1
|
Frustaci A, De Luca A, Verardo R, Guida V, Alfarano M, Calvieri C, Sansone L, Russo MA, Chimenti C. Novel ATP2A2 Gene Mutation c.118G>A Causing Keratinocyte and Cardiomyocyte Disconnection in Darier Disease. Biomedicines 2024; 12:1060. [PMID: 38791022 PMCID: PMC11118942 DOI: 10.3390/biomedicines12051060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/29/2024] [Accepted: 05/03/2024] [Indexed: 05/26/2024] Open
Abstract
Darier disease (DD) is an autosomal dominant disorder due to pathogenic variants of the ATP2A2 gene that causes an isolated skin manifestation based on keratinocyte disconnection and apoptosis. Systemic manifestations of DD have not been demonstrated so far, although a high incidence of neuropsychiatric syndromes suggests an involvement of the central nervous system. We report that the pathogenic ATP2A2 gene variant c.118G>A may cause cardiac involvement in patients with DD, consisting of keratinocyte and cardiomyocyte disconnection. Their common pathologic pathway, still unreported, was documented by both skin and left ventricular endomyocardial biopsies because cardiac dilatation and dysfunction appeared several decades after skin manifestations. Keratinocyte disconnection was paralleled by cardiomyocyte separation at the lateral junction. Cardiomyocyte separation was associated with cell disarray, sarcoplasmic reticulum dilatation, and increased myocyte apoptosis. Clinically, hyperkeratotic skin papules are associated with chest pain, severe muscle exhaustion, and ventricular arrhythmias that improved following administration of aminophylline, a phosphodiesterase inhibitor enhancing SERCA2 protein phosphorylation. Cardiac pathologic changes are similar to those documented in the skin, including cardiomyocyte disconnection that promotes precordial pain and cardiac arrhythmias. Phosphodiesterase inhibitors that enhance SERCA2 protein phosphorylation may substantially attenuate the symptoms.
Collapse
Affiliation(s)
- Andrea Frustaci
- IRCCS L. Spallanzani, Cellular and Molecular Cardiology Laboratory, 00149 Rome, Italy;
| | - Alessandro De Luca
- IRCSS Fondazione Casa Sollievo della Sofferenza, Medical Genetics Division, 71013 San Giovanni Rotondo, Italy; (A.D.L.); (V.G.)
| | - Romina Verardo
- IRCCS L. Spallanzani, Cellular and Molecular Cardiology Laboratory, 00149 Rome, Italy;
| | - Valentina Guida
- IRCSS Fondazione Casa Sollievo della Sofferenza, Medical Genetics Division, 71013 San Giovanni Rotondo, Italy; (A.D.L.); (V.G.)
| | - Maria Alfarano
- Department of Cardiovascular, Respiratory, Nephrologic, Anesthesiologic and Geriatric Sciences, Sapienza University of Rome, 00185 Rome, Italy; (M.A.); (C.C.); (C.C.)
| | - Camilla Calvieri
- Department of Cardiovascular, Respiratory, Nephrologic, Anesthesiologic and Geriatric Sciences, Sapienza University of Rome, 00185 Rome, Italy; (M.A.); (C.C.); (C.C.)
| | - Luigi Sansone
- IRCCS San Raffaele, 00166 Rome, Italy; (L.S.); (M.A.R.)
- Department of Human Sciences and Promotion of Quality of Life, San Raffaele Open University, 00166 Rome, Italy
| | | | - Cristina Chimenti
- Department of Cardiovascular, Respiratory, Nephrologic, Anesthesiologic and Geriatric Sciences, Sapienza University of Rome, 00185 Rome, Italy; (M.A.); (C.C.); (C.C.)
| |
Collapse
|
2
|
Sitsel A, De Raeymaecker J, Drachmann ND, Derua R, Smaardijk S, Andersen JL, Vandecaetsbeek I, Chen J, De Maeyer M, Waelkens E, Olesen C, Vangheluwe P, Nissen P. Structures of the heart specific SERCA2a Ca 2+-ATPase. EMBO J 2019; 38:embj.2018100020. [PMID: 30777856 DOI: 10.15252/embj.2018100020] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Revised: 12/29/2018] [Accepted: 01/10/2019] [Indexed: 12/11/2022] Open
Abstract
The sarcoplasmic/endoplasmic reticulum Ca2+-ATPase 2a (SERCA2a) performs active reuptake of cytoplasmic Ca2+ and is a major regulator of cardiac muscle contractility. Dysfunction or dysregulation of SERCA2a is associated with heart failure, while restoring its function is considered as a therapeutic strategy to restore cardiac performance. However, its structure has not yet been determined. Based on native, active protein purified from pig ventricular muscle, we present the first crystal structures of SERCA2a, determined in the CPA-stabilized E2-AlF4- form (3.3 Å) and the Ca2+-occluded [Ca2]E1-AMPPCP form (4.0 Å). The structures are similar to the skeletal muscle isoform SERCA1a pointing to a conserved mechanism. We seek to explain the kinetic differences between SERCA1a and SERCA2a. We find that several isoform-specific residues are acceptor sites for post-translational modifications. In addition, molecular dynamics simulations predict that isoform-specific residues support distinct intramolecular interactions in SERCA2a and SERCA1a. Our experimental observations further indicate that isoform-specific intramolecular interactions are functionally relevant, and may explain the kinetic differences between SERCA2a and SERCA1a.
Collapse
Affiliation(s)
- Aljona Sitsel
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark.,Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium.,Center for Membrane Proteins in Cells and Disease - PUMPkin, Danish National Research Foundation, Aarhus C, Denmark.,Danish Research Institute of Translational Neuroscience - DANDRITE, Nordic-EMBL Partnership for Molecular Medicine, Aarhus C, Denmark
| | | | - Nikolaj Düring Drachmann
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark.,Center for Membrane Proteins in Cells and Disease - PUMPkin, Danish National Research Foundation, Aarhus C, Denmark
| | - Rita Derua
- Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium.,SyBioMa, KU Leuven, Leuven, Belgium
| | - Susanne Smaardijk
- Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Jacob Lauwring Andersen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark.,Center for Membrane Proteins in Cells and Disease - PUMPkin, Danish National Research Foundation, Aarhus C, Denmark.,Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| | | | - Jialin Chen
- Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | | | - Etienne Waelkens
- Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium.,SyBioMa, KU Leuven, Leuven, Belgium
| | - Claus Olesen
- Center for Membrane Proteins in Cells and Disease - PUMPkin, Danish National Research Foundation, Aarhus C, Denmark .,Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| | - Peter Vangheluwe
- Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Poul Nissen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark .,Center for Membrane Proteins in Cells and Disease - PUMPkin, Danish National Research Foundation, Aarhus C, Denmark.,Danish Research Institute of Translational Neuroscience - DANDRITE, Nordic-EMBL Partnership for Molecular Medicine, Aarhus C, Denmark
| |
Collapse
|
3
|
Li LH, Tian XR, Jiang Z, Zeng LW, He WF, Hu ZP. The Golgi Apparatus: Panel Point of Cytosolic Ca(2+) Regulation. Neurosignals 2016; 21:272-84. [PMID: 23796968 DOI: 10.1159/000350471] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Accepted: 03/05/2013] [Indexed: 12/21/2022] Open
Abstract
The Golgi apparatus (GA), an intermediate organelle of the cell inner membrane system, plays a key role in protein glycosylation and secretion. In recent years, this organelle has been found to act as a vital intracellular Ca(2+) store because different Ca (2+) regulators, such as the inositol-1,4,5-triphosphate receptor, sarco/endoplasmic reticulum Ca(2+) -ATPase and secretory pathway Ca 2+ -ATPase, were demonstrated to localize on their membrane. The mechanisms involved in Ca(2+) release and uptake in the GA have now been established.Here, based on careful backward looking on compartments and patterns in GA Ca (2+) regulation, we review neurological diseases related to GA calcium remodeling and propose a modified cytosolic Ca(2+) adjustment model, in which GA acts as part of the panel point.
Collapse
Affiliation(s)
- Li-Hua Li
- Department of Neurology, Second Xiangya Hospital, Central-South University, Changsha; School of Medicine, Jishou University, Jishou , PR China
| | | | | | | | | | | |
Collapse
|
4
|
SERCA2 Haploinsufficiency in a Mouse Model of Darier Disease Causes a Selective Predisposition to Heart Failure. BIOMED RESEARCH INTERNATIONAL 2015; 2015:251598. [PMID: 26064889 PMCID: PMC4433638 DOI: 10.1155/2015/251598] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Revised: 12/18/2014] [Accepted: 12/23/2014] [Indexed: 12/28/2022]
Abstract
Null mutations in one copy of ATP2A2, the gene encoding sarco/endoplasmic reticulum Ca(2+)-ATPase isoform 2 (SERCA2), cause Darier disease in humans, a skin condition involving keratinocytes. Cardiac function appears to be unimpaired in Darier disease patients, with no evidence that SERCA2 haploinsufficiency itself causes heart disease. However, SERCA2 deficiency is widely considered a contributing factor in heart failure. We therefore analyzed Atp2a2 heterozygous mice to determine whether SERCA2 haploinsufficiency can exacerbate specific heart disease conditions. Despite reduced SERCA2a levels in heart, Atp2a2 heterozygous mice resembled humans in exhibiting normal cardiac physiology. When subjected to hypothyroidism or crossed with a transgenic model of reduced myofibrillar Ca(2+)-sensitivity, SERCA2 deficiency caused no enhancement of the disease state. However, when combined with a transgenic model of increased myofibrillar Ca(2+)-sensitivity, SERCA2 haploinsufficiency caused rapid onset of hypertrophy, decompensation, and death. These effects were associated with reduced expression of the antiapoptotic Hax1, increased levels of the proapoptotic genes Chop and Casp12, and evidence of perturbations in energy metabolism. These data reveal myofibrillar Ca(2+)-sensitivity to be an important determinant of the cardiac effects of SERCA2 haploinsufficiency and raise the possibility that Darier disease patients are more susceptible to heart failure under certain conditions.
Collapse
|
5
|
Bae-Harboe YSC, Mirzabeigi M, Gilchrest BA. JAAD Grand Rounds quiz: nail dystrophy and multiple hyperkeratotic papules on the face and neck. J Am Acad Dermatol 2013; 69:847-849. [PMID: 24124832 DOI: 10.1016/j.jaad.2012.07.031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Revised: 07/21/2012] [Accepted: 07/29/2012] [Indexed: 10/26/2022]
|
6
|
Vandecaetsbeek I, Vangheluwe P, Raeymaekers L, Wuytack F, Vanoevelen J. The Ca2+ pumps of the endoplasmic reticulum and Golgi apparatus. Cold Spring Harb Perspect Biol 2011; 3:cshperspect.a004184. [PMID: 21441596 DOI: 10.1101/cshperspect.a004184] [Citation(s) in RCA: 153] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The various splice variants of the three SERCA- and the two SPCA-pump genes in higher vertebrates encode P-type ATPases of the P(2A) group found respectively in the membranes of the endoplasmic reticulum and the secretory pathway. Of these, SERCA2b and SPCA1a represent the housekeeping isoforms. The SERCA2b form is characterized by a luminal carboxy terminus imposing a higher affinity for cytosolic Ca(2+) compared to the other SERCAs. This is mediated by intramembrane and luminal interactions of this extension with the pump. Other known affinity modulators like phospholamban and sarcolipin decrease the affinity for Ca(2+). The number of proteins reported to interact with SERCA is rapidly growing. Here, we limit the discussion to those for which the interaction site with the ATPase is specified: HAX-1, calumenin, histidine-rich Ca(2+)-binding protein, and indirectly calreticulin, calnexin, and ERp57. The role of the phylogenetically older and structurally simpler SPCAs as transporters of Ca(2+), but also of Mn(2+), is also addressed.
Collapse
Affiliation(s)
- Ilse Vandecaetsbeek
- Laboratory of Ca-transport ATPases, Department of Molecular Cell Biology, K.U. Leuven, Leuven, Belgium
| | | | | | | | | |
Collapse
|
7
|
Myint W, Gong Q, Ahn J, Ishima R. Characterization of sarcoplasmic reticulum Ca2+ ATPase nucleotide binding domain mutants using NMR spectroscopy. Biochem Biophys Res Commun 2010; 405:19-23. [PMID: 21187073 DOI: 10.1016/j.bbrc.2010.12.094] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Accepted: 12/20/2010] [Indexed: 11/25/2022]
Abstract
Sarcoplasmic reticulum Ca(2+) ATPase (SERCA) is essential for muscle function by transporting Ca(2+) from the cytosol into the sarcoplasmic reticulum through ATP hydrolysis. In this report, the effects of substitution mutations on the isolated SERCA-nucleotide binding domain (SERCA-N) were studied using NMR. (15)N-(1)H HSQC spectra of substitution mutants at the nucleotide binding site, T441A, R560V, and C561A, showed chemical shift changes, primarily in residues adjacent to the mutation sites, indicating only local effects. Further, the patterns of chemical shift changes upon AMP-PNP binding to these mutants were similar to that of the wild type SERCA-N (WT). In contrast to these nucleotide binding site mutants, a mutant found in patients with Darier's disease, E412G, showed small but significant chemical shift changes throughout the protein and rapid precipitation. However, the AMP-PNP dissociation constant (∼2.5 mM) was similar to that of WT (∼3.8 mM). These results indicate that the E412G mutant retains its catalytic activity but most likely reduces its stability. Our findings provide molecular insight into previous clinical, physiological, and biochemical observations.
Collapse
Affiliation(s)
- Wazo Myint
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA
| | | | | | | |
Collapse
|
8
|
Savignac M, Edir A, Simon M, Hovnanian A. Darier disease : a disease model of impaired calcium homeostasis in the skin. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2010; 1813:1111-7. [PMID: 21167218 DOI: 10.1016/j.bbamcr.2010.12.006] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2010] [Revised: 12/03/2010] [Accepted: 12/04/2010] [Indexed: 12/29/2022]
Abstract
The importance of extracellular calcium in epidermal differentiation and intra-epidermal cohesion has been recognized for many years. Darier disease (DD) was the first genetic skin disease caused by abnormal epidermal calcium homeostasis to be identified. DD is characterized by loss of cell-to-cell adhesion and abnormal keratinization. DD is caused by genetic defects in ATP2A2 encoding the sarco/endoplasmic reticulum Ca(2+)-ATPase isoform 2 (SERCA2). SERCA2 is a calcium pump of the endoplasmic reticulum (ER) transporting Ca(2+) from the cytosol to the lumen of ER. ATP2A2 mutations lead to loss of Ca(2+) transport by SERCA2 resulting in decreased ER Ca(2+) concentration in Darier keratinocytes. Here, we review the role of SERCA2 pumps and calcium in normal epidermis, and we discuss the consequences of ATP2A2 mutations on Ca(2+) signaling in DD. This article is part of a Special Issue entitled: 11th European Symposium on Calcium.
Collapse
|
9
|
Four novel ATP2A2 mutations in Slovenian patients with Darier disease. J Am Acad Dermatol 2010; 62:819-23. [PMID: 20223560 DOI: 10.1016/j.jaad.2009.07.031] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2009] [Revised: 07/23/2009] [Accepted: 07/23/2009] [Indexed: 11/21/2022]
Abstract
BACKGROUND Darier disease (DD) is an autosomal dominant genodermatosis caused by mutations in the ATP2A2 gene. It has been reported that depletion of Ca(2+) stores within the endoplasmic reticulum of keratinocytes is associated with impaired cell cycle regulation and terminal differentiation. Mechanical stress, heat, or UV irradiation might delay cell cycle exit and permit progression into the quiescent stage without repair. When there is associated DNA damage, this can lead to an accumulation of secondary somatic mutations and possible clonal proliferation of damaged keratinocyes within keratotic papules and plaques. OBJECTIVE We sought to present clinical, demographic, and genetic analysis of the cohort of Slovenian patients with DD, which represents 52% of DD patients in the country. METHODS We examined 28 Slovenians with DD and screened genomic DNA for ATP2A2 mutations and RNA for splice site mutations. RESULTS The estimated prevalence of the disease in Slovenia is 2.7/100.000. We identified 7 different ATP2A2 mutations, 4 of which are novel: A516P, R559G, 463-6del6, and 1762-6del18. We also found two previously described polymorphisms in intron XVIII (2741 + 54 G>A) and in exon 15 (2172 G>A; A724A), with allele frequencies of 64.15% and 11.32%, respectively. There was a history of perceptive deafness in two DD patients from two families. LIMITATIONS Analysis of SERCA2 expression, measurements of Ca(2+) uptake and their influence on desmosomal assembly in vitro would add additional value to the study. Although single-stranded conformational analysis (SSCP) is a common and accepted method for screening for the presence of mutations, it does miss 10% to 20% of mutations. CONCLUSIONS We identified 4 novel ATP2A2 mutations in Slovenian patients with DD. Deafness seems to be a new phenotypic characteristic of DD patients.
Collapse
|
10
|
Kaliyadan F, Manoj J, Venkitakrishnan S. Acrokeratosis verruciformis of hopf associated with dilated cardiomyopathy. Indian J Dermatol 2010; 54:296-7. [PMID: 20161869 PMCID: PMC2810704 DOI: 10.4103/0019-5154.55647] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Feroze Kaliyadan
- Department of Dermatology, Amrita Institute of Medical Sciences, Kochi, Kerala - 682 026, India. E-mail:
| | | | | |
Collapse
|
11
|
Vandecaetsbeek I, Raeymaekers L, Wuytack F, Vangheluwe P. Factors controlling the activity of the SERCA2a pump in the normal and failing heart. Biofactors 2009; 35:484-99. [PMID: 19904717 DOI: 10.1002/biof.63] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Heart failure is the leading cause of death in western countries and is often associated with impaired Ca(2+) handling in the cardiomyocyte. In fact, cardiomyocyte relaxation and contraction are tightly controlled by the activity of the cardiac sarco(endo)plasmic reticulum (ER/SR) Ca(2+) pump SERCA2a, pumping Ca(2+) from the cytosol into the lumen of the ER/SR. This review addresses three important facets that control the SERCA2 activity in the heart. First, we focus on the alternative splicing of the SERCA2 messenger, which is strictly regulated in the developing heart. This splicing controls the formation of three SERCA2 splice variants with different enzymatic properties. Second, we will discuss the role and regulation of SERCA2a activity in the normal and failing heart. The two well-studied Ca(2+) affinity modulators phospholamban and sarcolipin control the activity of SERCA2a within a narrow window. An aberrantly high or low Ca(2+) affinity is often observed in and may even trigger cardiac failure. Correcting SERCA2a activity might therefore constitute a therapeutic approach to improve the contractility of the failing heart. Finally, we address the controversies and unanswered questions of other putative regulators of the cardiac Ca(2+) pump, such as sarcalumenin, HRC, S100A1, Bcl-2, HAX-1, calreticulin, calnexin, ERp57, IRS-1, and -2.
Collapse
Affiliation(s)
- Ilse Vandecaetsbeek
- Department of Molecular Cell Biology, Laboratory of Ca(2+)-transport ATPases, K.U.Leuven, Leuven, Belgium
| | | | | | | |
Collapse
|
12
|
Abstract
Ca2+-ATPases (pumps) are key actors in the regulation of Ca2+ in eukaryotic cells and are thus essential to the correct functioning of the cell machinery. They have high affinity for Ca2+ and can efficiently regulate it down to very low concentration levels. Two of the pumps have been known for decades (the SERCA and PMCA pumps); one (the SPCA pump) has only become known recently. Each pump is the product of a multigene family, the number of isoforms being further increased by alternative splicing of the primary transcripts. The three pumps share the basic features of the catalytic mechanism but differ in a number of properties related to tissue distribution, regulation, and role in the cellular homeostasis of Ca2+. The molecular understanding of the function of the pumps has received great impetus from the solution of the three-dimensional structure of one of them, the SERCA pump. These spectacular advances in the structure and molecular mechanism of the pumps have been accompanied by the emergence and rapid expansion of the topic of pump malfunction, which has paralleled the rapid expansion of knowledge in the topic of Ca2+-signaling dysfunction. Most of the pump defects described so far are genetic: when they are very severe, they produce gross and global disturbances of Ca2+ homeostasis that are incompatible with cell life. However, pump defects may also be of a type that produce subtler, often tissue-specific disturbances that affect individual components of the Ca2+-controlling and/or processing machinery. They do not bring cells to immediate death but seriously compromise their normal functioning.
Collapse
|
13
|
Vangheluwe P, Sepúlveda MR, Missiaen L, Raeymaekers L, Wuytack F, Vanoevelen J. Intracellular Ca2+- and Mn2+-Transport ATPases. Chem Rev 2009; 109:4733-59. [DOI: 10.1021/cr900013m] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Peter Vangheluwe
- Laboratory of Ca2+-transport ATPases and Laboratory of Molecular and Cellular Signaling, Department of Molecular Cell Biology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - M. Rosario Sepúlveda
- Laboratory of Ca2+-transport ATPases and Laboratory of Molecular and Cellular Signaling, Department of Molecular Cell Biology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Ludwig Missiaen
- Laboratory of Ca2+-transport ATPases and Laboratory of Molecular and Cellular Signaling, Department of Molecular Cell Biology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Luc Raeymaekers
- Laboratory of Ca2+-transport ATPases and Laboratory of Molecular and Cellular Signaling, Department of Molecular Cell Biology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Frank Wuytack
- Laboratory of Ca2+-transport ATPases and Laboratory of Molecular and Cellular Signaling, Department of Molecular Cell Biology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Jo Vanoevelen
- Laboratory of Ca2+-transport ATPases and Laboratory of Molecular and Cellular Signaling, Department of Molecular Cell Biology, Katholieke Universiteit Leuven, Leuven, Belgium
| |
Collapse
|
14
|
New mutations of Darier disease in Tunisian patients. Arch Dermatol Res 2009; 301:615-9. [DOI: 10.1007/s00403-009-0963-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2009] [Revised: 05/14/2009] [Accepted: 05/15/2009] [Indexed: 10/20/2022]
|
15
|
Vangheluwe P, Raeymaekers L, Dode L, Wuytack F. Modulating sarco(endo)plasmic reticulum Ca2+ ATPase 2 (SERCA2) activity: cell biological implications. Cell Calcium 2008; 38:291-302. [PMID: 16105684 DOI: 10.1016/j.ceca.2005.06.033] [Citation(s) in RCA: 157] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2005] [Accepted: 06/28/2005] [Indexed: 11/20/2022]
Abstract
Of the three mammalian members belonging to the sarco(endo)plasmic reticulum Ca2+ ATPase (SERCA) family, SERCA2 is evolutionary the oldest and shows the most wide tissue-expression pattern. Two major SERCA2 splice variants are well-characterized: the muscle-specific isoform SERCA2a and the housekeeping isoform SERCA2b. Recently, several interacting proteins and post-translational modifications of SERCA2 were identified which may modulate the activity of the Ca2+ pump. This review aims to give an overview of the vast literature concerning the cell biological implications of the SERCA2 isoform diversity and the factors regulating SERCA2. Proteins reported to interact with SERCA2 from the cytosolic domain involve the anti-apoptotic Bcl-2, the insulin receptor substrates IRS1/2, the EF-hand Ca2+-binding protein S100A1 and acylphosphatase. We will focus on the very particular position of SERCA2 as an enzyme functioning in a thin, highly fluid, leaky and cholesterol-poor membrane. Possible differential interactions of SERCA2b and SERCA2a with calreticulin, calnexin and ERp57, which could occur within the lumen of the endoplasmic reticulum will be discussed. Reported post-translational modifications possibly affecting pump activity involve N-glycosylation, glutathionylation and Ca2+/calmodulin kinase II-dependent phosphorylation. Finally, the pronounced vulnerability to oxidative damage of SERCA2 appears to be pivotal in the etiology of various pathologies.
Collapse
Affiliation(s)
- Peter Vangheluwe
- Laboratory of Physiology, O.&N. Gasthuisberg, K.U. Leuven, Campus Gasthuisberg, Herestraat 49, B-3000 Leuven, Belgium
| | | | | | | |
Collapse
|
16
|
Role of sarco/endoplasmic reticulum calcium content and calcium ATPase activity in the control of cell growth and proliferation. Pflugers Arch 2008; 457:673-85. [PMID: 18188588 DOI: 10.1007/s00424-007-0428-7] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2007] [Accepted: 12/11/2007] [Indexed: 12/11/2022]
Abstract
Ca(2+), the main second messenger, is central to the regulation of cellular growth. There is increasing evidence that cellular growth and proliferation are supported by a continuous store-operated Ca(2+) influx. By controlling store refilling, the sarco/endoplasmic reticulum Ca(2+) ATPase (SERCA) also controls store-operated calcium entry and, thus, cell growth. In this review, we discuss data showing the involvement of SERCA in the regulation of proliferation and hypertrophy. First, we describe the Ca(2+)-related signaling pathways involved in cell growth. Then, we present evidence that SERCA controls proliferation of differentiated cells and hypertrophic growth of cardiomyocytes, and discuss the role of SERCA isoforms. Last, we consider the potential therapeutic applications of increasing SERCA activity for the treatment of cardiovascular diseases and of modulating SERCA and SR content for the treatment of cancer.
Collapse
|
17
|
Vangheluwe P, Schuermans M, Raeymaekers L, Wuytack F. Tight interplay between the Ca2+ affinity of the cardiac SERCA2 Ca2+ pump and the SERCA2 expression level. Cell Calcium 2007; 42:281-9. [PMID: 17306367 DOI: 10.1016/j.ceca.2007.01.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2006] [Revised: 11/27/2006] [Indexed: 10/23/2022]
Abstract
A reduced activity of the sarcoplasmic reticulum Ca2+ pump SERCA2a is a hallmark of cardiac dysfunction in heart failure. In SERCA2b/b mice, the normal SERCA2a isoform is replaced by SERCA2b, displaying a higher Ca2+ affinity. This elicited decreased cardiac SERCA2 expression and cardiac hypertrophy. Here, the interplay was studied between the increased Ca2+ affinity and a reduced expression of the pump and its role in the cardiac remodeling was investigated. First, SERCA2b/b mice were crossed with SERCA2b transgenes to boost cardiac SERCA2b expression. However, the enforced expression of SERCA2b was spontaneously countered by an increased inhibition by phospholamban (PLB), reducing the pump's Ca2+ affinity. Moreover, the higher SERCA2 content did not prevent hypertrophy. Second, we studied heterozygous SERCA2b/WT mice, which also express lower SERCA2 levels compared to wild-type. Hypertrophy was not observed. In heterozygotes, SERCA2b expression was specifically suppressed, explaining the reduced SERCA2 content. The SERCA2b/WT model strikingly differs from the homozygote models because SERCA2a (not SERCA2b) is the major isoform and because the inhibition of the pump by PLB is decreased instead of being increased. Thus, a tight correlation exists between the SERCA2 levels and Ca2+ affinity (controlled by PLB). This compensatory response may be important to prevent cardiac remodeling.
Collapse
Affiliation(s)
- Peter Vangheluwe
- Laboratory of Physiology, University of Leuven, Herestraat 49, Bus 802 B-3000 Leuven, Belgium
| | | | | | | |
Collapse
|
18
|
Abstract
Sarco(endo)plasmic reticulum (SER) Ca2+ ATPases represent a highly conserved family of Ca2+ pumps which actively transport Ca2+ from the cytosol to the SER against a large concentration gradient. In humans, 3 genes (ATP2A1-3) generate multiple isoforms (SERCAla,b, SERCA2a-c, SECA3a-f) by developmental or tissue-specific alternative splicing. These pumps differ by their regulatory and kinetic properties, allowing for optimized function in the tissue where they are expressed. They play a central role in calcium signalling through regenerating SER Ca2+ stores, maintaining appropriate Ca2+ levels in this organelle and shaping cytosolic and nuclear Ca2+ variations which govern cell response. Defects in ATP2A1 encoding SERCA1 cause recessive Brody myopathy, mutations in ATP2A2 coding for SERCA2 underlie a dominant skin disease, Darier disease and its clinical variants. SERCA2a expression is reduced in heart failure in human and in mice models. Gene-targeting studies in mouse confirmed the expected function of these isoforms in some cases, but also resulted in unexpected phenotypes: SERCA1 null mutants die from respiratory failure, SERCA2 heterozygous mutant mice develop skin cancer with age and SERCA3 null mice display no diabetes. These unique phenotypes have provided invaluable information on the role of these pumps in specific tissues and species, and have improved our understanding of Ca2+ regulated processes in muscles, the heart and the skin in human and in mice. Although the understanding of the pathogenesis of these diseases is still incomplete, these recent advances hold the promise of improved knowledge on the disease processes and the identification of new targets for therapeutic interventions.
Collapse
|
19
|
Vangheluwe P, Sipido KR, Raeymaekers L, Wuytack F. New perspectives on the role of SERCA2's Ca2+ affinity in cardiac function. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2006; 1763:1216-28. [PMID: 17005265 DOI: 10.1016/j.bbamcr.2006.08.025] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2006] [Accepted: 08/10/2006] [Indexed: 11/21/2022]
Abstract
Cardiomyocyte relaxation and contraction are tightly controlled by the activity of the cardiac sarco(endo)plasmic reticulum (SR) Ca2+ transport ATPase (SERCA2a). The SR Ca2+ -uptake activity not only determines the speed of Ca(2+) removal during relaxation, but also the SR Ca2+ content and therefore the amount of Ca2+ released for cardiomyocyte contraction. The Ca2+ affinity is the major determinant of the pump's activity in the physiological Ca2+ concentration range. In the heart, the affinity of the pump for Ca2+ needs to be controlled between narrow borders, since an imbalanced affinity may evoke hypertrophic cardiomyopathy. Several small proteins (phospholamban, sarcolipin) adjust the Ca2+ affinity of the pump to the physiological needs of the cardiomyocyte. It is generally accepted that a chronically reduced Ca2+ affinity of the pump contributes to depressed SR Ca2+ handling in heart failure. Moreover, a persistently lower Ca2+ affinity is sufficient to impair cardiomyocyte SR Ca2+ handling and contractility inducing dilated cardiomyopathy in mice and humans. Conversely, the expression of SERCA2a, a pump with a lower Ca2+ affinity than the housekeeping isoform SERCA2b, is crucial to maintain normal cardiac function and growth. Novel findings demonstrated that a chronically increased Ca2+ affinity also may trigger cardiac hypertrophy in mice and humans. In addition, recent studies suggest that some models of heart failure are marked by a higher affinity of the pump for Ca2+, and hence by improved cardiomyocyte relaxation and contraction. Depressed cardiomyocyte SR Ca2+ uptake activity may therefore not be a universal hallmark of heart failure.
Collapse
Affiliation(s)
- P Vangheluwe
- Laboratory of Physiology, University of Leuven, Herestraat 49, bus 802, B-3000 Leuven, Belgium.
| | | | | | | |
Collapse
|
20
|
Pani B, Cornatzer E, Cornatzer W, Shin DM, Pittelkow MR, Hovnanian A, Ambudkar IS, Singh BB. Up-regulation of transient receptor potential canonical 1 (TRPC1) following sarco(endo)plasmic reticulum Ca2+ ATPase 2 gene silencing promotes cell survival: a potential role for TRPC1 in Darier's disease. Mol Biol Cell 2006; 17:4446-58. [PMID: 16899508 PMCID: PMC1635355 DOI: 10.1091/mbc.e06-03-0251] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The mechanism(s) involved in regulation of store operated calcium entry in Darier's disease (DD) is not known. We investigated the distribution and function of transient receptor potential canonical (TRPC) in epidermal skin cells. DD patients demonstrated up-regulation of TRPC1, but not TRPC3, in the squamous layers. Ca2+ influx was significantly higher in keratinocytes obtained from DD patients and showed enhanced proliferation compared with normal keratinocytes. Similar up-regulation of TRPC1 was also detected in epidermal layers of SERCA2+/- mice. HaCaT cells expressed TRPC1 in the plasma membrane. Expression of sarco(endo)plasmic reticulum Ca2+ ATPase (SERCA)2 small interfering RNA (siRNA) in HaCaT cells increased TRPC1 levels and thapsigargin-stimulated Ca2+ influx, which was blocked by store-operated calcium entry inhibitors. Thapsigargin-stimulated intracellular Ca2+ release was decreased in DD cells. DD keratinocytes exhibited increased cell survival upon thapsigargin treatment. Alternatively, overexpression of TRPC1 or SERCA2-siRNA in HaCaT cells demonstrated resistance to thapsigargin-induced apoptosis. These effects were dependent on external Ca2+ and activation of nuclear factor-kappaB. Isotretinoin reduced Ca2+ entry in HaCaT cells and decreased survival of HaCaT and DD keratinocytes. These findings put forward a novel consequence of compromised SERCA2 function in DD wherein up-regulation of TRPC1 augments cell proliferation and restrict apoptosis. We suggest that the anti-apoptotic effect of TRPC1 could potentially contribute to abnormal keratosis in DD.
Collapse
Affiliation(s)
| | | | - William Cornatzer
- Internal Medicine, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202
| | - Dong-Min Shin
- Department of Oral Biology, Korea 21 Project for Medical Science, Yonsei University College of Dentistry, Seoul 120-752, Korea
| | - Mark R. Pittelkow
- Department of Dermatology, Mayo Clinic College of Medicine, Rochester, MN 55905
| | - Alain Hovnanian
- Department of Functional Genetics of Epithelial Diseases, Institut National de la Santé et de la Recherche Médicale U563, 31024 Toulouse Cedex 3, France; and
| | - Indu S. Ambudkar
- Secretory Physiology Section, Gene Therapy and Therapeutics Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892
| | - Brij B. Singh
- Departments of *Biochemistry and Molecular Biology and
| |
Collapse
|
21
|
Mayosi BM, Kardos A, Davies CH, Gumedze F, Hovnanian A, Burge S, Watkins H. Heterozygous disruption of SERCA2a is not associated with impairment of cardiac performance in humans: implications for SERCA2a as a therapeutic target in heart failure. Heart 2005; 92:105-9. [PMID: 15845614 PMCID: PMC1861003 DOI: 10.1136/hrt.2004.051037] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
OBJECTIVE To verify whether a deficiency in the cardiac sarcoplasmic reticulum pump SERCA2a causes cardiac dysfunction in humans. DESIGN Cardiac performance was measured in a serendipitous human model of primary SERCA2a deficiency, Darier's disease, an autosomal dominant skin disorder caused by mutations inactivating one copy of the ATP2A2 gene, which encodes SERCA2a. METHODS Systolic and diastolic function and contractility were assessed by echocardiography at rest and during exercise in patients with Darier's disease with known mutations. Fourteen patients with Darier's disease were compared with 14 normal controls and six patients with dilated cardiomyopathy with stable heart failure. RESULTS Resting systolic and diastolic function was normal in patients with Darier's disease and in controls. The increase in systolic function during exercise was not different between patients with Darier's disease and normal controls; neither was there a difference in contractility. As expected, patients with dilated cardiomyopathy had impaired diastolic and systolic function with depressed contractility at rest and during exercise. CONCLUSION Contrary to expectations, heterozygous disruption of SERCA2a is not associated with the impairment of cardiac performance in humans. Attempts to increase SERCA2a levels in heart failure, although showing promise in rodent studies, may not be addressing a critical causal pathway in humans.
Collapse
Affiliation(s)
- B M Mayosi
- Department of Cardiovascular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | | | | | | | | | | | | |
Collapse
|
22
|
Foggia L, Hovnanian A. Calcium pump disorders of the skin. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2005; 131C:20-31. [PMID: 15468148 DOI: 10.1002/ajmg.c.30031] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The causes of Darier disease (DD) and Hailey-Hailey disease (HHD) have eluded clinicians and scientists for more than 60 years. DD is characterized by loss of adhesion between suprabasal epidermal cells associated with abnormal keratinization, while loss of epidermal cell-to-cell adhesion is predominant in HHD. The genes for both conditions have recently been identified using candidate positional cloning approaches. The gene for DD (ATP2A2) encodes a calcium transport ATPase of the sarco (endo)plasmic reticulum (SERCA2) Verboomen et al. [1992: Biochem J 286(Pt 2):591-595], while the gene for HHD (ATP2C1) codes for a secretory pathway for calcium and manganese transport ATPase of the Golgi apparatus (SPCA1) Hu et al. [2000: Nat Genet 24:61-65]. These results have provided completely new insights into the role of calcium and/or manganese in maintaining skin integrity. Although the precise disease mechanisms remain to be understood, these discoveries open a new field in research for the understanding and the treatment of these distressing disorders.
Collapse
Affiliation(s)
- Lucie Foggia
- Department of Medical Genetics, Pavillon Lefebvre, Purpan Hospital, Place du Dr Baylac, Toulouse cedex 03, France
| | | |
Collapse
|
23
|
Affiliation(s)
- Virendra N Sehgal
- Dermato-Venereology (Skin-VD) Centre, Sehgal Nursing Home, Delhi 110 033, India.
| | | |
Collapse
|
24
|
Prasad V, Okunade GW, Miller ML, Shull GE. Phenotypes of SERCA and PMCA knockout mice. Biochem Biophys Res Commun 2004; 322:1192-203. [PMID: 15336967 DOI: 10.1016/j.bbrc.2004.07.156] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2004] [Indexed: 10/26/2022]
Abstract
P-type Ca2+-ATPases of the sarco(endo)plasmic reticulum (SERCAs) and plasma membrane (PMCAs) are responsible for maintaining the Ca2+ gradients across cellular membranes that are required for regulation of Ca2+-mediated signaling and other biological processes. Gene-targeting studies of SERCA isoforms 1, 2, and 3 and PMCA isoforms 1, 2, and 4 have confirmed some of the general functions proposed for these pumps, such as a major role in excitation-contraction coupling for SERCA1 and SERCA2 and housekeeping functions for PMCA1 and SERCA2, but have also revealed some unexpected phenotypes. These include squamous cell cancer and plasticity in the regulation of Ca2+-mediated exocytosis in SERCA2 heterozygous mutant mice, modulation of Ca2+ signaling in SERCA3-deficient mice, deafness and balance disorders in PMCA2 null mice, and male infertility in PMCA4 null mice. These unique phenotypes provide new information about the cellular functions of these pumps, the requirement of their activities for higher order physiological processes, and the pathophysiological consequences of pump dysfunction.
Collapse
Affiliation(s)
- Vikram Prasad
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0524, USA
| | | | | | | |
Collapse
|
25
|
Dhitavat J, Fairclough RJ, Hovnanian A, Burge SM. Calcium pumps and keratinocytes: lessons from Darier's disease and Hailey-Hailey disease. Br J Dermatol 2004; 150:821-8. [PMID: 15149492 DOI: 10.1111/j.1365-2133.2004.05904.x] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Darier's disease and Hailey-Hailey disease are autosomal dominantly inherited skin disorders in which desmosomal adhesion between keratinocytes is abnormal. ATP2A2 and ATP2C1 have been identified as the causative genes for Darier's disease and Hailey-Hailey disease, respectively. ATP2A2 encodes the sarco(endo)plasmic reticulum Ca(2+)-ATPase isoform 2 (SERCA2) pump, while ATP2C1 encodes a secretory pathway Ca(2+)/Mn(2+)-ATPase (SPCA1) found in the Golgi apparatus. We review recent work into the function of these pumps in human keratinocytes and discuss how mutations in these genes might cause these diseases by altering the formation or stability of desmosomes.
Collapse
Affiliation(s)
- J Dhitavat
- INSERM U563, Purpan Hospital, Place du Dr Baylac, 31059 Toulouse cedex 03, France
| | | | | | | |
Collapse
|
26
|
Ahn W, Lee MG, Kim KH, Muallem S. Multiple effects of SERCA2b mutations associated with Darier's disease. J Biol Chem 2003; 278:20795-801. [PMID: 12670936 DOI: 10.1074/jbc.m301638200] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Darier's disease (DD) is an autosomal dominant disorder caused by mutations in the ATP2A2 gene, encoding sarco/endoplasmic reticulum Ca2+-ATPase pump type 2b isoform (SERCA2b). Although >100 mutations in the ATP2A2 gene were identified, no apparent relation between genotype/phenotype emerged. In this work, we analyzed 12 DD-associated mutations from all of the regions of SERCA2b to study the underlying pathologic mechanism of DD and to elucidate the role of dimerization in SERCA2b activity. Most mutations markedly affected protein expression, partially because of enhanced proteasome-mediated degradation. All of the mutants showed lower activity than the wild type pump. Notably, several mutants that cause relatively severe phenotype of DD inhibited the activity of the endogenous and the co-expressed wild type SERCA2b. Importantly, these effects were not attributed to changes in passive Ca2+ leak, inositol 1,4,5-trisphosphate receptor activity, or sensitivity to inositol 1,4,5-trisphosphate. Rather, co-immunoprecipitation experiments showed that SERCA2b monomers interact to influence the activity of each other. These findings reveal multiple molecular mechanisms to account for the plethora of pathologic states observed in DD and provide the first evidence for the importance of SERCA2b dimerization in pump function in vivo.
Collapse
Affiliation(s)
- Wooin Ahn
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.
| | | | | | | |
Collapse
|
27
|
Shull GE, Okunade G, Liu LH, Kozel P, Periasamy M, Lorenz JN, Prasad V. Physiological functions of plasma membrane and intracellular Ca2+ pumps revealed by analysis of null mutants. Ann N Y Acad Sci 2003; 986:453-60. [PMID: 12763865 DOI: 10.1111/j.1749-6632.2003.tb07229.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
It is known that plasma membrane Ca(2+)-transporting ATPases (PMCAs) extrude Ca(2+) from the cell and that sarco(endo)plasmic reticulum Ca(2+)-ATPases (SERCAs) and secretory pathway Ca(2+)-ATPases (SPCAs) sequester Ca(2+) in intracellular organelles; however, the specific physiological functions of individual isoforms are less well understood. This information is beginning to emerge from studies of mice and humans carrying null mutations in the corresponding genes. Mice with targeted or spontaneous mutations in plasma membrane Ca(2+)-ATPase isoform 2 (PMCA2) are profoundly deaf and have a balance defect due to the loss of PMCA2 in sensory hair cells of the inner ear. In humans, mutations in SERCA1 (ATP2A1) cause Brody disease, an impairment of skeletal muscle relaxation; loss of one copy of the SERCA2 (ATP2A2) gene causes Darier disease, a skin disorder; and loss of one copy of the SPCA1 (ATP2C1) gene causes Hailey-Hailey disease, another skin disorder. In the mouse, SERCA2 null mutants do not survive to birth, and heterozygous SERCA2 mutants have impaired cardiac performance and a high incidence of squamous cell cancers. SERCA3 null mutants survive and appear healthy, but endothelium-dependent relaxation of vascular smooth muscle is impaired and Ca(2+) signaling is altered in pancreatic beta cells. The diversity of phenotypes indicates that the various Ca(2+)-transporting ATPase isoforms serve very different physiological functions.
Collapse
Affiliation(s)
- Gary E Shull
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati College of Medicine, Ohio 45267, USA.
| | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
Intracellular Ca(2+)-transport ATPases exert a pivotal role in the endoplasmic reticulum and in the compartments of the cellular secretory pathway by maintaining a sufficiently high lumenal Ca(2+) (and Mn(2+)) concentration in these compartments required for an impressive number of vastly different cell functions. At the same time this lumenal Ca(2+) represents a store of releasable activator Ca(2+) controlling an equally impressive number of cytosolic functions. This review mainly focuses on the different Ca(2+)-transport ATPases found in the intracellular compartments of mainly animal non-muscle cells: the sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA) pumps. Although it is not our intention to treat the ATPases of the specialized sarcoplasmic reticulum in depth, we can hardly ignore the SERCA1 pump of fast-twitch skeletal muscle since its structure and function is by far the best understood and it can serve as a guide to understand the other members of the family. In a second part of this review we describe the relatively novel family of secretory pathway Ca(2+)/Mn(2+) ATPases (SPCA), which in eukaryotic cells are primarily found in the Golgi compartment.
Collapse
Affiliation(s)
- F Wuytack
- Laboratorium voor Fysiologie, K.U.Leuven, Campus Gasthuisberg, Leuven, Belgium.
| | | | | |
Collapse
|