1
|
Bemis JC, Avlasevich SL, Labash C, McKinzie P, Revollo J, Dobrovolsky VN, Dertinger SD. Glycosylphosphatidylinositol (GPI) anchored protein deficiency serves as a reliable reporter of Pig-a gene Mutation: Support from an in vitro assay based on L5178Y/Tk +/- cells and the CD90.2 antigen. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2018; 59:18-29. [PMID: 29115020 PMCID: PMC5771857 DOI: 10.1002/em.22154] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 10/11/2017] [Accepted: 10/14/2017] [Indexed: 06/07/2023]
Abstract
Lack of cell surface glycosylphosphatidylinositol (GPI)-anchored protein(s) has been used as a reporter of Pig-a gene mutation in several model systems. As an extension of this work, our laboratory initiated development of an in vitro mutation assay based on the flow cytometric assessment of CD90.2 expression on the cell surface of the mouse lymphoma cell line L5178Y/Tk+/- . Cells were exposed to mutagenic and nonmutagenic compounds for 24 hr followed by washout and incubation for an additional 7 days. Following this mutant manifestation time, cells were labeled with fluorescent antibodies against CD90.2 and CD45 antigens. These reagents indicated the presence of GPI-anchored proteins and general cell surface membrane receptor integrity, respectively. Instrument set-up was aided by parallel processing of a GPI anchor-deficient subclone. Results show that the mutagens reproducibly caused increased frequencies of mutant phenotype cells, while the nonmutagens did not. Further modifications to the method, including application of a viability dye and an isotype control for instrument set-up, were investigated. As a means to verify that the GPI-anchored protein-negative phenotype reflects bona fide Pig-a gene mutation, sequencing was performed on 38 CD90.2-negative L5178Y/Tk+/- clones derived from cultures treated with ethyl methanesulfonate. All clones were found to have mutation(s) within the Pig-a gene. The continued investigation of L5178Y/Tk+/- cells, CD90.2 labeling, and flow cytometric analysis as the basis of an in vitro mutation assay is clearly supported by this work. These data also provide evidence of the reliability of using GPI anchor-deficiency as a valid reporter of Pig-a gene mutation. Environ. Mol. Mutagen. 59:18-29, 2018. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
| | | | | | - Page McKinzie
- US Food and Drug Administration, National Center for Toxicological Research, Jefferson, Arkansas
| | - Javier Revollo
- US Food and Drug Administration, National Center for Toxicological Research, Jefferson, Arkansas
| | - Vasily N Dobrovolsky
- US Food and Drug Administration, National Center for Toxicological Research, Jefferson, Arkansas
| | | |
Collapse
|
2
|
Amet T, Lan J, Shepherd N, Yang K, Byrd D, Xing Y, Yu Q. Glycosylphosphatidylinositol Anchor Deficiency Attenuates the Production of Infectious HIV-1 and Renders Virions Sensitive to Complement Attack. AIDS Res Hum Retroviruses 2016; 32:1100-1112. [PMID: 27231035 PMCID: PMC5067833 DOI: 10.1089/aid.2016.0046] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) escapes complement-mediated lysis (CML) by incorporating host regulators of complement activation (RCA) into its envelope. CD59, a key member of RCA, is incorporated into HIV-1 virions at levels that protect against CML. Since CD59 is a glycosylphosphatidylinositol-anchored protein (GPI-AP), we used GPI anchor-deficient Jurkat cells (Jurkat-7) that express intracellular CD59, but not surface CD59, to study the molecular mechanisms underlying CD59 incorporation into HIV-1 virions and the role of host proteins in virus replication. Compared to Jurkat cells, Jurkat-7 cells were less supportive to HIV-1 replication and more sensitive to CML. Jurkat-7 cells exhibited similar capacities of HIV-1 binding and entry to Jurkat cells, but were less supportive to viral RNA and DNA biosynthesis as infected Jurkat-7 cells produced reduced amounts of HIV-1 RNA and DNA. HIV-1 virions produced from Jurkat-7 cells were CD59 negative, suggesting that viral particles acquire CD59, and probably other host proteins, from the cell membrane rather than intracellular compartments. As a result, CD59-negative virions were sensitive to CML. Strikingly, these virions exhibited reduced activity of virus binding and were less infectious, implicating that GPI-APs may be also important in ensuring the integrity of HIV-1 particles. Transient expression of the PIG-A gene restored CD59 expression on the surface of Jurkat-7 cells. After HIV-1 infection, the restored CD59 was colocalized with viral envelope glycoprotein gp120/gp41 within lipid rafts, which is identical to that on infected Jurkat cells. Thus, HIV-1 virions acquire RCA from the cell surface, likely lipid rafts, to escape CML and ensure viral infectivity.
Collapse
Affiliation(s)
- Tohti Amet
- Department of Microbiology and Immunology, Indiana Center for AIDS Research, Indiana University School of Medicine, Indianapolis, Indiana
| | - Jie Lan
- Department of Microbiology and Immunology, Indiana Center for AIDS Research, Indiana University School of Medicine, Indianapolis, Indiana
| | - Nicole Shepherd
- Department of Microbiology and Immunology, Indiana Center for AIDS Research, Indiana University School of Medicine, Indianapolis, Indiana
| | - Kai Yang
- Wenzhou Institute of Biomaterials and Engineering, Wenzhou, China
| | - Daniel Byrd
- Department of Microbiology and Immunology, Indiana Center for AIDS Research, Indiana University School of Medicine, Indianapolis, Indiana
| | - Yanyan Xing
- Department of Microbiology and Immunology, Indiana Center for AIDS Research, Indiana University School of Medicine, Indianapolis, Indiana
- Department of Pathophysiology, Medical College of Jinan University, Guangzhou, China
| | - Qigui Yu
- Department of Microbiology and Immunology, Indiana Center for AIDS Research, Indiana University School of Medicine, Indianapolis, Indiana
- Wenzhou Institute of Biomaterials and Engineering, Wenzhou, China
- Division of Infectious Diseases, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| |
Collapse
|
3
|
Claus M, Wingert S, Watzl C. Modulation of natural killer cell functions by interactions between 2B4 and CD48 in cis and in trans. Open Biol 2016; 6:rsob.160010. [PMID: 27249817 PMCID: PMC4892432 DOI: 10.1098/rsob.160010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 04/24/2016] [Indexed: 01/23/2023] Open
Abstract
SLAM-related receptors (SRRs) are important modulators of immune cell function. While most SRRs are homophilic, 2B4 (CD244) interacts with CD48, a GPI-anchored protein expressed on many haematopoietic cells. Here we show that natural killer (NK) cell-expressed 2B4 not only binds in trans to CD48 on neighbouring cells but also interacts in cis with CD48 on the same cell. 2B4 uses the same binding site to interact with CD48 in cis and in trans and structural flexibility of 2B4 is necessary for the cis interaction. Furthermore, the cis interaction is sufficient to induce basal phosphorylation of 2B4. However, cis interaction reduces the ability of 2B4 to bind CD48 in trans. As a consequence, stimulation-dependent phosphorylation of 2B4 upon binding to CD48 positive target cells is reduced. Interfering with the cis interaction therefore enhanced the lysis of CD48-expressing tumour cells. These data show that the density of 2B4 and CD48 on both the NK cell and the potential target cell modulates NK cell activity.
Collapse
Affiliation(s)
- Maren Claus
- Leibniz Research Centre for Working Environment and Human Factors at TU Dortmund (IfADo) Dortmund, Germany
| | - Sabine Wingert
- Leibniz Research Centre for Working Environment and Human Factors at TU Dortmund (IfADo) Dortmund, Germany
| | - Carsten Watzl
- Leibniz Research Centre for Working Environment and Human Factors at TU Dortmund (IfADo) Dortmund, Germany
| |
Collapse
|
4
|
Savage WJ, Barber JP, Mukhina GL, Hu R, Chen G, Matsui W, Thoburn C, Hess AD, Cheng L, Jones RJ, Brodsky RA. Glycosylphosphatidylinositol-anchored protein deficiency confers resistance to apoptosis in PNH. Exp Hematol 2008; 37:42-51. [PMID: 19013003 DOI: 10.1016/j.exphem.2008.09.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2008] [Revised: 08/28/2008] [Accepted: 09/02/2008] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Investigate the contribution of PIG-A mutations to clonal expansion in paroxysmal nocturnal hemoglobinuria (PNH). MATERIALS AND METHODS Primary CD34+ hematopoietic progenitors from PNH patients were assayed for annexin-V positivity by flow cytometry in a cell-mediated killing assay using autologous effectors from PNH patients or allogeneic effectors from healthy controls. To specifically assess the role of the PIG-A mutation in the development of clonal dominance and address confounders of secondary mutation and differential immune attack that can confound experiments using primary cells, we established an inducible PIG-A CD34+ myeloid cell line, TF-1. Apoptosis resistance was assessed after exposure to allogeneic effectors, NK92 cells (an interleukin-2-dependent cell line with the phenotype and function of activated natural killer [NK] cells), tumor necrosis factor (TNF)-alpha, and gamma-irradiation. Apoptosis was measured by annexin-V staining and caspase 3/7 activity. RESULTS In PNH patients, CD34+ hematopoietic progenitors lacking glycosylphosphatidylinositol (GPI)-anchored proteins (GPI-AP(-)) were less susceptible than GPI-AP+ CD34+ precursors to autologous (8% vs 49%; p < 0.05) and allogeneic (28% vs 58%; p < 0.05) cell-mediated killing from the same patients. In the inducible PIG-A model, GPI-AP(-) TF-1 cells exhibited less apoptosis than induced, GPI-AP+ TF-1 cells in response to allogeneic cell-mediated killing, NK92-mediated killing, TNF-alpha, and gamma-irradiation. GPI-AP(-) TF-1 cells maintained resistance to apoptosis when effectors were raised against GPI-AP(-) cells, arguing against a GPI-AP being the target of immune attack in PNH. NK92-mediated killing was partially inhibited with blockade by specific antibodies to the stress-inducible GPI-AP ULBP1 and ULBP2 that activate immune effectors. Clonal competition experiments demonstrate that the mutant clone expands over time under proapoptotic conditions with TNF-alpha. CONCLUSION PIG-A mutations contribute to clonal expansion in PNH by conferring a survival advantage to hematopoietic progenitors under proapoptotic stresses.
Collapse
Affiliation(s)
- William J Savage
- Division of Hematology, Johns Hopkins University School of Medicine, Baltimore, MD 21205-2196, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Paulick MG, Bertozzi CR. The glycosylphosphatidylinositol anchor: a complex membrane-anchoring structure for proteins. Biochemistry 2008; 47:6991-7000. [PMID: 18557633 PMCID: PMC2663890 DOI: 10.1021/bi8006324] [Citation(s) in RCA: 399] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Positioned at the C-terminus of many eukaryotic proteins, the glycosylphosphatidylinositol (GPI) anchor is a posttranslational modification that anchors the modified protein in the outer leaflet of the cell membrane. The GPI anchor is a complex structure comprising a phosphoethanolamine linker, glycan core, and phospholipid tail. GPI-anchored proteins are structurally and functionally diverse and play vital roles in numerous biological processes. While several GPI-anchored proteins have been characterized, the biological functions of the GPI anchor have yet to be elucidated at a molecular level. This review discusses the structural diversity of the GPI anchor and its putative cellular functions, including involvement in lipid raft partitioning, signal transduction, targeting to the apical membrane, and prion disease pathogenesis. We specifically highlight studies in which chemically synthesized GPI anchors and analogues have been employed to study the roles of this unique posttranslational modification.
Collapse
Affiliation(s)
- Margot G Paulick
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | | |
Collapse
|
6
|
A chemical approach to unraveling the biological function of the glycosylphosphatidylinositol anchor. Proc Natl Acad Sci U S A 2007; 104:20332-7. [PMID: 18077333 DOI: 10.1073/pnas.0710139104] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The glycosylphosphatidylinositol (GPI) anchor is a C-terminal posttranslational modification found on many eukaryotic proteins that reside in the outer leaflet of the cell membrane. The complex and diverse structures of GPI anchors suggest a rich spectrum of biological functions, but few have been confirmed experimentally because of the lack of appropriate techniques that allow for structural perturbation in a cellular context. We previously synthesized a series of GPI anchor analogs with systematic deletions within the glycan core and coupled them to the GFP by a combination of expressed protein ligation and native chemical ligation [Paulick MG, Wise AR, Forstner MB, Groves JT, Bertozzi CR (2007) J Am Chem Soc 129:11543-11550]. Here we investigate the behavior of these GPI-protein analogs in living cells. These modified proteins integrated into the plasma membranes of a variety of mammalian cells and were internalized and directed to recycling endosomes similarly to GFP bearing a native GPI anchor. The GPI-protein analogs also diffused freely in cellular membranes. However, changes in the glycan structure significantly affected membrane mobility, with the loss of monosaccharide units correlating to decreased diffusion. Thus, this cellular system provides a platform for dissecting the contributions of various GPI anchor components to their biological function.
Collapse
|
7
|
Duxbury MS, Ito H, Benoit E, Waseem T, Ashley SW, Whang EE. A novel role for carcinoembryonic antigen-related cell adhesion molecule 6 as a determinant of gemcitabine chemoresistance in pancreatic adenocarcinoma cells. Cancer Res 2004; 64:3987-93. [PMID: 15173012 DOI: 10.1158/0008-5472.can-04-0424] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Most patients with pancreatic adenocarcinoma present with surgically incurable disease. Gemcitabine, the principal agent used to treat such patients, has little impact on outcome. Overexpression of carcinoembryonic antigen-related cell adhesion molecule (CEACAM) 6, a feature of this malignancy, is associated with resistance to anoikis and increased metastasis. The purpose of this study was to determine the role of CEACAM6 in cellular chemoresistance to gemcitabine. CEACAM6 was stably overexpressed in Capan2 cells, which inherently express very low levels of the protein. Suppression of CEACAM6 expression was achieved in BxPC3 cells, which inherently overexpress CEACAM6, by stable transfection of a CEACAM6 small interfering RNA-generating vector. The effects of modulating CEACAM6 expression on gemcitabine-induced cytotoxicity were determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide cytotoxicity assay, flow cytometric apoptosis quantification, caspase profiling, and Western analysis of cytoplasmic cytochrome c release. The roles of Akt and c-Src kinases as downstream targets of CEACAM6 signaling were examined. Stable overexpression of CEACAM6 in Capan2 increased gemcitabine chemoresistance, whereas CEACAM6 gene silencing in BxPC3 markedly increased the sensitivity of these cells to gemcitabine. Differential expression of CEACAM6 modulates Akt activity in a c-Src-dependent manner, and CEACAM6 overexpression appears to protect cells from cytochrome c-induced caspase 3 activation and apoptosis.
Collapse
Affiliation(s)
- Mark S Duxbury
- Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | |
Collapse
|
8
|
Liu S, Leppla SH. Retroviral insertional mutagenesis identifies a small protein required for synthesis of diphthamide, the target of bacterial ADP-ribosylating toxins. Mol Cell 2003; 12:603-13. [PMID: 14527407 DOI: 10.1016/j.molcel.2003.08.003] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Retroviral insertional mutagenesis was used to produce a mutant Chinese hamster ovary cell line that is completely resistant to several different bacterial ADP-ribosylating toxins. The gene responsible for toxin resistance, termed diphtheria toxin (DT) and Pseudomonas exotoxin A (ETA) sensitivity required gene 1 (DESR1), encodes two small protein isoforms of 82 and 57 residues. DESR1 is evolutionally conserved and ubiquitously expressed. Only the longer isoform is functional because the mutant cell line can be complemented by transfection with the long but not the short isoform. We demonstrate that DESR1 is required for the first step in the posttranslational modification of elongation factor-2 at His(715) that yields diphthamide, the target site for ADP ribosylation by DT and ETA. KTI11, the analog of DESR1 in yeast, which was originally identified as a gene regulating the sensitivity of yeast to zymocin, is also required for diphthamide biosynthesis, implicating DESR1/KTI11 in multiple biological processes.
Collapse
Affiliation(s)
- Shihui Liu
- Microbial Pathogenesis Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | |
Collapse
|
9
|
Robert D, Mahon FX, Richard E, Etienne G, de Verneuil H, Moreau-Gaudry F. A SIN lentiviral vector containing PIGA cDNA allows long-term phenotypic correction of CD34+-derived cells from patients with paroxysmal nocturnal hemoglobinuria. Mol Ther 2003; 7:304-16. [PMID: 12668126 DOI: 10.1016/s1525-0016(03)00011-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
Paroxysmal nocturnal hemoglobinuria (PNH) is a hematopoietic stem cell (HSC) disorder in which an acquired somatic mutation of the X-linked PIGA gene results in a deficiency in GPI-anchored surface proteins. Clinically, PNH is dominated by a chronic hemolytic anemia, often associated with recurrent nocturnal exacerbations, neutropenia, thrombocytopenia, and thrombotic tendency. Allogenic bone marrow transplantation is the only potentially curative treatment for severe forms of PNH but is associated with a high treatment-related morbidity and mortality. HSC gene therapy could provide a new therapeutic option, especially when an HLA-matched donor is not available. To develop an efficient gene transfer approach, we have designed a new SIN lentiviral vector (TEPW) that contains the PIGA cDNA driven by the human elongation factor 1 alpha promoter, the central DNA flap of HIV-1, and the WPRE cassette. TEPW transduction led to a complete surface expression of the GPI anchor and CD59 in PIGA-deficient cell lines without any selection procedure. Moreover, efficient gene transfer was achieved in bone marrow and mobilized peripheral blood CD34(+) cells derived from two patients with severe PNH disease. This expression was stable during erythroid, myeloid, and megakaryocytic liquid culture differentiation. CD59 surface cell expression was fully restored during 5 weeks of long-term culture.
Collapse
Affiliation(s)
- David Robert
- INSERM E 0217, Laboratoire de Pathologie Moléculaire et Thérapie Génique, Université Victor Segalen Bordeaux 2, 146 Rue Léo Saignat, 33076 Bordeaux, France
| | | | | | | | | | | |
Collapse
|
10
|
Kulkarni S, Bessler M. The effect of GPI‐anchor deficiency on apoptosis in mice carrying a
Piga
gene mutation in hematopoietic cells. J Leukoc Biol 2002. [DOI: 10.1189/jlb.72.6.1228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Shashikant Kulkarni
- Department of Internal Medicine, Division of Hematology, Washington University School of Medicine, St. Louis, Missouri
| | - Monica Bessler
- Department of Internal Medicine, Division of Hematology, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
11
|
Potter MD, Nicchitta CV. Endoplasmic reticulum-bound ribosomes reside in stable association with the translocon following termination of protein synthesis. J Biol Chem 2002; 277:23314-20. [PMID: 11964406 DOI: 10.1074/jbc.m202559200] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In current views, translation-coupled ribosome binding to the endoplasmic reticulum (ER) membrane is transient, with association occurring via the signal recognition particle pathway and dissociation occurring upon the termination of protein synthesis. Recent studies indicate, however, that ribosomal subunits remain membrane-bound following the termination of protein synthesis. To define the mechanism of post-termination ribosome association with the ER membrane, membrane-bound ribosomes were detergent-solubilized from tissue culture cells at different stages of the protein synthesis cycle, and the composition of the ribosome-associated membrane protein fraction was determined. We report that ribosomes reside in stable association with the Sec61alpha-translocon following the termination stage of protein synthesis. Additionally, in vitro experiments revealed that solubilized, gradient-purified ribosome-translocon complexes were able to initiate the translation of secretory and cytosolic proteins and were functional in assays of signal sequence recognition. Using this experimental system, synthesis of signal sequence-bearing polypeptides yielded a tight ribosome-translocon junction; synthesis of nascent polypeptides lacking a signal sequence resulted in a disruption of this junction. On the basis of these data, we propose that in situ, ribosomes reside in association with the translocon throughout the cycle of protein synthesis, with membrane release occurring upon translation of proteins lacking topogenic signals.
Collapse
Affiliation(s)
- Matthew D Potter
- Department of Cell Biology, Box 3709, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | |
Collapse
|
12
|
Kinoshita T, Inoue N. Relationship between aplastic anemia and paroxysmal nocturnal hemoglobinuria. Int J Hematol 2002; 75:117-22. [PMID: 11939256 DOI: 10.1007/bf02982015] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Since aplastic anemia-paroxysmal nocturnal hemoglobinuria syndrome was reported in 1967, the overlap of idiopathic aplastic anemia (AA) and paroxysmal nocturnal hemoglobinuria (PNH) has been well known. The link between the 2 diseases became even more evident when immunosuppressive therapy improved survival of patients with severe AA. More than 10% of patients with AA develop clinically evident PNH. Moreover, flow cytometric analysis demonstrates that the majority of patients with AA have a subclinical percentage of granulocytes with PNH phenotype. Some of them have clearly recognizable PNH clones. Granulocytes with a PNH phenotype are also often found in normal individuals, though at much smaller percentages of cells. This finding suggests that a PNH clone is expanded in AA. consistent with a hypothesis that blood cells from patients with PNH are more resistant to an autoimmune environment. Survival of PNH clones in pathologic bone marrow may account for limited expansion of PNH clones; however, additional genetic change(s) that confers cells with growth phenotype may be required for the full development of PNH.
Collapse
Affiliation(s)
- Taroh Kinoshita
- Department of Immunoregulation, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | | |
Collapse
|
13
|
Lyakisheva A, Felda O, Ganser A, Schmidt RE, Schubert J. Paroxysmal nocturnal hemoglobinuria: Differential gene expression of EGR-1 and TAXREB107. Exp Hematol 2002; 30:18-25. [PMID: 11823033 DOI: 10.1016/s0301-472x(01)00763-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
OBJECTIVE Paroxysmal nocturnal hemoglobinuria (PNH) is an acquired clonal defect of hematopoietic stem cells characterized by deficiency in GPI-anchored surface proteins. It is not yet known how GPI-deficient stem cells are able to expand within the bone marrow and contribute considerably to the hematopoiesis. In PNH, as well as in AA and MDS, genetic instability and increased mutation frequency have been detected. Therefore, a second event is very likely, such as additional mutations, leading to clonal expansion of GPI-deficient bone marrow stem cell in PNH. METHODS In order to elucidate the molecular basis of clonal expansion in PNH, we identified several genes differentially expressed in normal and GPI-deficient cells of PNH patients by combination of RNA fingerprinting and cDNA array hybridization. RESULTS Expression of two of these genes, EGR-1 and TAXREB107, has been further investigated. EGR-1 is upregulated in granulocytes of all PNH patients analyzed so far. In contrast, significant upregulation of TAXREB107 is present only in some of our PNH patients. Further analysis confirmed their overexpression in PNH and excluded a possible secondary event character of observed overexpression. Moreover, similar levels of expression in cases of other clonal diseases, such as MPS and MDS, has been identified. CONCLUSION Our data suggest that additional genetic alterations apart from PIG-A mutations could be present in PNH granulocytes. In addition, these genetic changes might contribute to clonal expansion of GPI-deficient cells in PNH.
Collapse
Affiliation(s)
- Anna Lyakisheva
- Dept. of Hematology/Oncology, Hannover Medical School, Hannover, Germany
| | | | | | | | | |
Collapse
|
14
|
Koide M, Kurihara N, Maeda H, Reddy SV. Identification of the functional domain of osteoclast inhibitory peptide-1/hSca. J Bone Miner Res 2002; 17:111-8. [PMID: 11771657 DOI: 10.1359/jbmr.2002.17.1.111] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Osteoclast (OCL) activity is controlled by local factors produced in the bone microenvironment. We previously identified a novel inhibitor of OCL formation that is produced by OCLs (osteoclast inhibitory peptide-1/human Sca [OIP-1/hSca]). OIP-1/hSca is a glycosylphosphatidylinositol (GPI)-linked membrane protein (16 kDa) that is cleaved from the OCL surface. Immunocytochemical staining further confirmed the expression of OIP-1/hSca in OCL formed in mouse bone marrow cultures. However, the structure/function mechanisms responsible for the inhibitory effects of OIP-1/hSca on OCL formation are unknown. Therefore, we expressed deletion mutants of OIP-1 in 293 cells and tested their effects on OCL formation. These studies indicated that the carboxy-terminal peptide (c-peptide) region is critical for OIP-1/hSca activity. A 33 amino acid OIP-1 c-peptide (10-100 ng/ml) significantly inhibited 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] induced OCL formation and pit formation capacity of OCL on dentine slices in human bone marrow cultures. Furthermore, the c-peptide (10-100 ng/ml) significantly inhibited early human OCL precursor (granulocyte-macrophage colony-forming unit [GM-CFU]) colony formation in methylcellulose cultures. The polyclonal antibody against the OIP-1 c-peptide neutralized the inhibitory effect of OIP-1 c-peptide on OCL formation in mouse bone marrow cultures in vitro. These results show that the OIP-1 c-peptide is the functional domain of OIP-1 and that availability of neutralizing antibody specific to the OIP-1 c-peptide should provide important mechanistic insights into OIP-1/hSca inhibition of osteoclastogenesis in the bone microenvironment.
Collapse
Affiliation(s)
- Masanori Koide
- Department of Medicine/Hematology, University of Texas Health Science Center, San Antonio, USA
| | | | | | | |
Collapse
|