1
|
Xu L, Ma J, Yu Q, Zhu K, Wu X, Zhou C, Lin X. Evidence supported by Mendelian randomization: impact on inflammatory factors in knee osteoarthritis. Front Med (Lausanne) 2024; 11:1382836. [PMID: 38863887 PMCID: PMC11165061 DOI: 10.3389/fmed.2024.1382836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 05/01/2024] [Indexed: 06/13/2024] Open
Abstract
Background Prior investigations have indicated associations between Knee Osteoarthritis (KOA) and certain inflammatory cytokines, such as the interleukin series and tumor necrosis factor-alpha (TNFα). To further elaborate on these findings, our investigation utilizes Mendelian randomization to explore the causal relationships between KOA and 91 inflammatory cytokines. Methods This two-sample Mendelian randomization utilized genetic variations associated with KOA from a large, publicly accessible Genome-Wide Association Study (GWAS), comprising 2,227 cases and 454,121 controls of European descent. The genetic data for inflammatory cytokines were obtained from a GWAS summary involving 14,824 individuals of European ancestry. Causal relationships between exposures and outcomes were primarily investigated using the inverse variance weighted method. To enhance the robustness of the research results, other methods were combined to assist, such as weighted median, weighted model and so on. Multiple sensitivity analysis, including MR-Egger, MR-PRESSO and leave one out, was also carried out. These different analytical methods are used to enhance the validity and reliability of the final results. Results The results of Mendelian randomization indicated that Adenosine Deaminase (ADA), Fibroblast Growth Factor 5(FGF5), and Hepatocyte growth factor (HFG) proteins are protective factors for KOA (IVWADA: OR = 0.862, 95% CI: 0.771-0.963, p = 0.008; IVWFGF5: OR = 0.850, 95% CI: 0.764-0.946, p = 0.003; IVWHFG: OR = 0.798, 95% CI: 0.642-0.991, p = 0.042), while Tumor necrosis factor (TNFα), Colony-stimulating factor 1(CSF1), and Tumor necrosis factor ligand superfamily member 12(TWEAK) proteins are risk factors for KOA. (IVWTNFα: OR = 1.319, 95% CI: 1.067-1.631, p = 0.011; IVWCSF1: OR = 1.389, 95% CI: 1.125-1.714, p = 0.002; IVWTWEAK: OR = 1.206, 95% CI: 1.016-1.431, p = 0.032). Conclusion The six proteins identified in this study demonstrate a close association with the onset of KOA, offering valuable insights for future therapeutic interventions. These findings contribute to the growing understanding of KOA at the microscopic protein level, paving the way for potential targeted therapeutic approaches.
Collapse
Affiliation(s)
- Lilei Xu
- Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jiaqi Ma
- Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qing Yu
- Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Kean Zhu
- Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xuewen Wu
- Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Chuanlong Zhou
- Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
- Department of Acupuncture, Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Xianming Lin
- Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
- Department of Acupuncture, Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
2
|
Pang J, Koh TJ. Proliferation of monocytes and macrophages in homeostasis, infection, injury, and disease. J Leukoc Biol 2023; 114:532-546. [PMID: 37555460 PMCID: PMC10673715 DOI: 10.1093/jleuko/qiad093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/30/2023] [Accepted: 07/31/2023] [Indexed: 08/10/2023] Open
Abstract
Monocytes (Mo) and macrophages (Mφ) play important roles in the function of tissues, organs, and systems of all animals during homeostasis, infection, injury, and disease. For decades, conventional wisdom has dictated that Mo and Mφ are end-stage cells that do not proliferate and that Mφ accumulation in tissues is the result of infiltration of Mo from the blood and subsequent differentiation to Mφ. However, reports from the early 1900s to the present describe evidence of Mo and Mφ proliferation in different tissues and contexts. The purpose of this review is to summarize both historical and current evidence for the contribution of Mφ proliferation to their accumulation in different tissues during homeostasis, infection, injury, and disease. Mφ proliferate in different organs and tissues, including skin, peritoneum, lung, heart, aorta, kidney, liver, pancreas, brain, spinal cord, eye, adipose tissue, and uterus, and in different species including mouse, rat, rabbit, and human. Mφ can proliferate at different stages of differentiation with infiltrating Mo-like cells proliferating in certain inflammatory contexts (e.g. skin wounding, kidney injury, bladder and liver infection) and mature resident Mφ proliferating in other inflammatory contexts (e.g. nematode infection, acetaminophen liver injury) and during homeostasis. The pathways involved in stimulating Mφ proliferation also may be context dependent, with different cytokines and transcription factors implicated in different studies. Although Mφ are known to proliferate in health, injury, and disease, much remains to be learned about the regulation of Mφ proliferation in different contexts and its impact on the homeostasis, injury, and repair of different organs and tissues.
Collapse
Affiliation(s)
- Jingbo Pang
- Center for Wound Healing and Tissue Regeneration, Department of Kinesiology and Nutrition, University of Illinois at Chicago, 1919 West Taylor Street, Chicago, IL 60612-7246, United States
| | - Timothy J Koh
- Center for Wound Healing and Tissue Regeneration, Department of Kinesiology and Nutrition, University of Illinois at Chicago, 1919 West Taylor Street, Chicago, IL 60612-7246, United States
| |
Collapse
|
3
|
Shon HJ, Kim YM, Kim KS, Choi JO, Cho SH, An S, Park SH, Cho YJ, Park JH, Seo SU, Cho JY, Kim WU, Kim D. Protective role of colitis in inflammatory arthritis via propionate-producing Bacteroides in the gut. Front Immunol 2023; 14:1064900. [PMID: 36793721 PMCID: PMC9923108 DOI: 10.3389/fimmu.2023.1064900] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 01/16/2023] [Indexed: 01/31/2023] Open
Abstract
Objectives To investigate whether and how inflammatory disease in the intestine influences the development of arthritis, considering that organ-to-organ communication is associated with many physiological and pathological events. Methods First, mice were given drinking water containing dextran sodium sulfate (DSS) and then subjected to inflammatory arthritis. We compared the phenotypic symptoms between the cohoused and separately-housed mice. Next, donor mice were divided into DSS-treated and untreated groups and then cohoused with recipient mice. Arthritis was then induced in the recipients. The fecal microbiome was analyzed by 16S rRNA amplicon sequencing. We obtained type strains of the candidate bacteria and generated propionate-deficient mutant bacteria. Short-chain fatty acids were measured in the bacterial culture supernatant, serum, feces, and cecum contents using gas chromatography-mass spectrometry. Mice fed with candidate and mutant bacteria were subjected to inflammatory arthritis. Results Contrary to expectations, the mice treated with DSS exhibited fewer symptoms of inflammatory arthritis. Intriguingly, the gut microbiota contributes, at least in part, to the improvement of colitis-mediated arthritis. Among the altered microorganisms, Bacteroides vulgatus and its higher taxonomic ranks were enriched in the DSS-treated mice. B. vulgatus, B. caccae, and B. thetaiotaomicron exerted anti-arthritic effects. Propionate production deficiency further prevented the protective effect of B. thetaiotaomicron on arthritis. Conclusions We suggest a novel relationship between the gut and joints and an important role of the gut microbiota as communicators. Moreover, the propionate-producing Bacteroides species examined in this study may be a potential candidate for developing effective treatments for inflammatory arthritis.
Collapse
Affiliation(s)
- Hoh-Jeong Shon
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea.,Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Yu-Mi Kim
- Center for Integrative Rheumatoid Transcriptomics and Dynamics, The Catholic University of Korea, Seoul, Republic of Korea.,Department of Biomedicine & Health Sciences, The Catholic University of Korea, Seoul, Republic of Korea
| | - Kyeong Seog Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea.,Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jin-Ouk Choi
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea.,Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Sang-Hyun Cho
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Sujin An
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea.,Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Se-Hyeon Park
- Center for Integrative Rheumatoid Transcriptomics and Dynamics, The Catholic University of Korea, Seoul, Republic of Korea.,Department of Biomedicine & Health Sciences, The Catholic University of Korea, Seoul, Republic of Korea
| | - Yong-Joon Cho
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea.,Institute for Basic Science, Seoul, Republic of Korea.,Department of Molecular Bioscience, College of Biomedical Science, Kangwon National University, Chuncheon, Republic of Korea
| | - Joo-Hong Park
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Sang-Uk Seo
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Joo-Youn Cho
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea.,Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Wan-Uk Kim
- Center for Integrative Rheumatoid Transcriptomics and Dynamics, The Catholic University of Korea, Seoul, Republic of Korea.,Department of Biomedicine & Health Sciences, The Catholic University of Korea, Seoul, Republic of Korea.,Division of Rheumatology, Department of Internal Medicine, the Catholic University of Korea, Seoul, Republic of Korea
| | - Donghyun Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea.,Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, Republic of Korea.,Institute of Endemic Diseases, Seoul National University Medical Research Center, Seoul, Republic of Korea
| |
Collapse
|
4
|
Raggi F, Bartolucci M, Cangelosi D, Rossi C, Pelassa S, Trincianti C, Petretto A, Filocamo G, Civino A, Eva A, Ravelli A, Consolaro A, Bosco MC. Proteomic profiling of extracellular vesicles in synovial fluid and plasma from Oligoarticular Juvenile Idiopathic Arthritis patients reveals novel immunopathogenic biomarkers. Front Immunol 2023; 14:1134747. [PMID: 37205098 PMCID: PMC10186353 DOI: 10.3389/fimmu.2023.1134747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 03/28/2023] [Indexed: 05/21/2023] Open
Abstract
Introduction New early low-invasive biomarkers are demanded for the management of Oligoarticular Juvenile Idiopathic Arthritis (OJIA), the most common chronic pediatric rheumatic disease in Western countries and a leading cause of disability. A deeper understanding of the molecular basis of OJIA pathophysiology is essential for identifying new biomarkers for earlier disease diagnosis and patient stratification and to guide targeted therapeutic intervention. Proteomic profiling of extracellular vesicles (EVs) released in biological fluids has recently emerged as a minimally invasive approach to elucidate adult arthritis pathogenic mechanisms and identify new biomarkers. However, EV-prot expression and potential as biomarkers in OJIA have not been explored. This study represents the first detailed longitudinal characterization of the EV-proteome in OJIA patients. Methods Fourty-five OJIA patients were recruited at disease onset and followed up for 24 months, and protein expression profiling was carried out by liquid chromatography-tandem mass spectrometry in EVs isolated from plasma (PL) and synovial fluid (SF) samples. Results We first compared the EV-proteome of SF vs paired PL and identified a panel of EV-prots whose expression was significantly deregulated in SF. Interaction network and GO enrichment analyses performed on deregulated EV-prots through STRING database and ShinyGO webserver revealed enrichment in processes related to cartilage/bone metabolism and inflammation, suggesting their role in OJIA pathogenesis and potential value as early molecular indicators of OJIA development. Comparative analysis of the EV-proteome in PL and SF from OJIA patients vs PL from age/gender-matched control children was then carried out. We detected altered expression of a panel of EV-prots able to differentiate new-onset OJIA patients from control children, potentially representing a disease-associated signature measurable at both the systemic and local levels with diagnostic potential. Deregulated EV-prots were significantly associated with biological processes related to innate immunity, antigen processing and presentation, and cytoskeleton organization. Finally, we ran WGCNA on the SF- and PL-derived EV-prot datasets and identified a few EV-prot modules associated with different clinical parameters stratifying OJIA patients in distinct subgroups. Discussion These data provide novel mechanistic insights into OJIA pathophysiology and an important contribution in the search of new candidate molecular biomarkers for the disease.
Collapse
Affiliation(s)
- Federica Raggi
- Laboratory of Molecular Biology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Giannina Gaslini, Genova, Italy
- Unit of Autoinflammatory Diseases and Immunodeficiences, Pediatric Rheumatology Clinic, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Giannina Gaslini, Genova, Italy
| | - Martina Bartolucci
- Core Facilities, Clinical Proteomics and Metabolomics, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Giannina Gaslini, Genova, Italy
| | - Davide Cangelosi
- Laboratory of Molecular Biology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Giannina Gaslini, Genova, Italy
- Clinical Bioinformatics Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Giannina Gaslini, Genova, Italy
| | - Chiara Rossi
- Laboratory of Molecular Biology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Giannina Gaslini, Genova, Italy
- Unit of Autoinflammatory Diseases and Immunodeficiences, Pediatric Rheumatology Clinic, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Giannina Gaslini, Genova, Italy
| | - Simone Pelassa
- Laboratory of Molecular Biology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Giannina Gaslini, Genova, Italy
- Unit of Autoinflammatory Diseases and Immunodeficiences, Pediatric Rheumatology Clinic, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Giannina Gaslini, Genova, Italy
| | - Chiara Trincianti
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics and Maternal-Infantile Sciences (DiNOGMI), University of Genova, Genova, Italy
| | - Andrea Petretto
- Core Facilities, Clinical Proteomics and Metabolomics, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Giannina Gaslini, Genova, Italy
| | - Giovanni Filocamo
- Division of Pediatric Immunology and Rheumatology, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Cà Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Adele Civino
- Pediatric Rheumatology and Immunology, Ospedale “Vito Fazzi”, Lecce, Italy
| | - Alessandra Eva
- Laboratory of Molecular Biology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Giannina Gaslini, Genova, Italy
| | - Angelo Ravelli
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics and Maternal-Infantile Sciences (DiNOGMI), University of Genova, Genova, Italy
- Scientific Direction, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Giannina Gaslini, Genova, Italy
| | - Alessandro Consolaro
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics and Maternal-Infantile Sciences (DiNOGMI), University of Genova, Genova, Italy
- Pediatric Rheumatology Clinic, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Giannina Gaslini, Genova, Italy
| | - Maria Carla Bosco
- Laboratory of Molecular Biology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Giannina Gaslini, Genova, Italy
- Unit of Autoinflammatory Diseases and Immunodeficiences, Pediatric Rheumatology Clinic, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Giannina Gaslini, Genova, Italy
- *Correspondence: Maria Carla Bosco,
| |
Collapse
|
5
|
Xiang C, Li H, Tang W. Targeting CSF-1R represents an effective strategy in modulating inflammatory diseases. Pharmacol Res 2023; 187:106566. [PMID: 36423789 DOI: 10.1016/j.phrs.2022.106566] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/12/2022] [Accepted: 11/18/2022] [Indexed: 11/23/2022]
Abstract
Colony-stimulating factor-1 receptor (CSF-1R), also known as FMS kinase, is a type I single transmembrane protein mainly expressed in myeloid cells, such as monocytes, macrophages, glial cells, and osteoclasts. The endogenous ligands, colony-stimulating factor-1 (CSF-1) and Interleukin-34 (IL-34), activate CSF-1R and downstream signaling pathways including PI3K-AKT, JAK-STATs, and MAPKs, and modulate the proliferation, differentiation, migration, and activation of target immune cells. Over the past decades, the promising therapeutic potential of CSF-1R signaling inhibition has been widely studied for decreasing immune suppression and escape in tumors, owing to depletion and reprogramming of tumor-associated macrophages. In addition, the excessive activation of CSF-1R in inflammatory diseases is consecutively uncovered in recent years, which may result in inflammation in bone, kidney, lung, liver and central nervous system. Agents against CSF-1R signaling have been increasingly investigated in preclinical or clinical studies for inflammatory diseases treatment. However, the pathological mechanism of CSF-1R in inflammation is indistinct and whether CSF-1R signaling can be identified as biomarkers remains controversial. With the background information aforementioned, this review focus on the dialectical roles of CSF-1R and its ligands in regulating innate immune cells and highlights various therapeutic implications of blocking CSF-1R signaling in inflammatory diseases.
Collapse
Affiliation(s)
- Caigui Xiang
- Laboratory of Anti-inflammation and Immunopharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; School of Pharmacy, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Heng Li
- Laboratory of Anti-inflammation and Immunopharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
| | - Wei Tang
- Laboratory of Anti-inflammation and Immunopharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; School of Pharmacy, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
6
|
Abstract
Granulocyte macrophage-colony stimulating factor (GM-CSF) was originally identified as a growth factor for its ability to promote the proliferation and differentiation in vitro of bone marrow progenitor cells into granulocytes and macrophages. Many preclinical studies, using GM-CSF deletion or depletion approaches, have demonstrated that GM-CSF has a wide range of biological functions, including the mediation of inflammation and pain, indicating that it can be a potential target in many inflammatory and autoimmune conditions. This review provides a brief overview of GM-CSF biology and signaling, and summarizes the findings from preclinical models of a range of inflammatory and autoimmune disorders and the latest clinical trials targeting GM-CSF or its receptor in these disorders.
Collapse
Affiliation(s)
- Adrian A Achuthan
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, Victoria 3050, Australia.
| | - Kevin M C Lee
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, Victoria 3050, Australia
| | - John A Hamilton
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, Victoria 3050, Australia; Australian Institute for Musculoskeletal Science, St Albans, Victoria 3021, Australia
| |
Collapse
|
7
|
Li Z, Bratlie KM. Effect of RGD functionalization and stiffness of gellan gum hydrogels on macrophage polarization and function. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 128:112303. [PMID: 34474854 DOI: 10.1016/j.msec.2021.112303] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/22/2021] [Accepted: 07/05/2021] [Indexed: 12/15/2022]
Abstract
Macrophages, the primary effector cells in the immune response, respond rapidly to the physical or chemical properties of biomaterial implants. Balanced macrophage polarization, phagocytosis, and migration would be beneficial for implant success and tissue regeneration. Here, we investigated macrophage phenotypic changes, phagocytosis, and migration in response to RGD functionalized surfaces and changes in stiffness of gellan gum hydrogels. We also inhibited the RhoA pathway. The compressive moduli ranged from ~5 to 30 kPa. Cell population and cell spreading area of classically activated macrophages (M(LPS)) and alternatively activated macrophages (M(IL-4)) are promoted on RGD modified hydrogel. ROCK inhibitor induced the opposite effect on the cell spreading of both M(LPS) and M(IL-4) macrophages on RGD modified hydrogels. Macrophage polarization was found to be stiffness-driven and regulated by the RGD motif and blocked by the RhoA pathway. RGD functionalized hydrogel shifted M(IL-4) cells toward a more pro-inflammatory phenotype, while ROCK inhibition shifted M(LPS) cells to a more anti-inflammatory phenotype. Both M(LPS) and M(IL-4) cells on untreated hydrogels shifted to a more pro-inflammatory phenotype in the presence of aminated-PS particles. The RGD motif had a significant impact on cellular uptake, whereas cellular uptake was stiffness driven on untreated hydrogels. Cell migration of M(LPS) and M(IL-4) cells had ROCK-dependent migration. The stiffness of gellan gum hydrogels had no influence on macrophage migration rate. Collectively, our results showed that gellan gum hydrogels can be used to direct immune response, macrophage infiltration, and phagocytosis.
Collapse
Affiliation(s)
- Zhuqing Li
- Department of Materials Science & Engineering, Iowa State University, Ames, IA 50011, USA
| | - Kaitlin M Bratlie
- Department of Materials Science & Engineering, Iowa State University, Ames, IA 50011, USA; Department of Chemical & Biological Engineering, Iowa State University, Ames, IA 50011, USA.
| |
Collapse
|
8
|
Oliveira TC, Gomes MS, Gomes AC. The Crossroads between Infection and Bone Loss. Microorganisms 2020; 8:microorganisms8111765. [PMID: 33182721 PMCID: PMC7698271 DOI: 10.3390/microorganisms8111765] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/05/2020] [Accepted: 11/09/2020] [Indexed: 01/18/2023] Open
Abstract
Bone homeostasis, based on a tight balance between bone formation and bone degradation, is affected by infection. On one hand, some invading pathogens are capable of directly colonizing the bone, leading to its destruction. On the other hand, immune mediators produced in response to infection may dysregulate the deposition of mineral matrix by osteoblasts and/or the resorption of bone by osteoclasts. Therefore, bone loss pathologies may develop in response to infection, and their detection and treatment are challenging. Possible biomarkers of impaired bone metabolism during chronic infection need to be identified to improve the diagnosis and management of infection-associated osteopenia. Further understanding of the impact of infections on bone metabolism is imperative for the early detection, prevention, and/or reversion of bone loss. Here, we review the mechanisms responsible for bone loss as a direct and/or indirect consequence of infection.
Collapse
Affiliation(s)
- Tiago Carvalho Oliveira
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (T.C.O.); (M.S.G.)
- Faculdade de Ciências da Universidade do Porto, 4169-007 Porto, Portugal
- Instituto de Ciências Biomédicas de Abel Salazar da Universidade do Porto, 4050-313 Porto, Portugal
| | - Maria Salomé Gomes
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (T.C.O.); (M.S.G.)
- Instituto de Ciências Biomédicas de Abel Salazar da Universidade do Porto, 4050-313 Porto, Portugal
| | - Ana Cordeiro Gomes
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (T.C.O.); (M.S.G.)
- Correspondence:
| |
Collapse
|
9
|
Lelios I, Cansever D, Utz SG, Mildenberger W, Stifter SA, Greter M. Emerging roles of IL-34 in health and disease. J Exp Med 2020; 217:133604. [PMID: 31940023 PMCID: PMC7062519 DOI: 10.1084/jem.20190290] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 09/11/2019] [Accepted: 11/26/2019] [Indexed: 12/14/2022] Open
Abstract
Macrophages are part of the innate immune system and are present in every organ of the body. They fulfill critical roles in tissue homeostasis and development and are involved in various pathologies. An essential factor for the development, homeostasis, and function of mononuclear phagocytes is the colony stimulating factor-1 receptor (CSF-1R), which has two known ligands: CSF-1 and interleukin-34 (IL-34). While CSF-1 has been extensively studied, the biology and functions of IL-34 are only now beginning to be uncovered. In this review, we discuss recent advances of IL-34 biology in health and disease with a specific focus on mononuclear phagocytes.
Collapse
Affiliation(s)
- Iva Lelios
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Dilay Cansever
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Sebastian G Utz
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Wiebke Mildenberger
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Sebastian A Stifter
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Melanie Greter
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
10
|
The M-CSF receptor in osteoclasts and beyond. Exp Mol Med 2020; 52:1239-1254. [PMID: 32801364 PMCID: PMC8080670 DOI: 10.1038/s12276-020-0484-z] [Citation(s) in RCA: 123] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/15/2020] [Accepted: 06/16/2020] [Indexed: 12/18/2022] Open
Abstract
Colony-stimulating factor 1 receptor (CSF1R, also known as c-FMS) is a receptor tyrosine kinase. Macrophage colony-stimulating factor (M-CSF) and IL-34 are ligands of CSF1R. CSF1R-mediated signaling is crucial for the survival, function, proliferation, and differentiation of myeloid lineage cells, including osteoclasts, monocytes/macrophages, microglia, Langerhans cells in the skin, and Paneth cells in the intestine. CSF1R also plays an important role in oocytes and trophoblastic cells in the female reproductive tract and in the maintenance and maturation of neural progenitor cells. Given that CSF1R is expressed in a wide range of myeloid cells, altered CSF1R signaling is implicated in inflammatory, neoplastic, and neurodegenerative diseases. Inhibiting CSF1R signaling through an inhibitory anti-CSF1R antibody or small molecule inhibitors that target the kinase activity of CSF1R has thus been a promising therapeutic strategy for those diseases. In this review, we cover the recent progress in our understanding of the various roles of CSF1R in osteoclasts and other myeloid cells, highlighting the therapeutic applications of CSF1R inhibitors in disease conditions. Drugs directed at a key signaling receptor involved in breaking down bone tissue could help treat diseases marked by pathological bone loss and destruction. In a review article, Kyung-Hyun Park-Min and colleagues from the Hospital for Special Surgery in New York, USA, discuss the essential roles played by the colony-stimulating factor 1 receptor (CSF1R) protein in the survival, function, proliferation and differentiation of myeloid lineage stem cells in the bone marrow, including bone-resorbing osteoclasts. They explore the links between the CSF1R-mediated signaling pathway and diseases such as cancer and neurodegeneration. The authors largely focus on bone conditions, highlighting mouse studies in which CSF1R-blocking drugs were shown to ameliorate bone loss and inflammatory symptoms in models of arthritis, osteoporosis and metastatic cancer. Clinical trials are ongoing to test therapeutic applications.
Collapse
|
11
|
Hamilton JA. GM-CSF in inflammation. J Exp Med 2020; 217:jem.20190945. [PMID: 31611249 PMCID: PMC7037240 DOI: 10.1084/jem.20190945] [Citation(s) in RCA: 163] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 07/09/2019] [Accepted: 09/11/2019] [Indexed: 02/06/2023] Open
Abstract
GM-CSF is a potential therapeutic target in inflammation and autoimmunity. This study reviews the literature on the biology of GM-CSF, in particular that describing the research leading to clinical trials targeting GM-CSF and its receptor in numerous inflammatory/autoimmune conditions, such as rheumatoid arthritis. Granulocyte–macrophage colony-stimulating factor (GM-CSF) has many more functions than its original in vitro identification as an inducer of granulocyte and macrophage development from progenitor cells. Key features of GM-CSF biology need to be defined better, such as the responding and producing cell types, its links with other mediators, its prosurvival versus activation/differentiation functions, and when it is relevant in pathology. Significant preclinical data have emerged from GM-CSF deletion/depletion approaches indicating that GM-CSF is a potential target in many inflammatory/autoimmune conditions. Clinical trials targeting GM-CSF or its receptor have shown encouraging efficacy and safety profiles, particularly in rheumatoid arthritis. This review provides an update on the above topics and current issues/questions surrounding GM-CSF biology.
Collapse
Affiliation(s)
- John A Hamilton
- The University of Melbourne, Department of Medicine, Royal Melbourne Hospital, Parkville, Victoria, Australia.,Australian Institute for Musculoskeletal Science, The University of Melbourne and Western Health, St Albans, Victoria, Australia
| |
Collapse
|
12
|
Jain N, Moeller J, Vogel V. Mechanobiology of Macrophages: How Physical Factors Coregulate Macrophage Plasticity and Phagocytosis. Annu Rev Biomed Eng 2020; 21:267-297. [PMID: 31167103 DOI: 10.1146/annurev-bioeng-062117-121224] [Citation(s) in RCA: 150] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In addition to their early-recognized functions in host defense and the clearance of apoptotic cell debris, macrophages play vital roles in tissue development, homeostasis, and repair. If misregulated, they steer the progression of many inflammatory diseases. Much progress has been made in understanding the mechanisms underlying macrophage signaling, transcriptomics, and proteomics, under physiological and pathological conditions. Yet, the detailed mechanisms that tune circulating monocytes/macrophages and tissue-resident macrophage polarization, differentiation, specification, and their functional plasticity remain elusive. We review how physical factors affect macrophage phenotype and function, including how they hunt for particles and pathogens, as well as the implications for phagocytosis, autophagy, and polarization from proinflammatory to prohealing phenotype. We further discuss how this knowledge can be harnessed in regenerative medicine and for the design of new drugs and immune-modulatory drug delivery systems, biomaterials, and tissue scaffolds.
Collapse
Affiliation(s)
- Nikhil Jain
- Laboratory of Applied Mechanobiology, Institute of Translational Medicine, and Department of Health Sciences and Technology, ETH Zurich, CH-8093 Zurich, Switzerland;
| | - Jens Moeller
- Laboratory of Applied Mechanobiology, Institute of Translational Medicine, and Department of Health Sciences and Technology, ETH Zurich, CH-8093 Zurich, Switzerland;
| | - Viola Vogel
- Laboratory of Applied Mechanobiology, Institute of Translational Medicine, and Department of Health Sciences and Technology, ETH Zurich, CH-8093 Zurich, Switzerland;
| |
Collapse
|
13
|
SOCS3 Attenuates GM-CSF/IFN-γ-Mediated Inflammation During Spontaneous Spinal Cord Regeneration. Neurosci Bull 2020; 36:778-792. [PMID: 32306216 PMCID: PMC7340708 DOI: 10.1007/s12264-020-00493-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 12/06/2019] [Indexed: 12/13/2022] Open
Abstract
SOCS3, a feedback inhibitor of the JAK/STAT signal pathway, negatively regulates axonal regrowth and inflammation in the central nervous system (CNS). Here, we demonstrated a distinct role of SOCS3 in the injured spinal cord of the gecko following tail amputation. Severing the gecko spinal cord did not evoke an inflammatory cascade except for an injury-stimulated elevation of the granulocyte/macrophage colony-stimulating factor (GM-CSF) and interferon gamma (IFN-γ) cytokines. Simultaneously, the expression of SOCS3 was upregulated in microglia, and unexpectedly not in neurons. Enforced expression of SOCS3 was sufficient to suppress the GM-CSF/IFN-γ-driven inflammatory responses through its KIR domain by attenuating the activities of JAK1 and JAK2. SOCS3 was also linked to GM-CSF/IFN-γ-induced cross-tolerance. Transfection of adenovirus overexpressing SOCS3 in the injured cord resulted in a significant decrease of inflammatory cytokines. These results reveal a distinct role of SOCS3 in the regenerating spinal cord, and provide new hints for CNS repair in mammals.
Collapse
|
14
|
Rauwel B, Degboé Y, Diallo K, Sayegh S, Baron M, Boyer JF, Constantin A, Cantagrel A, Davignon JL. Inhibition of Osteoclastogenesis by the RNA-Binding Protein QKI5: a Novel Approach to Protect from Bone Resorption. J Bone Miner Res 2020; 35:753-765. [PMID: 31834954 DOI: 10.1002/jbmr.3943] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 11/26/2019] [Accepted: 11/29/2019] [Indexed: 12/12/2022]
Abstract
Increased osteoclastogenesis is a common feature of bone erosion, notably in osteoporosis but also in inflammatory diseases such as rheumatoid arthritis (RA) and osteoarticular infections. Human cytomegalovirus (HCMV) infection has been described to impair monocyte differentiation into macrophages and dendritic cells. However, its effect on monocyte-derived osteoclasts is yet to be determined. We showed here that in vitro HCMV infection is associated with an inhibition of osteoclastogenesis through decreased expression of colony stimulating factor 1 receptor (CSF-1R) and RANK in monocytes, which was mediated by an upregulation of quaking I-5 protein (QKI-5), a cellular RNA-interacting protein. We found that deliberate QKI5 overexpression in the absence of HCMV infection is able to decrease CSF-1R and RANK expression, leading to osteoclastogenesis inhibition. Finally, by using lentiviral vectors in a calvarial bone erosion mouse model, we showed that QKI5 inhibits bone degradation. This work identifies QKI5 as a strong inhibitor of bone resorption. Future research will point out whether QKI5 could be a target for bone pathologies. © 2019 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Benjamin Rauwel
- Centre de Physiopathologie Toulouse Purpan, INSERM UMR 1043, Toulouse, France
| | - Yannick Degboé
- Centre de Physiopathologie Toulouse Purpan, INSERM UMR 1043, Toulouse, France.,Centre de Rhumatologie, CHU de Toulouse, Toulouse, France.,Faculté de Médecine, Université Paul Sabatier Toulouse III, Toulouse, France
| | - Katy Diallo
- Centre de Physiopathologie Toulouse Purpan, INSERM UMR 1043, Toulouse, France
| | - Souraya Sayegh
- Centre de Physiopathologie Toulouse Purpan, INSERM UMR 1043, Toulouse, France
| | - Michel Baron
- Centre de Physiopathologie Toulouse Purpan, INSERM UMR 1043, Toulouse, France
| | - Jean-Frédéric Boyer
- Centre de Physiopathologie Toulouse Purpan, INSERM UMR 1043, Toulouse, France.,Centre de Rhumatologie, CHU de Toulouse, Toulouse, France
| | - Arnaud Constantin
- Centre de Physiopathologie Toulouse Purpan, INSERM UMR 1043, Toulouse, France.,Centre de Rhumatologie, CHU de Toulouse, Toulouse, France.,Faculté de Médecine, Université Paul Sabatier Toulouse III, Toulouse, France
| | - Alain Cantagrel
- Centre de Physiopathologie Toulouse Purpan, INSERM UMR 1043, Toulouse, France.,Centre de Rhumatologie, CHU de Toulouse, Toulouse, France.,Faculté de Médecine, Université Paul Sabatier Toulouse III, Toulouse, France
| | - Jean-Luc Davignon
- Centre de Physiopathologie Toulouse Purpan, INSERM UMR 1043, Toulouse, France.,Centre de Rhumatologie, CHU de Toulouse, Toulouse, France
| |
Collapse
|
15
|
Popovic M, Yaparla A, Paquin‐Proulx D, Koubourli DV, Webb R, Firmani M, Grayfer L. Colony‐stimulating factor‐1‐ and interleukin‐34‐derived macrophages differ in their susceptibility to
Mycobacterium marinum. J Leukoc Biol 2019; 106:1257-1269. [DOI: 10.1002/jlb.1a0919-147r] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 09/02/2019] [Accepted: 09/06/2019] [Indexed: 12/22/2022] Open
Affiliation(s)
- Milan Popovic
- Department of Biological Sciences George Washington University Washington DC 20052 USA
| | - Amulya Yaparla
- Department of Biological Sciences George Washington University Washington DC 20052 USA
| | - Dominic Paquin‐Proulx
- Department of Microbiology Immunology and Tropical Medicine George Washington University Washington DC 20037 USA
| | - Daphne V. Koubourli
- Department of Biological Sciences George Washington University Washington DC 20052 USA
| | - Rose Webb
- Pathology Core Laboratory George Washington University Washington DC 20037 USA
| | - Marcia Firmani
- Department of Biomedical Laboratory Sciences George Washington University Washington DC 20037 USA
| | - Leon Grayfer
- Department of Biological Sciences George Washington University Washington DC 20052 USA
| |
Collapse
|
16
|
Das M, Deb M, Laha D, Joseph M, Kanji S, Aggarwal R, Iwenofu OH, Pompili VJ, Jarjour W, Das H. Myeloid Krüppel-Like Factor 2 Critically Regulates K/BxN Serum-Induced Arthritis. Cells 2019; 8:cells8080908. [PMID: 31426355 PMCID: PMC6721677 DOI: 10.3390/cells8080908] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 07/29/2019] [Accepted: 08/15/2019] [Indexed: 01/14/2023] Open
Abstract
Rheumatoid arthritis (RA) is an immune-mediated inflammatory disease, and Krüppel-like factor 2 (KLF2) regulates immune cell activation and function. Herein, we show that in our experiments 50% global deficiency of KLF2 significantly elevated arthritic inflammation and pathogenesis, osteoclastic differentiation, matrix metalloproteinases (MMPs), and inflammatory cytokines in K/BxN serum-induced mice. The severities of RA pathogenesis, as well as the causative and resultant cellular and molecular factors, were further confirmed in monocyte-specific KLF2 deficient mice. In addition, induction of RA resulted in a decreased level of KLF2 in monocytes isolated from both mice and humans along with higher migration of activated monocytes to the RA sites in humans. Mechanistically, overexpression of KLF2 decreased the level of MMP9; conversely, knockdown of KLF2 increased MMP9 in monocytes along with enrichment of active histone marks and histone acetyltransferases on the MMP9 promoter region. These findings define the critical regulatory role of myeloid KLF2 in RA pathogenesis.
Collapse
Affiliation(s)
- Manjusri Das
- Department of Internal Medicine, Wexner Medical Center at The Ohio State University, Columbus, OH 43210, USA
| | - Moonmoon Deb
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Dipranjan Laha
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Matthew Joseph
- Department of Internal Medicine, Wexner Medical Center at The Ohio State University, Columbus, OH 43210, USA
| | - Suman Kanji
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Reeva Aggarwal
- Department of Internal Medicine, Wexner Medical Center at The Ohio State University, Columbus, OH 43210, USA
| | - O Hans Iwenofu
- Department of Pathology, College of Medicine, Wexner Medical Center at The Ohio State University, Columbus, OH 43210, USA
| | - Vincent J Pompili
- Department of Internal Medicine, Wexner Medical Center at The Ohio State University, Columbus, OH 43210, USA
| | - Wael Jarjour
- Department of Internal Medicine, Wexner Medical Center at The Ohio State University, Columbus, OH 43210, USA
| | - Hiranmoy Das
- Department of Internal Medicine, Wexner Medical Center at The Ohio State University, Columbus, OH 43210, USA.
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA.
| |
Collapse
|
17
|
Sridharan R, Cavanagh B, Cameron AR, Kelly DJ, O'Brien FJ. Material stiffness influences the polarization state, function and migration mode of macrophages. Acta Biomater 2019; 89:47-59. [PMID: 30826478 DOI: 10.1016/j.actbio.2019.02.048] [Citation(s) in RCA: 231] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 02/20/2019] [Accepted: 02/27/2019] [Indexed: 01/25/2023]
Abstract
Biomaterial implantation is followed by an inflammatory cascade dominated by macrophages, which determine implant acceptance or rejection through pro- and anti-inflammatory polarization states (Anderson et al., 2008; Brown and Badylak, 2013). It is known that chemical signals such as bacterial endotoxins and cytokines (IL4) can direct macrophage polarization (Mantovani et al., 2004); however, recent evidence implicates biophysical cues in this process (McWhorter et al., 2015; Patel et al., 2012). Here we report that THP-1 derived macrophages cultured on collagen-coated polyacrylamide gels of varying stiffness adapt their polarization state, functional roles and migration mode according to the stiffness of the underlying substrate. Through gene expression and protein secretion analysis, we show that stiff polyacrylamide gels (323 kPa) prime macrophages towards a pro-inflammatory phenotype with impaired phagocytosis in macrophages, while soft (11 kPa) and medium (88 kPa) stiffness gels prime cells towards an anti-inflammatory, highly phagocytic phenotype. Furthermore, we show that stiffness dictates the migration mode of macrophages; on soft and medium stiffness gels, cells display Rho-A kinase (ROCK)-dependent, podosome-independent fast amoeboid migration and on stiff gels they adopt a ROCK-independent, podosome-dependent slow mesenchymal migration mode. We also provide a mechanistic insight into this process by showing that the anti-inflammatory property of macrophages on soft and medium gels is ROCK-dependent and independent of the ligand presented to them. Together, our results demonstrate that macrophages adapt their polarization, function and migration mode in response to the stiffness of the underlying substrate and suggest that biomaterial stiffness is capable of directing macrophage behaviour independent of the biochemical cues being presented to them. The results from this study establish an important role for substrate stiffness in directing macrophage behaviour, and will lead to the design of immuno-informed biomaterials that are capable of modulating the macrophage response after implantation. STATEMENT OF SIGNIFICANCE: Biomaterial implantation is followed by an inflammatory cascade dominated by macrophages, which determine implant acceptance or rejection through pro- and anti-inflammatory polarization states. It is known that chemical signals can direct macrophage polarization; however, recent evidence implicates biophysical cues in this process. Here we report that macrophages cultured on gels of varying stiffness adapt their polarization state, functional roles and migration mode according to the stiffness of the underlying substrate. The results from this study establish an important role for substrate stiffness in directing macrophage behaviour, and will lead to the design of immuno-informed biomaterials that are capable of modulating the macrophage response after implantation.
Collapse
Affiliation(s)
- Rukmani Sridharan
- Tissue Engineering Research Group, Department of Anatomy, Royal College of Surgeons in Ireland, Dublin 2, Ireland; Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland; Advanced Materials Bio-Engineering Research (AMBER) Centre, Trinity College Dublin, Dublin 2, Ireland
| | - Brenton Cavanagh
- Tissue Engineering Research Group, Department of Anatomy, Royal College of Surgeons in Ireland, Dublin 2, Ireland; Cellular and Molecular Imaging Core, Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin 2, Ireland
| | - Andrew R Cameron
- Tissue Engineering Research Group, Department of Anatomy, Royal College of Surgeons in Ireland, Dublin 2, Ireland; Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland; Advanced Materials Bio-Engineering Research (AMBER) Centre, Trinity College Dublin, Dublin 2, Ireland
| | - Daniel J Kelly
- Tissue Engineering Research Group, Department of Anatomy, Royal College of Surgeons in Ireland, Dublin 2, Ireland; Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland; Advanced Materials Bio-Engineering Research (AMBER) Centre, Trinity College Dublin, Dublin 2, Ireland
| | - Fergal J O'Brien
- Tissue Engineering Research Group, Department of Anatomy, Royal College of Surgeons in Ireland, Dublin 2, Ireland; Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland; Advanced Materials Bio-Engineering Research (AMBER) Centre, Trinity College Dublin, Dublin 2, Ireland.
| |
Collapse
|
18
|
Das M, Laha D, Kanji S, Joseph M, Aggarwal R, Iwenofu OH, Pompili VJ, Jain MK, Das H. Induction of Krüppel-like factor 2 reduces K/BxN serum-induced arthritis. J Cell Mol Med 2019; 23:1386-1395. [PMID: 30506878 PMCID: PMC6349180 DOI: 10.1111/jcmm.14041] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 09/18/2018] [Accepted: 10/29/2018] [Indexed: 12/27/2022] Open
Abstract
Krüppel-like factor 2 (KLF2) critically regulates activation and function of monocyte, which plays important pathogenic role in progressive joint destruction in rheumatoid arthritis (RA). It is yet to be established the molecular basis of KLF2-mediated regulation of monocytes in RA pathogenesis. Herein, we show that a class of compound, HDAC inhibitors (HDACi) induced KLF2 expression in monocytes both in vitro and in vivo. KLF2 level was also elevated in tissues, such as bone marrow, spleen and thymus in mice after infusion of HDACi. Importantly, HDACi significantly reduced osteoclastic differentiation of monocytes with the up-regulation of KLF2 and concomitant down-regulation of matrixmetalloproteinases both in the expression level as well as in the protein level. In addition, HDACi reduced K/BxN serum-induced arthritic inflammation and joint destruction in mice in a dose-dependent manner. Finally, co-immunoprecipitation and overexpression studies confirmed that KLF2 directly interacts with HDAC4 molecule in cells. These findings provide mechanistic evidence of KLF2-mediated regulation of K/BxN serum-induced arthritic inflammation.
Collapse
Affiliation(s)
- Manjusri Das
- Department of Internal MedicineThe Ohio State University Medical CenterColumbusOhio
| | - Dipranjan Laha
- Department of Pharmaceutical SciencesSchool of PharmacyTexas Tech University Health Sciences CenterAmarilloTexas
| | - Suman Kanji
- Department of Pharmaceutical SciencesSchool of PharmacyTexas Tech University Health Sciences CenterAmarilloTexas
| | - Matthew Joseph
- Department of Internal MedicineThe Ohio State University Medical CenterColumbusOhio
| | - Reeva Aggarwal
- Department of Internal MedicineThe Ohio State University Medical CenterColumbusOhio
| | - Obiajulu H. Iwenofu
- Department of PathologyCollege of MedicineThe Ohio State UniversityColumbusOhio
| | - Vincent J. Pompili
- Department of Internal MedicineThe Ohio State University Medical CenterColumbusOhio
| | - Mukesh K. Jain
- Department of Internal MedicineCase Western Reserve UniversityClevelandOhio
| | - Hiranmoy Das
- Department of Pharmaceutical SciencesSchool of PharmacyTexas Tech University Health Sciences CenterAmarilloTexas
| |
Collapse
|
19
|
Saleh R, Lee MC, Khiew SH, Louis C, Fleetwood AJ, Achuthan A, Förster I, Cook AD, Hamilton JA. CSF-1 in Inflammatory and Arthritic Pain Development. THE JOURNAL OF IMMUNOLOGY 2018; 201:2042-2053. [PMID: 30120124 DOI: 10.4049/jimmunol.1800665] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 07/23/2018] [Indexed: 12/12/2022]
Abstract
Pain is one of the most debilitating symptoms in many diseases for which there is inadequate management and understanding. CSF-1, also known as M-CSF, acts via its receptor (CSF-1R, c-Fms) to regulate the development of the monocyte/macrophage lineage and to act locally in tissues to control macrophage numbers and function. It has been implicated in the control of neuropathic pain via a central action on microglia. We report in this study that systemic administration of a neutralizing anti-CSF-1R or CSF-1 mAb inhibits the development of inflammatory pain induced by zymosan, GM-CSF, and TNF in mice. This approach also prevented but did not ameliorate the development of arthritic pain and optimal disease driven by the three stimuli in mice, suggesting that CSF-1 may only be relevant when the driving inflammatory insults in tissues are acute and/or periodic. Systemic CSF-1 administration rapidly induced pain and enhanced the arthritis in an inflamed mouse joint, albeit via a different pathway(s) from that used by systemic GM-CSF and TNF. It is concluded that CSF-1 can function peripherally during the generation of inflammatory pain and hence may be a target for such pain and associated disease, including when the clinically important cytokines, TNF and GM-CSF, are involved. Our findings have ramifications for the selection and design of anti-CSF-1R/CSF-1 trials.
Collapse
Affiliation(s)
- Reem Saleh
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, Victoria 3050, Australia
| | - Ming-Chin Lee
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, Victoria 3050, Australia
| | - Stella H Khiew
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, Victoria 3050, Australia
| | - Cynthia Louis
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, Victoria 3050, Australia.,Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia; and
| | - Andrew J Fleetwood
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, Victoria 3050, Australia
| | - Adrian Achuthan
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, Victoria 3050, Australia
| | - Irmgard Förster
- Department of Immunology and Environment, Life and Medical Sciences Institute, University of Bonn, 53115 Bonn, Germany
| | - Andrew D Cook
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, Victoria 3050, Australia
| | - John A Hamilton
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, Victoria 3050, Australia;
| |
Collapse
|
20
|
Cytokine-Induced Acute Inflammatory Monoarticular Arthritis. Methods Mol Biol 2018. [PMID: 29761402 DOI: 10.1007/978-1-4939-7837-3_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
Animal models of arthritis enable us to investigate the pathogenesis of the disease and also to evaluate new therapies. Here we describe two different acute inflammatory monoarticular arthritis models (mBSA/IL1β and mBSA/GM-CSF) providing a more rapid and potentially simplified approach to investigate the pathogenesis.
Collapse
|
21
|
Bi H, Chen X, Gao S, Yu X, Xiao J, Zhang B, Liu X, Dai M. Key Triggers of Osteoclast-Related Diseases and Available Strategies for Targeted Therapies: A Review. Front Med (Lausanne) 2017; 4:234. [PMID: 29326938 PMCID: PMC5742334 DOI: 10.3389/fmed.2017.00234] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Accepted: 12/04/2017] [Indexed: 01/11/2023] Open
Abstract
Osteoclasts, the only cells with bone resorption functions in vivo, maintain the balance of bone metabolism by cooperating with osteoblasts, which are responsible for bone formation. Excessive activity of osteoclasts causes many diseases such as osteoporosis, periprosthetic osteolysis, bone tumors, and Paget's disease. In contrast, osteopetrosis results from osteoclast deficiency. Available strategies for combating over-activated osteoclasts and the subsequently induced diseases can be categorized into three approaches: facilitating osteoclast apoptosis, inhibiting osteoclastogenesis, and impairing bone resorption. Bisphosphonates are representative molecules that function by triggering osteoclast apoptosis. New drugs, such as tumor necrosis factor and receptor activator of nuclear factor kappa-B ligand (RANKL) inhibitors (e.g., denosumab) have been developed for targeting the receptor activator of nuclear factor kappa-B /RANKL/osteoprotegerin system or CSF-1/CSF-1R axis, which play critical roles in osteoclast formation. Furthermore, vacuolar (H+)-ATPase inhibitors, cathepsin K inhibitors, and glucagon-like peptide 2 impair different stages of the bone resorption process. Recently, significant achievements have been made in this field. The aim of this review is to provide an updated summary of the current progress in research involving osteoclast-related diseases and of the development of targeted inhibitors of osteoclast formation.
Collapse
Affiliation(s)
- Haidi Bi
- Department of Orthopaedics, The First Affiliated Hospital of Nanchang University, Artificial Joints Engineering and Technology Research Center of Jiangxi Province, Nanchang, China
| | - Xing Chen
- Department of Orthopaedics, The People's Hospital of Changxing County, Huzhou, China
| | - Song Gao
- Department of Orthopaedics, The First Affiliated Hospital of Nanchang University, Artificial Joints Engineering and Technology Research Center of Jiangxi Province, Nanchang, China
| | - Xiaolong Yu
- Department of Orthopaedics, The First Affiliated Hospital of Nanchang University, Artificial Joints Engineering and Technology Research Center of Jiangxi Province, Nanchang, China
| | - Jun Xiao
- Department of Orthopaedics, The First Affiliated Hospital of Nanchang University, Artificial Joints Engineering and Technology Research Center of Jiangxi Province, Nanchang, China
| | - Bin Zhang
- Department of Orthopaedics, The First Affiliated Hospital of Nanchang University, Artificial Joints Engineering and Technology Research Center of Jiangxi Province, Nanchang, China
| | - Xuqiang Liu
- Department of Orthopaedics, The First Affiliated Hospital of Nanchang University, Artificial Joints Engineering and Technology Research Center of Jiangxi Province, Nanchang, China
| | - Min Dai
- Department of Orthopaedics, The First Affiliated Hospital of Nanchang University, Artificial Joints Engineering and Technology Research Center of Jiangxi Province, Nanchang, China
| |
Collapse
|
22
|
Jeannin P, Paolini L, Adam C, Delneste Y. The roles of CSFs on the functional polarization of tumor-associated macrophages. FEBS J 2017; 285:680-699. [PMID: 29171156 DOI: 10.1111/febs.14343] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 11/03/2017] [Accepted: 11/20/2017] [Indexed: 12/12/2022]
Abstract
Macrophages have a central role in numerous physiological processes, such as immune defense, maintenance of tissue homeostasis, wound healing, and inflammation. Moreover, in numerous severe disorders, such as cancer or chronic inflammation, their functions can be profoundly affected. Macrophages continuously sense their environment and adapt their phenotypes and functions to the local requirements; this process is called plasticity. In addition to stress signals, metabolites, and direct cell-contact interactions with surrounding cells, numerous cytokines play a central role in controlling macrophage polarization. In this review, we will focus on three human macrophage differentiation factors: macrophage colony-stimulating factor (M-CSF), IL-34, and granulocyte M-CSF. These CSFs allow human monocyte survival, promote their differentiation into macrophages, and control macrophage polarization as they give rise to cells with different phenotype and functions. Based on recent observations, the role of granulocyte CSF on macrophage polarization is also addressed. Finally, our current knowledge on the expression of these growth factors in tumor microenvironment and their impact on the generation and polarization of tumor-associated macrophages are summarized.
Collapse
Affiliation(s)
- Pascale Jeannin
- CRCINA, INSERM, Université de Nantes, Université d'Angers, France.,Laboratory of Immunology and Allergology, University Hospital of Angers, France.,LabEx ImmunoGraftOnco, Angers, France
| | - Léa Paolini
- CRCINA, INSERM, Université de Nantes, Université d'Angers, France.,LabEx ImmunoGraftOnco, Angers, France
| | - Clement Adam
- CRCINA, INSERM, Université de Nantes, Université d'Angers, France.,LabEx ImmunoGraftOnco, Angers, France
| | - Yves Delneste
- CRCINA, INSERM, Université de Nantes, Université d'Angers, France.,Laboratory of Immunology and Allergology, University Hospital of Angers, France.,LabEx ImmunoGraftOnco, Angers, France
| |
Collapse
|
23
|
Alunno A, Carubbi F, Giacomelli R, Gerli R. Cytokines in the pathogenesis of rheumatoid arthritis: new players and therapeutic targets. BMC Rheumatol 2017; 1:3. [PMID: 30886947 PMCID: PMC6383595 DOI: 10.1186/s41927-017-0001-8] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 10/19/2017] [Indexed: 12/28/2022] Open
Abstract
In recent years, the landscape of pro- and anti-inflammatory cytokines has rapidly expanded with the identification of new members proven to be involved at different extent in the pathogenesis of chronic immune mediated inflammatory diseases including rheumatoid arthritis (RA). The advance of our understanding of mediators involved in the pathogenesis of RA and in consequence, the development of novel targeted therapies is necessary to provide patients not responding to currently available strategies with novel compounds. The aim of this review article is to provide an overview on recently identified cytokines, emphasizing their pathogenic role and therapeutic potential in RA. A systematic literature review was performed to retrieve articles related to every cytokine discussed in the review. In some cases, evidence from animal models and RA patients is already consistent to move forward into drug development. In others, conflicting observation and the paucity of data require further investigations.Forty years after the discovery of IL-1, the landscape of cytokines is continuously expanding with increasing possibilities to develop novel therapeutic strategies in RA.
Collapse
Affiliation(s)
- Alessia Alunno
- 1Rheumatology Unit, Department of Medicine, University of Perugia, Perugia, Italy
| | - Francesco Carubbi
- 2Rheumatology Unit, Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy.,ASL1 Avezzano-L'Aquila-Sulmona, Department of Medicine, L'Aquila, Italy
| | - Roberto Giacomelli
- 2Rheumatology Unit, Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Roberto Gerli
- 1Rheumatology Unit, Department of Medicine, University of Perugia, Perugia, Italy
| |
Collapse
|
24
|
Farag AK, Elkamhawy A, Londhe AM, Lee KT, Pae AN, Roh EJ. Novel LCK/FMS inhibitors based on phenoxypyrimidine scaffold as potential treatment for inflammatory disorders. Eur J Med Chem 2017; 141:657-675. [PMID: 29107425 DOI: 10.1016/j.ejmech.2017.10.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 05/19/2017] [Accepted: 10/02/2017] [Indexed: 01/24/2023]
Abstract
Tyrosine kinases including LCK and FMS are involved in inflammatory disorders as well as many types of cancer. Our team has designed and synthesized thirty novel pyrimidine based inhibitors targeting LCK, classified into four different series (amides, ureas, imines (Schiff base) and benzylamines). Twelve of them showed nanomolar IC50 values. Compound 7g showed excellent selectivity profile and was selectively potent over FMS kinase (IC50 value of 4.6 nM). Molecular docking study was performed to help us rationalize the obtained results and predict the possible binding mode for our compounds in both LCK and FMS. Based on the obtained biological assay data and modelling results, a detailed SAR study was discussed. As a further testing regarding the anti-inflammatory effect of the new compounds, in vitro cellular assay over RAW 264.7 macrophages was performed. Compound 7g exhibited excellent anti-inflammatory effect. Therefore, we report the design of novel phenoxypyrimidine derivatives as potent and selective LCK inhibitors and the discovery of 7g as potent and selective FMS/LCK dual inhibitor for the potential application in inflammatory disorders including rheumatoid arthritis (RA).
Collapse
Affiliation(s)
- Ahmed Karam Farag
- Chemical Kinomics Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; Division of Bio-Medical Science &Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of Korea
| | - Ahmed Elkamhawy
- Chemical Kinomics Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Ashwini M Londhe
- Division of Bio-Medical Science &Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of Korea; Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Kyung-Tae Lee
- Department of Life and Nanopharmaceutical Science, Kyung Hee University, Seoul 130-701, Republic of Korea
| | - Ae Nim Pae
- Division of Bio-Medical Science &Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of Korea; Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Eun Joo Roh
- Chemical Kinomics Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; Division of Bio-Medical Science &Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of Korea.
| |
Collapse
|
25
|
Truong MD, Choi BH, Kim YJ, Kim MS, Min BH. Granulocyte macrophage - colony stimulating factor (GM-CSF) significantly enhances articular cartilage repair potential by microfracture. Osteoarthritis Cartilage 2017; 25:1345-1352. [PMID: 28284999 DOI: 10.1016/j.joca.2017.03.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 02/21/2017] [Accepted: 03/01/2017] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To investigate whether granulocyte macrophage-colony stimulating factor (GM-CSF) can be used to increase the number of mesenchymal stem cells (MSCs) in blood clots formed by microfracture arthroplasty (MFX) and whether it can improve the therapeutic outcome for cartilage repair. METHODS Thirty-six New Zealand white rabbits were divided into four groups: (1) control, (2) GM-CSF, (3) MFX, and (4) GM-CSF + MFX. GM-CSF was administrated intravenously (IV) at 10 μg/kg body weight 20 min before the MFX surgery. The repaired tissues were retrieved and examined by histological observation, quantitative assessment, and biochemical assays at 4, 8, and 12 weeks after treatment. The number of MSCs was measured in the blood clots by the colony forming unit-fibroblast (CFU-F) assay. The kinetic profile and distribution of GM-CSF in vivo was also evaluated by near-Infrared (NIR) fluorescence imaging and enzyme-linked immune sorbent assay. RESULTS In the histological observations and chemical assays examined at 4, 8, and 12 weeks, the MFX after GM-CSF administration showed better cartilage repair than the one without GM-CSF. The CFU-F assay showed a significantly larger amount of MSCs present in the blood clots of the GM-CSF + MFX group than in the blood clots of the other groups. The blood concentration of GM-CSF peaked at 10 min and decreased back to almost the initial level after a couple of hours. GM-CSF was distributed in many organs including the bone marrow but was not observed clearly in the joint cavity. CONCLUSION Intravenous administration of GM-CSF together with MFX could be a promising therapeutic protocol to enhance the repair of cartilage defects.
Collapse
Affiliation(s)
- M-D Truong
- Department of Molecular Science and Technology, Ajou University, Suwon, South Korea.
| | - B H Choi
- Department of Biomedical Sciences, Inha University College of Medicine, Incheon, South Korea.
| | - Y J Kim
- Cell Therapy Center, Ajou University Medical Center, Suwon, South Korea.
| | - M S Kim
- Department of Molecular Science and Technology, Ajou University, Suwon, South Korea.
| | - B-H Min
- Department of Molecular Science and Technology, Ajou University, Suwon, South Korea; Cell Therapy Center, Ajou University Medical Center, Suwon, South Korea; Department of Orthopedic Surgery, School of Medicine, Ajou University, Suwon, South Korea.
| |
Collapse
|
26
|
Sodin-Semrl S, Spagnolo A, Mikus R, Barbaro B, Varga J, Fiore S. Opposing Regulation of Interleukin-8 and NF-kB Responses by Lipoxin A4 and Serum Amyloid a via the Common Lipoxin a Receptor. Int J Immunopathol Pharmacol 2017; 17:145-56. [PMID: 15171815 DOI: 10.1177/039463200401700206] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Lipoxin A4 (LXA4) is a potent eicosanoid that inhibits IL-1β-induced activation of human fibroblast-like synoviocytes (FLS) via the LXA4 receptor (ALXR). Serum amyloid A (SAA) is an acute phase reactant with cytokine-like properties. SAA has been shown to bind the same seven transmembrane G protein-coupled receptor ligated by LXA4. Here we compared the inflammatory responses of lipid (LXA4) and peptide (SAA) ligands in human FLS via the shared ALX and characterized their downstream signaling. LXA4 induced stimulation of tissue inhibitors of metalloproteinase-2, whereas SAA induced interleukin-8 and matrix metalloproteinase-3 production. SAA up-regulated NF-kB and AP-1 DNA binding activity, while LXA4 markedly inhibited these responses after IL-1β stimulation. A human IL-8 promoter luciferase construct was transfected into CHO cells stably expressing ALXR in order to determine the role of NF-kB and/or AP-1 in the regulation of IL-8 gene expression. The NF-kB pathway proved to be the preeminent for the biological responses elicited by both ligands. These findings suggest that two endogenous molecules, targeting a common receptor, could participate in the pathogenesis of inflammatory arthritis by differentially regulating inflammatory responses in tissues expressing the ALXR.
Collapse
Affiliation(s)
- S Sodin-Semrl
- Section of Rheumatology, Dept Med, COM, University of Illinois, Chicago, IL 60607-7171, USA
| | | | | | | | | | | |
Collapse
|
27
|
Crotti C, Raimondo MG, Becciolini A, Biggioggero M, Favalli EG. Spotlight on mavrilimumab for the treatment of rheumatoid arthritis: evidence to date. DRUG DESIGN DEVELOPMENT AND THERAPY 2017; 11:211-223. [PMID: 28144129 PMCID: PMC5245809 DOI: 10.2147/dddt.s104233] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The introduction of biological therapies into clinical practice has dramatically modified the natural history of chronic inflammatory diseases, such as rheumatoid arthritis (RA). RA is a systemic autoimmune disease that causes articular damage and has a great negative impact on patients’ quality of life. Despite the wide spectrum of available biological treatments, ~30% of RA patients are still unresponsive, resulting in high disability and increased morbidity and mortality. In the last few decades, the scientific knowledge on RA pathogenesis vastly improved, leading to the identification of new proinflammatory molecules as potential therapeutic targets. Several in vitro and in vivo studies showed that granulocyte-macrophage colony-stimulating factor (GM-CSF), known to be a hematopoietic factor, is also one of the proinflammatory cytokines involved in macrophage activation, crucial for the pathogenic network of RA. Mavrilimumab, a human monoclonal antibody targeting the subunit α of GM-CSF receptor, was recently developed as a competitive antagonist of GM-CSF pathway and successfully adopted in human trials for mild to moderate RA. Mavrilimumab phase I and phase II studies reported an overall good efficacy and safety profile of the drug, and these encouraging results promoted the initiation of worldwide phase III studies. In particular, 158-week results of phase II trials did not show long-term lung toxicity, addressing the major concern about this target of pulmonary alveolar proteinosis development. However, further clinical studies conducted in larger RA populations are needed to confirm these promising results. This review summarizes the biological role of GM-CSF in RA and the preclinical and clinical data on mavrilimumab and other monoclonal antibodies targeted on this pathway as an alternative therapeutic option in RA patients who are unresponsive to conventional biological drugs.
Collapse
Affiliation(s)
- Chiara Crotti
- Department of Clinical Sciences and Health Community, University of Milan, Division of Rheumatology, Gaetano Pini Institute
| | - Maria Gabriella Raimondo
- Department of Clinical Sciences and Health Community, University of Milan, Division of Rheumatology, Gaetano Pini Institute
| | | | - Martina Biggioggero
- Department of Clinical Sciences and Health Community, University of Milan, Division of Rheumatology, Gaetano Pini Institute
| | | |
Collapse
|
28
|
Wałajtys-Rode E, Dzik JM. Monocyte/Macrophage: NK Cell Cooperation-Old Tools for New Functions. Results Probl Cell Differ 2017; 62:73-145. [PMID: 28455707 DOI: 10.1007/978-3-319-54090-0_5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Monocyte/macrophage and natural killer (NK) cells are partners from a phylogenetic standpoint of innate immune system development and its evolutionary progressive interaction with adaptive immunity. The equally conservative ways of development and differentiation of both invertebrate hemocytes and vertebrate macrophages are reviewed. Evolutionary conserved molecules occurring in macrophage receptors and effectors have been inherited by vertebrates after their common ancestor with invertebrates. Cytolytic functions of mammalian NK cells, which are rooted in immune cells of invertebrates, although certain NK cell receptors (NKRs) are mammalian new events, are characterized. Broad heterogeneity of macrophage and NK cell phenotypes that depends on surrounding microenvironment conditions and expression profiles of specific receptors and activation mechanisms of both cell types are discussed. The particular tissue specificity of macrophages and NK cells, as well as their plasticity and mechanisms of their polarization to different functional subtypes have been underlined. The chapter summarized studies revealing the specific molecular mechanisms and regulation of NK cells and macrophages that enable their highly specific cross-cooperation. Attention is given to the evolving role of human monocyte/macrophage and NK cell interaction in pathogenesis of hypersensitivity reaction-based disorders, including autoimmunity, as well as in cancer surveillance and progression.
Collapse
Affiliation(s)
- Elżbieta Wałajtys-Rode
- Faculty of Chemistry, Department of Drug Technology and Biotechnology, Warsaw University of Technology, Noakowskiego 3 Str, 00-664, Warsaw, Poland.
| | - Jolanta M Dzik
- Faculty of Agriculture and Biology, Department of Biochemistry, Warsaw University of Life Sciences-SGGW, Warsaw, Poland
| |
Collapse
|
29
|
Yu TW, Chueh HY, Tsai CC, Lin CT, Qiu JT. Novel GM-CSF-based vaccines: One small step in GM-CSF gene optimization, one giant leap for human vaccines. Hum Vaccin Immunother 2016; 12:3020-3028. [PMID: 27560197 DOI: 10.1080/21645515.2016.1221551] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Granulocyte macrophage-colony stimulating factor (GM-CSF) is a potent immunomodulatory cytokine that is known to facilitate vaccine efficacy by promoting the development and prolongation of both humoral and cellular immunity. In the past years we have generated a novel codon-optimized GM-CSF gene as an adjuvant. The codon-optimized GM-CSF gene significantly increased protein expression levels in all cells tested and helped in generating a strong immune responses against HIV-1 Gag and HPV-associated cancer. Here, we review the literature dealing with the adjuvant activity of GM-CSF both in animal models and clinical trials. We anticipate that the codon-optimized GM-CSF gene offers a practical molecular strategy for potentiating immune responses to tumor cell-based vaccinations as well as other immunotherapeutic strategies.
Collapse
Affiliation(s)
- Ting-Wei Yu
- a School of Medicine , Chang Gung University , Taoyuan , Taiwan , ROC.,b Department of Obstetrics and Gynecology , Chang Gung Memorial Hospital , Taoyuan , Taiwan , ROC
| | - Ho-Yen Chueh
- a School of Medicine , Chang Gung University , Taoyuan , Taiwan , ROC.,b Department of Obstetrics and Gynecology , Chang Gung Memorial Hospital , Taoyuan , Taiwan , ROC
| | - Ching-Chou Tsai
- a School of Medicine , Chang Gung University , Taoyuan , Taiwan , ROC.,c Department of Obstetrics and Gynecology , Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine , Kaohsiung , Taiwan , ROC
| | - Cheng-Tao Lin
- a School of Medicine , Chang Gung University , Taoyuan , Taiwan , ROC.,b Department of Obstetrics and Gynecology , Chang Gung Memorial Hospital , Taoyuan , Taiwan , ROC
| | - Jiantai Timothy Qiu
- a School of Medicine , Chang Gung University , Taoyuan , Taiwan , ROC.,b Department of Obstetrics and Gynecology , Chang Gung Memorial Hospital , Taoyuan , Taiwan , ROC.,d Department of Biomedical Sciences , School of Medicine, Chang Gung University , Taoyuan , Taiwan , ROC
| |
Collapse
|
30
|
Ushach I, Zlotnik A. Biological role of granulocyte macrophage colony-stimulating factor (GM-CSF) and macrophage colony-stimulating factor (M-CSF) on cells of the myeloid lineage. J Leukoc Biol 2016; 100:481-9. [PMID: 27354413 DOI: 10.1189/jlb.3ru0316-144r] [Citation(s) in RCA: 348] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 06/07/2016] [Indexed: 12/14/2022] Open
Abstract
M-CSF and GM-CSF are 2 important cytokines that regulate macrophage numbers and function. Here, we review their known effects on cells of the macrophage-monocyte lineage. Important clues to their function come from their expression patterns. M-CSF exhibits a mostly homeostatic expression pattern, whereas GM-CSF is a product of cells activated during inflammatory or pathologic conditions. Accordingly, M-CSF regulates the numbers of various tissue macrophage and monocyte populations without altering their "activation" status. Conversely, GM-CSF induces activation of monocytes/macrophages and also mediates differentiation to other states that participate in immune responses [i.e., dendritic cells (DCs)]. Further insights into their function have come from analyses of mice deficient in either cytokine. M-CSF signals through its receptor (CSF-1R). Interestingly, mice deficient in CSF-1R expression exhibit a more significant phenotype than mice deficient in M-CSF. This observation was explained by the discovery of a novel cytokine (IL-34) that represents a second ligand of CSF-1R. Information about the function of these ligands/receptor system is still developing, but its complexity is intriguing and strongly suggests that more interesting biology remains to be elucidated. Based on our current knowledge, several therapeutic molecules targeting either the M-CSF or the GM-CSF pathways have been developed and are currently being tested in clinical trials targeting either autoimmune diseases or cancer. It is intriguing to consider how evolution has directed these pathways to develop; their complexity likely mirrors the multiple functions in which cells of the monocyte/macrophage system are involved.
Collapse
Affiliation(s)
- Irina Ushach
- Department of Physiology and Biophysics, Institute for Immunology, University of California, Irvine, California, USA
| | - Albert Zlotnik
- Department of Physiology and Biophysics, Institute for Immunology, University of California, Irvine, California, USA
| |
Collapse
|
31
|
Garcia S, Hartkamp LM, Malvar-Fernandez B, van Es IE, Lin H, Wong J, Long L, Zanghi JA, Rankin AL, Masteller EL, Wong BR, Radstake TRDJ, Tak PP, Reedquist KA. Colony-stimulating factor (CSF) 1 receptor blockade reduces inflammation in human and murine models of rheumatoid arthritis. Arthritis Res Ther 2016; 18:75. [PMID: 27036883 PMCID: PMC4818474 DOI: 10.1186/s13075-016-0973-6] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 03/14/2016] [Indexed: 12/19/2022] Open
Abstract
Background CSF-1 or IL-34 stimulation of CSF1R promotes macrophage differentiation, activation and osteoclastogenesis, and pharmacological inhibition of CSF1R is beneficial in animal models of arthritis. The objective of this study was to determine the relative contributions of CSF-1 and IL-34 signaling to CSF1R in RA. Methods CSF-1 and IL-34 were detected by immunohistochemical and digital image analysis in synovial tissue from 15 biological-naïve rheumatoid arthritis (RA) , 15 psoriatic arthritis (PsA) and 7 osteoarthritis (OA) patients . Gene expression in CSF-1- and IL-34-differentiated human macrophages was assessed by FACS analysis and quantitative PCR. RA synovial explants were incubated with CSF-1, IL-34, control antibody (Ab), or neutralizing/blocking Abs targeting CSF-1, IL-34, or CSF1R. The effect of a CSF1R-blocking Ab was examined in murine collagen-induced arthritis (CIA). Results CSF-1 (also known as M-CSF) and IL-34 expression was similar in RA and PsA synovial tissue, but lower in controls (P < 0.05). CSF-1 expression was observed in the synovial sublining, and IL-34 in the sublining and the intimal lining layer. CSF-1 and IL-34 differentially regulated the expression of 17 of 336 inflammation-associated genes in macrophages, including chemokines, extra-cellular matrix components, and matrix metalloproteinases. Exogenous CSF-1 or IL-34, or their independent neutralization, had no effect on RA synovial explant IL-6 production. Anti-CSF1R Ab significantly reduced IL-6 and other inflammatory mediator production in RA synovial explants, and paw swelling and joint destruction in CIA. Conclusions Simultaneous inhibition of CSF1R interactions with both CSF-1 and IL-34 suppresses inflammatory activation of RA synovial tissue and pathology in CIA, suggesting a novel therapeutic strategy for RA. Electronic supplementary material The online version of this article (doi:10.1186/s13075-016-0973-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Samuel Garcia
- Department of Experimental Immunology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.,Department of Clinical Immunology and Rheumatology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.,Laboratory of Translational Immunology and Department of Rheumatology and ClinicalImmunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Linda M Hartkamp
- Department of Experimental Immunology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.,Department of Clinical Immunology and Rheumatology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.,Laboratory of Translational Immunology and Department of Rheumatology and ClinicalImmunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - B Malvar-Fernandez
- Department of Experimental Immunology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.,Department of Clinical Immunology and Rheumatology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.,Laboratory of Translational Immunology and Department of Rheumatology and ClinicalImmunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Inge E van Es
- Department of Experimental Immunology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.,Department of Clinical Immunology and Rheumatology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Haishan Lin
- Five Prime Therapeutics, Inc., Two Corporate Drive, South San Francisco, CA, USA
| | - Justin Wong
- Five Prime Therapeutics, Inc., Two Corporate Drive, South San Francisco, CA, USA
| | - Li Long
- Five Prime Therapeutics, Inc., Two Corporate Drive, South San Francisco, CA, USA
| | - James A Zanghi
- Five Prime Therapeutics, Inc., Two Corporate Drive, South San Francisco, CA, USA
| | - Andrew L Rankin
- Five Prime Therapeutics, Inc., Two Corporate Drive, South San Francisco, CA, USA
| | - Emma L Masteller
- Five Prime Therapeutics, Inc., Two Corporate Drive, South San Francisco, CA, USA
| | - Brian R Wong
- Five Prime Therapeutics, Inc., Two Corporate Drive, South San Francisco, CA, USA
| | - Timothy R D J Radstake
- Laboratory of Translational Immunology and Department of Rheumatology and ClinicalImmunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Paul P Tak
- Department of Clinical Immunology and Rheumatology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.,Present address: GlaxoSmithKline, Stevenage, UK.,Present address: Cambridge University, Cambridge, UK
| | - Kris A Reedquist
- Department of Experimental Immunology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands. .,Department of Clinical Immunology and Rheumatology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands. .,Laboratory of Translational Immunology and Department of Rheumatology and ClinicalImmunology, University Medical Center Utrecht, Utrecht, The Netherlands.
| |
Collapse
|
32
|
Bhattacharya P, Budnick I, Singh M, Thiruppathi M, Alharshawi K, Elshabrawy H, Holterman MJ, Prabhakar BS. Dual Role of GM-CSF as a Pro-Inflammatory and a Regulatory Cytokine: Implications for Immune Therapy. J Interferon Cytokine Res 2015; 35:585-99. [PMID: 25803788 DOI: 10.1089/jir.2014.0149] [Citation(s) in RCA: 180] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Granulocyte macrophage colony stimulating factor (GM-CSF) is generally recognized as an inflammatory cytokine. Its inflammatory activity is primarily due its role as a growth and differentiation factor for granulocyte and macrophage populations. In this capacity, among other clinical applications, it has been used to bolster anti-tumor immune responses. GM-CSF-mediated inflammation has also been implicated in certain types of autoimmune diseases, including rheumatoid arthritis and multiple sclerosis. Thus, agents that can block GM-CSF or its receptor have been used as anti-inflammatory therapies. However, a review of literature reveals that in many situations GM-CSF can act as an anti-inflammatory/regulatory cytokine. We and others have shown that GM-CSF can modulate dendritic cell differentiation to render them "tolerogenic," which, in turn, can increase regulatory T-cell numbers and function. Therefore, the pro-inflammatory and regulatory effects of GM-CSF appear to depend on the dose and the presence of other relevant cytokines in the context of an immune response. A thorough understanding of the various immunomodulatory effects of GM-CSF will facilitate more appropriate use and thus further enhance its clinical utility.
Collapse
Affiliation(s)
- Palash Bhattacharya
- 1 Department of Microbiology and Immunology, College of Medicine, University of Illinois , Chicago, Illinois
| | - Isadore Budnick
- 1 Department of Microbiology and Immunology, College of Medicine, University of Illinois , Chicago, Illinois
| | - Medha Singh
- 1 Department of Microbiology and Immunology, College of Medicine, University of Illinois , Chicago, Illinois
| | - Muthusamy Thiruppathi
- 1 Department of Microbiology and Immunology, College of Medicine, University of Illinois , Chicago, Illinois
| | - Khaled Alharshawi
- 1 Department of Microbiology and Immunology, College of Medicine, University of Illinois , Chicago, Illinois
| | - Hatem Elshabrawy
- 1 Department of Microbiology and Immunology, College of Medicine, University of Illinois , Chicago, Illinois
| | - Mark J Holterman
- 2 Department of Surgery, College of Medicine, University of Illinois , Chicago, Illinois
| | - Bellur S Prabhakar
- 1 Department of Microbiology and Immunology, College of Medicine, University of Illinois , Chicago, Illinois
| |
Collapse
|
33
|
IL-1β and TNFα promote monocyte viability through the induction of GM-CSF expression by rheumatoid arthritis synovial fibroblasts. Mediators Inflamm 2014; 2014:241840. [PMID: 25484525 PMCID: PMC4251793 DOI: 10.1155/2014/241840] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 09/22/2014] [Accepted: 10/06/2014] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Macrophages and synovial fibroblasts (SF) are two major cells implicated in the pathogenesis of rheumatoid arthritis (RA). SF could be a source of cytokines and growth factors driving macrophages survival and activation. Here, we studied the effect of SF on monocyte viability and phenotype. METHODS SF were isolated from synovial tissue of RA patients and CD14+ cells were isolated from peripheral blood of healthy donors. SF conditioned media were collected after 24 hours of culture with or without stimulation with TNFα or IL-1β. Macrophages polarisation was studied by flow cytometry. RESULTS Conditioned medium from SF significantly increased monocytes viability by 60% compared to CD14+ cells cultured in medium alone (P < 0.001). This effect was enhanced using conditioned media from IL-1β and TNFα stimulated SF. GM-CSF but not M-CSF nor IL34 blocking antibodies was able to significantly decrease monocyte viability by 30% when added to the conditioned media from IL-1β and TNFα stimulated SF (P < 0.001). Finally, monocyte cultured in presence of SF conditioned media did not exhibit a specific M1 or M2 phenotype. CONCLUSION Overall, rheumatoid arthritis synovial fibroblasts stimulated with proinflammatory cytokines (IL-1β and TNFα) promote monocyte viability via GM-CSF but do not induce a specific macrophage polarization.
Collapse
|
34
|
Toh ML, Bonnefoy JY, Accart N, Cochin S, Pohle S, Haegel H, De Meyer M, Zemmour C, Preville X, Guillen C, Thioudellet C, Ancian P, Lux A, Sehnert B, Nimmerjahn F, Voll RE, Schett G. Bone- and Cartilage-Protective Effects of a Monoclonal Antibody Against Colony-Stimulating Factor 1 Receptor in Experimental Arthritis. Arthritis Rheumatol 2014; 66:2989-3000. [DOI: 10.1002/art.38624] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 03/06/2014] [Indexed: 01/08/2023]
Affiliation(s)
| | | | | | | | - Sandy Pohle
- University of Erlangen-Nuremberg; Erlangen Germany
| | | | | | | | | | | | | | | | - Anja Lux
- University of Erlangen-Nuremberg; Erlangen Germany
| | | | | | | | - Georg Schett
- University of Erlangen-Nuremberg; Erlangen Germany
| |
Collapse
|
35
|
Lam RS, O’Brien-Simpson NM, Lenzo JC, Holden JA, Brammar GC, Walsh KA, McNaughtan JE, Rowler DK, Van Rooijen N, Reynolds EC. Macrophage Depletion AbatesPorphyromonas gingivalis–Induced Alveolar Bone Resorption in Mice. THE JOURNAL OF IMMUNOLOGY 2014; 193:2349-62. [DOI: 10.4049/jimmunol.1400853] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
36
|
Furuya K, Kaku Y, Yoshida K, Joh K, Kurosaka D. Therapeutic effects of sunitinib, one of the anti-angiogenetic drugs, in a murine arthritis. Mod Rheumatol 2013; 24:487-91. [PMID: 24289201 DOI: 10.3109/14397595.2013.844295] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVES The purpose of this study was to confirm the inhibitory effects of sunitinib, an angiogenesis inhibitor that targets tyrosine kinases of vascular endothelial growth factor receptor (VEGFR) family and platelet-derived growth factor receptor (PDGFR) family, on arthritis in mice with type II collagen-induced arthritis (CIA). METHODS Sunitinib at a concentration of 30 or 60 mg/kg/day was intraperitoneally administered to mice with CIA. We compared the changes in arthritis score over time, pathological score, bone density, and microvascular density in synovial membrane between the vehicle and treatment groups. RESULTS In the sunitinib-treated groups, the arthritis score decreased in a dose-dependent manner in comparison with that in the vehicle group. Furthermore, improvement in the pathological score, inhibitory tendency of loss in the bone density, and a decrease in the synovial microvascular density were also observed in the sunitinib-treated groups. CONCLUSIONS Sunitinib remarkably inhibited arthritis, particularly synovial angiogenesis in a murine CIA model. This compound may be useful for treating arthritis.
Collapse
Affiliation(s)
- Kazuhiro Furuya
- Division of Rheumatology, Department of Internal Medicine, Jikei University School of Medicine , Minato-ku, Tokyo , Japan
| | | | | | | | | |
Collapse
|
37
|
Granulocyte–macrophage colony-stimulating factor: not just another haematopoietic growth factor. Med Oncol 2013; 31:774. [DOI: 10.1007/s12032-013-0774-6] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Accepted: 11/13/2013] [Indexed: 12/31/2022]
|
38
|
Das M, Lu J, Joseph M, Aggarwal R, Kanji S, McMichael BK, Lee BS, Agarwal S, Ray-Chaudhury A, Iwenofu OH, Kuppusamy P, Pompili VJ, Jain MK, Das H. Kruppel-like factor 2 (KLF2) regulates monocyte differentiation and functions in mBSA and IL-1β-induced arthritis. Curr Mol Med 2012; 12:113-25. [PMID: 22280353 DOI: 10.2174/156652412798889090] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Revised: 10/28/2011] [Accepted: 11/02/2011] [Indexed: 12/20/2022]
Abstract
Kruppel-like factor 2 (KLF2) plays an important role in the regulation of a variety of immune cells, including monocytes. We have previously shown that KLF2 inhibits proinflammatory activation of monocytes. However, the role of KLF2 in arthritis is yet to be investigated. In the current study, we show that recruitment of significantly greater numbers of inflammatory subset of CD11b(+)F4/80(+)Ly6C+ monocytes to the inflammatory sites in KLF2 hemizygous mice compared to the wild type littermate controls. In parallel, inflammatory mediators, MCP-1, Cox-2 and PAI-1 were significantly up-regulated in bone marrow-derived monocytes isolated from KLF2 hemizygous mice, in comparison to wild-type controls. Methylated-BSA and IL-1β-induced arthritis was more severe in KLF2 hemizygous mice as compared to the littermate wild type controls. Consistent with this observation, monocytes isolated from KLF2 hemizygous mice showed an increased number of cells matured and differentiated towards osteoclastic lineage, potentially contributing to the severity of cartilage and bone damage in induced arthritic mice. The severity of arthritis was associated with the higher expression of proteins such as HSP60, HSP90 and MMP13 and attenuated levels of pPTEN, p21, p38 and HSP25/27 molecules in bone marrow cells of arthritic KLF2 hemizygous mice compared to littermate wild type controls. The data provide new insights and evidences of KLF2-mediated transcriptional regulation of arthritis via modulation of monocyte differentiation and function.
Collapse
Affiliation(s)
- M Das
- Cardiovascular Medicine, The Dorothy M Davis Heart and Lung Research Institute, The Ohio State University Medical Center, Columbus, Ohio 43210, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Mouchemore KA, Pixley FJ. CSF-1 signaling in macrophages: pleiotrophy through phosphotyrosine-based signaling pathways. Crit Rev Clin Lab Sci 2012; 49:49-61. [DOI: 10.3109/10408363.2012.666845] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
40
|
Macrophage Migration and Its Regulation by CSF-1. Int J Cell Biol 2012; 2012:501962. [PMID: 22505929 PMCID: PMC3296313 DOI: 10.1155/2012/501962] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Revised: 11/04/2011] [Accepted: 11/04/2011] [Indexed: 02/06/2023] Open
Abstract
Macrophages are terminally differentiated cells of the mononuclear phagocytic lineage and develop under the stimulus of their primary growth and differentiation factor, CSF-1. Although they differentiate into heterogeneous populations, depending upon their tissue of residence, motility is an important aspect of their function. To facilitate their migration through tissues, macrophages express a unique range of adhesion and cytoskeletal proteins. Notably, macrophages do not form large, stable adhesions or actin stress fibers but rely on small, short lived point contacts, focal complexes and podosomes for traction. Thus, macrophages are built to respond rapidly to migratory stimuli. As well as triggering growth and differentiation, CSF-1 is also a chemokine that regulates macrophage migration via activation the CSF-1 receptor tyrosine kinase. CSF-1R autophosphorylation of several intracellular tyrosine residues leads to association and activation of many downstream signaling molecules. However, phosphorylation of just one residue, Y721, mediates association of PI3K with the receptor to activate the major motility signaling pathways in macrophages. Dissection of these pathways will identify drug targets for the inhibition of diseases in which macrophages contribute to adverse outcomes.
Collapse
|
41
|
Koch G, Wagner T, Plater-Zyberk C, Lahu G, Schropp J. Multi-response model for rheumatoid arthritis based on delay differential equations in collagen-induced arthritic mice treated with an anti-GM-CSF antibody. J Pharmacokinet Pharmacodyn 2011; 39:55-65. [PMID: 22193331 DOI: 10.1007/s10928-011-9230-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Accepted: 11/15/2011] [Indexed: 11/24/2022]
Abstract
Collagen-induced arthritis (CIA) in mice is an experimental model for rheumatoid arthritis, a human chronic inflammatory destructive disease. The therapeutic effect of neutralizing the cytokine granulocyte-macrophage colony-stimulating factor (GM-CSF) by an antibody was examined in the mouse disease in a view of deriving a pharmacokinetic/pharmacodynamic (PKPD) model. In CIA mice the development of disease is measured by a total arthritic score (TAS) and an ankylosis score (AKS). We present a multi-response PKPD model which describes the time course of the unperturbed and perturbed TAS and AKS. The antibody acts directly on GM-CSF by binding to it. Therefore, a compartment for the cytokine GM-CSF is an essential component of the mathematical model. This compartment drives the disease development in the PKPD model. Different known properties of arthritis development in the CIA model are included in the PKPD model. Firstly, the inflammation, driven by GM-CSF, dominates at the beginning of the disease and decreases after some time. Secondly, a destructive (ankylosis) part evolves in the TAS that is delayed in time. In order to model these two properties a delay differential equation was used. The PKPD model was applied to different experiments with doses ranging from 0.1 to 100 mg/kg. The influence of the drug was modeled by a non-linear approach. The final mathematical model consists of three differential equations representing the compartments for GM-CSF, inflammation and destruction. Our mathematical model described well all available dosing schedules by a simultaneous fit. We also present an equivalent and easy reformulation as ordinary differential equation which grants the use of standard PKPD software.
Collapse
Affiliation(s)
- Gilbert Koch
- Department of Mathematics and Statistics, University of Konstanz, P.O. Box 195, 78457, Konstanz, Germany.
| | | | | | | | | |
Collapse
|
42
|
Illig CR, Manthey CL, Wall MJ, Meegalla SK, Chen J, Wilson KJ, Ballentine SK, DesJarlais RL, Schubert C, Crysler CS, Chen Y, Molloy CJ, Chaikin MA, Donatelli RR, Yurkow E, Zhou Z, Player MR, Tomczuk BE. Optimization of a Potent Class of Arylamide Colony-Stimulating Factor-1 Receptor Inhibitors Leading to Anti-inflammatory Clinical Candidate 4-Cyano-N-[2-(1-cyclohexen-1-yl)-4-[1-[(dimethylamino)acetyl]-4-piperidinyl]phenyl]-1H-imidazole-2-carboxamide (JNJ-28312141). J Med Chem 2011; 54:7860-83. [DOI: 10.1021/jm200900q] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Carl R. Illig
- Johnson & Johnson Pharmaceutical Research & Development, Welsh & McKean Roads, Spring House, Pennsylvania 19477, United States
| | - Carl L. Manthey
- Johnson & Johnson Pharmaceutical Research & Development, Welsh & McKean Roads, Spring House, Pennsylvania 19477, United States
| | - Mark J. Wall
- Johnson & Johnson Pharmaceutical Research & Development, Welsh & McKean Roads, Spring House, Pennsylvania 19477, United States
| | - Sanath K. Meegalla
- Johnson & Johnson Pharmaceutical Research & Development, Welsh & McKean Roads, Spring House, Pennsylvania 19477, United States
| | - Jinsheng Chen
- Johnson & Johnson Pharmaceutical Research & Development, Welsh & McKean Roads, Spring House, Pennsylvania 19477, United States
| | - Kenneth J. Wilson
- Johnson & Johnson Pharmaceutical Research & Development, Welsh & McKean Roads, Spring House, Pennsylvania 19477, United States
| | - Shelley K. Ballentine
- Johnson & Johnson Pharmaceutical Research & Development, Welsh & McKean Roads, Spring House, Pennsylvania 19477, United States
| | - Renee L. DesJarlais
- Johnson & Johnson Pharmaceutical Research & Development, Welsh & McKean Roads, Spring House, Pennsylvania 19477, United States
| | - Carsten Schubert
- Johnson & Johnson Pharmaceutical Research & Development, Welsh & McKean Roads, Spring House, Pennsylvania 19477, United States
| | - Carl S. Crysler
- Johnson & Johnson Pharmaceutical Research & Development, Welsh & McKean Roads, Spring House, Pennsylvania 19477, United States
| | - Yanmin Chen
- Johnson & Johnson Pharmaceutical Research & Development, Welsh & McKean Roads, Spring House, Pennsylvania 19477, United States
| | - Christopher J. Molloy
- Johnson & Johnson Pharmaceutical Research & Development, Welsh & McKean Roads, Spring House, Pennsylvania 19477, United States
| | - Margery A. Chaikin
- Johnson & Johnson Pharmaceutical Research & Development, Welsh & McKean Roads, Spring House, Pennsylvania 19477, United States
| | - Robert R. Donatelli
- Johnson & Johnson Pharmaceutical Research & Development, Welsh & McKean Roads, Spring House, Pennsylvania 19477, United States
| | - Edward Yurkow
- Johnson & Johnson Pharmaceutical Research & Development, Welsh & McKean Roads, Spring House, Pennsylvania 19477, United States
| | - Zhao Zhou
- Johnson & Johnson Pharmaceutical Research & Development, Welsh & McKean Roads, Spring House, Pennsylvania 19477, United States
| | - Mark R. Player
- Johnson & Johnson Pharmaceutical Research & Development, Welsh & McKean Roads, Spring House, Pennsylvania 19477, United States
| | - Bruce E. Tomczuk
- Johnson & Johnson Pharmaceutical Research & Development, Welsh & McKean Roads, Spring House, Pennsylvania 19477, United States
| |
Collapse
|
43
|
Lemaire I, Falzoni S, Zhang B, Pellegatti P, Di Virgilio F. The P2X7 receptor and Pannexin-1 are both required for the promotion of multinucleated macrophages by the inflammatory cytokine GM-CSF. THE JOURNAL OF IMMUNOLOGY 2011; 187:3878-87. [PMID: 21865551 DOI: 10.4049/jimmunol.1002780] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The P2X(7) receptor (P2X(7)R), an ATP-gated ion channel, has been implicated in the process of cell-to-cell fusion into multinucleated macrophages (MA), but its contribution to MA fusion driven by physiological/pathological stimuli is not clearly established. Based on several lines of evidence, we demonstrate that P2X(7)R is critical for the induction of multinucleated MA by the inflammatory cytokine GM-CSF: 1) pharmacological inhibition of P2X(7)R with oxidized ATP (oATP), KN-62, and the selective antagonist A740003 abrogated GM-CSF action on rat alveolar MA and murine peritoneal MA; 2) a murine J774 P2X(7) low MA clone, selected for defective P2X(7)R function, was unresponsive; 3) MA from mice lacking P2X(7)R failed to respond to GM-CSF, in contrast to wild-type. GM-CSF also stimulated ATP-induced membrane permeabilization in J774 P2X(7) high MA and rat alveolar MA, an effect absent in the P2X(7) low MA clone and inhibited by the P2X(7) blockers oATP and KN-62. Notably, the stimulatory effects of GM-CSF on pore formation and MA fusion were both inhibited by blocking functional Pannexin-1 (Panx-1), and GM-CSF failed to stimulate MA fusion in cells from Panx-1 knockout mice. We provide further evidence that extracellular ATP release from peritoneal MA is dependent on P2X(7) but not on Panx-1 expression and that its metabolism to adenosine mediates P2X(7)-dependent MA fusion. These data demonstrate that both P2X(7) and Panx-1 are required for GM-CSF promotion of MA fusion but likely act independently through different signaling pathway(s).
Collapse
Affiliation(s)
- Irma Lemaire
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada.
| | | | | | | | | |
Collapse
|
44
|
Burmester GR, Feist E, Sleeman MA, Wang B, White B, Magrini F. Mavrilimumab, a human monoclonal antibody targeting GM-CSF receptor-α, in subjects with rheumatoid arthritis: a randomised, double-blind, placebo-controlled, phase I, first-in-human study. Ann Rheum Dis 2011; 70:1542-9. [PMID: 21613310 PMCID: PMC3147227 DOI: 10.1136/ard.2010.146225] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Objective To evaluate the safety, tolerability, pharmacokinetic and pharmacodynamic profiles of mavrilimumab, a human monoclonal antibody targeting the granulocyte-macrophage colony-stimulating factor receptor-α, in subjects with rheumatoid arthritis (RA). Methods A randomised, double-blind, placebo-controlled, dose-escalating phase I study in subjects with RA who received stable methotrexate treatment for ≥3 months before enrolment. Subjects received single intravenous escalating doses of mavrilimumab (0.01–10.0 mg/kg) or placebo. Results 32 subjects were enrolled in this study (1 unblinded subject at 0.01 mg/kg and another at 0.03 mg/kg were followed by five sequential double-blinded cohorts, n=6 each, treated with 0.1, 0.3, 1.0, 3.0 and 10.0 mg/kg, respectively). Adverse events were mild or moderate and were reported with similar frequency across all treatment cohorts. One subject (10.0 mg/kg) experienced moderate face and neck urticaria during infusion that resolved with symptomatic treatment. Systemic clearance of mavrilimumab approached that of endogenous IgG at doses >1.0 mg/kg; pharmacodynamic activity was confirmed in the 1.0 and 3.0 mg/kg cohorts by suppression of suppressor of cytokine signalling 3 mRNA transcripts. In exploratory analyses, reductions of acute phase reactants were observed in subjects with elevated C-reactive protein (>5 mg/l) and erythrocyte sedimentation rate (≥20.0 mm/h) at baseline. No significant change in Disease Activity Score 28-joint assessment (DAS28) was seen in any of the cohorts. In mavrilimumab-treated subjects (n=15) with baseline DAS28 >3.2, mean disease activity (DAS28) was significantly reduced at 4 weeks. Conclusion In this first-in-human study, mavrilimumab showed preliminary evidence of pharmacodynamic activity. Importantly, the safety and pharmacokinetic profiles of mavrilimumab support further clinical studies in RA. Trial registration number: NCT00771420.
Collapse
Affiliation(s)
- Gerd R Burmester
- Department of Rheumatology and Clinical Immunology, Charité – University Medicine Berlin, Berlin, Germany.
| | | | | | | | | | | |
Collapse
|
45
|
Oka H, Mori M, Kihara H. F-spondin inhibits migration and differentiation of osteoclastic precursors. J Periodontol 2011; 82:1776-83. [PMID: 21488757 DOI: 10.1902/jop.2011.110111] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Clinically, severe cemental resorption is a rare consequence of periodontitis, although alveolar bone resorption by osteoclasts is one of the main pathologic changes. F-spondin is a secreted neuronal glycoprotein that localizes to the cementum. F-spondin is among the cementum-specific factors in periodontal tissue that have been reported. However, the effects of F-spondin on osteoclastogenesis have not yet been established. We examined the effects of F-spondin on stages of osteoclastogenesis, migration, and differentiation in a mouse osteoclastic precursor model, RAW 264 cells. METHODS RAW 264 cells were treated with recombinant F-spondin. Macrophage colony stimulating factor (M-CSF)-induced cell migration was examined by migration assay performed with cell culture inserts. Osteoclastic differentiation was measured by counting tartrate-resistant acid phosphatase (TRAP)-positive multinucleated cells. RESULTS In a transmigration assay, F-spondin significantly downregulated M-CSF-induced cell migration. Further, F-spondin significantly reduced the number of receptor activator of nuclear factor-kappa B ligand-induced TRAP-positive multinucleated cells. The receptor-associated protein, an antagonist of the low-density lipoprotein (LDL) receptor family, blocked the effects of F-spondin on M-CSF-induced migration. The suppressive effect of F-spondin on M-CSF-induced cell migration was blocked by knockdown of LDL receptor-related protein 8 (LRP8), a member of the LDL receptor family. CONCLUSIONS Our findings suggest that F-spondin downregulates recruitment to the root side of periodontal tissue via LRP8 and inhibits differentiation of osteoclastic precursors. It is suggested that F-spondin is essential to protect the root surface from resorption.
Collapse
Affiliation(s)
- Hiroko Oka
- Promoting Office of Graduate Program for BioDental Education, Graduate School of Biomedical Sciences, Hiroshima University, Minami-ku, Hiroshima, Japan.
| | | | | |
Collapse
|
46
|
|
47
|
Eda H, Shimada H, Beidler DR, Monahan JB. Proinflammatory cytokines, IL-1β and TNF-α, induce expression of interleukin-34 mRNA via JNK- and p44/42 MAPK-NF-κB pathway but not p38 pathway in osteoblasts. Rheumatol Int 2010; 31:1525-30. [DOI: 10.1007/s00296-010-1688-7] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2010] [Accepted: 11/14/2010] [Indexed: 01/10/2023]
|
48
|
Sweet MJ. Dead cells certainly do matter, particularly when they can speak from the grave. J Leukoc Biol 2010; 88:1065-1066. [PMID: 29360234 DOI: 10.1189/jlb.0810443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Revised: 08/19/2010] [Accepted: 08/21/2010] [Indexed: 11/24/2022] Open
Affiliation(s)
- Matthew J Sweet
- The University of Queensland, Institute for Molecular Bioscience, Brisbane, Queensland, Australia
| |
Collapse
|
49
|
Eda H, Zhang J, Keith RH, Michener M, Beidler DR, Monahan JB. Macrophage-colony stimulating factor and interleukin-34 induce chemokines in human whole blood. Cytokine 2010; 52:215-20. [PMID: 20829061 DOI: 10.1016/j.cyto.2010.08.005] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2010] [Revised: 05/31/2010] [Accepted: 08/16/2010] [Indexed: 12/20/2022]
Abstract
The aim of this study is to investigate if macrophage-colony stimulating factor (M-CSF) or interleukin-34 (IL-34) induces cytokines or chemokines using human whole blood (HWB) and if an M-CSF- or IL-34-induced cytokine or chemokine production from HWB is inhibited by soluble M-CSF receptor or c-FMS kinase inhibitors. Among eight cytokines or growth factors tested, only IL-6 level was increased by up to 6-fold by M-CSF or IL-34 in HWB. In contrast, chemokine levels (IP-10/CXCL10, IL-8/CXCL8, and MCP-1/CCL2) were dramatically increased by M-CSF or IL-34 in HWB while exhibiting a large variation among donors. Variability of the MCP-1 signal induced by M-CSF or IL-34 was relatively less among donors compared to the IP-10 and IL-8 signals. The elevation of these chemokine levels was significantly decreased by soluble M-CSF receptor, indicating the elevation of these chemokines was mediated by M-CSF or IL-34. Furthermore, GW2580, a c-FMS kinase inhibitor, inhibited the induction of MCP-1 by M-CSF or IL-34 in a concentration dependent manner. These indicate MCP-1 is the most appropriate chemokine target for a chemokine release assay to evaluate the potency of c-FMS kinase inhibitors and MCP-1 release assay using HWB would be useful, relevant tool for translational pharmacology of c-FMS kinase inhibitors.
Collapse
Affiliation(s)
- Hiroyuki Eda
- Discovery Biology, Global Research and Development, St. Louis Laboratories, Pfizer Inc., 700 Chesterfield Parkway West, Chesterfield, MO 63017, USA.
| | | | | | | | | | | |
Collapse
|
50
|
Grünke M, Bastian H, Schulze-Koops H, Burmester GR. [New biologics and orally available compounds. What is still in the pipeline?]. Z Rheumatol 2010; 69:626-32. [PMID: 20725732 DOI: 10.1007/s00393-009-0531-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Biologics have revolutionized the treatment of inflammatory joint disease in the last decade. By precisely targeting and inhibiting inflammatory cytokines as well as the blockade of cells centrally integrated in the immune system, inhibition of inflammation has become possible which had been unthinkable before. The medical need to improve our current approach with biologics even more is based on three observations: (1) even though the clinical effect of a given biologic is evident in the majority of patients, not all show a satisfactory response, (2) the blockade of important mediators of the immune system bears the risk of infection and potentially malignant events and (3) all current biologics need to be administered parenterally. The present review describes several innovative biologics and low molecular weight compounds which are currently being investigated in clinical trials in patients suffering from inflammatory rheumatic conditions. Some of them may become a part of our growing armamentarium to treat these diseases which still represent a major burden to the patients and society.
Collapse
Affiliation(s)
- M Grünke
- Rheumaeinheit, Medizinische Poliklinik, Ludwig-Maximilians-Universität München, 80336 München, Deutschland
| | | | | | | |
Collapse
|