1
|
Kroh K, Barton J, Fehling H, Lotter H, Volkmer B, Greinert R, Mhamdi-Ghodbani M, Vanegas Ramirez A, Jacobs T, Gálvez RI. Antimicrobial activity of NK cells to Trypanosoma cruzi infected human primary Keratinocytes. PLoS Negl Trop Dis 2024; 18:e0012255. [PMID: 39038032 PMCID: PMC11262665 DOI: 10.1371/journal.pntd.0012255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 05/29/2024] [Indexed: 07/24/2024] Open
Abstract
Infection with the protozoan parasite Trypanosoma cruzi is causative for Chagas disease, which is a highly neglected tropical disease prevalent in Latin America. Humans are primary infected through vectorial transmission by blood-sucking triatomine bugs. The parasite enters the human host through mucous membranes or small skin lesions. Since keratinocytes are the predominant cell type in the epidermis, they play a critical role in detecting disruptions in homeostasis and aiding in pathogen elimination by the immune system in the human skin as alternative antigen-presenting cells. Interestingly, keratinocytes also act as a reservoir for T. cruzi, as the skin has been identified as a major site of persistent infection in mice with chronic Chagas disease. Moreover, there are reports of the emergence of T. cruzi amastigote nests in the skin of immunocompromised individuals who are experiencing reactivation of Chagas disease. This observation implies that the skin may serve as a site for persistent parasite presence during chronic human infection too and underscores the significance of investigating the interactions between T. cruzi and skin cells. Consequently, the primary objective of this study was to establish and characterize the infection kinetics in human primary epidermal keratinocytes (hPEK). Our investigation focused on surface molecules that either facilitated or hindered the activation of natural killer (NK) cells, which play a crucial role in controlling the infection. To simulate the in vivo situation in humans, an autologous co-culture model was developed to examine the interactions between T. cruzi infected keratinocytes and NK cells. We evaluated the degranulation, cytokine production, and cytotoxicity of NK cells in response to the infected keratinocytes. We observed a strong activation of NK cells by infected keratinocytes, despite minimal alterations in the expression of activating or inhibitory ligands on NK cell receptors. However, stimulation with recombinant interferon-gamma (IFN-γ), a cytokine known to be present in significant quantities during chronic T. cruzi infections in the host, resulted in a substantial upregulation of these ligands on primary keratinocytes. Overall, our findings suggest the crucial role of NK cells in controlling acute T. cruzi infection in the upper layer of the skin and shed light on keratinocytes as potential initial targets of infection.
Collapse
Affiliation(s)
- Keshia Kroh
- Protozoa Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Jessica Barton
- Protozoa Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Helena Fehling
- Molecular Infection Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Hanna Lotter
- Molecular Infection Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Beate Volkmer
- Skin Cancer Center, Division of Molecular Cell Biology, Elbe Klinikum Buxtehude, Buxtehude, Germany
| | - Rüdiger Greinert
- Skin Cancer Center, Division of Molecular Cell Biology, Elbe Klinikum Buxtehude, Buxtehude, Germany
| | - Mouna Mhamdi-Ghodbani
- Skin Cancer Center, Division of Molecular Cell Biology, Elbe Klinikum Buxtehude, Buxtehude, Germany
| | - Andrea Vanegas Ramirez
- Department of Dermatology, Bundeswehr Hospital Hamburg & Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Thomas Jacobs
- Protozoa Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Rosa Isela Gálvez
- Protozoa Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| |
Collapse
|
2
|
Horta AL, Gigley J, Boutet M, Lavau G, Weiss LM, Huang H. Memory-like NK Cells Are a Critical Component of Vaccine-Induced Immunity to Trypanosoma cruzi Infection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:617-631. [PMID: 38197653 PMCID: PMC10872457 DOI: 10.4049/jimmunol.2300509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 12/06/2023] [Indexed: 01/11/2024]
Abstract
Chagas disease by Trypanosoma cruzi infection is a major public health issue. The available therapeutic agents have limited efficacy and significant side effects. A reliable vaccine would reduce the threat of T. cruzi infections and prevent Chagas disease. Understanding the immune response to this infection would improve vaccine design. We previously demonstrated that adoptively transferred NK cells from mice immunized with highly attenuated T. cruzi, GFP-DDDHA strain, provided potent protection in naive recipients against secondary lethal challenge with various wild-type (WT) strains. To understand the importance of NK cells in protecting mice against T. cruzi infection, we performed an in-depth characterization of NK cell phenotype, responses, and memory-like traits during acute infections due to GFP-DDDHA and WT strains and in immunized mice during a recall response to a WT lethal challenge. NK cells robustly expanded and became more mature and cytolytic during the GFP-DDDHA strain immunization. NK cells in immunized mice responded more robustly after WT lethal challenge than during an acute primary WT infection. In addition, protection by immunization with the GFP-DDDHA strain is significantly weakened in NK cell-deficient mice and did not prevent parasitemia from WT lethal challenge, indicating that NK cells with memory-like traits were a critical component for early control of WT lethal challenge. Prior T. cruzi vaccine development studies have not included studies of this rapid NK response. These findings provide insights into overcoming existing challenges in developing a safe and effective vaccine to prevent this infection.
Collapse
Affiliation(s)
- Aline L. Horta
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Jason Gigley
- Department of Molecular Biology, University of Wyoming, Laramie, Wyoming, United States of America
| | - Marie Boutet
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Gregoire Lavau
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Louis M. Weiss
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Huan Huang
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| |
Collapse
|
3
|
Zeng Z, Huang Z, Yue W, Nawaz S, Chen X, Liu J. Lactobacillus plantarum modulate gut microbiota and intestinal immunity in cyclophosphamide-treated mice model. Biomed Pharmacother 2023; 169:115812. [PMID: 37979376 DOI: 10.1016/j.biopha.2023.115812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 10/22/2023] [Accepted: 10/26/2023] [Indexed: 11/20/2023] Open
Abstract
Gut microbiota (GM) contributes to the production of immune-regulatory molecules and cytokines. However, our understanding regarding intricate relationship between Lactobacillus plantarum and GM on regulation of immune function remained limited. To investigate the effect of Lactobacillus plantarum on an immunosuppressed mouse model, we employed cyclophosphamide treatment and conducted various analysis including H&E (hematoxylin-eosin staining), immunohistochemistry, 16S rRNA gene sequencing, and RT-PCR. Our results demonstrated that the administration of Lactobacillus plantarum had significant immunoenhancing effects in the immune-suppressed mice, as evidenced by the restoration of functional expression of specific immune markers in the spleen and an increase in the number of goblet cells in intestine (P < 0.05). Microbial taxonomic analysis revealed alterations in the gut microbiota composition, characterized by a decrease in the richness of Firmicutes and an increase in the proportion of Verrucomicrobia and Actinobacteria following cyclophosphamide treatment. Furthermore, cyclophosphamide treatment significantly suppressed the mRNA expression of inflammatory cytokines (P < 0.05), which were subsequently restored after administration of Lactobacillus plantarum. These observations provide valuable insights into the complex interplay between probiotics, gut microbiota, and immune system functioning.
Collapse
Affiliation(s)
- Zhibo Zeng
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences/Fujian Key Laboratory of Animal Genetics and Breeding, Fuzhou 350013, China; Institute of Agricultural Sciences, ETH Zurich, Universitaetstrasse 2, 8092 Zurich, Switzerland
| | - Zonghao Huang
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences/Fujian Key Laboratory of Animal Genetics and Breeding, Fuzhou 350013, China
| | - Wen Yue
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences/Fujian Key Laboratory of Animal Genetics and Breeding, Fuzhou 350013, China
| | - Shah Nawaz
- Institute of Agricultural Sciences, ETH Zurich, Universitaetstrasse 2, 8092 Zurich, Switzerland
| | - Xinzhu Chen
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences/Fujian Key Laboratory of Animal Genetics and Breeding, Fuzhou 350013, China.
| | - Jing Liu
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences/Fujian Key Laboratory of Animal Genetics and Breeding, Fuzhou 350013, China.
| |
Collapse
|
4
|
Deng S, Graham ML, Chen XM. The Complexity of Interferon Signaling in Host Defense against Protozoan Parasite Infection. Pathogens 2023; 12:319. [PMID: 36839591 PMCID: PMC9962834 DOI: 10.3390/pathogens12020319] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/11/2023] [Accepted: 02/13/2023] [Indexed: 02/17/2023] Open
Abstract
Protozoan parasites, such as Plasmodium, Leishmania, Toxoplasma, Cryptosporidium, and Trypanosoma, are causative agents of health-threatening diseases in both humans and animals, leading to significant health risks and socioeconomic losses globally. The development of effective therapeutic and prevention strategies for protozoan-caused diseases requires a full understanding of the pathogenesis and protective events occurring in infected hosts. Interferons (IFNs) are a family of cytokines with diverse biological effects in host antimicrobial defense and disease pathogenesis, including protozoan parasite infection. Type II IFN (IFN-γ) has been widely recognized as the essential defense cytokine in intracellular protozoan parasite infection, whereas recent studies also revealed the production and distinct function of type I and III IFNs in host defense against these parasites. Decoding the complex network of the IFN family in host-parasite interaction is critical for exploring potential new therapeutic strategies against intracellular protozoan parasite infection. Here, we review the complex effects of IFNs on the host defense against intracellular protozoan parasites and the crosstalk between distinct types of IFN signaling during infections.
Collapse
Affiliation(s)
- Silu Deng
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, IL 60612, USA
- Department of Medical Microbiology and Immunology, Creighton University School of Medicine, Omaha, NE 68178, USA
| | - Marion L. Graham
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, IL 60612, USA
| | - Xian-Ming Chen
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, IL 60612, USA
| |
Collapse
|
5
|
Filtjens J, Coltel N, Cencig S, Taveirne S, Van Ammel E, Van Acker A, Kerre T, Matthys P, Taghon T, Vandekerckhove B, Carlier Y, Truyens C, Leclercq G. The Ly49E Receptor Inhibits the Immune Control of Acute Trypanosoma cruzi Infection. Front Immunol 2016; 7:472. [PMID: 27891126 PMCID: PMC5103623 DOI: 10.3389/fimmu.2016.00472] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 10/19/2016] [Indexed: 11/16/2022] Open
Abstract
The protozoan parasite Trypanosoma cruzi circulates in the blood upon infection and invades various cells. Parasites intensively multiply during the acute phase of infection and persist lifelong at low levels in tissues and blood during the chronic phase. Natural killer (NK) and NKT cells play an important role in the immune control of T. cruzi infection, mainly by releasing the cytokine IFN-γ that activates the microbicidal action of macrophages and other cells and shapes a protective type 1 immune response. The mechanisms by which immune cells are regulated to produce IFN-γ during T. cruzi infection are still incompletely understood. Here, we show that urokinase plasminogen activator (uPA) is induced early upon T. cruzi infection and remains elevated until day 20 post-infection. We previously demonstrated that the inhibitory receptor Ly49E, which is expressed, among others, on NK and NKT cells, is triggered by uPA. Therefore, we compared wild type (WT) to Ly49E knockout (KO) mice for their control of experimental T. cruzi infection. Our results show that young, i.e., 4- and 6-week-old, Ly49E KO mice control the infection better than WT mice, indicated by a lower parasite load and less cachexia. The beneficial effect of Ly49E depletion is more obvious in 4-week-old male than in female mice and weakens in 8-week-old mice. In young mice, the lower T. cruzi parasitemia in Ly49E KO mice is paralleled by higher IFN-γ production compared to their WT controls. Our data indicate that Ly49E receptor expression inhibits the immune control of T. cruzi infection. This is the first demonstration that the inhibitory Ly49E receptor can interfere with the immune response to a pathogen in vivo.
Collapse
Affiliation(s)
- Jessica Filtjens
- Laboratory of Experimental Immunology, Ghent University , Ghent , Belgium
| | - Nicolas Coltel
- Laboratory of Parasitology, Faculty of Medicine, Université Libre de Bruxelles , Brussels , Belgium
| | - Sabrina Cencig
- Laboratory of Parasitology, Faculty of Medicine, Université Libre de Bruxelles , Brussels , Belgium
| | - Sylvie Taveirne
- Laboratory of Experimental Immunology, Ghent University , Ghent , Belgium
| | - Els Van Ammel
- Laboratory of Experimental Immunology, Ghent University , Ghent , Belgium
| | - Aline Van Acker
- Laboratory of Experimental Immunology, Ghent University , Ghent , Belgium
| | - Tessa Kerre
- Laboratory of Experimental Immunology, Ghent University , Ghent , Belgium
| | - Patrick Matthys
- Laboratory of Immunobiology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven - University of Leuven , Leuven , Belgium
| | - Tom Taghon
- Laboratory of Experimental Immunology, Ghent University , Ghent , Belgium
| | | | - Yves Carlier
- Laboratory of Parasitology, Faculty of Medicine, Université Libre de Bruxelles , Brussels , Belgium
| | - Carine Truyens
- Laboratory of Parasitology, Faculty of Medicine, Université Libre de Bruxelles , Brussels , Belgium
| | - Georges Leclercq
- Laboratory of Experimental Immunology, Ghent University , Ghent , Belgium
| |
Collapse
|
6
|
CD8(+) T cell-mediated immunity during Trypanosoma cruzi infection: a path for vaccine development? Mediators Inflamm 2014; 2014:243786. [PMID: 25104879 PMCID: PMC4102079 DOI: 10.1155/2014/243786] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 06/15/2014] [Indexed: 11/05/2022] Open
Abstract
MHC-restricted CD8+ T cells are important during infection with the intracellular protozoan parasite Trypanosoma cruzi, the causative agent of Chagas disease. Experimental studies performed in the past 25 years have elucidated a number of features related to the immune response mediated by these T cells, which are important for establishing the parasite/host equilibrium leading to chronic infection. CD8+ T cells are specific for highly immunodominant antigens expressed by members of the trans-sialidase family. After infection, their activation is delayed, and the cells display a high proliferative activity associated with high apoptotic rates. Although they participate in parasite control and elimination, they are unable to clear the infection due to their low fitness, allowing the parasite to establish the chronic phase when these cells then play an active role in the induction of heart immunopathology. Vaccination with a number of subunit recombinant vaccines aimed at eliciting specific CD8+ T cells can reverse this path, thereby generating a productive immune response that will lead to the control of infection, reduction of symptoms, and reduction of disease transmission. Due to these attributes, activation of CD8+ T lymphocytes may constitute a path for the development of a veterinarian or human vaccine.
Collapse
|
7
|
Renukaradhya GJ, Alekseev K, Jung K, Fang Y, Saif LJ. Porcine reproductive and respiratory syndrome virus-induced immunosuppression exacerbates the inflammatory response to porcine respiratory coronavirus in pigs. Viral Immunol 2011; 23:457-66. [PMID: 20883160 DOI: 10.1089/vim.2010.0051] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
We performed a comprehensive analysis of innate and adaptive immune responses in dual-virus infected pigs to understand whether a pre-existing immunomodulatory respiratory viral infection affects the overall immunity to a subsequent porcine respiratory coronavirus (PRCV) infection in pigs. Pigs were either mock-infected or infected with porcine reproductive and respiratory syndrome virus (PRRSV), a virus known to cause immunosuppressive respiratory disease, and then pigs were co-infected with PRCV, which normally causes subclinical respiratory infection. We collected samples for six independent experiments from 178 pigs that were also used for pathological studies. We detected a significant reduction in innate NK-cell-mediated cytotoxic function in PRRSV-infected pigs, which was synergistically further decreased in pigs co-infected with PRCV. Subsequently, in association with clinical signs we observed elevated levels of proinflammatory (IL-6), Th-1 (IL-12), and regulatory (IL-10 and TGF-β) cytokines. Increased frequencies of CD4CD8 double-positive T lymphocytes and myeloid cells, in addition to the elevated Th-1 and proinflammatory cytokines in dual-infected pigs, contributed to the severity of lung disease in pigs. The results of our study clarify how each virus modulates the host innate and adaptive immune responses, leading to inflammatory reactions and lung pathology. Thus measurements of cytokines and frequencies of immune cells may serve as indicators of the progression of respiratory viral co-infections, and provide more definitive approaches for treatment.
Collapse
Affiliation(s)
- Gourapura J Renukaradhya
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Department of Veterinary Preventive Medicine, The Ohio State University, Wooster, Ohio 44691, USA.
| | | | | | | | | |
Collapse
|
8
|
Monteón V, Hernández O, López R, Reyes PA. Cytokine Expression at the Inoculation Site and Nearby Tissues in an Animal Model Infected with Metacyclic Trypomastigotes of Trypanosoma cruzi. Trop Med Health 2009. [DOI: 10.2149/tmh.2009-03] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
9
|
Logani MK, Szabo I, Makar V, Bhanushali A, Alekseev S, Ziskin MC. Effect of millimeter wave irradiation on tumor metastasis. Bioelectromagnetics 2006; 27:258-64. [PMID: 16437545 DOI: 10.1002/bem.20208] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
One of the major side effects of chemotherapy in cancer treatment is that it can enhance tumor metastasis due to suppression of natural killer (NK) cell activity. The present study was undertaken to examine whether millimeter electromagnetic waves (MMWs) irradiation (42.2 GHz) can inhibit tumor metastasis enhanced by cyclophosphamide (CPA), an anticancer drug. MMWs were produced with a Russian-made YAV-1 generator. Peak SAR and incident power density were measured as 730 +/- 100 W/kg and 36.5 +/- 5 mW/cm(2), respectively. Tumor metastasis was evaluated in C57BL/6 mice, an experimental murine model commonly used for metastatic melanoma. The animals were divided into 5 groups, 10 animals per group. The first group was not given any treatment. The second group was irradiated on the nasal area with MMWs for 30 min. The third group served as a sham control for group 2. The fourth group was given CPA (150 mg/kg body weight, ip) before irradiation. The fifth group served as a sham control for group 4. On day 2, all animals were injected, through a tail vein, with B16F10 melanoma cells, a tumor cell line syngeneic to C57BL/6 mice. Tumor colonies in lungs were counted 2 weeks following inoculation. CPA caused a marked enhancement in tumor metastases (fivefold), which was significantly reduced when CPA-treated animals were irradiated with MMWs. Millimeter waves also increased NK cell activity suppressed by CPA, suggesting that a reduction in tumor metastasis by MMWs is mediated through activation of NK cells.
Collapse
Affiliation(s)
- Mahendra K Logani
- Richard J. Fox Center for Biomedical Physics, Temple University School of Medicine, Philadelphia, PA 19140, USA.
| | | | | | | | | | | |
Collapse
|
10
|
Sardinha LR, Elias RM, Mosca T, Bastos KRB, Marinho CRF, D'Império Lima MR, Alvarez JM. Contribution of NK, NK T, gamma delta T, and alpha beta T cells to the gamma interferon response required for liver protection against Trypanosoma cruzi. Infect Immun 2006; 74:2031-42. [PMID: 16552032 PMCID: PMC1418886 DOI: 10.1128/iai.74.4.2031-2042.2006] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
In the present work, we show that intracellular Trypanosoma cruzi is rarely found in the livers of acutely infected mice, but inflammation is commonly observed. The presence of numerous intrahepatic amastigotes in infected gamma interferon (IFN-gamma)-deficient mice corroborates the notion that the liver is protected by an efficient local immunity. The contribution of different cell populations was suggested by data showing that CD4- and CD8-deficient mice were able to restrain liver parasite growth. Therefore, we have characterized the liver-infiltrating lymphocytes and determined the sources of IFN-gamma during acute T. cruzi infection. We observed that natural killer (NK) cells increased by day 7, while T and B cells increased by day 14. Among CD3+ cells, CD4+, CD8+, and CD4- CD8- cell populations were greatly expanded. A large fraction of CD3+ cells were positive for PanNK, a beta1 integrin expressed by NK and NK T cells. However, these lymphocytes were not classic NK T cells because they did not express NK1.1 and showed no preferential usage of Vbeta8. Otherwise, liver NK T (CD3+ NK1.1+) cells were not increased in acutely infected mice. The majority of PanNK+ CD4+ and PanNK+ CD8+ cells expressed T-cell receptor alphabeta (TCRalphabeta), whereas PanNK+ CD4- CD8- cells were positive for TCRgammadelta. In fact, gammadelta T cells showed the most remarkable increase (40- to 100-fold) among liver lymphocytes. Most importantly, intracellular analysis revealed high levels of IFN-gamma production at day 7 by NK cells and at day 14 by CD4+, CD8+, and CD4- CD8- TCRgammadelta+ cells. We concluded that NK cells are a precocious source of IFN-gamma in the livers of acutely infected mice, and, as the disease progresses, conventional CD4+ and CD8+ T cells and gammadelta T cells, but not classic NK-T cells, may provide the IFN-gamma required for liver protection against T. cruzi.
Collapse
MESH Headings
- Acute Disease
- Animals
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/metabolism
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- Chagas Disease/immunology
- Chagas Disease/pathology
- Chagas Disease/prevention & control
- Female
- Immunophenotyping
- Interferon-gamma/biosynthesis
- Interferon-gamma/deficiency
- Interferon-gamma/genetics
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Liver/immunology
- Liver/parasitology
- Liver/pathology
- Mice
- Mice, Inbred A
- Mice, Inbred BALB C
- Mice, Inbred C3H
- Mice, Inbred C57BL
- Mice, Knockout
- Receptors, Antigen, T-Cell, alpha-beta/biosynthesis
- Receptors, Antigen, T-Cell, gamma-delta/biosynthesis
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
- Trypanosoma cruzi/immunology
Collapse
Affiliation(s)
- Luiz Roberto Sardinha
- Departamento de Imunologia, ICB, Av. Prof. Lineu Prestes, 1730, Universidade de São Paulo, São Paulo, SP CEP-05508-000, Brazil.
| | | | | | | | | | | | | |
Collapse
|
11
|
Abstract
For a long time, the family of type I interferons (IFN-alpha/beta) has received little attention outside the fields of virology and tumor immunology. In recent years, IFN-alpha/beta regained the interest of immunologists, due to the phenotypic and functional characterization of IFN-alpha/beta-producing cells, the definition of novel immunomodulatory functions and signaling pathways of IFN-alpha/beta, and the observation that IFN-alpha/beta not only exerts antiviral effects but is also relevant for the pathogenesis or control of certain bacterial and protozoan infections. This review summarizes the current knowledge on the production and function of IFN-alpha/beta during non-viral infections in vitro and in vivo.
Collapse
Affiliation(s)
- Christian Bogdan
- Institute of Medical Microbiology and Hygiene, Department of Microbiology and Hygiene, University of Freiburg, Freiburg, Germany.
| | | | | |
Collapse
|
12
|
Lieke T, Graefe SEB, Klauenberg U, Fleischer B, Jacobs T. NK cells contribute to the control of Trypanosoma cruzi infection by killing free parasites by perforin-independent mechanisms. Infect Immun 2004; 72:6817-25. [PMID: 15557602 PMCID: PMC529106 DOI: 10.1128/iai.72.12.6817-6825.2004] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The protozoan parasite Trypanosoma cruzi circulates in the blood as trypomastigotes and invades a variety of cells to multiply intracellularly as amastigotes. The acute phase leads to an immune response that restricts the proliferation of the parasite. However, parasites are able to persist in different tissues, which causes the pathology of Chagas' disease. Natural killer (NK) cells play an important role in innate resistance to a variety of pathogens. In the present study we analyzed whether NK cells participated in the control of experimental T. cruzi infection. NK cells were depleted from C57BL/6 mice by antiasialo antibodies. This treatment caused an increased parasitemia during the acute phase, but tissue parasite burdens were not significantly altered according to quantitative real-time PCR. Our results demonstrated that NK cells were activated during the initial phase of a T. cruzi infection and exhibited a contact-dependent antiparasitic activity against extracellular parasites that was independent from perforin. Thus, NK cells limit the propagation of the parasite by acting on circulating T. cruzi trypomastigotes.
Collapse
Affiliation(s)
- Thorsten Lieke
- Department of Immunology, Bernhard Nocht Institute for Tropical Medicine, Bernhard-Nocht-Strasse 76, 20359 Hamburg, Germany
| | | | | | | | | |
Collapse
|
13
|
Korbel DS, Finney OC, Riley EM. Natural killer cells and innate immunity to protozoan pathogens. Int J Parasitol 2004; 34:1517-28. [PMID: 15582528 DOI: 10.1016/j.ijpara.2004.10.006] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2004] [Revised: 09/16/2004] [Accepted: 10/06/2004] [Indexed: 10/26/2022]
Abstract
Natural killer (NK) cells are lymphoid cells that mediate significant cytotoxic activity and produce high levels of pro-inflammatory cytokines in response to infection. During viral infection, NK cell cytotoxicity and cytokine production is induced principally by monocyte-macrophage- and dendritic cell-derived cytokines but virally encoded ligands for NK cells are also beginning to be described. NK derived interferon-gamma (IFN-gamma) production is also essential for control of several protozoal infections including toxoplasmosis, trypanosomiasis, leishmaniasis and malaria. The activation of NK cells by protozoan pathogens is also believed to be cytokine-mediated although some recent studies suggest that direct recognition of parasites by NK cells also occurs. Both indirect signalling via accessory cell-derived cytokines and direct signalling, presumably through NK receptors, are needed in order for human malaria parasites (Plasmodium falciparum) to optimally stimulate NK activity.
Collapse
Affiliation(s)
- Daniel S Korbel
- Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | | | | |
Collapse
|
14
|
Une C, Andersson J, Orn A. Role of IFN-alpha/beta and IL-12 in the activation of natural killer cells and interferon-gamma production during experimental infection with Trypanosoma cruzi. Clin Exp Immunol 2003; 134:195-201. [PMID: 14616777 PMCID: PMC1808850 DOI: 10.1046/j.1365-2249.2003.02294.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Control of Trypanosoma cruzi infection depends largely upon the production of interferon (IFN)-gamma. During experimental infection this cytokine is produced early, mainly by natural killer (NK) cells and later by T cells. As NK cells have been reported to participate in defence against T. cruzi, it is of importance to study the regulation of NK cell functions during infection with the parasite. Several innate cytokines regulate NK cell activity, among them being interferon (IFN)-alpha and IFN-beta (type 1 IFNs) and interleukin (IL)-12, which have all been reported to be involved in protection against T. cruzi. The role of these cytokines in regulation of NK cell functions and disease outcome were studied by infection of mutant mice lacking the IFN-alpha/beta receptor (IFNalpha/betaR-/-) or IL-12 (IL-12-/-) with T. cruzi. IFNalpha/betaR-/- mice were unable to activate the cytotoxic response but produced IFN-gamma, and were not more susceptible than controls. IL-12-/- mice were extremely susceptible and failed to produce T cell-derived IFN-gamma and nitric oxide (NO), although NK cytotoxicity was induced. The results indicate that IL-12 protects against T. cruzi by initiating T cell-mediated production of IFN-gamma, but that endogenous IFN-alpha/beta and NK cell cytotoxicity are not of major importance in defence.
Collapse
Affiliation(s)
- C Une
- Microbiology and Tumor Biology Center, Karolinska Institutet, Stockholm, Sweden.
| | | | | |
Collapse
|
15
|
Duthie MS, Wleklinski-Lee M, Smith S, Nakayama T, Taniguchi M, Kahn SJ. During Trypanosoma cruzi infection CD1d-restricted NK T cells limit parasitemia and augment the antibody response to a glycophosphoinositol-modified surface protein. Infect Immun 2002; 70:36-48. [PMID: 11748161 PMCID: PMC127608 DOI: 10.1128/iai.70.1.36-48.2002] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Trypanosoma cruzi is a protozoan parasite that chronically infects many mammalian species and in humans causes Chagas' disease, a chronic inflammatory disease. The parasite expresses glycophosphoinositol (GPI), which potently stimulates interleukin 12 (IL-12) production. During T. cruzi infection IL-12, and possibly GPI, might stimulate NK T cells to affect the protective and chronic inflammatory responses. Here we report that during T. cruzi infection CD1d-restricted NK T cells are stimulated as NK T-cell-deficient mice have greater parasitemia. Furthermore, during T. cruzi infection the percentages of NK T cells in the liver and spleen become decreased for prolonged periods of time, and in vitro stimulation of NK T cells derived from livers of chronically infected mice, compared to uninfected mice, results in increased gamma interferon and IL-4 secretion. Moreover, in NK T-cell-deficient mice the chronic-phase antibody response to a GPI-modified surface protein is decreased. These results indicate that, during the acute infection, NK T cells limit parasitemia and that, during the chronic phase, NK T cells augment the antibody response. Thus, during T. cruzi infection the quality of an individual's NK T-cell response can affect the level of parasitemia and parasite tissue burden, the intensity of the chronic inflammatory responses, and possibly the outcome of Chagas' disease.
Collapse
MESH Headings
- Animals
- Antibodies, Protozoan/biosynthesis
- Antibodies, Protozoan/immunology
- Antigens, CD1/immunology
- Antigens, CD1d
- Cell Division
- Cells, Cultured
- Chagas Disease/immunology
- Chagas Disease/parasitology
- Chronic Disease
- Disease Models, Animal
- Female
- Galactosylceramides/pharmacology
- Interferon-gamma/biosynthesis
- Interleukin-4/biosynthesis
- Killer Cells, Natural/cytology
- Killer Cells, Natural/drug effects
- Killer Cells, Natural/immunology
- Liver/cytology
- Liver/immunology
- Lymphocyte Count
- Male
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Knockout
- Parasitemia/immunology
- Spleen/cytology
- Spleen/immunology
- T-Lymphocytes/cytology
- T-Lymphocytes/drug effects
- T-Lymphocytes/immunology
- Trypanosoma cruzi/immunology
- Variant Surface Glycoproteins, Trypanosoma/immunology
Collapse
|