihydroxyvitamin D 2 combined with a plant polyphenol as highly efficient inducers of differentiation in human acute myeloid leukemia cells. J Steroid Biochem Mol Biol 2016; 164:59-65. [PMID: 26365556 DOI: 10.1016/j.jsbmb.2015.09.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 09/02/2015] [Accepted: 09/08/2015] [Indexed: 12/19/2022]
Abstract
1α,25-Dihydroxyvitamin D3 [1,25(OH)2D3] is known to act as a powerful differentiation inducer in various types of cancer cells, including acute myeloid leukemia (AML) cells. However, supraphysiological concentrations of 1,25(OH)2D3 required to induce terminal maturation of AML cells can cause lethal hypercalcemia in vivo. Here we characterized the differentiation-inducing effects of novel double-point modified analogs of 1,25-dihydroxyvitamin D2 [1,25(OH)2D2], PRI-5201 and PRI-5202 [Pietraszek et al. (2013) Steroids, 78:1003-1014], on HL60, U937 and MOLM-13 human AML cells in comparison with their direct precursors (PRI-1906 and PRI-1907, respectively) and 1,25(OH)2D3. The results demonstrated the following order of potency for the tested compounds: PRI-5202>PRI-1907>PRI-5201>PRI-1906≥1,25(OH)2D3, as determined by measuring the expression of cell surface markers of myeloid differentiation. Particularly, the sensitivity of different AML cell lines to PRI-5201 and PRI-5202 was 3-15-fold and 13-50 fold higher, respectively, compared to that of 1,25(OH)2D3. Importantly, all the analogs tested at 0.25-1nM concentrations retained the ability of 1,25(OH)2D3 to cooperate with the rosemary polyphenol carnosic acid, which strongly potentiated their prodifferentiation activity in a cell type-dependent manner. These synergistic effects were associated with increased induction of the vitamin D receptor (VDR) protein expression. However, surprisingly, carnosic acid was able to significantly enhance only 1,25(OH)2D3-induced transactivation of the direct repeat 3 (DR3)-type vitamin D response element (VDRE), whereas no such cooperation was seen with 1,25(OH)2D2 analogs. Furthermore, dose-response analysis revealed that 1,25(OH)2D3 was more efficacious than the analogs in inducing VDRE activation. This suggests that the superior prodifferentiation activity of the analogs, as compared to 1,25(OH)2D3, may be due to their potential for enhanced activation of the differentiation-related VDRE(s) that differ from the DR3-type element tested in this study. Collectively, the results demonstrate that the new double-point modified 1,25(OH)2D2 analogs are much stronger inducers of myeloid differentiation than 1,25(OH)2D3 and that their efficacy can be further enhanced by combination with plant polyphenols. These combinations warrant their further mechanistic and translational exploration in AML and other types of cancer.
Collapse
Affiliation(s)
- Matan Nachliely
- Department of Clinical Biochemistry and Pharmacology, Ben Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Ehud Sharony
- Department of Clinical Biochemistry and Pharmacology, Ben Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Andrzej Kutner
- Department of Pharmacology, Pharmaceutical Research Institute, Warsaw 01-793, Poland
| | - Michael Danilenko
- Department of Clinical Biochemistry and Pharmacology, Ben Gurion University of the Negev, Beer Sheva 84105, Israel.
| |
Collapse
|
20
|
Studzinski GP, Harrison JS, Wang X, Sarkar S, Kalia V, Danilenko M. Vitamin D Control of Hematopoietic Cell Differentiation and Leukemia. J Cell Biochem 2016; 116:1500-12. [PMID: 25694395 DOI: 10.1002/jcb.25104] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 01/23/2015] [Indexed: 12/20/2022]
Abstract
It is now well known that in the mammalian body vitamin D is converted by successive hydroxylations to 1,25-dihydroxyvitamin D (1,25D), a steroid-like hormone with pleiotropic properties. These include important contributions to the control of cell proliferation, survival and differentiation, as well as the regulation of immune responses in disease. Here, we present recent advances in current understanding of the role of 1,25D in myelopoiesis and lymphopoiesis, and the potential of 1,25D and analogs (vitamin D derivatives; VDDs) for the control of hematopoietic malignancies. The reasons for the unimpressive results of most clinical studies of the therapeutic effects of VDDs in leukemia and related diseases may include the lack of a precise rationale for the conduct of these studies. Further, clinical trials to date have generally used extremely heterogeneous patient populations and, in many cases, small numbers of patients, generally without controls. Although low calcemic VDDs have been used and combined with agents that can increase the leukemia cell killing or differentiation effects in acute leukemias, the sequencing of agents used for combination therapy should to be more clearly delineated. Most importantly, it is recommended that in future clinical trials the rationale for the basis of the enhancing action of drug combinations should be clearly articulated and the effects on anticancer immunity should also be evaluated.
Collapse
Affiliation(s)
- George P Studzinski
- Department of Pathology & Laboratory Medicine, Rutgers, NJ Medical School, 185 South Orange Ave, Newark, New Jersey 07103
| | - Jonathan S Harrison
- Department of Medicine, University of Missouri Medical School, One Hospital Drive, Columbia, Missouri 65212
| | - Xuening Wang
- Department of Pathology & Laboratory Medicine, Rutgers, NJ Medical School, 185 South Orange Ave, Newark, New Jersey 07103
| | - Surojit Sarkar
- The Huck Institutes of Life Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802
| | - Vandana Kalia
- The Huck Institutes of Life Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802
| | - Michael Danilenko
- Department of Clinical Biochemistry & Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, P.O. Box 653, 84105, Beer-Sheva, Israel
| |
Collapse
|
21
|
Kang H, Wang X, Gao L, Cen J, Li M, Wang W, Wang N, Li Y, Wang L, Yu L. Clinical implications of the quantitative detection of ID4 gene methylation in myelodysplastic syndrome. Eur J Med Res 2015; 20:16. [PMID: 25889027 PMCID: PMC4336702 DOI: 10.1186/s40001-015-0092-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 01/22/2015] [Indexed: 11/29/2022] Open
Abstract
Background Myelodysplastic syndrome (MDS) eventually transforms into acute leukemia (AL) in about 30% of patients. Hypermethylation of the inhibitor of DNA binding 4 (ID4) gene may play an important role in the initiation and development of MDS and AL. The aim of this study was to quantitatively assess ID4 gene methylation in MDS and to establish if it could be an effective method of evaluating MDS disease progression. Methods We examined 142 bone marrow samples from MDS patients, healthy donors and MDS-AL patients using bisulfite sequencing PCR and quantitative real-time methylation-specific PCR. The ID4 methylation rates and levels were assessed. Results ID4 methylation occurred in 27 patients (27/100). ID4 gene methylation was more frequent and at higher levels in patients with advanced disease stages and in high-risk subgroups according to WHO (P < 0.001, P < 0.001, respectively) and International Prognostic Scoring System (IPSS) (P = 0.002, P = 0.007, respectively) classifications. ID4 methylation levels changed during disease progression. Both methylation rates and methylation levels were significantly different between healthy donor, MDS patients and patients with MDS-AL (P < 0.001, P < 0.001, respectively). Multivariate analysis indicated that the level of ID4 methylation was an independent factor influencing overall survival. Patients with MDS showed decreased survival time with increased ID4 methylation levels (P = 0.011, hazard ratio (HR) = 2.371). Patients with ID4 methylation had shorter survival time than those without ID4 methylation (P = 0.008). Conclusions Our findings suggest that ID4 gene methylation might be a new biomarker for MDS monitoring and the detection of minimal residual disease.
Collapse
Affiliation(s)
- Huiyuan Kang
- Department of Hematology, Chinese PLA General Hospital, 28 Fuxing Road, Beijing, 100853, China. .,Department of Clinical Tests, Chinese PLA General Hospital, 28 Fuxing Road, Beijing, 100853, China.
| | - Xinrong Wang
- Department of Hematology, Chinese PLA General Hospital, 28 Fuxing Road, Beijing, 100853, China.
| | - Li Gao
- Department of Hematology, Chinese PLA General Hospital, 28 Fuxing Road, Beijing, 100853, China.
| | - Jian Cen
- Department of Hematology, Chinese PLA General Hospital, 28 Fuxing Road, Beijing, 100853, China.
| | - Mianyang Li
- Department of Clinical Tests, Chinese PLA General Hospital, 28 Fuxing Road, Beijing, 100853, China.
| | - Wei Wang
- Department of Hematology, Chinese PLA General Hospital, 28 Fuxing Road, Beijing, 100853, China.
| | - Nan Wang
- Department of Hematology, Chinese PLA General Hospital, 28 Fuxing Road, Beijing, 100853, China.
| | - Yonghui Li
- Department of Hematology, Chinese PLA General Hospital, 28 Fuxing Road, Beijing, 100853, China.
| | - Lili Wang
- Department of Hematology, Chinese PLA General Hospital, 28 Fuxing Road, Beijing, 100853, China.
| | - Li Yu
- Department of Hematology, Chinese PLA General Hospital, 28 Fuxing Road, Beijing, 100853, China.
| |
Collapse
|
22
|
Sensitivity of MLL-rearranged AML cells to all-trans retinoic acid is associated with the level of H3K4me2 in the RARα promoter region. Blood Cancer J 2014; 4:e205. [PMID: 24769646 PMCID: PMC4003419 DOI: 10.1038/bcj.2014.25] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Accepted: 03/21/2014] [Indexed: 01/26/2023] Open
Abstract
All-trans retinoic acid (ATRA) is well established as differentiation therapy for acute promyelocytic leukemia (APL) in which the PML-RARα (promyelocytic leukemia-retinoic acid receptor α) fusion protein causes blockade of the retinoic acid (RA) pathway; however, in types of acute myeloid leukemia (AML) other than APL, the mechanism of RA pathway inactivation is not fully understood. This study revealed the potential mechanism of high ATRA sensitivity of mixed-lineage leukemia (MLL)-AF9-positive AML compared with MLL-AF4/5q31-positive AML. Treatment with ATRA induced significant myeloid differentiation accompanied by upregulation of RARα, C/EBPα, C/EBPɛ and PU.1 in MLL-AF9-positive but not in MLL-AF4/5q31-positive cells. Combining ATRA with cytarabine had a synergistic antileukemic effect in MLL-AF9-positive cells in vitro. The level of dimethyl histone H3 lysine 4 (H3K4me2) in the RARα gene-promoter region, PU.1 upstream regulatory region (URE) and RUNX1+24/+25 intronic enhancer was higher in MLL-AF9-positive cells than in MLL-AF4-positive cells, and inhibiting lysine-specific demethylase 1, which acts as a histone demethylase inhibitor, reactivated ATRA sensitivity in MLL-AF4-positive cells. These findings suggest that the level of H3K4me2 in the RARα gene-promoter region, PU.1 URE and RUNX1 intronic enhancer is determined by the MLL-fusion partner. Our findings provide insight into the mechanisms of ATRA sensitivity in AML and novel treatment strategies for ATRA-resistant AML.
Collapse
|
23
|
Welch MD, Greene WK, Kees UR. Hypomethylation of the CTGF gene locus is a common feature of paediatric pre-B acute lymphoblastic leukaemia. Br J Haematol 2013; 162:537-41. [PMID: 23772794 DOI: 10.1111/bjh.12417] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Accepted: 05/09/2013] [Indexed: 12/17/2022]
Abstract
The connective tissue growth factor gene (CTGF) is aberrantly expressed in 75% of precursor B-cell acute lymphoblastic leukaemias (pre-B ALL) and is associated with poor outcome. We identified consistent hypomethylation of the CTGF locus in primary pre-B ALL specimens regardless of CTGF expression. By contrast, primary T-cell ALL specimens, which do not express CTGF, exhibited distinctive patterns of hypermethylation. Furthermore, we confirmed that global changes in DNA methylation and histone acetylation can both functionally modulate CTGF expression in pre-B ALL cell lines. These data suggest that hypomethylation of the CTGF locus is an essential prerequisite for aberrant CTGF expression in pre-B ALL.
Collapse
Affiliation(s)
- Mathew D Welch
- Division of Children's Leukaemia and Cancer Research, Telethon Institute for Child Health Research and Centre for Child Health Research, University of Western Australia, Perth, WA, Australia
| | | | | |
Collapse
|
24
|
Saunthararajah Y, Triozzi P, Rini B, Singh A, Radivoyevitch T, Sekeres M, Advani A, Tiu R, Reu F, Kalaycio M, Copelan E, Hsi E, Lichtin A, Bolwell B. p53-Independent, normal stem cell sparing epigenetic differentiation therapy for myeloid and other malignancies. Semin Oncol 2012; 39:97-108. [PMID: 22289496 PMCID: PMC3655437 DOI: 10.1053/j.seminoncol.2011.11.011] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Cytotoxic chemotherapy for acute myeloid leukemia (AML) usually produces only temporary remissions, at the cost of significant toxicity and risk for death. One fundamental reason for treatment failure is that it is designed to activate apoptosis genes (eg, TP53) that may be unavailable because of mutation or deletion. Unlike deletion of apoptosis genes, genes that mediate cell cycle exit by differentiation are present in myelodysplastic syndrome (MDS) and AML cells but are epigenetically repressed: MDS/AML cells express high levels of key lineage-specifying transcription factors. Mutations in these transcription factors (eg, CEBPA) or their cofactors (eg., RUNX1) affect transactivation function and produce epigenetic repression of late-differentiation genes that antagonize MYC. Importantly, this aberrant epigenetic repression can be redressed clinically by depleting DNA methyltransferase 1 (DNMT1, a central component of the epigenetic network that mediates transcription repression) using the deoxycytidine analogue decitabine at non-cytotoxic concentrations. The DNMT1 depletion is sufficient to trigger upregulation of late-differentiation genes and irreversible cell cycle exit by p53-independent differentiation mechanisms. Fortuitously, the same treatment maintains or increases self-renewal of normal hematopoietic stem cells, which do not express high levels of lineage-specifying transcription factors. The biological rationale for this approach to therapy appears to apply to cancers other than MDS/AML also. Decitabine or 5-azacytidine dose and schedule can be rationalized to emphasize this mechanism of action, as an alternative or complement to conventional apoptosis-based oncotherapy.
Collapse
Affiliation(s)
- Yogen Saunthararajah
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH 44195, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Lübbert M, Rüter BH, Claus R, Schmoor C, Schmid M, Germing U, Kuendgen A, Rethwisch V, Ganser A, Platzbecker U, Galm O, Brugger W, Heil G, Hackanson B, Deschler B, Döhner K, Hagemeijer A, Wijermans PW, Döhner H. A multicenter phase II trial of decitabine as first-line treatment for older patients with acute myeloid leukemia judged unfit for induction chemotherapy. Haematologica 2011; 97:393-401. [PMID: 22058219 DOI: 10.3324/haematol.2011.048231] [Citation(s) in RCA: 187] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The treatment of acute myeloid leukemia of older, medically non-fit patients still poses a highly unmet clinical need, and only few large, prospective studies have been performed in this setting. Given the established activity of hypomethylating agents such as 5-aza-2'-deoxycytidine (decitabine) in myelodysplastic syndromes and acute myeloid leukemia with 20-30% bone marrow blasts, we investigated whether this drug is also active in patients with more than 30% blasts. DESIGN AND METHODS To evaluate the efficacy and toxicity of decitabine in patients over 60 years old with untreated acute myeloid leukemia ineligible for induction chemotherapy, 227 patients (median age, 72 years), many with comorbidities, adverse cytogenetics and/or preceding myelodysplastic syndrome were treated with this hypomethylating agent. During the initial decitabine treatment (135 mg/m(2) total dose infused intravenously over 72 hours every 6 weeks), a median of two cycles was administered (range, 1-4). All-trans retinoic acid was administered to 100 patients during course 2. Fifty-two patients who completed four cycles of treatment subsequently received a median of five maintenance courses (range, 1-19) with a lower dose of decitabine (20 mg/m(2)) infused over 1 hour on 3 consecutive days every 4-6 weeks. RESULTS The complete and partial remission rate was 26%, 95% CI (20%, 32%), and an antileukemic effect was noted in 26% of patients. Response rates did not differ between patients with or without adverse cytogenetics; patients with monosomal karyotypes also responded. The median overall survival from the start of decitabine treatment was 5.5 months (range, 0-57.5+) and the 1-year survival rate was 28%, 95%CI (22%,34%). Toxicities were predominantly hematologic. CONCLUSIONS Decitabine is well tolerated by older, medically non-fit patients with acute myeloid leukemia; myelosuppression is the major toxicity. The response rate and overall survival were not adversely influenced by poor-risk cytogenetics or myelodysplastic syndrome. Because of these encouraging results, randomized studies evaluating single-agent decitabine versus conventional treatment are warranted. The study is registered with the German Clinical Trials Registry, number DRKS00000069.
Collapse
Affiliation(s)
- Michael Lübbert
- Dept. of Medicine, Div. Hematology/Oncology, University of Freiburg Medical Center, Hugstetter Str. 55, D-79106 Freiburg, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Negrotto S, Ng KP, Jankowska AM, Bodo J, Gopalan B, Guinta K, Mulloy JC, Hsi E, Maciejewski J, Saunthararajah Y. CpG methylation patterns and decitabine treatment response in acute myeloid leukemia cells and normal hematopoietic precursors. Leukemia 2011; 26:244-54. [PMID: 21836612 PMCID: PMC3217177 DOI: 10.1038/leu.2011.207] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The DNA hypomethylating drug decitabine maintains normal hematopoietic stem cell (HSC) self-renewal but induces terminal differentiation in acute myeloid leukemia (AML) cells. The basis for these contrasting cell-fates, and for selective CpG hypomethylation by decitabine, is poorly understood. Promoter CpGs, with methylation measured by microarray, were classified by the direction of methylation change with normal myeloid maturation. In AML cells, the methylation pattern at maturation-responsive CpG suggested at least partial maturation. Consistent with partial maturation, in gene expression analyses, AML cells expressed high levels of the key lineage-specifying factor CEBPA, but relatively low levels of the key late-differentiation driver CEBPE. In methylation analysis by mass-spectrometry, CEBPE promoter CpG that are usually hypomethylated during granulocyte maturation were significantly hypermethylated in AML cells. Decitabine treatment induced cellular differentiation of AML cells, and the largest methylation decreases were at CpG that are hypomethylated with myeloid maturation, including CEBPE promoter CpG. In contrast, decitabine-treated normal HSC retained immature morphology, and methylation significantly decreased at CpG that are less methylated in immature cells. High expression of lineage-specifying factor and aberrant epigenetic repression of some key late-differentiation genes distinguishes AML cells from normal HSC and could explain the contrasting differentiation and methylation responses to decitabine.
Collapse
Affiliation(s)
- S Negrotto
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH 44195, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Comparative effects of retinoic acid, vitamin D and resveratrol alone and in combination with adenosine analogues on methylation and expression of phosphatase and tensin homologue tumour suppressor gene in breast cancer cells. Br J Nutr 2011; 107:781-90. [PMID: 21801466 DOI: 10.1017/s0007114511003631] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Aberrations in DNA methylation patterns have been reported to be involved in driving changes in the expression of numerous genes during carcinogenesis and have become promising targets for chemopreventive action of natural compounds. In the present study, we investigated the effects of all-trans retinoic acid (ATRA), vitamin D₃ and resveratrol alone and in combination with adenosine analogues, 2-chloro-2'-deoxyadenosine (2CdA) and 9-β-d-arabinosyl-2-fluoroadenine (F-ara-A), on the methylation and expression of phosphatase and tensin homologue (PTEN) tumour suppressor gene in MCF-7 and MDA-MB-231 breast cancer cells. The present results showed that in non-invasive MCF-7 cells, ATRA, vitamin D₃ and resveratrol possess high efficacy in the reduction of PTEN promoter methylation. It was associated with PTEN induction as well as DNA methyltransferase down-regulation and p21 up-regulation after treatments with vitamin D₃ and resveratrol, suggesting a complex regulation of the DNA methylation machinery. Vitamin D₃ and resveratrol improved the inhibitory effects of 2CdA and F-ara-A on PTEN methylation in MCF-7 cells; however, only the combined action of vitamin D₃ and 2CdA boosted the induction of PTEN expression, suggesting a cooperation of these compounds in additional processes driving changes in PTEN expression. In contrast, in highly invasive MDA-MB-231 cells, only vitamin D₃ reduced PTEN methylation and induced its expression without notable effects in combined treatments. The present results suggest that natural compounds can find application in epigenetic anticancer therapy aimed at inhibition of promoter methylation of tumour suppressor genes and induction of their expression at early stages of carcinogenesis.
Collapse
|
28
|
p53 independent epigenetic-differentiation treatment in xenotransplant models of acute myeloid leukemia. Leukemia 2011; 25:1739-50. [PMID: 21701495 DOI: 10.1038/leu.2011.159] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Suppression of apoptosis by TP53 mutation contributes to resistance of acute myeloid leukemia (AML) to conventional cytotoxic treatment. Using differentiation to induce irreversible cell cycle exit in AML cells could be a p53-independent treatment alternative, however, this possibility requires evaluation. In vitro and in vivo regimens of the deoxycytidine analogue decitabine that deplete the chromatin-modifying enzyme DNA methyl-transferase 1 without phosphorylating p53 or inducing early apoptosis were determined. These decitabine regimens but not equimolar DNA-damaging cytarabine upregulated the key late differentiation factors CCAAT enhancer-binding protein ɛ and p27/cyclin dependent kinase inhibitor 1B (CDKN1B), induced cellular differentiation and terminated AML cell cycle, even in cytarabine-resistant p53- and p16/CDKN2A-null AML cells. Leukemia initiation by xenotransplanted AML cells was abrogated but normal hematopoietic stem cell engraftment was preserved. In vivo, the low toxicity allowed frequent drug administration to increase exposure, an important consideration for S phase specific decitabine therapy. In xenotransplant models of p53-null and relapsed/refractory AML, the non-cytotoxic regimen significantly extended survival compared with conventional cytotoxic cytarabine. Modifying in vivo dose and schedule to emphasize this pathway of decitabine action can bypass a mechanism of resistance to standard therapy.
Collapse
|
29
|
Phase 1 study of epigenetic priming with decitabine prior to standard induction chemotherapy for patients with AML. Blood 2011; 118:1472-80. [PMID: 21613261 DOI: 10.1182/blood-2010-11-320093] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
We conducted an open-label phase 1 study exploring the feasibility, safety, and biologic activity of epigenetic priming with decitabine before standard induction chemotherapy in patients with less-than-favorable risk of acute myelogenous leukemia (AML). We directly compared the clinical and DNA-hypomethylating activity of decitabine delivered at 20 mg/m² by either a 1-hour infusion (Arm A) or a continuous infusion (Arm B) for 3, 5, or 7 days before a single, standard induction with infusional cytarabine (100 mg/m² for 7 days) and daunorubicin (60 mg/m² × 3 doses). Toxicity was similar to that of standard induction chemotherapy alone. Although we did not identify a maximum tolerated dose, there was more gastro-intestinal toxicity with 7 days of decitabine priming. Decitabine induced DNA hypomethylation at all dose levels and there was a trend toward greater hypomethylation in CD34(+) bone marrow cells when decitabine was delivered by a short pulse (Arm A). Twenty-seven subjects (90%) responded to therapy: 17 with complete remission (57%) and 10 with partial remission (33%). Of the patients with partial remission to protocol treatment, 8 achieved remission to their next therapy, bringing the overall complete remission rate to 83%. We conclude that epigenetic priming of intensive chemotherapy can be safely delivered in an attempt to improve response rates. This trial was registered at www.clinicaltrials.gov as NCT00538876.
Collapse
|
30
|
Hu Z, Negrotto S, Gu X, Mahfouz R, Ng KP, Ebrahem Q, Copelan E, Singh H, Maciejewski JP, Saunthararajah Y. Decitabine maintains hematopoietic precursor self-renewal by preventing repression of stem cell genes by a differentiation-inducing stimulus. Mol Cancer Ther 2010; 9:1536-43. [PMID: 20501800 DOI: 10.1158/1535-7163.mct-10-0191] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The cytosine analogue decitabine alters hematopoietic differentiation. For example, decitabine treatment increases self-renewal of normal hematopoietic stem cells. The mechanisms underlying decitabine-induced shifts in differentiation are poorly understood, but likely relate to the ability of decitabine to deplete the chromatin-modifying enzyme DNA methyltransferase 1 (DNMT1), which plays a central role in transcription repression. HOXB4 is a transcription factor that promotes hematopoietic stem cell self-renewal. In hematopoietic precursors induced to differentiate by the lineage-specifying transcription factor Pu.1 or by the cytokine granulocyte-colony stimulating factor, there is rapid repression of HOXB4 and other stem cell genes. Depletion of DNMT1 using shRNA or decitabine prevents HOXB4 repression by Pu.1 or granulocyte-colony stimulating factor and maintains hematopoietic precursor self-renewal. In contrast, depletion of DNMT1 by decitabine 6 hours after the differentiation stimulus, that is, after repression of HOXB4 has occurred, augments differentiation. Therefore, DNMT1 is required for the early repression of stem cell genes, which occurs in response to a differentiation stimulus, providing a mechanistic explanation for the observation that decitabine can maintain or increase hematopoietic stem cell self-renewal in the presence of a differentiation stimulus. Using decitabine to deplete DNMT1 after this early repression phase does not impair progressive differentiation.
Collapse
Affiliation(s)
- Zhenbo Hu
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Gocek E, Kiełbiński M, Baurska H, Haus O, Kutner A, Marcinkowska E. Different susceptibilities to 1,25-dihydroxyvitamin D3-induced differentiation of AML cells carrying various mutations. Leuk Res 2009; 34:649-57. [PMID: 19880182 DOI: 10.1016/j.leukres.2009.10.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2009] [Revised: 09/12/2009] [Accepted: 10/04/2009] [Indexed: 11/16/2022]
Abstract
This study was designed to compare the differentiation-inducing potential of 1,25-dihydroxyvitamin D(3) (1,25D) with some analogs (VDAs) in a panel of acute myeloid leukemia (AML) cell lines and in blast cells isolated from patients with AML. Of the cell lines studied, HL60 proved to be the most sensitive to each of the differentiation-inducing agents when compared to THP-1, NB-4 and U-937 cell lines. Three of the VDAs tested (PRI-1906, PRI-2191 and PRI-2201) were similarly effective as 1,25D in all the cell lines tested. However, blast cells from AML showed a varying sensitivity towards 1,25D. For example, blast cells isolated from patients in which the whole or part of chromosome 7 was deleted were extremely sensitive to 1,25D and its analogs. In contrast, 1,25D failed to increase the expression of differentiation markers in blast cells isolated from patients carrying activating mutations in Flt3 gene. Since, the expression of vitamin D receptor (VDR) in cells with Flt3 mutations was increased to the same extent as in other AML cells this suggests that failure of these cells to differentiate lies downstream of the receptor. That blast cells with different cytogenetic abnormalities have dissimilar responses to 1,25D and its analogs, may have implications in the use of 1,25D as a 'differentiation therapy' for myeloid leukemias. The analog PRI-2191 (tacalcitol) was found to be the most potent in inducing patient's cells differentiation.
Collapse
Affiliation(s)
- Elzbieta Gocek
- Department of Biotechnology, University of Wrocław, Tamka 2, 50-137 Wrocław, Poland
| | | | | | | | | | | |
Collapse
|
32
|
Hughes PJ, Marcinkowska E, Gocek E, Studzinski GP, Brown G. Vitamin D3-driven signals for myeloid cell differentiation--implications for differentiation therapy. Leuk Res 2009; 34:553-65. [PMID: 19811822 DOI: 10.1016/j.leukres.2009.09.010] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2009] [Revised: 09/05/2009] [Accepted: 09/07/2009] [Indexed: 10/20/2022]
Abstract
Primitive myeloid leukemic cell lines can be driven to differentiate to monocyte-like cells by 1alpha,25-dihydroxyvitamin D(3) (1,25(OH)(2)D(3)), and, therefore, 1,25(OH)(2)D(3) may be useful in differentiation therapy of myeloid leukemia and myelodysplastic syndromes (MDS). Recent studies have provided important insights into the mechanism of 1,25(OH)(2)D(3)-stimulated differentiation. For myeloid progenitors to complete monocytic differentiation a complex network of intracellular signals has to be activated and/or inactivated in a precise temporal and spatial pattern. 1,25(OH)(2)D(3) achieves this change to the 'signaling landscape' by (i) direct genomic modulation of the level of expression of key regulators of cell signaling and differentiation pathways, and (ii) activation of intracellular signaling pathways. An improved understanding of the mode of action of 1,25(OH)(2)D(3) is facilitating the development of new therapeutic regimens.
Collapse
Affiliation(s)
- Philip J Hughes
- School of Immunity and Infection, College of Medical and Dental Sciences, The University of Birmingham, Vincent Drive, Edgbaston, Birmingham, West Midlands B15 2TT, UK
| | | | | | | | | |
Collapse
|
33
|
Abstract
Treatment of hematologic malignancies is evolving from a uniform approach to targeted therapies directed at the underlying molecular abnormalities of disease. The mixed lineage leukemia (MLL) proto-oncogene is a recurrent site of genetic rearrangements in acute leukemias; and since its discovery in 1992, many advances have been made in understanding its role in leukemogenesis. A variety of MLL translocation partners have been described, and detailed structure/function studies have identified functional domains that are required for transformation. Proteins associated with the MLL core complex or its fusion partners have been isolated and characterized for their critical roles in leukemia pathogenesis. Downstream mediators of MLL transcriptional regulation and multiple collaborating signaling pathways have been described and characterized. These advances in our understanding of MLL-related leukemogenesis provide a foundation for ongoing and future efforts to develop novel therapeutic strategies that will hopefully result in better treatment outcomes.
Collapse
|
34
|
Affiliation(s)
- Patrick A Zweidler-McKay
- The Children's Cancer Hospital at the University of Texas M.D. Anderson Cancer Center, Houston, Texas, USA
| | | |
Collapse
|
35
|
Horie A, Akimoto M, Tsumura H, Makishima M, Taketani T, Yamaguchi S, Honma Y. Induction of differentiation of myeloid leukemia cells in primary culture in response to lithocholic acid acetate, a bile acid derivative, and cooperative effects with another differentiation inducer, cotylenin A. Leuk Res 2008; 32:1112-23. [PMID: 18242698 DOI: 10.1016/j.leukres.2007.12.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2007] [Revised: 12/06/2007] [Accepted: 12/10/2007] [Indexed: 11/24/2022]
Abstract
Lithocholic acid (LCA) acetate induced the differentiation of human leukemia cells. Treatment with a combination of LCA acetate and cotylenin A, an inducer of the differentiation of leukemia cells, was more effective than that with LCA acetate or cotylenin A alone at inducing monocytic differentiation. LCA acetate activated mitogen-activated protein kinase (MAPK) before inducing differentiation. Cotylenin A did not activate MAPK, suggesting that cotylenin A has a different mode of action. The cooperative effects of LCA acetate and cotylenin A on inducing differentiation were, at least partly, due to the enhancement of LCA acetate-induced MAPK activation by cotylenin A.
Collapse
Affiliation(s)
- Akiyoshi Horie
- Department of Life Science, Faculty of Medicine, Shimane University, Izumo, Shimane 693-8501, Japan
| | | | | | | | | | | | | |
Collapse
|
36
|
Honma Y, Akimoto M. Therapeutic strategy using phenotypic modulation of cancer cells by differentiation-inducing agents. Cancer Sci 2007; 98:1643-51. [PMID: 17645578 PMCID: PMC11158768 DOI: 10.1111/j.1349-7006.2007.00575.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2007] [Revised: 06/11/2007] [Accepted: 06/24/2007] [Indexed: 11/28/2022] Open
Abstract
A low concentration of differentiation inducers greatly enhances the in vitro and in vivo antiproliferative effects of interferon (IFN)alpha in several human cancer cells. Among the differentiation inducers tested, the sensitivity of cancer cells to IFNalpha was most strongly affected by cotylenin A. Cotylenin A, which is a novel fusicoccane diterpene glycoside with a complex sugar moiety, affected the differentiation of leukemia cells that were freshly isolated from acute myelogenous leukemia patients in primary culture. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and its receptor DR5 were early genes induced by the combination of cotylenin A and IFNalpha in carcinoma cells. Neutralizing antibody to TRAIL inhibited apoptosis, suggesting that cotylenin A and IFNalpha cooperatively induced apoptosis through the TRAIL signaling system. Combined treatment preferentially induced apoptosis in human lung cancer cells while sparing normal lung epithelial cells. In an analysis of various cancer cell lines, ovarian cancer cells were highly sensitive to combined treatment with cotylenin A and IFNalpha in terms of the inhibition of cell growth. This treatment was also effective toward ovarian cancer cells that were refractory to cisplatin, and significantly inhibited the growth of ovarian cancer cells as xenografts without apparent adverse effects. Ovarian cancer cells from patients were also sensitive to the combined treatment in primary cultures. Combined treatment with cotylenin A and IFNalpha may have therapeutic value in treating human cancers including ovarian cancer.
Collapse
Affiliation(s)
- Yoshio Honma
- Department of Life Science, Shimane University Faculty of Medicine, Izumo, Shimane 693-8501, Japan.
| | | |
Collapse
|
37
|
Ross SA, Milner JA. Epigenetic modulation and cancer: effect of metabolic syndrome? Am J Clin Nutr 2007; 86:s872-7. [PMID: 18265481 DOI: 10.1093/ajcn/86.3.872s] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The importance of epigenetics in the etiology of disease, including cancer development and progression, is increasingly being recognized. However, the relevance of epigenetics to the metabolic syndrome, and how it may affect cancer, is only beginning to capture the interest of the scientific community. This review focuses on data supporting the hypothesis that, in addition to the "thrifty genotype" and "thrifty phenotype" hypotheses, diet-induced changes in "epigenetic programming" during fetal and postnatal development may precipitate the metabolic syndrome. Thus, epigenetics may bridge both the thrifty genotype and thrifty phenotype hypotheses and provide a link between genes and the environment concerning disease predisposition to metabolic syndrome and its associated diseases.
Collapse
Affiliation(s)
- Sharon A Ross
- Nutritional Science Research Group, Division of Cancer Prevention, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892-7328, USA.
| | | |
Collapse
|
38
|
Agrawal S, Unterberg M, Koschmieder S, zur Stadt U, Brunnberg U, Verbeek W, Büchner T, Berdel WE, Serve H, Müller-Tidow C. DNA Methylation of Tumor Suppressor Genes in Clinical Remission Predicts the Relapse Risk in Acute Myeloid Leukemia. Cancer Res 2007; 67:1370-7. [PMID: 17283175 DOI: 10.1158/0008-5472.can-06-1681] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Epigenetic changes play an important role in leukemia pathogenesis. DNA methylation is among the most common alterations in leukemia. The potential role of DNA methylation as a biomarker in leukemia is unknown. In addition, the lack of molecular markers precludes minimal residual disease (MRD) estimation for most patients with hematologic malignancies. We analyzed the potential of aberrant DNA promoter methylation as a biomarker for MRD in acute leukemias. Quantitative real-time PCR methods with bisulfite-modified DNA were established to quantify MRD based on estrogen receptor alpha (ERalpha) and/or p15(INK4B) methylation. Methylation analyses were done in >370 DNA specimens from 180 acute leukemia patients and controls. Methylation of ERalpha and/or p15(INK4B) occurred frequently and specifically in acute leukemia but not in healthy controls or in nonmalignant hematologic diseases. Aberrant DNA methylation was detectable in >20% of leukemia patients during clinical remission. In pediatric acute lymphoblastic leukemia, methylation levels during clinical remission correlated closely with T-cell receptor/immunoglobulin MRD levels (r = +0.7, P < 0.01) and were associated with subsequent relapse. In acute myelogenous leukemia patients in clinical remission, increased methylation levels were associated with a high relapse risk and significantly reduced relapse-free survival (P = 0.003). Many patients with acute leukemia in clinical remission harbor increased levels of aberrant DNA methylation. Analysis of methylation MRD might be used as a novel biomarker for leukemia patients' relapse risk.
Collapse
Affiliation(s)
- Shuchi Agrawal
- Department of Medicine, Hematology and Oncology, University of Münster, Domagkstrasse 3, 48129 Münster, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Guo Y, Engelhardt M, Wider D, Abdelkarim M, Lübbert M. Effects of 5-aza-2'-deoxycytidine on proliferation, differentiation and p15/INK4b regulation of human hematopoietic progenitor cells. Leukemia 2006; 20:115-21. [PMID: 16307025 DOI: 10.1038/sj.leu.2404019] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The demethylating agents 5-azacytidine and 5-aza-2'-deoxycytidine (DAC) have been shown to induce differentiation and inhibit growth of leukemic myeloid cells at low concentrations. However, the effect of DAC in changing the differentiation and proliferation behavior of normal human myeloid progenitors has rarely been investigated. Therefore, we established an in vitro model of normal hematopoietic differentiation, using CD34+ cells from mobilized peripheral blood, to study proliferation and colony formation, expression of several myeloid maturation markers and of the inhibitor of cyclin-dependent kinases p15/INK4b. Upon DAC treatment, cell growth was significantly decreased in a dose-dependent manner, without an increase in cytotoxicity. DAC treatment also resulted in a substantial increase of lysozyme-positive cells, which could be enhanced by G-CSF, a modest increase of myeloperoxidase+ and CD15+ cells, as well as an increase of colony-forming cells (CFU-GM) compared to control cells. p15/INK4b protein expression was strongly upregulated upon myeloid maturation, and additional DAC treatment did not change p15 expression or the methylation status of the p15 promoter at the noncytotoxic concentrations used. Taken together, these data indicate a role of DAC in changing myeloid progenitor cell expansion and differentiation. This model appears suitable also for global analyses of multiple differentially methylated genes.
Collapse
Affiliation(s)
- Y Guo
- Department of Hematology/Oncology, University of Freiburg Medical Center, Freiburg, Germany
| | | | | | | | | |
Collapse
|
40
|
Abstract
The most extensively studied inhibitors of DNA methylation are the cytidine analogs 5-azacytidine (5-aza-CR; azacitidine) and 5-aza-2'- deoxycytidine (5-aza-CdR; decitabine). Despite decades of nonclinical and clinical research, there remains considerable interest in finding innovative and better ways to use these DNA methyltransferase (DNMT) inhibitors. A mounting body of data supports the role of methylation in silencing genes involved in tumor growth and resistance. This information has fueled further nonclinical and clinical research on ways to use inhibitors of methylation to restore normal gene expression and function. As such, recent clinical strategies have shifted from simply evaluating cytotoxic effects to exploring and optimizing the ability of these agents to restore or reactivate gene expression and putative targets. This article considers innovative approaches to develop and evaluate inhibitors of DNA methylation as epigenetic remodeling agents for the treatment of cancer. These include optimization of dose and schedule, restoration or enhancement of sensitivity to other treatment modalities, and combinations with other agents including histone deacetylase inhibitors.
Collapse
Affiliation(s)
- Anthony J Murgo
- Investigational Drug Branch, Cancer Therapy Evaluation Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, 6130 Executive Boulevard, Bethesda, MD 20852, USA.
| |
Collapse
|
41
|
Ishii Y, Kasukabe T, Honma Y. Immediate up-regulation of the calcium-binding protein S100P and its involvement in the cytokinin-induced differentiation of human myeloid leukemia cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2005; 1745:156-65. [PMID: 16129123 DOI: 10.1016/j.bbamcr.2005.01.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2004] [Revised: 12/20/2004] [Accepted: 01/12/2005] [Indexed: 11/21/2022]
Abstract
Cytokinins are important purine derivatives that act as redifferentiation-inducing hormones to control many processes in plants. Cytokinins such as isopentenyladenine (IPA) and kinetin are very effective at inducing the granulocytic differentiation of human myeloid leukemia HL-60 cells. We examined the gene expression profiles associated with exposure to IPA using cDNA microarrays and compared the results with those obtained with other inducers of differentiation, such as all-trans retinoic acid (ATRA), 1 alpha,25-dihydroxyvitamin D3 (VD3) and cotylenin A (CN-A). Many genes were up-regulated, and only a small fraction were down-regulated, upon exposure to the inducers. IPA and CN-A, but not ATRA or VD3, immediately induced the expression of mRNA for the calcium-binding protein S100P. The up-regulation of S100P was confirmed at the protein expression level. We also examined the expression of other S100 proteins, including S100A8, S100A9 and S100A12, and found that IPA preferentially up-regulated S100P at the early stages of differentiation. IPA-induced differentiation of HL-60 cells was suppressed by treatment with antisense oligonucleotides against S100P, suggesting that S100P plays an important role in cell differentiation.
Collapse
Affiliation(s)
- Yuki Ishii
- Saitama Cancer Center Research Institute, 818 Komuro, Ina, Saitama 362-0806, Japan
| | | | | |
Collapse
|
42
|
Srivastava MD, Ambrus JL. Effect of 1,25(OH)2 Vitamin D3 analogs on differentiation induction and cytokine modulation in blasts from acute myeloid leukemia patients. Leuk Lymphoma 2005; 45:2119-26. [PMID: 15370259 DOI: 10.1080/1042819032000159924] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
In acute myeloid leukemia (AML), cell proliferation and differentiation are uncoupled, causing a maturation block. Induction of terminal differentiation is a potential therapeutic strategy. 1alpha, 25(OH)2 Vitamin D3 regulates differentiation and is immunomodulatory at concentrations causing severe hypercalcemia, thus limiting its use. We investigated 1alpha, 25(OH)2 Vitamin D3 and 5 of its more potent analogs with reduced calcium resorbing activity for differentiation of blast cells from AML (FAB M1) patients, compared to TPA. Blast phenotype, p-glycoprotein expression, cytokine production, and lineage specificity were examined. The Vitamin D3 analogs had no effect on cell viability and proliferation. They induced incomplete differentiation, with increase in AP, NSE and NBT positivity of cells, but no cell sticking and spreading as observed with TPA. The analogs were more effective than the parent compound. They also inhibited the production of IL-6 and IL-8. Vitamin D3 and its analogs can induce differentiation of primary cells from AML patients in vitro, but may need to be combined with other agents for terminal differentiation of blasts and effective therapy in vivo.
Collapse
Affiliation(s)
- Maya D Srivastava
- Department of Pediatrics, Metro Health Medical Center, 2500 Metro Health Drive, Cleveland, Ohio 44109, USA
| | | |
Collapse
|
43
|
Iijima K, Honma Y, Niitsu N. Granulocytic differentiation of leukemic cells with t(9;11)(p22;q23) induced by all-trans-retinoic acid. Leuk Lymphoma 2004; 45:1017-24. [PMID: 15291362 DOI: 10.1080/1042819031000163887] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Acute leukemia patients with MLL (mixed linage leukemia) rearrangements tend to respond poorly to conventional therapies. We examined differentiation of human myeloid leukemia cells displaying the MLL-AF9 gene, using several differentiation agents. When MOLM-14 cells were treated with all-trans retinoic acid (ATRA) or 1beta,25-dihydroxyvitamin D3, significant induced differentiation was observed. Trichostatin A (TSA), an inhibitor of histone deacetylase, demonstrated enhance effects with ATRA in regard to growth inhibition and differentiation induction in MOLM-14 cells. Pretreatment with TSA before exposure to ATRA displayed increased effect. Based on these findings, combined treatment with ATRA and TSA may be clinically useful in therapy for acute leukemia displaying MLL-AF9 fusion gene.
Collapse
MESH Headings
- Acute Disease
- Cell Cycle Proteins/genetics
- Cell Differentiation/drug effects
- Cell Line, Tumor
- Chromosomes, Human, Pair 11
- Chromosomes, Human, Pair 9
- Cyclin-Dependent Kinase Inhibitor p21
- Drug Synergism
- Granulocytes/drug effects
- Granulocytes/pathology
- Humans
- Hydroxamic Acids/pharmacology
- Leukemia, Myeloid/drug therapy
- Leukemia, Myeloid/genetics
- Leukemia, Myeloid/pathology
- Receptors, Retinoic Acid/genetics
- Retinoic Acid Receptor alpha
- Translocation, Genetic
- Tretinoin/pharmacology
- Up-Regulation/drug effects
Collapse
Affiliation(s)
- Kimiko Iijima
- First Department of Internal Medicine, Toho University School of Medicine, Tokyo, Japan
| | | | | |
Collapse
|
44
|
Balch C, Huang THM, Brown R, Nephew KP. The epigenetics of ovarian cancer drug resistance and resensitization. Am J Obstet Gynecol 2004; 191:1552-72. [PMID: 15547525 DOI: 10.1016/j.ajog.2004.05.025] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Ovarian cancer is the most lethal of all gynecologic neoplasms. Early-stage malignancy is frequently asymptomatic and difficult to detect and thus, by the time of diagnosis, most women have advanced disease. Most of these patients, although initially responsive, eventually develop and succumb to drug-resistant metastases. The success of typical postsurgical regimens, usually a platinum/taxane combination, is limited by primary tumors being intrinsically refractory to treatment and initially responsive tumors becoming refractory to treatment, due to the emergence of drug-resistant tumor cells. This review highlights a prominent role for epigenetics, particularly aberrant DNA methylation and histone acetylation, in both intrinsic and acquired drug-resistance genetic pathways in ovarian cancer. Administration of therapies that reverse epigenetic "silencing" of tumor suppressors and other genes involved in drug response cascades could prove useful in the management of drug-resistant ovarian cancer patients. In this review, we summarize recent advances in the use of methyltransferase and histone deacetylase inhibitors and possible synergistic combinations of these to achieve maximal tumor suppressor gene re-expression. Moreover, when used in combination with conventional chemotherapeutic agents, epigenetic-based therapies may provide a means to resensitize ovarian tumors to the proven cytotoxic activities of conventional chemotherapeutics.
Collapse
Affiliation(s)
- Curtis Balch
- Medical Sciences, Indiana University, Bloomington, Ind, USA
| | | | | | | |
Collapse
|
45
|
Danilenko M, Studzinski GP. Enhancement by other compounds of the anti-cancer activity of vitamin D(3) and its analogs. Exp Cell Res 2004; 298:339-58. [PMID: 15265684 DOI: 10.1016/j.yexcr.2004.04.029] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2004] [Revised: 04/20/2004] [Indexed: 12/15/2022]
Abstract
Differentiation therapy holds promise as an alternative to cytotoxic drug therapy of cancer. Among compounds under scrutiny for this purpose is the physiologically active form of vitamin D(3), 1,25-dihydroxyvitamin D(3), and its chemically modified derivatives. However, the propensity of vitamin D(3) and its analogs to increase the levels of serum calcium has so far precluded their use in cancer patients except for limited clinical trials. This article summarizes the range of compounds that have been shown to increase the differentiation-inducing and antiproliferative activities of vitamin D(3) and its analogs, and discusses the possible mechanistic basis for this synergy in several selected combinations. The agents discussed include those that have differentiation-inducing activity of their own that is increased by combination with vitamin D(3) or analogs, such as retinoids or transforming growth factor-beta and plant-derived compounds and antioxidants, such as curcumin and carnosic acid. Among other compounds discussed here are dexamethasone, nonsteroidal anti-inflammatory drugs, and inhibitors of cytochrome P450 enzymes, for example, ketoconazole. Thus, recent data illustrate that there are extensive, but largely unexplored, opportunities to develop combinatorial, differentiation-based approaches to chemoprevention and chemotherapy of human cancer.
Collapse
Affiliation(s)
- Michael Danilenko
- Department of Clinical Biochemistry, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | | |
Collapse
|
46
|
Abstract
The MLL gene is a major player in leukemia, particularly in infant leukemia and in secondary, therapy-related acute leukemia. The normal MLL gene plays a key role in developmental regulation of gene expression (including HOX genes), and in leukemia this function is subverted by breakage, recombination, and chimeric fusion with one of 40 or more alternative partner genes. In infant leukemias, the chromosome translocations involving MLL arise during fetal hematopoiesis, possibly in a primitive lymphomyeloid stem cell. In general, these leukemias have a very poor prognosis. The malignancy of these leukemias is all the more dramatic considering their very short preclinical natural history or latency. These data raise fundamental issues of how such divergent MLL chimeric genes transform cells, why they so rapidly evolve to a malignant status, and what alternative or novel therapeutic strategies might be considered. We review here progress in tackling these questions.
Collapse
MESH Headings
- Acute Disease
- Age of Onset
- Animals
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
- Cell Transformation, Neoplastic/genetics
- Chromosomes, Human, Pair 11/genetics
- Chromosomes, Human, Pair 11/ultrastructure
- DNA-Binding Proteins/chemistry
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/physiology
- Disease Progression
- Drug Design
- Histone-Lysine N-Methyltransferase
- Humans
- Infant
- Infant, Newborn
- Leukemia, Myeloid/drug therapy
- Leukemia, Myeloid/embryology
- Leukemia, Myeloid/epidemiology
- Leukemia, Myeloid/genetics
- Mice
- Mice, Knockout
- Myeloid-Lymphoid Leukemia Protein
- Oligonucleotide Array Sequence Analysis
- Oncogene Proteins, Fusion/chemistry
- Oncogene Proteins, Fusion/genetics
- Proto-Oncogenes
- Structure-Activity Relationship
- Transcription Factors
- Translocation, Genetic
Collapse
Affiliation(s)
- Mariko Eguchi
- LRF Centre for Cell and Molecular Biology of Leukaemia, Institute of Cancer Research, London, UK
| | | | | |
Collapse
|
47
|
Ishii Y, Sakai S, Honma Y. Cytokinin-induced differentiation of human myeloid leukemia HL-60 cells is associated with the formation of nucleotides, but not with incorporation into DNA or RNA. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2004; 1643:11-24. [PMID: 14654224 DOI: 10.1016/j.bbamcr.2003.08.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cytokinins are important purine derivatives that act as hormones to control many processes in plants. Cytokinins such as isopentenyladenine (IPA), kinetin and benzyladenine were very effective at inducing the granulocytic differentiation of human myeloid leukemia HL-60 cells. The metabolism of cytokinins to their nucleotides was closely associated with cytokinin-induced differentiation and growth inhibition. When the cells were incubated with [14C]-benzyladenine, radioactivity was significantly incorporated into RNA and DNA. However, the radioactive nucleotides in RNA or DNA were adenine nucleotides, not benzyladenine nucleotides, suggesting that cytokinins were not incorporated into RNA and DNA. The benzyladenine nucleotides were not stably released into the medium in intact form. Cytokinins effectively induced a phosphorylated (active) form of mitogen-activated protein kinase (MAPK). MAPK activation was necessary for cytokinin-induced differentiation, because PD98059, an inhibitor of MAPK kinase, suppressed the differentiation induced by cytokinins. These results suggest that cytokinin nucleotides themselves play an important role in inducing the differentiation of HL-60 cells.
Collapse
Affiliation(s)
- Yuki Ishii
- Department of Chemotheraphy, Saitama Cancer Center Research Institute, 818 Komuro, Ina, Saitama 362-0806, Japan
| | | | | |
Collapse
|
48
|
Hiwatari M, Taki T, Taketani T, Taniwaki M, Sugita K, Okuya M, Eguchi M, Ida K, Hayashi Y. Fusion of an AF4-related gene, LAF4, to MLL in childhood acute lymphoblastic leukemia with t(2;11)(q11;q23). Oncogene 2003; 22:2851-5. [PMID: 12743608 DOI: 10.1038/sj.onc.1206389] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We showed that the LAF4 gene on 2q11.2-12 was fused to the MLL gene on 11q23 in a pediatric patient with CD10 positive acute lymphoblastic leukemia (ALL) having t(2;11)(q11;q23). The LAF4 gene, which encodes a lymphoid nuclear protein of 1227 amino acids with transactivation potential, is thought to have a role in early lymphoid development. The LAF4 protein was homologous to AF4 and AF5q31 proteins that are fused to MLL in infant early pre-B ALL and the breakpoint of LAF4 was located within the region homologous to the transactivation domain of AF4 and AF5q31. Expression of the 8.5-kb LAF4 transcript was detected in the adult heart, brain, and placenta and in the fetal brain. LAF4 expression was found to be higher in ALL cell lines than in AML and Epstein-Barr virus-transformed B-lymphocyte cell lines. These findings suggest that LAF4, AF4 and AF5q31 might define a new family particularly involved in the pathogenesis of 11q23-associated ALL.
Collapse
Affiliation(s)
- Mitsuteru Hiwatari
- Department of Pediatrics, Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Abstract
Epigenetic events constitute an important mechanism by which gene function is selectively activated or inactivated. Since epigenetic events are susceptible to change they offer potential explanations of how environmental factors, including diet, may modify cancer risk and tumor behavior. Abnormal methylation patterns are a nearly universal finding in cancer, as changes in DNA methylation have been observed in many cancer tissues (e.g., colon, stomach, uterine cervix, prostate, thyroid, and breast). Site-specific alterations in DNA methylation have also been observed in cancer and may play a significant role in gene regulation and cancer development. This review presents intriguing evidence that part of the anticancer properties attributed to several bioactive food components, encompassing both essential nutrients and non-essential components, may relate to DNA methylation patterns. Four sites where dietary factors may be interrelated with DNA methylation are discussed. First, dietary factors may influence the supply of methyl groups available for the formation of S-adenosylmethionine (SAM). Second, dietary factors may modify the utilization of methyl groups by processes including shifts in DNA methyltransferase (Dnmt) activity. A third plausible mechanism may relate to DNA demethylation activity. Finally, the DNA methylation patterns may influence the response to a bioactive food component.
Collapse
Affiliation(s)
- Sharon A Ross
- Nutritional Science Research Group, Division of Cancer Prevention, National Cancer Institute, Bethesda, Maryland 20892, USA.
| |
Collapse
|
50
|
Affiliation(s)
- Louise K Jones
- Cancer Research UK Children's Cancer Group, Department of Paediatric Haematology and Oncology, Royal London Hospital, London, UK
| | | |
Collapse
|