1
|
Song S, Xie J, Xu B, Ran Q. Circular RNA_0003489 reflects unfavorable treatment response and shortened survival in newly diagnosed multiple myeloma patients who receive bortezomib-based induction therapy. Hematology 2024; 29:2399419. [PMID: 39268977 DOI: 10.1080/16078454.2024.2399419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 08/27/2024] [Indexed: 09/15/2024] Open
Abstract
OBJECTIVES Circular RNA_0003489 (Circ_0003489) promotes multiple myeloma (MM) progression and bortezomib resistance in MM cells, while its potential as a biomarker in newly diagnosed MM (NDMM) patients is unclear. Thus, this study aimed to investigate the association of circ_0003489 expression with treatment response and survival in NDMM patients who received bortezomib-based induction therapy. METHODS Bone marrow (BM) specimens from 85 NDMM patients at diagnosis or before treatment and from 15 donor controls during BM examination were retrieved in this retrospective study. Circ_0003489 derived from BM plasma cells was detected by reverse transcription-quantitative polymerase chain reaction and cut by quartile and median for further analysis. RESULTS Circ_0003489 expression was increased in NDMM patients versus donor controls (P < 0.001). Circ_0003489 quartile was positively correlated with BM plasma cells (P = 0.040), international staging system (ISS) stage (P = 0.007), the revision of ISS stage (P = 0.003), beta-2-microglobulin (P = 0.011), and lactate dehydrogenase (P = 0.042) in NDMM patients. Increased circ_0003489 quartile was linked with a lower possibility of achieving complete response (P = 0.020) and partial response or better (P = 0.041) in NDMM patients. Elevated circ_0003489 expression cut by quartile (P = 0.020) and cut by median (P = 0.006) were linked with decreased progression-free survival (PFS) in NDMM patients. Increased circ_0003489 expression cut by median was associated with shortened overall survival (OS) in NDMM patients (P = 0.038). Meanwhile, higher circ_0003489 quartile independently forecasted poorer PFS (hazard ratio = 1.342, P = 0.045), but not OS in NDMM patients. CONCLUSION Circ_0003489 expression is increased and reflects unfavorable treatment response and survival in NDMM patients who receive bortezomib-based induction therapy.
Collapse
Affiliation(s)
- Senhua Song
- Department of Hematology, General Hospital of Central Theater Command, Wuhan, Hubei Province, People's Republic of China
| | - Junjie Xie
- Oncology Department, General Hospital of Central Theater Command, Wuhan, Hubei Province, People's Republic of China
| | - Biao Xu
- Department of Hematology, General Hospital of Central Theater Command, Wuhan, Hubei Province, People's Republic of China
| | - Qijie Ran
- Department of Hematology, General Hospital of Central Theater Command, Wuhan, Hubei Province, People's Republic of China
| |
Collapse
|
2
|
Gong S, Ma R, Zhu T, Ge X, Xie R, Tao Q, Shi C. Elevated serum beta-2 microglobulin level predicts short-term poor prognosis of patients with de novo acute omicron variant COVID-19 infection. Front Cell Infect Microbiol 2023; 13:1204326. [PMID: 37520437 PMCID: PMC10373586 DOI: 10.3389/fcimb.2023.1204326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 06/26/2023] [Indexed: 08/01/2023] Open
Abstract
Background The devastating coronavirus disease of 2019 (COVID-2019) epidemic has been declared a public health emergency, resulting in a worldwide pandemic. The omicron variety is the most common epidemic mutant strain in the globe. Serum beta-2 microglobulin (β2-MG) is associated with endothelial cell injury and has value in monitoring the progression of inflammation in infected individuals. Nonetheless, the potential functions of β2-MG in omicron remain elusive. Methods To investigate the prognostic value of serum β2-MG levels at diagnosis, we retrospectively analyzed a cohort of 240 people with omicron. Over the course of 65 days, all patients were monitored, and death was the primary outcome. Patients were allocated to two groups: those with high and low β2-MG levels. The Kaplan-Meier method was used to examine OS, and the log-rank test was used to compare them. Univariate and multivariate Cox hazard models were used to determine the prognostic significance. Results Our results revealed that β2-MG was significantly elevated in omicron. β2-MG levels in severe patients were higher than in mild-to-moderate patients, and the difference was statistically significant. Timely, interleukin-6 (IL-6) and interleukin-10 (IL-10) were observed to be significantly increased in individuals exhibiting elevated levels of β2-MG. In addition, patients exhibiting elevated levels of β2-MG demonstrated a statistically significant decrease in overall survival (OS, P < 0.0001). An elevated β2-MG level (≥4.72 mg/l) was found to be an independent, adverse prognostic factor for OS in omicron patients, according to multivariate Cox proportional hazards regression analysis (P = 0.001). Conclusion Serum β2-MG level at initial diagnosis was significantly correlated with omicron severity and prognosis. Thus, we propose that β2-MG may be an independent poor additional prognostic factor in patients with omicron.
Collapse
Affiliation(s)
- Shengping Gong
- Cancer Radiotherapy and Chemotherapy Center, the First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Ruishuang Ma
- Cancer Radiotherapy and Chemotherapy Center, the First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Ting Zhu
- Cancer Radiotherapy and Chemotherapy Center, the First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Xiaoqin Ge
- Cancer Radiotherapy and Chemotherapy Center, the First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Rongrong Xie
- Cancer Radiotherapy and Chemotherapy Center, the First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Qingsong Tao
- Cancer Radiotherapy and Chemotherapy Center, the First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Cong Shi
- Laboratory of Stem Cell Transplantation, the First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
- Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province, the First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| |
Collapse
|
3
|
Fonghem P, Pisitkun T, Rattanapinyopituk K, Sirivisoot S, Rungsipipat A. Investigation of proteomic profiles in canine lymphoma using tandem mass tag-based quantitative proteomics approach. Vet World 2022; 15:1333-1340. [PMID: 35765478 PMCID: PMC9210836 DOI: 10.14202/vetworld.2022.1333-1340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 04/18/2022] [Indexed: 11/16/2022] Open
Abstract
Background and Aim: Specific tumor biomarkers are useful for the early diagnosis of cancer or can predict the recurrence of neoplastic disease in humans and animals. Lymphoma in dogs could be classified into B-, T-, and NK-cell origins. T-cell lymphoma has the worst prognosis with a shorter survival time and disease-free interval. This study aimed to identify the differential serum protein expressions of canine B- and T-cell lymphomas compared with healthy dogs using a tandem mass tag (TMT)-based quantitative proteomics. Materials and Methods: Serum samples were collected from 20 untreated canine lymphomas (14 B-cells and 6 T-cells) and four healthy control dogs. Sera peptides from each sample were processed for TMT 10-plex tagging and analyzed using liquid chromatography-mass spectrometry (MS). Differential proteome profiling was then compared between lymphoma and control. Results: We discovered 20 elevated and 14 decreased serum proteins in the lymphoma group relative to the healthy group. Six candidate increased proteins in canine lymphomas were beta-actin cytoplasmic 1 (ACTB, p=0.04), haptoglobin (p=0.002), beta-2 microglobulin (aaaaaaaa2M, p=0.007), beta-2 glycoprotein 1 (APOH, p=0.03), metalloproteinase inhibitor 1 (TIMP-1, p=0.03), and CD44 antigen (p=0.02). When compared between B- and T-cell lymphomas, B-cell phenotypes had upregulated immunoglobulin (Ig) heavy chain V region GOM (p=0.02), clusterin (p=0.01), apolipoprotein C1 (APOC1, p=0.05), and plasminogen (p=0.02). Conclusion: These findings were investigated quantitative serum proteomes between B- and T-cell lymphomas using TMT-based MS. ACTB, aaaaaaaa2M, APOH, TIMP-1, CD44 antigen, Ig heavy chain V region GOM, and APOC1 are novel candidate proteins and might serve as a lymphoma biomarker in dogs. However, evaluation with an increased sample size is needed to confirm their diagnostic and prognostic ability.
Collapse
Affiliation(s)
- Piyanoot Fonghem
- Center of Excellence for Companion Animal Cancer, Department of Veterinary Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Trairak Pisitkun
- Center of Excellence in Systems Biology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Kasem Rattanapinyopituk
- Center of Excellence for Companion Animal Cancer, Department of Veterinary Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Sirintra Sirivisoot
- Center of Excellence for Companion Animal Cancer, Department of Veterinary Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Anudep Rungsipipat
- Center of Excellence for Companion Animal Cancer, Department of Veterinary Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
4
|
Tang F, Zhao YH, Zhang Q, Wei W, Tian SF, Li C, Yao J, Wang ZF, Li ZQ. Impact of beta-2 microglobulin expression on the survival of glioma patients via modulating the tumor immune microenvironment. CNS Neurosci Ther 2021; 27:951-962. [PMID: 33960680 PMCID: PMC8265948 DOI: 10.1111/cns.13649] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 04/09/2021] [Accepted: 04/11/2021] [Indexed: 12/25/2022] Open
Abstract
Aims High immune cell infiltration in gliomas establishes an immunosuppressive tumor microenvironment, which in turn promotes resistance to immunotherapy. Hence, it is important to identify novel targets associated with high immune cell infiltration in gliomas. Our previous study showed that serum levels of beta‐2 microglobulin (B2M) in lower‐grade glioma patients were lower than those in glioblastoma patients. In the present study, we focused on exploring the roles of B2M in glioma immune infiltration. Methods A large cohort of patients with gliomas from the TCGA, CGGA, and Gravendeel databases was included to explore differential expression patterns and potential roles of B2M in gliomas. A total of 103 glioma tissue samples were collected to determine the distributions of B2M protein levels by immunofluorescent assays. Kaplan‐Meier survival analysis and meta‐analysis were used for survival analysis. GO(Gene‐ontology) enrichment analysis, co‐expression analysis, KEGG(Kyoto Encyclopedia of Genes and Genomes) pathway analysis, and immune infiltration analysis were performed to explore roles and related mechanisms of B2M in glioma. Results We found that both B2M mRNA and protein levels were abnormally upregulated in glioma samples compared with those from normal brain tissue. B2M expression was correlated with tumor grade and was downregulated in IDH1 mutant samples. Furthermore, B2M was a moderately sensitive indicator for predicting the mesenchymal molecular subtype of gliomas. Interestingly, glioma patients with lower B2M expression had remarkably longer survival times than those with higher B2M expression. Moreover, meta‐analysis showed that B2M was an independent predictive marker in glioma patients. The results of GO enrichment analysis revealed that B2M contributed to immune cell infiltration in glioma patients. In addition, results of KEGG pathway analysis and co‐expression analysis suggested that B2M may mediate glioma immune infiltration via chemokines. Conclusions We conclude that B2M levels are critical for the survival times of glioma patients, at least in part due to mediating high immune infiltration.
Collapse
Affiliation(s)
- Feng Tang
- Brain Glioma Center & Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yu-Hang Zhao
- Brain Glioma Center & Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Qing Zhang
- Brain Glioma Center & Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Wei Wei
- Brain Glioma Center & Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Su-Fang Tian
- Department of Pathology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Chen Li
- Brain Glioma Center & Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Jie Yao
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Ze-Fen Wang
- Department of Physiology, Wuhan University School of Basic Medical Sciences, Wuhan, Hubei, China
| | - Zhi-Qiang Li
- Brain Glioma Center & Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
5
|
PLP2 Expression as a Prognostic and Therapeutic Indicator in High-Risk Multiple Myeloma. BIOMED RESEARCH INTERNATIONAL 2020; 2020:4286101. [PMID: 32596309 PMCID: PMC7303762 DOI: 10.1155/2020/4286101] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 05/12/2020] [Accepted: 05/18/2020] [Indexed: 11/24/2022]
Abstract
Multiple myeloma (MM) is a devastating cancer with a highly heterogeneous outcome. Because of the heterogeneity of myeloma cells, risk stratification is important for making therapeutic regimens. Nevertheless, no immunohistochemical predictive and prognostic marker has been constructed yet. In the present study, we explored the prognostic value of proteolipid protein 2 (PLP2) in MM patients using immunohistochemistry (IHC). We assessed PLP2 expression in bone marrow (BM) biopsy specimens obtained from 87 newly diagnosed MM (NDMM) patients. Correlations between PLP2 expression and clinicopathological features were analyzed. PLP2 expression was present in high-risk MM patients, which was increased with disease progression and poor prognosis. PLP2 was increasing in parallel with high beta-2 microglobulin (β2-MG) and lactate dehydrogenase (LDH). Furthermore, MM patients with low PLP2 expression could achieve a favorable treatment response. PLP2 may be a novel biomarker for prognostic prediction and a therapeutic target for anti-MM treatments.
Collapse
|
6
|
Bai H, Chen B. A 5-Gene Stemness Score for Rapid Determination of Risk in Multiple Myeloma. Onco Targets Ther 2020; 13:4339-4348. [PMID: 32547066 PMCID: PMC7244240 DOI: 10.2147/ott.s249895] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 04/23/2020] [Indexed: 12/12/2022] Open
Abstract
Purpose Risk stratification in patients with multiple myeloma (MM) remains a challenge. As clinicopathological characteristics have been demonstrated insufficient for exactly defining MM risk, and molecular biomarkers have become the focuses of interests. Prognostic predictions based on gene expression profiles (GEPs) have been the most accurate to this day. The purpose of our study was to construct a risk score based on stemness genes to evaluate the prognosis in MM. Materials and Methods Bioinformatics studies by ingenuity pathway analyses in side population (SP) and non-SP (MP) cells of MM patients were performed. Firstly, co-expression network was built to confirm hub genes associated with the top five Kyoto Encyclopedia of Genes and Genomes pathways. Functional analyses of hub genes were used to confirm the biologic functions. Next, these selective genes were utilized for construction of prognostic model, and this model was validated in independent testing sets. Finally, five stemness genes (ROCK1, GSK3B, BRAF, MAPK1 and MAPK14) were used to build a MM side population 5 (MMSP5) gene model, which was demonstrated to be forcefully prognostic compared to usual clinical prognostic parameters by multivariate cox analysis. MM patients in MMSP5 low-risk group were significantly related to better prognosis than those in high-risk group in independent testing sets. Conclusion Our study provided proof-of-concept that MMSP5 model can be adopted to evaluate recurrence risk and clinical outcome for MM. The MMSP5 model evaluated in different databases clearly indicated novel risk stratification for personalized anti-MM treatments.
Collapse
Affiliation(s)
- Hua Bai
- Department of Hematology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, People's Republic of China
| | - Bing Chen
- Department of Hematology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, People's Republic of China
| |
Collapse
|
7
|
Zhao J, Zhong S, Niu X, Jiang J, Zhang R, Li Q. The MHC class I-LILRB1 signalling axis as a promising target in cancer therapy. Scand J Immunol 2019; 90:e12804. [PMID: 31267559 DOI: 10.1111/sji.12804] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 05/31/2019] [Accepted: 06/26/2019] [Indexed: 12/13/2022]
Abstract
Immune checkpoint inhibitors are among the newest, cutting-edge methods for the treatment of cancer. Currently, they primarily influence T cell adaptive immunotherapy targeting the PD-1/PD-L1 and CTLA-4/B7 signalling pathways. These inhibitors fight cancer by reactivating the patient's own adaptive immune system, with good results in many cancers. With the discovery of the "Don't Eat Me" molecule, CD47, antibody-based drugs that target the macrophage-related innate immunosuppressive signalling pathway, CD47-SIRPα, have been developed and have achieved stunning results in the laboratory and the clinic, but there remain unexplained instances of tumour immune escape. While investigating the immunological tolerance of cancer to anti-CD47 antibodies, a second "Don't Eat Me" molecule on tumour cells, beta 2 microglobulin (β2m), a component of MHC class I, was described. Some tumour cells reduce their surface expression of MHC class I to escape T cell recognition. However, other tumour cells highly express β2m complexed with the MHC class I heavy chain to send a "Don't Eat Me" signal by binding to leucocyte immunoglobulin-like receptor family B, member 1 (LILRB1) on macrophages, leading to a loss of immune surveillance. Investigating the mechanisms underlying this immunosuppressive MHC class I-LILRB1 signalling axis in tumour-associated macrophages will be useful in developing therapies to restore macrophage function and control MHC class I signalling in patient tumours. The goal is to promote adaptive immunity while suppressing the innate immune response to tumours. This work will identify new therapeutic targets for the development of pharmaceutical-based tumour immunotherapy.
Collapse
Affiliation(s)
- Jinming Zhao
- Department of Pathology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning Province, China.,Department of Pathology, First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Shanshan Zhong
- Department of Neurology, First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Xing Niu
- Second Clinical College, China Medical University, Shenyang, Liaoning Province, China
| | - Jiwei Jiang
- Department of Neurology, First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Ruochen Zhang
- Yale School of Public Health, Yale University, New Haven, Connecticut, USA
| | - Qingchang Li
- Department of Pathology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning Province, China.,Department of Pathology, First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
| |
Collapse
|
8
|
Yang J, Dou Z, Peng X, Wang H, Shen T, Liu J, Li G, Gao Y. Transcriptomics and proteomics analyses of anti-cancer mechanisms of TR35-An active fraction from Xinjiang Bactrian camel milk in esophageal carcinoma cell. Clin Nutr 2018; 38:2349-2359. [PMID: 30420292 DOI: 10.1016/j.clnu.2018.10.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 09/11/2018] [Accepted: 10/18/2018] [Indexed: 12/17/2022]
Abstract
BACKGROUND & AIMS The aim of the paper is to investigate the effect of the active fraction extracted from the Xinjiang Bactrian camel whey on the human cancer cells using an in vitro and in vivo model of human carcinoma of the esophagus. METHODS AND RESULTS Our results demonstrated that an antitumor active fraction, TR35, isolated from Xinjiang Bactrian camel milk could significantly inhibit Eca109 cell proliferation and induce its apoptosis (indicated by MTT assay, Annexin V-FITC Apoptosis Detection, and caspase-3 activity). Moreover, we found that TR35 could inhibit the growth of xenografted tumor in nude mice without loss in body weight. Furthermore, we used RNA-Seq and 2-DE combined Mass Spectrometry analysis to identify differentially expressed RNA and protein markers of apoptosis and necrosis. Compared with untreated Eca109 cells, a total of 405 differentially expressed genes and 55 differentially expressed proteins were identified in TR35 treated Eca109 cells. KEGG analysis uncovered signaling pathways closely associated with cancer inhibition that were enriched in the TR35-treated cells. CONCLUSIONS These results might implicate that downregulation of specific proteins identified in this study may be the cause of this tumor growth inhibition. This study sheds light on the potential therapeutic advantages based on the historical anti-cancer activities of camel milk.
Collapse
Affiliation(s)
- Jie Yang
- Department of Bioengineering, College of Life Science and Technology, Xinjiang University, Urumqi, China
| | - Zhihua Dou
- Department of Bioengineering, College of Life Science and Technology, Xinjiang University, Urumqi, China
| | - Xi Peng
- School of Medicine, Nankai University, Tianjin, China
| | - Hongjuan Wang
- Department of Bioengineering, College of Life Science and Technology, Xinjiang University, Urumqi, China
| | - Tong Shen
- Department of Bioengineering, College of Life Science and Technology, Xinjiang University, Urumqi, China
| | - Jun Liu
- Department of Bioengineering, College of Life Science and Technology, Xinjiang University, Urumqi, China
| | - Guan Li
- Department of Bioengineering, College of Life Science and Technology, Xinjiang University, Urumqi, China
| | - Yang Gao
- School of Medicine, Nankai University, Tianjin, China.
| |
Collapse
|
9
|
Tu C, Fiandalo MV, Pop E, Stocking JJ, Azabdaftari G, Li J, Wei H, Ma D, Qu J, Mohler JL, Tang L, Wu Y. Proteomic Analysis of Charcoal-Stripped Fetal Bovine Serum Reveals Changes in the Insulin-like Growth Factor Signaling Pathway. J Proteome Res 2018; 17:2963-2977. [PMID: 30014700 DOI: 10.1021/acs.jproteome.8b00135] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Charcoal-stripped fetal bovine serum (CS-FBS) is commonly used to study androgen responsiveness and androgen metabolism in cultured prostate cancer (CaP) cells. Switching CaP cells from FBS to CS-FBS may reduce the activity of androgen receptor (AR), inhibit cell proliferation, or modulate intracellular androgen metabolism. The removal of proteins by charcoal stripping may cause changes in biological functions and has not yet been investigated. Here we profiled proteins in FBS and CS-FBS using an ion-current-based quantitative platform consisting of reproducible surfactant-aided precipitation/on-pellet digestion, long-column nanoliquid chromatography separation, and ion-current-based analysis. A total of 143 proteins were identified in FBS, among which 14 proteins including insulin-like growth factor 2 (IGF-2) and IGF binding protein (IGFBP)-2 and -6 were reduced in CS-FBS. IGF-1 receptor (IGF1R) and insulin receptor were sensitized to IGFs in CS-FBS. IGF-1 and IGF-2 stimulation fully compensated for the loss of AR activity to maintain cell growth in CS-FBS. Endogenous production of IGF and IGFBPs was verified in CaP cells and clinical CaP specimens. This study provided the most comprehensive protein profiles of FBS and CS-FBS and offered an opportunity to identify new protein regulators and signaling pathways that regulate AR activity, androgen metabolism, and proliferation of CaP cells.
Collapse
Affiliation(s)
- Chengjian Tu
- Department of Pharmaceutical Sciences , State University of New York at Buffalo , 285 Kapoor Hall , Buffalo , New York 14260 , United States.,New York State Center of Excellence in Bioinformatics and Life Sciences , 701 Ellicott Street , Buffalo , New York 14203 , United States
| | - Michael V Fiandalo
- Department of Urology, Roswell Park Comprehensive Cancer Center , Elm and Carlton Streets , Buffalo , New York 14263 , United States
| | - Elena Pop
- Department of Urology, Roswell Park Comprehensive Cancer Center , Elm and Carlton Streets , Buffalo , New York 14263 , United States
| | - John J Stocking
- Department of Urology, Roswell Park Comprehensive Cancer Center , Elm and Carlton Streets , Buffalo , New York 14263 , United States
| | - Gissou Azabdaftari
- Department of Pathology, Roswell Park Comprehensive Cancer Center , Elm and Carlton Streets , Buffalo , New York 14263 , United States
| | - Jun Li
- Department of Pharmaceutical Sciences , State University of New York at Buffalo , 285 Kapoor Hall , Buffalo , New York 14260 , United States.,New York State Center of Excellence in Bioinformatics and Life Sciences , 701 Ellicott Street , Buffalo , New York 14203 , United States
| | - Hua Wei
- Department of Pharmacy, Changzheng Hospital , Second Military Medical University , 415 Fengyang Road , Shanghai 200003 , China
| | - Danjun Ma
- College of Mechanical Engineering , Dongguan University of Technology , 1 Daxue Road , Dongguan , Guangdong 523808 , China
| | - Jun Qu
- Department of Pharmaceutical Sciences , State University of New York at Buffalo , 285 Kapoor Hall , Buffalo , New York 14260 , United States.,New York State Center of Excellence in Bioinformatics and Life Sciences , 701 Ellicott Street , Buffalo , New York 14203 , United States
| | - James L Mohler
- Department of Urology, Roswell Park Comprehensive Cancer Center , Elm and Carlton Streets , Buffalo , New York 14263 , United States
| | - Li Tang
- Department of Cancer Prevention and Control , Roswell Park Comprehensive Cancer Center , Elm and Carlton Streets , Buffalo , New York 14263 , United States
| | - Yue Wu
- Department of Urology, Roswell Park Comprehensive Cancer Center , Elm and Carlton Streets , Buffalo , New York 14263 , United States
| |
Collapse
|
10
|
Li L, Dong M, Wang XG. The Implication and Significance of Beta 2 Microglobulin: A Conservative Multifunctional Regulator. Chin Med J (Engl) 2016; 129:448-55. [PMID: 26879019 PMCID: PMC4800846 DOI: 10.4103/0366-6999.176084] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Indexed: 11/04/2022] Open
Abstract
OBJECTIVE This review focuses on the current knowledge on the implication and significance of beta 2 microglobulin (β2M), a conservative immune molecule in vertebrate. DATA SOURCES The data used in this review were obtained from PubMed up to October 2015. Terms of β2M, immune response, and infection were used in the search. STUDY SELECTIONS Articles related to β2M were retrieved and reviewed. Articles focusing on the characteristic and function of β2M were selected. The exclusion criteria of articles were that the studies on β2M-related molecules. RESULTS β2M is critical for the immune surveillance and modulation in vertebrate animals. The dysregulation of β2M is associated with multiple diseases, including endogenous and infectious diseases. β2M could directly participate in the development of cancer cells, and the level of β2M is deemed as a prognostic marker for several malignancies. It also involves in forming major histocompatibility complex (MHC class I or MHC I) or like heterodimers, covering from antigen presentation to immune homeostasis. CONCLUSIONS Based on the characteristic of β2M, it or its signaling pathway has been targeted as biomedical or therapeutic tools. Moreover, β2M is highly conserved among different species, and overall structures are virtually identical, implying the versatility of β2M on applications.
Collapse
Affiliation(s)
- Ling Li
- Department of Food Quality and Safety, College of Food Science and Biotechnology, Tianjin Agricultural University, Tianjin 300384, China
- Tianjin Engineering Research Center of Agricultural Products Processing, Tianjin 300384, China
| | - Mei Dong
- Department of Clinical Laboratory, Wangdu Hospital of Traditional Chinese Medicine, Baoding, Hebei 072450, China
| | - Xiao-Guang Wang
- Department of Immunology and Microbiology, Anschutz Medical Campus, University of Colorado Denver, Aurora 80045, Colorado, USA
| |
Collapse
|
11
|
Gautam PK, Acharya A. Antigenic Hsp70-peptide upregulate altered cell surface MHC class I expression in TAMs and increases anti-tumor function in Dalton's lymphoma bearing mice. Tumour Biol 2014; 36:2023-32. [PMID: 25431260 DOI: 10.1007/s13277-014-2809-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 11/04/2014] [Indexed: 01/09/2023] Open
Abstract
Major histocompatibility complex (MHC) class I molecules not only provide a mechanistic framework for the cell-to-cell communication, but also possess broader biological function. Due to their ability to regulate presentation of tumor-associated antigens (TAAs), viral peptides which play an essential role in the regulation of immune responses by presenting antigenic peptides to cytotoxic T lymphocytes and by regulating cytolytic activities of immune cells. Tumor cells frequently do not express MHC class I molecules; as a result, tumor cells escape from immune surveillance. Cells surviving in tumor microenvironment are often characterized by a profound immune escape phenotype with alterations in MHC class I way of antigen processing. Cellular components of the tumor microenvironment, in particular alternatively activated M2 phenotype, are involved in tumor progression and suppression of anti-tumor immunity. Hsp70 is well recognized for its role in activating macrophages leading to enhanced production of inflammatory cytokines. It has been observed that Hsp70 derived from normal tissues do not elicit tumor immunity, while Hsp70 preparation from tumor cell associated with antigen are able to elicit tumor immunity. The finding shows that the expression of MHC class I (H2D(b)) drastically decreases in TAMs and Hsp70-peptide complex enhances H2D(b) expression in TAMs and it reverts back the suppressed function of TAMs into the M1 state of immunoregulatory phenotype that promotes tumor regression by enhanced antigen presentation.
Collapse
Affiliation(s)
- Pramod Kumar Gautam
- Department of Zoology, Faculty of Science, Banaras Hindu University, Varanasi, 221005, UP, India
| | | |
Collapse
|
12
|
Nomura T, Huang WC, Zhau HE, Josson S, Mimata H, Chung LWK. β2-Microglobulin-mediated signaling as a target for cancer therapy. Anticancer Agents Med Chem 2014; 14:343-52. [PMID: 23848204 PMCID: PMC3931390 DOI: 10.2174/18715206113139990092] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Revised: 09/22/2012] [Accepted: 05/19/2013] [Indexed: 01/02/2023]
Abstract
β2-microglobulin (β2-m) has become the focus of intense scrutiny since the discovery of its undesirable roles promoting
osteomimicry and cancer progression. β2-m is a well-known housekeeping protein that forms complexes with the heavy chain of major
histocompatibility complex class I molecules, which are heterodimeric cell surface proteins that present antigenic peptides to cytotoxic T
cells. On recognition of foreign peptide antigens on cell surfaces, T cells actively bind and lyse antigen-presenting cancer cells. In
addition to its roles in tumor immunity, β2-m has two different functions in cancer cells, either tumor promoting or tumor suppressing, in
cancer cell context-dependent manner. Our studies have demonstrated that β2-m is involved extensively in the functional regulation of
growth, survival, apoptosis, and even metastasis of cancer cells. We found that β2-m is a soluble growth factor and a pleiotropic signaling
molecule which interacts with its receptor, hemochromatosis protein, to modulate epithelial-to-mesenchymal transition (EMT) through
iron-responsive pathways. Specific antibodies against β2-m have remarkable tumoricidal activity in cancer, through β2-m action on iron
flux, alterations of intracellular reactive oxygen species, DNA damage and repair enzyme activities, β-catenin activation and cadherin
switching, and tumor responsiveness to hypoxia. These novel functions of β2-m and β2-m signaling may be common to several solid
tumors including human lung, breast, renal, and prostate cancers. Our experimental results could lead to the development of a novel class
of antibody-based pharmaceutical agents for cancer growth control. In this review, we briefly summarize the recent data regarding β2-m
as a promising new cancer therapeutic target and discuss antagonizing this therapeutic target with antibody therapy for the treatment of
localized and disseminated cancers.
Collapse
Affiliation(s)
| | | | | | | | | | - Leland W K Chung
- Department of Urology, Oita University Faculty of Medicine, 1-1 Idaigaoka, Hasama-machi, Yufu, Oita 879-5593, Japan.
| |
Collapse
|
13
|
The impact of beta2-microglobulin clearance on the risk factors of cardiovascular disease in hemodialysis patients. ASAIO J 2010; 56:326-32. [PMID: 20431482 DOI: 10.1097/mat.0b013e3181de0842] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
beta2-Microglobulin (beta2M) is an independent predictor of outcome for hemodialysis (HD) patients and a representative substance of middle molecules. We tested the relationship among serum beta2M levels and cardiovascular disease (CVD) risk factors in HD patients. A total of 132 HD patients were divided according to the dialysis membrane used [property; cellulose and synthetic or beta2M clearance; low filtration (LF), middle filtration (MF), and high filtration (HF)]. There was no significant difference in CVD risk factors between cellulose and synthetic groups. On the other hand, serum beta2M, highly-sensitive C-reactive protein (hCRP), troponin-T (TnT), and myeloperoxidase (MPO) levels of LF were significantly higher and those of prealbumin (PA) were lower than the MF and HF. Serum beta2M level was positively correlated with hCRP, interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-alpha), MPO, TnT, N-terminal pro-B-type natriuretic peptide (NT-proBNP) and inversely correlated with PA and ankle-brachial index (ABI). There was a significant correlation between serum beta2M levels and various CVD risk factors in HD. Cardiovascular disease risk factors in HD patients were dependent on the beta2M clearance but not membrane property.
Collapse
|
14
|
Zhu Y, Su Y, Cheng T, Chung LWK, Shi C. Beta2-microglobulin as a potential factor for the expansion of mesenchymal stem cells. Biotechnol Lett 2009; 31:1361-5. [PMID: 19466557 PMCID: PMC2984555 DOI: 10.1007/s10529-009-0027-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2009] [Revised: 04/01/2009] [Accepted: 05/07/2009] [Indexed: 10/20/2022]
Abstract
Multipotent mesenchymal stem cells (MSCs) hold great promise in regenerative medicine, but one of the biggest challenges facing for their application is the ex vivo expansion to obtain enough undifferentiated cells. Fetal bovine serum (FBS), which can elicit possible contaminations of prion, virus, zoonosis or immunological reaction against xenogenic serum antigens, still remains essential to the culture formulations. There is an urgent need to identify potential factors for the undifferentiated expansion of MSCs to reduce the use of FBS or eventually replace it. A previously recognized housekeeping gene, beta2-microglobulin (beta2M), is demonstrated to act as a novel growth factor to stimulate the undifferentiated ex vivo expansion and preserve the pluripotency of adult MSCs from various sources. The use of beta2M might have promising implications for future clinical application of MSCs.
Collapse
Affiliation(s)
- Ying Zhu
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, Third Military Medical University, Chongqing, China
| | - Yongping Su
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, Third Military Medical University, Chongqing, China
| | - Tianmin Cheng
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, Third Military Medical University, Chongqing, China
| | - Leland W. K. Chung
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, Third Military Medical University, Chongqing, China
- Molecular Urology and Therapeutics Program, Department of Urology and Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA
| | - Chunmeng Shi
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, Third Military Medical University, Chongqing, China
| |
Collapse
|
15
|
Wang M, Harhaji L, Lamberth K, Harndahl M, Buus S, Heegaard NHH, Claesson MH, Nissen MH. Modified human beta 2-microglobulin (desLys(58)) displays decreased affinity for the heavy chain of MHC class I and induces nitric oxide production and apoptosis. Scand J Immunol 2009; 69:203-12. [PMID: 19281532 DOI: 10.1111/j.1365-3083.2008.02213.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Beta2-microglobulin (beta2m) is the light chain of major histocompatibility complex class I (MHC-I) molecules, and is a prerequisite for the binding of peptides to the heavy chain and their presentation to CD8+ T cells. beta2m can be modified in vivo and in vitro by proteolytic cleavage by complement C1 and subsequent carboxypeptidase B-like activity--processes that lead to the generation of desLys(58) beta2m (dbeta2m). This work aims to study the effect of dbeta2m on peptide binding to MHC-I, the influence of dbeta2m on the binding of beta2m to the MHC-I heavy chain and the biological activity of dbeta2m. Both beta2m and dbeta2m are able to support the generation of MHC-I/peptide complexes at 18 degrees C, but complexes formed in the presence of dbeta2m destabilize at 37 degrees C. Moreover, a 250 times higher concentration of dbeta2m than of beta2m is needed to displace MHC-I associated beta2m from the cell surface. In addition, only beta2m is able to restore MHC-I/peptide complex formation on acid-treated cells whereas dbeta2m appears to bind preferentially to denatured MHC-I heavy chains. In cell cultures, exogenously added dbeta2m, but not beta2m, induces apoptotic cell death in monocytic leukaemic cell lines but spares other kinds of leukaemic cells. Additionally, the presence of dbeta2m, and to a lesser extent beta2m, enhances IFN-gamma-induced NO production by monocytic leukaemic cells. In conclusion, these data show that dbeta2m is not able to support the formation of a stable tri-molecular MHC-I complex at physiological temperature and that dbeta2m exerts other biological functions compared to beta2m when bound to cells.
Collapse
Affiliation(s)
- M Wang
- Department of International Health, Immunology and Microbiology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark.
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Beta2-microglobulin: emerging as a promising cancer therapeutic target. Drug Discov Today 2008; 14:25-30. [PMID: 19056512 DOI: 10.1016/j.drudis.2008.11.001] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2008] [Revised: 10/14/2008] [Accepted: 11/04/2008] [Indexed: 12/17/2022]
Abstract
Beta2-microglobulin, a MHC class I subunit, is found to act similarly to a prototypical oncogenic factor capable of stimulating growth and progression of various cancers and plays a key regulatory role in stimulating cancer bone metastasis. Free beta2M in serum or urine has been regarded as an independent biomarker in several cancers. Specific antibodies to beta2M have remarkable tumoricidal activity for both solid tumors and blood malignancies and are shown to be selective to tumor cells, but caused no toxicity in normal cells. These surprising data strongly suggest that beta2M is a promising new therapeutic target for human cancers.
Collapse
|
17
|
Wang M, Corlin DB, Heegaard NHH, Claesson MH, Nissen MH. Cellular Expression or Binding of desLys58-β2 Microglobulin is not Dependent on the Presence of the Tri-molecular MHC Class I Complex. Scand J Immunol 2008; 67:105-12. [DOI: 10.1111/j.1365-3083.2007.02044.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
18
|
Sekimoto E, Ozaki S, Ohshima T, Shibata H, Hashimoto T, Abe M, Kimura N, Hattori K, Kawai S, Kinoshita Y, Yamada-Okabe H, Tsuchiya M, Matsumoto T. A single-chain Fv diabody against human leukocyte antigen-A molecules specifically induces myeloma cell death in the bone marrow environment. Cancer Res 2007; 67:1184-92. [PMID: 17283154 DOI: 10.1158/0008-5472.can-06-2236] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cross-linked human leukocyte antigen (HLA) class I molecules have been shown to mediate cell death in neoplastic lymphoid cells. However, clinical application of an anti-HLA class I antibody is limited by possible side effects due to widespread expression of HLA class I molecules in normal tissues. To reduce the unwanted Fc-mediated functions of the therapeutic antibody, we have developed a recombinant single-chain Fv diabody (2D7-DB) specific to the alpha2 domain of HLA-A. Here, we show that 2D7-DB specifically induces multiple myeloma cell death in the bone marrow environment. Both multiple myeloma cell lines and primary multiple myeloma cells expressed HLA-A at higher levels than normal myeloid cells, lymphocytes, or hematopoietic stem cells. 2D7-DB rapidly induced Rho activation and robust actin aggregation that led to caspase-independent death in multiple myeloma cells. This cell death was completely blocked by Rho GTPase inhibitors, suggesting that Rho-induced actin aggregation is crucial for mediating multiple myeloma cell death. Conversely, 2D7-DB neither triggered Rho-mediated actin aggregation nor induced cell death in normal bone marrow cells despite the expression of HLA-A. Treatment with IFNs, melphalan, or bortezomib enhanced multiple myeloma cell death induced by 2D7-DB. Furthermore, administration of 2D7-DB resulted in significant tumor regression in a xenograft model of human multiple myeloma. These results indicate that 2D7-DB acts on multiple myeloma cells differently from other bone marrow cells and thus provide the basis for a novel HLA class I-targeting therapy against multiple myeloma.
Collapse
Affiliation(s)
- Etsuko Sekimoto
- Department of Medicine and Bioregulatory Sciences, The University of Tokushima Graduate School of Health Biosciences, 3-18-15 Kuramoto, Tokushima 770-8503, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Nomura T, Huang WC, Zhau HE, Wu D, Xie Z, Mimata H, Zayzafoon M, Young AN, Marshall FF, Weitzmann MN, Chung LWK. Beta2-microglobulin promotes the growth of human renal cell carcinoma through the activation of the protein kinase A, cyclic AMP-responsive element-binding protein, and vascular endothelial growth factor axis. Clin Cancer Res 2006; 12:7294-305. [PMID: 17189401 DOI: 10.1158/1078-0432.ccr-06-2060] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
PURPOSE Beta(2)-microglobulin (beta2M), a soluble protein secreted by cancer and host inflammatory cells, has various biological functions, including antigen presentation. Because aberrant expression of beta2M has been reported in human renal cell carcinoma, we investigated the effects of beta2M overexpression on cancer cell growth and analyzed its molecular signaling pathway. EXPERIMENTAL DESIGN We established clonal cell lines that overexpressed beta2M in human renal cell carcinoma (SN12C) cells and then examined cell growth in vitro and in vivo and studied the beta2M-mediated downstream cell signaling pathway. RESULTS Our results showed that beta2M expression positively correlates with (a) in vitro growth on plastic dishes and as Matrigel colonies, (b) cell invasion and migration in Boyden chambers, and (c) vascular endothelial growth factor (VEGF) expression and secretion by cells. We found, in addition, that beta2M mediates its action through increased phosphorylation of cyclic AMP-responsive element-binding protein (CREB) via the protein kinase A-CREB axis, resulting in increased VEGF expression and secretion. In convergence with this signal axis, beta2M overexpression also activated both phosphatidylinositol 3-kinase/Akt and mitogen-activated protein kinase pathways. Beta2M overexpression induced accelerated growth of SN12C in mouse subcutis and bone. Interrupting the beta2M signaling pathway using small interfering RNA led to apoptosis with increased activation of caspase-3 and caspase-9 and cleaved poly(ADP-ribose) polymerase. CONCLUSIONS Our results showed for the first time that the beta2M-protein kinase A-CREB-VEGF signaling axis plays a crucial role in support of renal cell carcinoma growth and progression and reveals a novel therapeutic target.
Collapse
Affiliation(s)
- Takeo Nomura
- Molecular Urology and Therapeutics Program, Department of Urology and Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Currid CA, O'Connor DP, Chang BD, Gebus C, Harris N, Dawson KA, Dunn MJ, Pennington SR, Roninson IB, Gallagher WM. Proteomic analysis of factors released from p21-overexpressing tumour cells. Proteomics 2006; 6:3739-53. [PMID: 16739131 DOI: 10.1002/pmic.200500787] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The p21Waf1/Cip1/Sdi1 cyclin-dependent kinase inhibitor is a key regulator of cell cycle progression and has also been observed to influence the expression of genes associated with several age-related disorders. Previous work has shown that expression of p21 in tumour cells mediates an antiapoptotic and mitogenic paracrine effect, which is in contrast to the arrested state of p21-expressing cells. Here, we have employed SELDI-MS technology to characterise, at a proteomic level, factors released from HT-1080 human fibrosarcoma cells displaying inducible p21 expression. Conditioned media from induced and noninduced cells were profiled on a range of diverse ProteinChip arrays and subjected to SELDI-MS analysis. Evaluation of proteins binding onto IMAC, Q10 or CM10 surfaces led to the discovery of a number of putative p21-regulated factors. We further validated three p21-regulated proteins observed at 10.2, 11.7 and 13.4 kDa. Using Q Ceramic HyperD fractionation columns, we were able to selectively enrich for each of these three proteins. Subsequent SDS-PAGE and MS analysis of tryptic digests identified the 13.4 kDa protein as cystatin C and the 10.2 kDa protein as pro-platelet basic protein (PPBP). Judging by the apparent MW and the pI of the 11.7 kDa protein, we reasoned that it may be beta-2-microglobulin, which was confirmed by subsequent identification. Increased levels of cystatin C and beta-2-microglobulin in conditioned media from p21-expressing cells was confirmed by antibody capture experiments using anticystatin C and anti-beta-2-microglobulin antibodies on preactivated PS-20 arrays. Western blot analysis demonstrated increased expression of intracellular and extracellular cystatin C and beta-2-microglobulin in p21-expressing cells, compared to noninduced controls. Increased levels of PPBP were validated in cell lysates from p21-expressing cells. The three secreted factors that we have identified in this study, have all been shown previously to have growth modulating effects and, as such, may contribute to the observed mitogenic and anti-apoptotic paracrine activity of p21-expressing [corrected] cells.
Collapse
Affiliation(s)
- Caroline A Currid
- UCD School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Saijo Y, Utsugi M, Yoshioka E, Horikawa N, Sato T, Gong Y, Kishi R. Relationship of .BETA.2-Microglobulin to Arterial Stiffness in Japanese Subjects. Hypertens Res 2005; 28:505-11. [PMID: 16231756 DOI: 10.1291/hypres.28.505] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Beta2-Microglobulin (beta2m) is related to inflammatory diseases, but there have been few reports of a relationship between beta2m and atherosclerosis. We have examined the influence of beta2m on brachial-ankle pulse wave velocity (baPWV) to clarify whether it is related to arterial stiffness. baPWV, beta2m, C-reactive protein (CRP), and conventional risk factors were measured in 614 males and 158 females. The adjusted means of baPWV were compared with the quartiles of beta2m, and significant differences in baPWV were observed across the quartiles of beta2m (p = 0.037). After being adjusted for potential confounders, quartile 4 of beta2m, quartile 4 of CRP, and the combination of high beta2m plus high CRP were significantly associated with a high value of PWV (quartile 4 of beta2m: odds ratio [OR] 2.53, 95% confidence interval [CI], 1.31-4.89; quartile 4 of CRP: OR 2.27, 95% CI, 1.18-4.34; high beta2m plus high CRP: OR 5.60, 95% CI, 2.38-13.2). These results suggest that beta2m is associated with an increase of arterial stiffness. Further studies are needed to clarify whether beta2m is related to atherosclerotic diseases, and whether the combination of beta2m and CRP measurement is a useful predictor for the development of atherosclerosis.
Collapse
Affiliation(s)
- Yasuaki Saijo
- Department of Public Health, Hokkaido University Graduate School of Medicine, Sapporo, Japan.
| | | | | | | | | | | | | |
Collapse
|
22
|
Nilsen N, Nonstad U, Khan N, Knetter CF, Akira S, Sundan A, Espevik T, Lien E. Lipopolysaccharide and double-stranded RNA up-regulate toll-like receptor 2 independently of myeloid differentiation factor 88. J Biol Chem 2004; 279:39727-35. [PMID: 15190057 DOI: 10.1074/jbc.m405027200] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Toll-like receptor 2 (TLR2) is a signaling receptor for a variety of microbial products, including bacterial lipoproteins and peptidoglycan, and is central in initiating immune responses toward Gram-positive bacteria, spirochetes, and mycobacteria. The mechanisms behind regulation of TLR2 protein expression are still not well understood. By using a newly developed monoclonal antibody against mouse TLR2, we detected TLR2 protein expression on macrophages, neutrophils, and dendritic cells. Endogenous macrophage TLR2 localized mostly to the cell membrane, with particular accumulation around phagosomes containing zymosan. Treatment of macrophages with the TLR2 antibody diminished cellular response to lipoproteins and down-regulated membrane TLR2. Marked up-regulation of surface TLR2 was observed on macrophages in response to whole bacteria, lipoproteins, lipopolysaccharide, poly(I-C) (double-stranded RNA), R848, and CpG DNA, and this up-regulation appeared to be a very sensitive marker for the presence of microbial products. Up-regulation of TLR2 in response to stimuli correlated with an increased response to secondary lipoprotein exposure following a low concentration of primary lipoprotein challenge. By comparison, exposure to a larger primary challenge induced a hyporeactive state. Most interestingly, lipopolysaccharide- and double-stranded RNA-induced up-regulation of surface TLR2 in macrophages was found to be MyD88-independent, whereas the up-regulation in response to lipoproteins, R848, and CpG DNA was absent in MyD88-deficient cells. We conclude that complex mechanisms regulate expression and signaling via TLR2. Up-regulation of TLR2 in the presence of low, yet clinically relevant amounts of microbial products may be an important mechanism by which the immune system boosts its response to a beginning infection.
Collapse
Affiliation(s)
- Nadra Nilsen
- Norwegian University of Science and Technology, Institute of Cancer Research and Molecular Medicine, Olav Kyrres gt. 3, N-7489 Trondheim, Norway
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Aref S, Goda T, El-Sherbiny M. Syndecan-1 in multiple myeloma: relationship to conventional prognostic factors. Hematology 2003; 8:221-8. [PMID: 12911939 DOI: 10.1080/1024533031000153630] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
Syndecan-1 (CD138) mediates myeloma cell adhesion, and loss of syndecan-1 from the cell surface may contribute to myeloma cell proliferation and dissemination and influence the prognosis in patients with multiple myeloma (MM). In order to test this hypothesis, we have evaluated syndecan-1 expression on the surface of malignant plasma cells and soluble forms of syndecan-1 in the serum of 25 newly diagnosed MM patients by flow cytometry and immunosorbent assay. Soluble syndecan-1 levels were significantly higher in MM as compared to controls (P<0.001). Cellular and soluble syndecan-1 was significantly inversely correlated (r=-0.89, P<0.001). The soluble syndecan-1 was significantly higher in non- responders to chemotherapy when compared to responders (P<0.01), and in non- survivors as compared to survivors (P<0.001). In contrast, cellular syndecan-1 expression was significantly lower in non- responders when compared to responders (P<0.01), and in non- survivors as compared to survivors (P<0.05). The levels of soluble syndecan-1 increased from stage I through stage II to stage III, whereas cellular syndecan-1 expression were decreased from high levels in stage III down to a low in stage I, with a statistically significant difference (P<0.01, P<0.05, respectively). There was a significant positive correlation between soluble syndecan-1 and plasma cell count (r=0.079, P<0.001), beta2 microglobulin (r=0.85, P<0.001), serum creatinine (r=0.84, P<0.001), C-reactive protein (r=0.082, P<0.001), alkaline phosphatase (r=0.58, P<0.05) and serum calcium (r=0.77, P<0.01) and a negative correlation with hemoglobin level (r=-0.78, P<0.01), platelets count (r=-0.82, P<0.01) and Albumin level (r=-0.64, P<0.01). Cox regression analysis using soluble syndecan-1 at mean-2SD of the controls could correctly classify patient outcome in 84.0%. The addition of beta2 microglobulin to soluble syndecan-1 increased the predictability of the patients' outcome to 96.7%. We conclude that soluble syndecan-1 levels are negatively correlated to the cellular form and that high levels of soluble syndecan-1 and lower expression of cellular syndecan-1 at diagnosis are negative prognostic factors. Assessment of soluble syndecan-1 and beta2 microglobulin at diagnosis is an independent prognostic system for MM.
Collapse
Affiliation(s)
- Salah Aref
- Hematology Unit, Clinical pathology Department, Mansoura Faculty of Medicine, Mansoura University, Mansoura, Egypt.
| | | | | |
Collapse
|
24
|
Smolewski P, Darzynkiewicz Z, Robak T. Caspase-mediated cell death in hematological malignancies: theoretical considerations, methods of assessment, and clinical implications. Leuk Lymphoma 2003; 44:1089-104. [PMID: 12916860 DOI: 10.1080/1042819031000077007] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Apoptosis, the caspase-mediated cell death, plays an important role in the etiology, pathogenesis and therapy of a variety of diseases. Abnormalities of apoptosis regulation, resulting in either its inhibition or enhancement, play a key role in the development of various malignant hematological disorders. Several routine and new therapeutic strategies in Oncohematology are based on apoptosis modulation. Cytotoxic effects of most antineoplastic drugs are based on induction of apoptosis. The accurate estimate of incidence of apoptosis, therefore, is of importance in Oncohematology. In this review we provide an overview of the methods designed to measure the incidence of apoptosis, including the recently developed assays that are based on detection of caspases activation. We also review recent findings on the role of caspase-mediated cell death in hematological malignancies and discuss their clinical implications, including new therapeutical strategies that evolve from these findings.
Collapse
Affiliation(s)
- Piotr Smolewski
- Department of Hematology, Medical University of Lodz, Copernicus Hospital, ul. Ciokowskiego 2, 93-510 Lodz, Poland.
| | | | | |
Collapse
|
25
|
Choi Y, Johnson GA, Spencer TE, Bazer FW. Pregnancy and interferon tau regulate major histocompatibility complex class I and beta2-microglobulin expression in the ovine uterus. Biol Reprod 2003; 68:1703-10. [PMID: 12606392 DOI: 10.1095/biolreprod.102.012708] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Major histocompatibility complex (MHC) class I molecules, consisting of an alpha chain and beta2-microglobulin (beta2MG), play an important role in immune rejection responses by discriminating self and nonself and are increased by type I interferons during antiviral responses. Interferon tau (IFNtau), the pregnancy-recognition signal in ruminants, is a type I interferon produced by the ovine conceptus between Days 11 and 21 of gestation. In study 1, expression of MHC class I alpha chain and beta2MG mRNA and protein was detected primarily in endometrial luminal epithelium (LE) and glandular epithelium (GE) on Days 10 and 12 of the estrous cycle and pregnancy. On Days 14-20 of pregnancy, MHC class I and beta2MG expression increased only in endometrial stroma and GE and, concurrently, was absent in LE and superficial ductal GE (sGE). Although neither MHC class I nor beta2MG proteins were detected in Day 20 trophectoderm, beta2MG mRNA was detected in conceptus trophectoderm. In study 2, cyclic ewes were ovariectomized on Day 5, treated daily with progesterone to Day 16, received intrauterine infusions between Days 11 and 16 of either control serum proteins or recombinant ovine IFNtau, and were hysterectomized on Day 17. The IFNtau increased MHC class I and beta2MG expression only in endometrial stroma and GE. During pregnancy, MHC class I and beta2MG gene expression is inhibited in endometrial LE and sGE but, paradoxically, is stimulated by IFNtau in the stroma and GE. The silencing of MHC class I alpha chain and beta2MG genes in the endometrial LE and sGE during pregnancy recognition and establishment may be a critical mechanism preventing immune rejection of the conceptus allograft.
Collapse
Affiliation(s)
- Youngsok Choi
- Center for Animal Biotechnology and Genomics, Department of Animal Science, Texas A&M University, College Station 77843, USA
| | | | | | | |
Collapse
|