1
|
Yang Q, Qin B, Hou W, Qin H, Yin F. Pathogenesis and therapy of radiation enteritis with gut microbiota. Front Pharmacol 2023; 14:1116558. [PMID: 37063268 PMCID: PMC10102376 DOI: 10.3389/fphar.2023.1116558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 03/07/2023] [Indexed: 04/03/2023] Open
Abstract
Radiotherapy is widely used in clinic due to its good effect for cancer treatment. But radiotherapy of malignant tumors in the abdomen and pelvis is easy to cause radiation enteritis complications. Gastrointestinal tract contains numerous microbes, most of which are mutualistic relationship with the host. Abdominal radiation results in gut microbiota dysbiosis. Microbial therapy can directly target gut microbiota to reverse microbiota dysbiosis, hence relieving intestinal inflammation. In this review, we mainly summarized pathogenesis and novel therapy of the radiation-induced intestinal injury with gut microbiota dysbiosis and envision the opportunities and challenges of radiation enteritis therapy.
Collapse
Affiliation(s)
- Qilin Yang
- Research Institute of Intestinal Diseases, Shanghai Tenth People’s Hospital, Tongji University, Shanghai, China
- School of Clinical Medicine of Nanjing Medical University, Nanjing, China
| | - Bingzhi Qin
- Research Institute of Intestinal Diseases, Shanghai Tenth People’s Hospital, Tongji University, Shanghai, China
| | - Weiliang Hou
- Research Institute of Intestinal Diseases, Shanghai Tenth People’s Hospital, Tongji University, Shanghai, China
- Shanghai Cancer Institute, Renji Hospital School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- *Correspondence: Weiliang Hou, ; Huanlong Qin, ; Fang Yin,
| | - Huanlong Qin
- Research Institute of Intestinal Diseases, Shanghai Tenth People’s Hospital, Tongji University, Shanghai, China
- *Correspondence: Weiliang Hou, ; Huanlong Qin, ; Fang Yin,
| | - Fang Yin
- Research Institute of Intestinal Diseases, Shanghai Tenth People’s Hospital, Tongji University, Shanghai, China
- *Correspondence: Weiliang Hou, ; Huanlong Qin, ; Fang Yin,
| |
Collapse
|
2
|
Wakamori S, Taguchi K, Nakayama Y, Ohkoshi A, Sporn MB, Ogawa T, Katori Y, Yamamoto M. Nrf2 protects against radiation-induced oral mucositis via antioxidation and keratin layer thickening. Free Radic Biol Med 2022; 188:206-220. [PMID: 35753588 DOI: 10.1016/j.freeradbiomed.2022.06.239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/17/2022] [Accepted: 06/21/2022] [Indexed: 12/24/2022]
Abstract
Radiation-induced oral mucositis is one of the most common adverse events in radiation therapy for head and neck cancers, but treatments for oral mucositis are limited to palliative and supportive care. New approaches are required to prevent radiation-induced mucositis and to improve treatments. The Keap1-Nrf2 system regulates cytoprotection against oxidative and electrophilic stresses. Nrf2 also regulates keratin layer thickness in mouse tongues. Therefore, we hypothesized that Nrf2 may protect the tongue epithelium against radiation-induced mucositis via elimination of reactive oxygen species and induction of keratin layer thickening. To test this hypothesis, we prepared a system for γ-ray exposure of restricted areas and irradiated the tongues of model mice with Nrf2 and Keap1 loss-of-function. We discovered that loss of Nrf2 expression indeed sensitized the tongue epithelium to radiation-induced ulcer formation with inflammation. Constitutive Nrf2 activation by genetic Keap1 knockdown alleviated radiation-induced DNA damage by increasing antioxidation. In agreement with the genetic Nrf2 activation model, the Nrf2 inducer CDDO-Im prevented irradiation damage to the tongue epithelium. These results demonstrate that Nrf2 activation has the potential to prevent the development of radiation-induced mucositis and that Nrf2 inducers are an important therapeutic drug for protection of the upper aerodigestive tract from radiation-induced mucositis.
Collapse
Affiliation(s)
- Shun Wakamori
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan; Department of Otorhinolaryngology, Head and Neck Surgery, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
| | - Keiko Taguchi
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan; Department of Medical Biochemistry, Tohoku Medical Megabank Organization, Tohoku University, Sendai, 980-8573, Japan; Advanced Research Center for Innovations in Next-GEneration Medicine (INGEM), Tohoku University, Sendai, 980-8573, Japan
| | - Yuki Nakayama
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan; Department of Otorhinolaryngology, Head and Neck Surgery, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
| | - Akira Ohkoshi
- Department of Otorhinolaryngology, Head and Neck Surgery, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
| | - Michael B Sporn
- Molecular and Systems Biology, Dartmouth Medical School, Lebanon, NH, 03756, United States
| | - Takenori Ogawa
- Department of Otolaryngology, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Yukio Katori
- Department of Otorhinolaryngology, Head and Neck Surgery, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
| | - Masayuki Yamamoto
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan; Department of Medical Biochemistry, Tohoku Medical Megabank Organization, Tohoku University, Sendai, 980-8573, Japan; Advanced Research Center for Innovations in Next-GEneration Medicine (INGEM), Tohoku University, Sendai, 980-8573, Japan.
| |
Collapse
|
3
|
Gaillard D, Shechtman LA, Millar SE, Barlow LA. Fractionated head and neck irradiation impacts taste progenitors, differentiated taste cells, and Wnt/β-catenin signaling in adult mice. Sci Rep 2019; 9:17934. [PMID: 31784592 PMCID: PMC6884601 DOI: 10.1038/s41598-019-54216-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 11/10/2019] [Indexed: 12/13/2022] Open
Abstract
Head and neck cancer patients receiving conventional repeated, low dose radiotherapy (fractionated IR) suffer from taste dysfunction that can persist for months and often years after treatment. To understand the mechanisms underlying functional taste loss, we established a fractionated IR mouse model to characterize how taste buds are affected. Following fractionated IR, we found as in our previous study using single dose IR, taste progenitor proliferation was reduced and progenitor cell number declined, leading to interruption in the supply of new taste receptor cells to taste buds. However, in contrast to a single dose of IR, we did not encounter increased progenitor cell death in response to fractionated IR. Instead, fractionated IR induced death of cells within taste buds. Overall, taste buds were smaller and fewer following fractionated IR, and contained fewer differentiated cells. In response to fractionated IR, expression of Wnt pathway genes, Ctnnb1, Tcf7, Lef1 and Lgr5 were reduced concomitantly with reduced progenitor proliferation. However, recovery of Wnt signaling post-IR lagged behind proliferative recovery. Overall, our data suggest carefully timed, local activation of Wnt/β-catenin signaling may mitigate radiation injury and/or speed recovery of taste cell renewal following fractionated IR.
Collapse
Affiliation(s)
- Dany Gaillard
- Department of Cell & Developmental Biology, University of Colorado Anschutz Medical Campus, Mail Stop 8108, 12801 East 17th Avenue, Aurora, CO, 80045, USA.
- Rocky Mountain Taste & Smell Center, University of Colorado Anschutz Medical Campus, Mail Stop 8108, 12801 East 17th Avenue, Aurora, CO, 80045, USA.
| | - Lauren A Shechtman
- Department of Cell & Developmental Biology, University of Colorado Anschutz Medical Campus, Mail Stop 8108, 12801 East 17th Avenue, Aurora, CO, 80045, USA
- Rocky Mountain Taste & Smell Center, University of Colorado Anschutz Medical Campus, Mail Stop 8108, 12801 East 17th Avenue, Aurora, CO, 80045, USA
| | - Sarah E Millar
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Linda A Barlow
- Department of Cell & Developmental Biology, University of Colorado Anschutz Medical Campus, Mail Stop 8108, 12801 East 17th Avenue, Aurora, CO, 80045, USA.
- Rocky Mountain Taste & Smell Center, University of Colorado Anschutz Medical Campus, Mail Stop 8108, 12801 East 17th Avenue, Aurora, CO, 80045, USA.
| |
Collapse
|
4
|
Chronic Trichuris muris infection causes neoplastic change in the intestine and exacerbates tumour formation in APC min/+ mice. PLoS Negl Trop Dis 2017. [PMID: 28650985 PMCID: PMC5501682 DOI: 10.1371/journal.pntd.0005708] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Incidences of infection-related cancers are on the rise in developing countries where the prevalence of intestinal nematode worm infections are also high. Trichuris muris (T. muris) is a murine gut-dwelling nematode that is the direct model for human T. trichiura, one of the major soil-transmitted helminth infections of humans. In order to assess whether chronic infection with T. muris does indeed influence the development of cancer hallmarks, both wild type mice and colon cancer model (APC min/+) mice were infected with this parasite. Parasite infection in wild type mice led to the development of neoplastic change similar to that seen in mice that had been treated with the carcinogen azoxymethane. Additionally, both chronic and acute infection in the APCmin/+ mice led to an enhanced tumour development that was distinct to the site of infection suggesting systemic control. By blocking the parasite induced T regulatory response in these mice, the increase in the number of tumours following infection was abrogated. Thus T. muris infection alone causes an increase in gut pathologies that are known to be markers of cancer but also increases the incidence of tumour formation in a colon cancer model. The influence of parasitic worm infection on the development of cancer may therefore be significant. It is estimated that now 2 billion people currently live with chronic parasitic worm infections. As the incidences of cancer increase worldwide, the importance of these chronic inflammatory conditions on the development of cancer becomes more important. Several bacterial, viral and parasitic infections are already known to influence cancer development but as colon cancer is particularly prevalent worldwide, we wanted to assess the effect of a large intestinal dwelling worm, Trichuris muris (T. muris) on its aetiology. This whipworm is a natural infection of mice and has significant homology to human whipworm. From our studies, we showed that chronic infection alone induced changes in the caecum of the mouse that were comparable to those seen with a well-known carcinogen. In addition to this, T. muris infection was also able to increase the development of adenomas in the small intestine of mutant mice that spontaneously develop tumours. This change was abrogated if a T regulatory cell type was blocked during infection. The T regulatory cell type that arises during infection has been shown to play an important role in protecting the host from damage caused by the parasite and the immune response to it. The present study using the mouse model however, suggests that regulatory T cells can have negative effects, at least in terms of the development of bowel cancer. As so many people live with chronic, regulated parasitic infections, the importance of the parasites in cancer development may therefore be significant.
Collapse
|
5
|
Maria OM, Eliopoulos N, Muanza T. Radiation-Induced Oral Mucositis. Front Oncol 2017; 7:89. [PMID: 28589080 PMCID: PMC5439125 DOI: 10.3389/fonc.2017.00089] [Citation(s) in RCA: 212] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 04/21/2017] [Indexed: 01/11/2023] Open
Abstract
Radiation-induced oral mucositis (RIOM) is a major dose-limiting toxicity in head and neck cancer patients. It is a normal tissue injury caused by radiation/radiotherapy (RT), which has marked adverse effects on patient quality of life and cancer therapy continuity. It is a challenge for radiation oncologists since it leads to cancer therapy interruption, poor local tumor control, and changes in dose fractionation. RIOM occurs in 100% of altered fractionation radiotherapy head and neck cancer patients. In the United Sates, its economic cost was estimated to reach 17,000.00 USD per patient with head and neck cancers. This review will discuss RIOM definition, epidemiology, impact and side effects, pathogenesis, scoring scales, diagnosis, differential diagnosis, prevention, and treatment.
Collapse
Affiliation(s)
- Osama Muhammad Maria
- Faculty of Medicine, Experimental Medicine Department, McGill University, Montreal, QC, Canada
- Radiation Oncology Department, Jewish General Hospital, McGill University, Montreal, QC, Canada
- Lady Davis Institute for Medical Research, Jewish General Hospital, McGill University, Montreal, QC, Canada
| | - Nicoletta Eliopoulos
- Lady Davis Institute for Medical Research, Jewish General Hospital, McGill University, Montreal, QC, Canada
- Faculty of Medicine, Surgery Department, McGill University, Montreal, QC, Canada
| | - Thierry Muanza
- Faculty of Medicine, Experimental Medicine Department, McGill University, Montreal, QC, Canada
- Radiation Oncology Department, Jewish General Hospital, McGill University, Montreal, QC, Canada
- Lady Davis Institute for Medical Research, Jewish General Hospital, McGill University, Montreal, QC, Canada
- Oncology Department, McGill University, Montreal, QC, Canada
| |
Collapse
|
6
|
Murtaza B, Hichami A, Khan AS, Ghiringhelli F, Khan NA. Alteration in Taste Perception in Cancer: Causes and Strategies of Treatment. Front Physiol 2017; 8:134. [PMID: 28337150 PMCID: PMC5340755 DOI: 10.3389/fphys.2017.00134] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 02/22/2017] [Indexed: 12/29/2022] Open
Abstract
The sense of taste is responsible for the detection and ingestion of food to cover energetic requirements in health and disease. The change in taste perception might lead to malnutrition that is usually one of the frequent causes of morbidity and mortality in patients with cancer. In this review, we summarize the mechanisms of taste perception and how they are altered in cancer. We also address the question of the implication of inflammation, responsible for the alterations in taste modalities. We highlight the role of radio- and chemotherapy in the modulation of taste physiology. Other several factors like damage to taste progenitor cells and disruption of gut microbiota are also dealt with relation to taste perception in cancer. We further shed light on how to restore taste acuity, by using different preventive methods, dietary modifications and pharmacotherapy in subjects with advanced cancer state.
Collapse
Affiliation(s)
- Babar Murtaza
- Physiologie de la Nutrition and Toxicologie, UMR U866 Institut National de la Santé et de la Recherche Médicale/Université de Bourgogne-Franche Compté/Agro-Sup Dijon, France
| | - Aziz Hichami
- UMR U866 Institut National de la Santé et de la Recherche Médicale/Université de Bourgogne-Franche Compté, Chimiothérapie et Réponse Anti-tumorale Dijon, France
| | - Amira S Khan
- Département de Biochimie, Biologie Cellulaire & Moléculaire, Université de Constantine 1 Constantine, Alegria
| | - François Ghiringhelli
- UMR U866 Institut National de la Santé et de la Recherche Médicale/Université de Bourgogne-Franche Compté, Chimiothérapie et Réponse Anti-tumorale Dijon, France
| | - Naim A Khan
- Physiologie de la Nutrition and Toxicologie, UMR U866 Institut National de la Santé et de la Recherche Médicale/Université de Bourgogne-Franche Compté/Agro-Sup Dijon, France
| |
Collapse
|
7
|
Castillo GM, Nishimoto-Ashfield A, Jones CC, Kabirov KK, Zakharov A, Lyubimov AV. Protected graft copolymer-formulated fibroblast growth factors mitigate the lethality of partial body irradiation injury. PLoS One 2017; 12:e0171703. [PMID: 28207794 PMCID: PMC5313194 DOI: 10.1371/journal.pone.0171703] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 01/23/2017] [Indexed: 12/11/2022] Open
Abstract
We evaluated the mitigating effects of fibroblast growth factor 4 and 7 (FGF4 and FGF7, respectively) in comparison with long acting protected graft copolymer (PGC)-formulated FGF4 and 7 (PF4 and PF7, respectively) administered to C57BL/6J mice a day after exposure to LD50/30 (15.7 Gy) partial body irradiation (PBI) which targeted the gastrointestinal (GI) system. The PGC that we developed increased the bioavailability of FGF4 and FGF7 by 5- and 250-fold compared to without PGC, respectively, and also sustained a 24 hr presence in the blood after a single subcutaneous administration. The dose levels tested for mitigating effects on radiation injury were 3 mg/kg for the PF4 and PF7 and 1.5 mg each for their combination (PF4/7). Amifostine administered prior to PBI was used as a positive control. The PF4, PF7, or PF4/7 mitigated the radiation lethality in mice. The mitigating effect of PF4 and PF7 was similar to the positive control and PF7 was better than other mitigators tested. The plasma citrulline levels and hematology parameters were early markers of recovery and survival. GI permeability function appeared to be a late or full recovery indicator. The villus length and crypt number correlated with plasma citrulline level, indicating that it can act as a surrogate marker for these histology evaluations. The IL-18 concentrations in jejunum as early as day 4 and TPO levels in colon on day 10 following PBI showed statistically significant changes in irradiated versus non-irradiated mice which makes them potential biomarkers of radiation exposure. Other colon and jejunum cytokine levels are potentially useful but require larger numbers of samples than in the present study before their full utility can be realized.
Collapse
Affiliation(s)
| | | | | | - Kasim K. Kabirov
- Toxicology Research Laboratory, Department of Pharmacology, University of Illinois at Chicago, Chicago, IL, United States of America
| | - Alexander Zakharov
- Toxicology Research Laboratory, Department of Pharmacology, University of Illinois at Chicago, Chicago, IL, United States of America
| | - Alexander V. Lyubimov
- Toxicology Research Laboratory, Department of Pharmacology, University of Illinois at Chicago, Chicago, IL, United States of America
| |
Collapse
|
8
|
Lucchese A, Matarese G, Ghislanzoni LH, Gastaldi G, Manuelli M, Gherlone E. Efficacy and effects of palifermin for the treatment of oral mucositis in patients affected by acute lymphoblastic leukemia. Leuk Lymphoma 2015; 57:820-7. [DOI: 10.3109/10428194.2015.1081192] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
9
|
Tanaka T, Komai Y, Tokuyama Y, Yanai H, Ohe S, Okazaki K, Ueno H. Identification of stem cells that maintain and regenerate lingual keratinized epithelial cells. Nat Cell Biol 2013; 15:511-8. [DOI: 10.1038/ncb2719] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Accepted: 02/27/2013] [Indexed: 12/19/2022]
|
10
|
Blijlevens N, de Château M, Krivan G, Rabitsch W, Szomor A, Pytlik R, Lissmats A, Johnsen HE, de Witte T, Einsele H, Ruutu T, Niederwieser D. In a high-dose melphalan setting, palifermin compared with placebo had no effect on oral mucositis or related patient’s burden. Bone Marrow Transplant 2012; 48:966-71. [DOI: 10.1038/bmt.2012.257] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Revised: 11/09/2012] [Accepted: 11/13/2012] [Indexed: 11/09/2022]
|
11
|
Abstract
Taste loss in human patients following radiotherapy for head and neck cancer is a common and significant problem, but the cellular mechanisms underlying this loss are not understood. Taste stimuli are transduced by receptor cells within taste buds, and like epidermal cells, taste cells are regularly replaced throughout adult life. This renewal relies on progenitor cells adjacent to taste buds, which continually supply new cells to each bud. Here we treated adult mice with a single 8 Gy dose of x-ray irradiation to the head and neck, and analyzed taste epithelium at 1-21 d postirradiation (dpi). We found irradiation targets the taste progenitor cells, which undergo cell cycle arrest (1-3 dpi) and apoptosis (within 1 dpi). Taste progenitors resume proliferation at 5-7 dpi, with the proportion of cells in S and M phase exceeding control levels at 5-6 and 6 dpi, respectively, suggesting that proliferation is accelerated and/or synchronized following radiation damage. Using 5-bromo-2-deoxyuridine birthdating to identify newborn cells, we found that the decreased proliferation following irradiation reduces the influx of cells at 1-2 dpi, while the robust proliferation detected at 6 dpi accelerates entry of new cells into taste buds. In contrast, the number of differentiated taste cells was not significantly reduced until 7 dpi. These data suggest a model where continued natural taste cell death, paired with temporary interruption of cell replacement, underlies taste loss after irradiation.
Collapse
|
12
|
Singh VK, Ducey EJ, Brown DS, Whitnall MH. A review of radiation countermeasure work ongoing at the Armed Forces Radiobiology Research Institute. Int J Radiat Biol 2012; 88:296-310. [DOI: 10.3109/09553002.2012.652726] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
13
|
Saleh O, Bonitz T, Flinspach K, Kulik A, Burkard N, Mühlenweg A, Vente A, Polnick S, Lämmerhofer M, Gust B, Fiedler HP, Heide L. Activation of a silent phenazine biosynthetic gene cluster reveals a novel natural product and a new resistance mechanism against phenazines. MEDCHEMCOMM 2012. [DOI: 10.1039/c2md20045g] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
14
|
Bell LV, Else KJ. Regulation of colonic epithelial cell turnover by IDO contributes to the innate susceptibility of SCID mice to Trichuris muris infection. Parasite Immunol 2011; 33:244-9. [PMID: 21392042 PMCID: PMC3084993 DOI: 10.1111/j.1365-3024.2010.01272.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Tryptophan catabolism via the kynurenine pathway is dependent on the enzyme Indoleamine 2,3-dioxygenase (IDO). Expression of IDO is upregulated in a number of inflammatory settings such as wounding and infection, and the resulting local tryptophan depletion may inhibit the replication of intracellular pathogens. Indo gene expression is upregulated in the gut during chronic infection with the mouse whipworm Trichuris muris. We demonstrate an increase in the rate of colonic epithelial cell turnover after inhibition of IDO in T.muris-infected SCID mice, leading to a significant expulsion of parasite burden. We identify the goblet cell as a novel source of IDO and present data revealing a new role for IDO in the regulation of epithelial cell turnover post-infectious challenge.
Collapse
Affiliation(s)
- L V Bell
- Faculty of Life Sciences, University of Manchester, Manchester, UK.
| | | |
Collapse
|
15
|
Kim JP, Khalmuratova R, Jeon SY, Park JJ, Hur DG, Ahn SK, Woo SH, Kang KM, Chai GY. Quantitative analysis of myosin heavy chain expression change in laryngeal muscle after irradiation in rats. Yonsei Med J 2011; 52:158-64. [PMID: 21155049 PMCID: PMC3017692 DOI: 10.3349/ymj.2011.52.1.158] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
PURPOSE Radiotherapy for head and neck cancer does not impair the voice quality as much as laser treatment or surgery, but it can induce muscle wasting and fibrosis and symptoms of dry mouth. We investigated the effect of irradiation on the myosin heavy chain (MyHC) expression in laryngeal muscles. MATERIALS AND METHODS Rats were irradiated with one dose of 10, 15, 20, 25, 30, or 35 Gy and other rats were irradiated with 20 Gy. The thyroarytenoid (TA), posterior cricoarytenoid (PCA), and cricothyroid (CT) muscles were subjected to reverse transcription-polymerase chain reaction (RT-PCR). RESULTS Two weeks after irradiation with 10, 15, or 20 Gy, all the MyHC type expressions had decreased in a dose-dependent manner in the TA, PCA, and CT muscles, and especially the expression of MyHC IIa decreased much more than the expressions of the other MyHC isoforms in all muscles. In the 20 Gy-irradiated rats, almost all the MyHC isoform expressions declined over 12 weeks in the TA, PCA, and CT muscles, except for the MyHC I expression in the PCA and CT muscle. The MyHC IIa expression was markedly decreased in all the muscles. CONCLUSION The laryngeal muscles responded differently to radiation, but they showed a time-dependent and long-lasting decrease in the expressions of all the MyHC isoforms in the TA, PCA, and CT muscles. In particular, the expression of the MyHC IIa isoform in all the muscles may be more sensitive to irradiation than the expressions of the other MyHC isoforms.
Collapse
Affiliation(s)
- Jin Pyeong Kim
- Department of Otorhinolaryngology, Institute of Health Science, College of Medicine, Gyeongsang National University, 90 Chilam-dong, Jinju 660-702, Korea.
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Modelling foot-and-mouth disease virus dynamics in oral epithelium to help identify the determinants of lysis. Bull Math Biol 2010; 73:1503-28. [PMID: 20725794 DOI: 10.1007/s11538-010-9576-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Accepted: 07/12/2010] [Indexed: 10/19/2022]
Abstract
Foot-and-mouth disease virus (FMDV) causes an economically important disease of cloven-hoofed livestock; of interest here is the difference in lytic behaviour that is observed in bovine epithelium. On the skin around the feet and tongue, the virus rapidly replicates, killing cells, and resulting in growing lesions, before eventually being cleared by the immune response. In contrast, there is usually minimal lysis in the soft palate, but virus may persist in tissue long after the animal has recovered from the disease. Persistence of virus has important implications for disease control, while identifying the determinant of lysis in epithelium is potentially important for the development of prophylactics. To help identify which of the differences between oral and pharyngeal epithelium are responsible for such dramatically divergent FMDV dynamics, a simple model has been developed, in which virus concentration is made explicit to allow the lytic behaviour of cells to be fully considered. Results suggest that localised structuring of what are fundamentally similar cells can induce a bifurcation in the behaviour of the system, explicitly whether infection can be sustained or results in mutual extinction, although parameter estimates indicate that more complex factors may be involved in maintaining viral persistence, or that there are as yet unquantified differences between the intrinsic properties of cells in these regions.
Collapse
|
17
|
Hasnain SZ, Wang H, Ghia J, Haq N, Deng Y, Velcich A, Grencis RK, Thornton DJ, Khan WI. Mucin gene deficiency in mice impairs host resistance to an enteric parasitic infection. Gastroenterology 2010; 138:1763-71. [PMID: 20138044 PMCID: PMC3466424 DOI: 10.1053/j.gastro.2010.01.045] [Citation(s) in RCA: 151] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2009] [Revised: 01/15/2010] [Accepted: 01/25/2010] [Indexed: 12/27/2022]
Abstract
BACKGROUND & AIMS Hyperplasia of mucin-secreting intestinal goblet cells accompanies a number of enteric infections, including infections by nematode parasites. Nevertheless, the precise role of mucins in host defense in nematode infection is not known. We investigated the role of the mucin (Muc2) in worm expulsion and host immunity in a model of nematode infection. METHODS Resistant (BALB/c, C57BL/6), susceptible (AKR), and Muc2-deficient mouse strains were infected with the nematode, Trichuris muris, and worm expulsion, energy status of the whipworms, changes in mucus/mucins, and inflammatory and immune responses were investigated after infection. RESULTS The increase in Muc2 production, observed exclusively in resistant mice, correlated with worm expulsion. Moreover, expulsion of the worms from the intestine was significantly delayed in the Muc2-deficient mice. Although a marked impairment in the development of periodic acid Schiff (PAS)-stained intestinal goblet cells was observed in Muc2-deficient mice, as infection progressed a significant increase in the number of PAS-positive goblet cells was observed in these mice. Surprisingly, an increase in Muc5ac, a mucin normally expressed in the airways and stomach, was observed after infection of only the resistant animals. Overall, the mucus barrier in the resistant mice was less permeable than that of susceptible mice. Furthermore, the worms isolated from the resistant mice had a lower energy status. CONCLUSIONS Mucins are an important component of innate defense in enteric infection; this is the first demonstration of the important functional contribution of mucins to host protection from nematode infection.
Collapse
Key Words
- muc2
- goblet cell
- enteric infection
- host resistance
- innate immunity
- atp, adenosine triphosphate
- brdu, bromodeoxyuridine
- il-4, interleukin-4
- ko, knockout
- mmuc2, murine muc2
- pas, periodic acid schiff
- relm, resistin-like molecule
- rt-pcr, reverse transcription–polymerase chain reaction
- scid, severe combined immunodeficient
- tff3, trefoil factor 3
- th, t helper
- wt, wild-type
Collapse
Affiliation(s)
- Sumaira Z. Hasnain
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Huaqing Wang
- Farncombe Family Digestive Health Research Institute, Department of Pathology & Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Jean–Eric Ghia
- Farncombe Family Digestive Health Research Institute, Department of Pathology & Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Nihal Haq
- Farncombe Family Digestive Health Research Institute, Department of Pathology & Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Yikang Deng
- Farncombe Family Digestive Health Research Institute, Department of Pathology & Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Anna Velcich
- Department of Oncology, Albert Einstein Cancer Center/Montefiore Medical Center, Bronx, New York
| | - Richard K. Grencis
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - David J. Thornton
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom,David J. Thornton, Welcome Trust Centre for Cell-Matrix Research, Faculty Life Sciences. Michael Smith Building, University of Manchester, Manchester, M13 9PT, United Kingdom. fax: 00441612751505
| | - Waliul I. Khan
- Farncombe Family Digestive Health Research Institute, Department of Pathology & Molecular Medicine, McMaster University, Hamilton, Ontario, Canada,Reprint requests Address requests for reprints to: W.I. Khan, Department of Pathology & Molecular Medicine, Room 2N34, McMaster University Medical Centre, 1200 Main Street West, Hamilton, ON L8N 3Z5, Canada. fax: (905) 521-2338
| |
Collapse
|
18
|
Barasch A, Epstein J, Tilashalski K. Palifermin for management of treatment-induced oral mucositis in cancer patients. Biologics 2009; 3:111-6. [PMID: 19707400 PMCID: PMC2726051 DOI: 10.2147/btt.2009.2871] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Oral mucositis (OM) remains a major side effect of various cancer therapies, which exacts a significant price in terms of morbidity and cost of care. Efforts aimed at prevention and/or therapy of OM have been largely unsuccessful. Few agents have shown efficacy, and even those were applicable to limited types of patients. The advent of small-molecule targeted agents opened new possibilities for intervention in the mucopathogenic processes induced by cancer therapies. One of these agents, recombinant human keratinocyte growth factor (KGF), has been studied extensively and has shown promising results in reducing chemotherapy induced OM. This drug's effects on stem cell engraftment, graft-versus-host disease and other treatment-induced morbidities remain undefined. In this article we evaluate the pre-clinical and clinical evidence and discuss the clinical applications of KGF as an adjunct therapeutic agent in oncology.
Collapse
Affiliation(s)
- Andrei Barasch
- Department of Diagnostic Sciences, University of Alabama at Birmingham, Birmingham, AL, USA.
| | | | | |
Collapse
|
19
|
Beenken A, Mohammadi M. The FGF family: biology, pathophysiology and therapy. Nat Rev Drug Discov 2009; 8:235-53. [PMID: 19247306 DOI: 10.1038/nrd2792] [Citation(s) in RCA: 1398] [Impact Index Per Article: 93.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The family of fibroblast growth factors (FGFs) regulates a plethora of developmental processes, including brain patterning, branching morphogenesis and limb development. Several mitogenic, cytoprotective and angiogenic therapeutic applications of FGFs are already being explored, and the recent discovery of the crucial roles of the endocrine-acting FGF19 subfamily in bile acid, glucose and phosphate homeostasis has sparked renewed interest in the pharmacological potential of this family. This Review discusses traditional applications of recombinant FGFs and small-molecule FGF receptor kinase inhibitors in the treatment of cancer and cardiovascular disease and their emerging potential in the treatment of metabolic syndrome and hypophosphataemic diseases.
Collapse
Affiliation(s)
- Andrew Beenken
- Department of Pharmacology, New York University School of Medicine, New York, New York 10016, USA.
| | | |
Collapse
|
20
|
Culture of endodermal stem/progenitor cells of the mouse tongue. In Vitro Cell Dev Biol Anim 2008; 45:44-54. [PMID: 18830772 DOI: 10.1007/s11626-008-9149-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2008] [Accepted: 09/08/2008] [Indexed: 01/19/2023]
Abstract
The tongue represents a very accessible source of tissue-specific epithelial stem cells of endodermal origin. However, little is known about the properties of these cells and the mechanisms regulating their proliferation and differentiation. Foxa2, an endodermal marker, is expressed throughout the tongue epithelium during embryonic development but becomes confined to a minority of basal cells and some taste bud sensory cells in the adult tongue. Using a previously described line of transgenic mice in which enhanced green fluorescent protein (eGFP) is expressed under the control of a human keratin 5 promoter region (Krt5-eGFP), we have isolated a subpopulation of cells in the basal epithelial layer of the mouse tongue with a high efficiency of generating holoclones of undifferentiated cells in culture with a feeder layer. Krt5-GFP(hi) cells can both self renew and give rise to differentiated stratified keratinized epithelial cells when cultured on an air-liquid interface.
Collapse
|
21
|
Humphreys NE, Xu D, Hepworth MR, Liew FY, Grencis RK. IL-33, a potent inducer of adaptive immunity to intestinal nematodes. THE JOURNAL OF IMMUNOLOGY 2008; 180:2443-9. [PMID: 18250453 DOI: 10.4049/jimmunol.180.4.2443] [Citation(s) in RCA: 309] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
IL-33 (IL-1F11) binds ST2 (IL-1R4), both of which are associated with optimal CD4(+) Th2 polarization. Exogenous IL-33 drives induction of Th2-associated cytokines and associated pathological changes within the gut mucosa. Th2 polarization is also a prerequisite to expulsion of the intestinal-dwelling nematode Trichuris muris. In this study, we demonstrate that IL-33 mRNA is expressed early during parasite infection and susceptible mice can be induced to expel the parasite by a regime of exogenous IL-33 administration. IL-33 prevents an inappropriate parasite-specific Th1-polarized response and induces IL-4, IL-9, and IL-13. This redirection requires the presence of T cells and must occur at the initiation of the response to the pathogen. Interestingly, exogenous IL-33 also induced thymic stromal lymphopoietin mRNA within the infected caecum, an epithelial cell-restricted cytokine essential for the generation of Th2-driven parasite immunity. IL-33 also acts independently of T cells, altering intestinal pathology in chronically infected SCID mice, leading to an increased crypt length and intestinal epithelial cell proliferation, but reducing goblet cell hyperplasia. Thus, the ability of IL-33 to induce Th2 responses has functional relevance in the context of intestinal helminth infection, particularly during the initiation of the response.
Collapse
Affiliation(s)
- Neil E Humphreys
- Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester, United Kingdom
| | | | | | | | | |
Collapse
|
22
|
Beaven AW, Shea TC. The Effect of Palifermin on Chemotherapyand Radiation Therapy–Induced Mucositis: A Review of the Current Literature. ACTA ACUST UNITED AC 2007; 4:188-97. [DOI: 10.3816/sct.2007.n.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
23
|
Nieoullon V, Belvindrah R, Rougon G, Chazal G. Mouse CD24 is required for homeostatic cell renewal. Cell Tissue Res 2007; 329:457-67. [PMID: 17522896 DOI: 10.1007/s00441-007-0395-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2006] [Accepted: 02/02/2007] [Indexed: 10/23/2022]
Abstract
Under physiological conditions, some adult tissues retain a capacity for self-renewal. This property is attributable to the proliferation and differentiation of stem, transit-amplifying, and differentiating cells, which are regulated by cell-cell or cell-matrix interactions or by secreted factors. By gain and loss of function experiments, we demonstrate the involvement of mouse CD24 (mouse cluster of differentiation 24), which is a glycosyl phosphatidylinositol (GPI)-anchored cell-surface glycoprotein, in the regulation of homeostatic cell renewal. BrdU incorporation observations, at optical and electron-microscopic levels, have revealed increased cell proliferation in the developing brain and in the epithelia of mCD24-deleted mice. We have observed ectopic proliferative cells in the suprabasal layers of the mutant skin leading to a general disruption of basal and suprabasal layers. By contrast, ectopic mCD24 expression mediated by retroviral infection of the embryonic brain leads to a decreased number of clusters of cells generated in the progeny. Together, these results and our previous published data indicate that mCD24 contributes to the regulation of the production of differentiated cells by controlling the proliferation/differentiation balance between transit-amplifying and committed differentiated cells.
Collapse
Affiliation(s)
- Vincent Nieoullon
- Institut de Biologie du Développement de Marseille Luminy, UMR 6216 Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Campus de Luminy, 13288 Marseille, France
| | | | | | | |
Collapse
|
24
|
Lee SW, Jung KI, Kim YW, Jung HD, Kim HS, Hong JP. Effect of epidermal growth factor against radiotherapy-induced oral mucositis in rats. Int J Radiat Oncol Biol Phys 2007; 67:1172-8. [PMID: 17336218 DOI: 10.1016/j.ijrobp.2006.10.038] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2006] [Revised: 08/04/2006] [Accepted: 10/26/2006] [Indexed: 10/23/2022]
Abstract
PURPOSE We tested the efficacy of oral recombinant human epidermal growth factor (rhEGF) against radiation-induced oral mucositis in a rat model. METHODS AND MATERIALS Each of 35 Sprague-Dawley rats, 7 to 8 weeks of age and weighing 178 +/- 5 grams, was irradiated once in the head region with 25 Gy, using a 4-MV therapeutic linear accelerator at a rate of 2 Gy/min. The irradiated rats were randomly divided into four groups: those receiving no treatment (Group 1), those treated with vehicle only three times per day (Group 2), and those treated with 50 microg/mL (Group 3), or 100 microg/mL (Group 4) rhEGF three times per day. RESULTS Rats were monitored for survival rate and daily activity, including hair loss, sensitivity, and anorexia. We found that survival rate and oral intake were significantly increased and histologic changes were significantly decreased in the rhEGF-treated rats. There was no difference, however, between rats treated with 50 microg/mL or 100 microg/mL rhEGF. CONCLUSION These findings suggest that orally administered rhEGF decreased radiation-induced oral mucositis in rats.
Collapse
Affiliation(s)
- Sang-Wook Lee
- Department of Radiation Oncology, University of Ulsan, College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | | | | | | | | | | |
Collapse
|
25
|
Blijlevens N, Sonis S. Palifermin (recombinant keratinocyte growth factor-1): a pleiotropic growth factor with multiple biological activities in preventing chemotherapy- and radiotherapy-induced mucositis. Ann Oncol 2006; 18:817-26. [PMID: 17030544 DOI: 10.1093/annonc/mdl332] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Oral and intestinal mucositis are among the most significant dose-limiting toxic effects of intensive cancer treatment and are associated with adverse clinical and economic outcomes. Palifermin (Kepivancetrade mark), an N-truncated recombinant human keratinocyte growth factor-1, is the first agent to be approved for prevention of oral mucositis. Keratinocyte growth factor, a potent epithelial mitogen, appears to play a major role in the healing process. Palifermin has multiple biological activities that appear to protect the mucosal epithelium and promote its early regeneration after irradiation- and chemotherapy-induced injury. These include inhibition of epithelial cell apoptosis and DNA damage, up-regulation of detoxifying enzymes and down-regulation of pro-inflammatory cytokines, as well as enhanced migration, proliferation and differentiation of epithelial cells. Palifermin reduces the incidence, severity and duration of oral mucositis in patients with haematological malignancies undergoing myelotoxic conditioning therapy and haematopoietic stem-cell transplantation. Clinical sequelae, including febrile neutropenia and resource use (opioid analgesia and parenteral feeding), are concomitantly reduced. Other potential applications being explored include use in the solid tumour setting, reduction of intestinal mucositis and reduction of GVHD in allogenic transplantation. Thus, the development of palifermin and other potential new agents for preventing chemotherapy- and radiotherapy-induced mucositis represents an important breakthrough in oncological supportive care.
Collapse
Affiliation(s)
- N Blijlevens
- Department of Haematology, University Medical Centre, St Radboud, Nijmegen, The Netherlands.
| | | |
Collapse
|
26
|
Blaimauer K, Watzinger E, Erovic BM, Martinek H, Jagersberger T, Thurnher D. Effects of epidermal growth factor and keratinocyte growth factor on the growth of oropharyngeal keratinocytes in coculture with autologous fibroblasts in a three-dimensional matrix. Cells Tissues Organs 2006; 182:98-105. [PMID: 16804300 DOI: 10.1159/000093064] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/25/2006] [Indexed: 11/19/2022] Open
Abstract
Tissue engineering of oropharyngeal mucosa is rendered complex by the fact that oropharyngeal keratinocytes are difficult to culture in the long term and do not grow well after several subcultivations. Three populations of oropharyngeal keratinocytes were isolated by a method based on different levels of beta(1)-integrin expression. In particular, keratinocytes were isolated between cell fractions that adhere rapidly on collagen-IV-coated culture dishes (RAC-IV) and populations that are less adherent (RAC-IV-D). The total fraction of both subpopulations served as a control (RAC-IV-T). The epidermal growth factor (EGF) and the keratinocyte growth factor (KGF) were examined with regard to their effects on the growth of the three populations. Growth curves of all three cell fractions grown with or without EGF were generated, and different concentrations of EGF and KGF were tested. EGF did not change any growth characteristics of the cells, with the exception of the speed of growth. Best growth was achieved with a physiologic EGF concentration of 0.15-1.5 ng/ml and a KGF concentration of 15 ng/ml. Finally, we cocultured oropharyngeal keratinocytes and their autologous fibroblasts in a three-dimensional matrix using Matrigeltrade mark. Oropharyngeal keratinocytes grown in coculture formed larger colonies than keratinocytes grown without fibroblasts. In conclusion, we were able to optimize the supplement of EGF and KGF in standard medium for the long-term culture of primary oropharyngeal keratinocytes. The use of Matrigel as a scaffold for three-dimensional cocultures of oropharyngeal keratinocytes and fibroblasts might signify a step forward in the development of a transplantable mucosa construct.
Collapse
Affiliation(s)
- Karin Blaimauer
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Vienna, Austria
| | | | | | | | | | | |
Collapse
|
27
|
Little MC, Bell LV, Cliffe LJ, Else KJ. The characterization of intraepithelial lymphocytes, lamina propria leukocytes, and isolated lymphoid follicles in the large intestine of mice infected with the intestinal nematode parasite Trichuris muris. THE JOURNAL OF IMMUNOLOGY 2006; 175:6713-22. [PMID: 16272327 DOI: 10.4049/jimmunol.175.10.6713] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Despite a growing understanding of the role of cytokines in immunity to the parasitic helminth Trichuris muris, the local effector mechanism culminating in the expulsion of worms from the large intestine is not known. We used flow cytometry and immunohistochemistry to characterize the phenotype of large intestinal intraepithelial lymphocytes (IEL) and lamina propria leukocytes (LPL) from resistant and susceptible strains of mouse infected with T. muris. Leukocytes accumulated in the epithelium and lamina propria after infection, revealing marked differences between the different strains of mouse. In resistant mice, which mount a Th2 response, the number of infiltrating CD4+, CD8+, B220+, and F4/80+ IEL and LPL was generally highest around the time of worm expulsion from the gut, at which point the inflammation was dominated by CD4+ IEL and F4/80+ LPL. In contrast, in susceptible mice, which mount a Th1 response, the number of IEL and LPL increased more gradually and was highest after a chronic infection had developed. At this point, CD8+ IEL and F4/80+ LPL were predominant. Therefore, this study reveals the local immune responses underlying the expulsion of worms or the persistence of a chronic infection in resistant and susceptible strains of mouse, respectively. In addition, for the first time, we illustrate isolated lymphoid follicles in the large intestine, consisting of B cells interspersed with CD4+ T cells and having a central zone of rapidly proliferating cells. Furthermore, we demonstrate the organogenesis of these structures in response to T. muris infection.
Collapse
Affiliation(s)
- Matthew C Little
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom.
| | | | | | | |
Collapse
|
28
|
Yamashita H, Nakagawa K, Tago M, Nakamura N, Shiraishi K, Eda M, Nakata H, Nagamatsu N, Yokoyama R, Onimura M, Ohtomo K. Taste dysfunction in patients receiving radiotherapy. Head Neck 2006; 28:508-16. [PMID: 16619275 DOI: 10.1002/hed.20347] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND Taste loss is a major cause of morbidity in patients undergoing head and neck irradiation. METHODS In a prospective study, 51 patients undergoing radical head and neck irradiation at the Tokyo University Hospital were assessed for taste loss. Taste ability was measured by the taste threshold for the four basic tastes (sweet, sour, salt, and bitter qualities) plus another taste of "umami" quality using a filter-paper-disc method in patients before, during, and after radiotherapy (RT). RESULTS All tastes declined on the fifth week after the start of RT and improved on the 11th week. Anatomic pathologic analyses in rats revealed that taste buds diminished completely on the sixth day after irradiation of 15 Gy in a single fraction, and the appearance of taste buds returned almost to the preirradiation state on the 28th day. CONCLUSIONS The main cause of taste disorder resulting from RT was believed to be a disappearance of taste buds and not damage to the taste nerves.
Collapse
Affiliation(s)
- Hideomi Yamashita
- Department of Radiology, University of Tokyo Hospital, 7-3-1, Hongo, Tokyo, 113-8655 Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
Oral ulceration is a common problem, and is sometimes a marker of gastroenterological disease. Patients with signs or symptoms of oral ulcers are sometimes referred to gastroenterology clinics, however, in most instances the ulcers does not reflect gastrointestinal disease. Indeed, a spectrum of disorders other than those of the gut can give rise to oral mucosal ulcers ranging from minor local trauma to significant local disease such as malignancy or systemic illness. This present article reviews aspects of the aetiology, diagnosis and management of common ulcerative disorders of the oral mucosa.
Collapse
Affiliation(s)
- S R Porter
- Oral Medicine, Division of Maxillofacial Diagnostic, Medical and Surgical Sciences, Eastman Dental Institute for Oral Health Care Sciences, UCL, University of London, London, UK.
| | | |
Collapse
|
30
|
Booth C, Booth D, Williamson S, Demchyshyn LL, Potten CS. Teduglutide ([Gly2]GLP-2) protects small intestinal stem cells from radiation damage. Cell Prolif 2005; 37:385-400. [PMID: 15548172 PMCID: PMC6495530 DOI: 10.1111/j.1365-2184.2004.00320.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Glucagon-like peptide-2 and its dipeptidyl peptidase (DP-IV) resistant analogue teduglutide are trophic for the gastrointestinal epithelium. Exposure increases villus height and crypt size and results in increased overall intestinal weight. As these effects may be mediated through stimulation of the stem cell compartment, they may promote intestinal healing and act as potential anti-mucositis agents in patients undergoing cancer chemotherapy. A study was initiated to investigate the protective effects of teduglutide on the murine small intestinal epithelium following gamma-irradiation using the crypt microcolony assay as a measure of stem cell survival and functional competence. Teduglutide demonstrated intestinotrophic effects in both CD1 and BDF1 mouse strains. In BDF1 mice, subcutaneous injection of GLP-2 or teduglutide (0.2 mg/kg/day, b.i.d.) for 14 days increased intestinal weight by 28% and resulted in comparable increases in crypt size, villus height and area. Teduglutide given daily for 6 or 14 days prior to whole body, gamma-irradiation significantly increased crypt stem cell survival when compared with vehicle-treated controls. The mean levels of protection over a range of doses provided protection factors from 1.3 to 1.5. A protective effect was only observed when teduglutide was given before irradiation. These results suggest that teduglutide has the ability to modulate clonogenic stem cell survival in the small intestine and this may have a useful clinical application in the prevention of cancer therapy-induced mucositis.
Collapse
Affiliation(s)
- C Booth
- Paterson Institute for Cancer Research, Christie Hospital NHS Trust, Manchester, UK
| | | | | | | | | |
Collapse
|
31
|
Abstract
Chemotherapy and radiotherapy, whilst highly effective in the treatment of neoplasia, can also cause damage to healthy tissue. In particular, the alimentary tract may be badly affected. Severe inflammation, lesioning and ulceration can occur. Patients may experience intense pain, nausea and gastro-enteritis. They are also highly susceptible to infection. The disorder (mucositis) is a dose-limiting toxicity of therapy and affects around 500 000 patients world-wide annually. Oral and intestinal mucositis is multi-factorial in nature. The disruption or loss of rapidly dividing epithelial progenitor cells is a trigger for the onset of the disorder. However, the actual dysfunction that manifests and its severity and duration are greatly influenced by changes in other cell populations, immune responses and the effects of oral/gut flora. This complexity has hampered the development of effective palliative or preventative measures. Recent studies have concentrated on the use of bioactive/growth factors, hormones or interleukins to modify epithelial metabolism and reduce the susceptibility of the tract to mucositis. Some of these treatments appear to have considerable potential and are at present under clinical evaluation. This overview deals with the cellular changes and host responses that may lead to the development of mucositis of the oral cavity and gastrointestinal tract, and the potential of existing and novel palliative measures to limit or prevent the disorder. Presently available treatments do not prevent mucositis, but can limit its severity if used in combination. Poor oral health and existing epithelial damage predispose patients to mucositis. The elimination of dental problems or the minimization of existing damage to the alimentary tract, prior to the commencement of therapy, lowers their susceptibility. Measures that reduce the flora of the tract, before therapy, can also be helpful. Increased production of free radicals and the induction of inflammation are early events in the onset of mucositis. Prophylactic administration of scavengers or anti-inflammatories can partially counteract or limit some of these therapy-mediated effects, as can the use of cryotherapy. The regular use of mouthwashes, mouth coatings, antibiotics and analgesics is essential, prior to and during loss and ablation of the epithelial layer. Granulocyte-macrophage colony-stimulating factor/granulocyte colony-stimulating factor or the use of laser light therapy may aid restitution and repair. Glutamine supplements may be beneficial in the repair/recovery phase.
Collapse
Affiliation(s)
- M Duncan
- Rowett Research Institute, Bucksburn, Aberdeen, UK
| | | |
Collapse
|
32
|
Movassat J, Beattie GM, Lopez AD, Portha B, Hayek A. Keratinocyte growth factor and beta-cell differentiation in human fetal pancreatic endocrine precursor cells. Diabetologia 2003; 46:822-9. [PMID: 12802496 DOI: 10.1007/s00125-003-1117-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2002] [Revised: 02/24/2003] [Indexed: 11/29/2022]
Abstract
AIMS AND HYPOTHESIS Keratinocyte growth factor (KGF) is a member of the heparin-binding fibroblast growth factor family with a high degree of specificity for epithelial cells in vitro and in vivo. Our aim was to study the effect of KGF on beta-cell growth and differentiation on islet-like cell clusters derived from human fetal pancreas. METHODS We investigated the effects of KGF, in vitro, on beta-cell differentiation from undifferentiated pancreatic precursor cells and in vivo after transplantating human fetal pancreatic cells into athymic rats treated with KGF. RESULTS Treatment of islet-like cell clusters with KGF in vitro did not change the number of insulin producing cells, as measured by the measurement of insulin content or DNA. The in vivo treatment of recipient rats with KGF increased the number of beta cells within the grafts 8 weeks after transplantation. At this time, glucose-stimulated insulin secretion was evaluated by glucose stimulation tests in rats bearing the transplants. Measurements of human C-peptide concentrations after glucose challenge showed that the newly differentiated beta cells in the KGF-treated group were functionally competent as opposed to the control group, where the graft failed to release insulin appropriately. CONCLUSION/INTERPRETATION These findings suggest that in vivo, KGF is capable of inducing human fetal beta-cell expansion. The growth promoting effect of KGF on beta cells occurred mainly through the activation of ductal cell proliferation and their subsequent differentiation into beta cells.
Collapse
Affiliation(s)
- J Movassat
- Islet Research Laboratory, Department of Pediatrics, University of California, San Diego Medical School, 9894 Genesee Ave., La Jolla, California 92037, USA
| | | | | | | | | |
Collapse
|
33
|
Potten CS, Booth D, Cragg NJ, O'Shea JA, Tudor GL, Booth C. Cell kinetic studies in the murine ventral tongue epithelium: the effects of repeated exposure to keratinocyte growth factor. Cell Prolif 2002; 35 Suppl 1:22-31. [PMID: 12139705 PMCID: PMC6496205 DOI: 10.1046/j.1365-2184.35.s1.3.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Keratinocyte growth factor (KGF) stimulates proliferation and differentiation in various epithelial systems. Three daily subcutaneous injections of 125 microg of this protein into mice induce dramatic changes in the histology and histometric measurements of the ventral tongue epithelium. The thickness of the epithelium is increased two-fold and the number of cells beneath a 1-mm length of the surface is increased 1.6-fold. KGF also induces a four-fold increase in the number of S phase cells labelled with tritiated thymidine in the basal layer on the third day after KGF administration. The increase in thickness and cellularity persist for at least 4 days after the end of the KGF injections. However, there is a dramatic fall in the number of S phase cells detected by 3HTdR pulse labelling 2 days after the end of the KGF treatment. There are indications that by 7 days after the 3-day regimen of KGF treatment, both thickness and cellularity have fallen back to near control levels. Continued exposure to KGF over a period of 7 days does not result in any further increases in thickness, cellularity or proliferation. In fact, the proliferation decreases on the fifth, sixth and seventh days of KGF injection to control values on day 7. These changes in the epithelium following KGF treatment suggest that the thicker and more cellular epithelium may be more able to cope with an exposure to a cytotoxic agent and hence be protected in comparison with normal or vehicle-treated epithelium.
Collapse
Affiliation(s)
- C S Potten
- Paterson Institute for Cancer Research, Christie Hospital NHS Trust, Wilmslow Road, Manchester, M20 4BX, UK
| | | | | | | | | | | |
Collapse
|