1
|
Lee S, Jang DG, Kyoung YJ, Kim J, Kim ES, Hwang I, Youn JC, Kim JS, Kim IC. Proteome-wide Characterization and Pathophysiology Correlation in Non-ischemic Cardiomyopathies. Korean Circ J 2024; 54:468-481. [PMID: 38956938 PMCID: PMC11306425 DOI: 10.4070/kcj.2024.0033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/10/2024] [Accepted: 05/08/2024] [Indexed: 07/04/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Although the clinical consequences of advanced heart failure (HF) may be similar across different etiologies of cardiomyopathies, their proteomic expression may show substantial differences in relation to underlying pathophysiology. We aimed to identify myocardial tissue-based proteomic characteristics and the underlying molecular pathophysiology in non-ischemic cardiomyopathy with different etiologies. METHODS Comparative extensive proteomic analysis of the myocardium was performed in nine patients with biopsy-proven non-ischemic cardiomyopathies (3 dilated cardiomyopathy [DCM], 2 hypertrophic cardiomyopathy [HCM], and 4 myocarditis) as well as five controls using tandem mass tags combined with liquid chromatography-mass spectrometry. Differential protein expression analysis, Gene Ontology (GO) analysis, and Ingenuity Pathway Analysis (IPA) were performed to identify proteomic differences and molecular mechanisms in each cardiomyopathy type compared to the control. Proteomic characteristics were further evaluated in accordance with clinical and pathological findings. RESULTS The principal component analysis score plot showed that the controls, DCM, and HCM clustered well. However, myocarditis samples exhibited scattered distribution. IPA revealed the downregulation of oxidative phosphorylation and upregulation of the sirtuin signaling pathway in both DCM and HCM. Various inflammatory pathways were upregulated in myocarditis with the downregulation of Rho GDP dissociation inhibitors. The molecular pathophysiology identified by extensive proteomic analysis represented the clinical and pathological properties of each cardiomyopathy with abundant proteomes. CONCLUSIONS Different etiologies of non-ischemic cardiomyopathies in advanced HF exhibit distinct proteomic expression despite shared pathologic findings. The benefit of tailored management strategies considering the different proteomic expressions in non-ischemic advanced HF requires further investigation.
Collapse
Affiliation(s)
- Seonhwa Lee
- Division of Cardiology, Department of Internal Medicine, Cardiovascular Center, Keimyung University Dongsan Hospital, Keimyung University School of Medicine, Daegu, Korea
| | - Dong-Gi Jang
- Center for RNA Research, Institute for Basic Science, Seoul, Korea
- School of Biological Sciences, Seoul National University, Seoul, Korea
| | - Yeon Ju Kyoung
- Center for RNA Research, Institute for Basic Science, Seoul, Korea
- School of Biological Sciences, Seoul National University, Seoul, Korea
| | - Jeesoo Kim
- Center for RNA Research, Institute for Basic Science, Seoul, Korea
- School of Biological Sciences, Seoul National University, Seoul, Korea
| | - Eui-Soon Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| | - Ilseon Hwang
- Department of Pathology, Keimyung University Dongsan Hospital, Keimyung University School of Medicine, Daegu, Korea
| | - Jong-Chan Youn
- Division of Cardiology, Department of Internal Medicine, Seoul St. Mary's Hospital, Catholic Research Institute for Intractable Cardiovascular Disease, College of Medicine, The Catholic University of Korea, Seoul, Korea.
| | - Jong-Seo Kim
- Center for RNA Research, Institute for Basic Science, Seoul, Korea
- School of Biological Sciences, Seoul National University, Seoul, Korea.
| | - In-Cheol Kim
- Division of Cardiology, Department of Internal Medicine, Cardiovascular Center, Keimyung University Dongsan Hospital, Keimyung University School of Medicine, Daegu, Korea.
| |
Collapse
|
2
|
Tkaczyszyn M, Górniak KM, Lis WH, Ponikowski P, Jankowska EA. Iron Deficiency and Deranged Myocardial Energetics in Heart Failure. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:17000. [PMID: 36554881 PMCID: PMC9778731 DOI: 10.3390/ijerph192417000] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/10/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
Among different pathomechanisms involved in the development of heart failure, adverse metabolic myocardial remodeling closely related to ineffective energy production, constitutes the fundamental feature of the disease and translates into further progression of both cardiac dysfunction and maladaptations occurring within other organs. Being the component of key enzymatic machineries, iron plays a vital role in energy generation and utilization, hence the interest in whether, by correcting systemic and/or cellular deficiency of this micronutrient, we can influence the energetic efficiency of tissues, including the heart. In this review we summarize current knowledge on disturbed energy metabolism in failing hearts as well as we analyze experimental evidence linking iron deficiency with deranged myocardial energetics.
Collapse
Affiliation(s)
- Michał Tkaczyszyn
- Institute of Heart Diseases, Wroclaw Medical University, 50-556 Wroclaw, Poland
- Institute of Heart Diseases, University Hospital, 50-566 Wroclaw, Poland
| | | | - Weronika Hanna Lis
- Institute of Heart Diseases, University Hospital, 50-566 Wroclaw, Poland
| | - Piotr Ponikowski
- Institute of Heart Diseases, Wroclaw Medical University, 50-556 Wroclaw, Poland
- Institute of Heart Diseases, University Hospital, 50-566 Wroclaw, Poland
| | - Ewa Anita Jankowska
- Institute of Heart Diseases, Wroclaw Medical University, 50-556 Wroclaw, Poland
- Institute of Heart Diseases, University Hospital, 50-566 Wroclaw, Poland
| |
Collapse
|
3
|
Beneficial Effects of RNS60 in Cardiac Ischemic Injury. Curr Issues Mol Biol 2022; 44:4877-4887. [PMID: 36286046 PMCID: PMC9600597 DOI: 10.3390/cimb44100331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/06/2022] [Accepted: 10/12/2022] [Indexed: 11/17/2022] Open
Abstract
RNS60 is a physically modified saline solution hypothesized to contain oxygen nanobubbles. It has been reported to reduce ischemia/reperfusion injury in a pig model of acute myocardial infarction. We investigated the effects of RNS60 during cardiac hypoxia in mice and as an additive to cardioplegic solution in rat hearts. ApoE−/−LDLr−/− mice were treated by intravenous injection of RNS60 or saline as a control while monitoring the ECG and post-hypoxic serum release of troponin T and creatine kinase activity. Hearts infused with Custodiol containing 10% RNS60 or saline as the control were subjected to 4 h of 4 °C preservation, followed by an assessment of myocardial metabolites, purine release, and mechanical function. RNS60 attenuated changes in the ECG STU area during hypoxia, while the troponin T concentration and creatine kinase activity were significantly higher in the serum of the controls. During reperfusion after 4 h of cold ischemia, the Custodiol/RNS60-treated hearts had about 30% lower LVEDP and better dp/dtmax and dp/dtmin together with a decreased release of purine catabolites vs. the controls. The myocardial ATP, total adenine nucleotides, and phosphocreatine concentrations were higher in the RNS60-treated hearts. This study indicates that RNS60 enhances cardioprotection in experimental myocardial hypoxia and under conditions of cardioplegic arrest. Improved cardiac energetics are involved in the protective effect, but complete elucidation of the mechanism requires further study.
Collapse
|
4
|
Palm CL, Nijholt KT, Bakker BM, Westenbrink BD. Short-Chain Fatty Acids in the Metabolism of Heart Failure – Rethinking the Fat Stigma. Front Cardiovasc Med 2022; 9:915102. [PMID: 35898266 PMCID: PMC9309381 DOI: 10.3389/fcvm.2022.915102] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 06/23/2022] [Indexed: 12/12/2022] Open
Abstract
Heart failure (HF) remains a disease with immense global health burden. During the development of HF, the myocardium and therefore cardiac metabolism undergoes specific changes, with decreased long-chain fatty acid oxidation and increased anaerobic glycolysis, diminishing the overall energy yield. Based on the dogma that the failing heart is oxygen-deprived and on the fact that carbohydrates are more oxygen-efficient than FA, metabolic HF drugs have so far aimed to stimulate glucose oxidation or inhibit FA oxidation. Unfortunately, these treatments have failed to provide meaningful clinical benefits. We believe it is time to rethink the concept that fat is harmful to the failing heart. In this review we discuss accumulating evidence that short-chain fatty acids (SCFAs) may be an effective fuel for the failing heart. In contrast to long-chain fatty acids, SCFAs are readily taken up and oxidized by the heart and could serve as a nutraceutical treatment strategy. In addition, we discuss how SCFAs activate pathways that increase long chain fatty acid oxidation, which could help increase the overall energy availability. Another potential beneficial effect we discuss lies within the anti-inflammatory effect of SCFAs, which has shown to inhibit cardiac fibrosis – a key pathological process in the development of HF.
Collapse
Affiliation(s)
- Constantin L. Palm
- Department of Cardiology, University Medical Centre Groningen, University of Groningen, Groningen, Netherlands
| | - Kirsten T. Nijholt
- Department of Cardiology, University Medical Centre Groningen, University of Groningen, Groningen, Netherlands
| | - Barbara M. Bakker
- Department of Pediatrics, University Medical Centre Groningen, University of Groningen, Groningen, Netherlands
| | - B. Daan Westenbrink
- Department of Cardiology, University Medical Centre Groningen, University of Groningen, Groningen, Netherlands
- *Correspondence: B. Daan Westenbrink
| |
Collapse
|
5
|
Shao-Mei W, Li-Fang Y, Li-Hong W. Traditional Chinese medicine enhances myocardial metabolism during heart failure. Biomed Pharmacother 2021; 146:112538. [PMID: 34922111 DOI: 10.1016/j.biopha.2021.112538] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 12/10/2021] [Accepted: 12/13/2021] [Indexed: 11/02/2022] Open
Abstract
The prognosis of various cardiovascular diseases eventually leads to heart failure (HF). An energy metabolism disorder of cardiomyocytes is important in explaining the molecular basis of HF; this will aid global research regarding treatment options for HF from the perspective of myocardial metabolism. There are many drugs to improve myocardial metabolism for the treatment of HF, including angiotensin receptor blocker-neprilysin inhibitor (ARNi) and sodium glucose cotransporter 2 (SGLT-2) inhibitors. Although Western medicine has made considerable progress in HF therapy, the morbidity and mortality of the disease remain high. Therefore, HF has attracted attention from researchers worldwide. In recent years, the application of traditional Chinese medicine (TCM) in HF treatment has been gradually accepted, and many studies have investigated the mechanism whereby TCM improves myocardial metabolism; the TCMs studied include Danshen yin, Fufang Danshen dripping pill, and Shenmai injection. This enables the clinical application of TCM in the treatment of HF by improving myocardial metabolism. We systematically reviewed the efficacy of TCM for improving myocardial metabolism during HF as well as the pharmacological effects of active TCM ingredients on the cardiovascular system and the potential mechanisms underlying their ability to improve myocardial metabolism. The results indicate that TCM may serve as a complementary and alternative approach for the prevention of HF. However, further rigorously designed randomized controlled trials are warranted to assess the effect of TCM on long-term hard endpoints in patients with cardiovascular disease.
Collapse
Affiliation(s)
- Wang Shao-Mei
- Cardiovascular Medicine Department, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, 158 Shangtang Road, Hangzhou 310014, Zhejiang, China
| | - Ye Li-Fang
- Cardiovascular Medicine Department, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, 158 Shangtang Road, Hangzhou 310014, Zhejiang, China
| | - Wang Li-Hong
- Cardiovascular Medicine Department, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, 158 Shangtang Road, Hangzhou 310014, Zhejiang, China.
| |
Collapse
|
6
|
Berndt N, Eckstein J, Wallach I, Nordmeyer S, Kelm M, Kirchner M, Goubergrits L, Schafstedde M, Hennemuth A, Kraus M, Grune T, Mertins P, Kuehne T, Holzhütter HG. CARDIOKIN1: Computational Assessment of Myocardial Metabolic Capability in Healthy Controls and Patients With Valve Diseases. Circulation 2021; 144:1926-1939. [PMID: 34762513 PMCID: PMC8663543 DOI: 10.1161/circulationaha.121.055646] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Supplemental Digital Content is available in the text. Background: Many heart diseases can result in reduced pumping capacity of the heart muscle. A mismatch between ATP demand and ATP production of cardiomyocytes is one of the possible causes. Assessment of the relation between myocardial ATP production (MVATP) and cardiac workload is important for better understanding disease development and choice of nutritional or pharmacologic treatment strategies. Because there is no method for measuring MVATP in vivo, the use of physiology-based metabolic models in conjunction with protein abundance data is an attractive approach. METHOD: We developed a comprehensive kinetic model of cardiac energy metabolism (CARDIOKIN1) that recapitulates numerous experimental findings on cardiac metabolism obtained with isolated cardiomyocytes, perfused animal hearts, and in vivo studies with humans. We used the model to assess the energy status of the left ventricle of healthy participants and patients with aortic stenosis and mitral valve insufficiency. Maximal enzyme activities were individually scaled by means of protein abundances in left ventricle tissue samples. The energy status of the left ventricle was quantified by the ATP consumption at rest (MVATP[rest]), at maximal workload (MVATP[max]), and by the myocardial ATP production reserve, representing the span between MVATP(rest) and MVATP(max). Results: Compared with controls, in both groups of patients, MVATP(rest) was increased and MVATP(max) was decreased, resulting in a decreased myocardial ATP production reserve, although all patients had preserved ejection fraction. The variance of the energetic status was high, ranging from decreased to normal values. In both patient groups, the energetic status was tightly associated with mechanic energy demand. A decrease of MVATP(max) was associated with a decrease of the cardiac output, indicating that cardiac functionality and energetic performance of the ventricle are closely coupled. Conclusions: Our analysis suggests that the ATP-producing capacity of the left ventricle of patients with valvular dysfunction is generally diminished and correlates positively with mechanical energy demand and cardiac output. However, large differences exist in the energetic state of the myocardium even in patients with similar clinical or image-based markers of hypertrophy and pump function. Registration: URL: https://www.clinicaltrials.gov; Unique identifiers: NCT03172338 and NCT04068740.
Collapse
Affiliation(s)
- Nikolaus Berndt
- Institute of Computer-assisted Cardiovascular Medicine, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Johannes Eckstein
- Institute of Computer-assisted Cardiovascular Medicine, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany; Institute of Biochemistry, Charitá - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Iwona Wallach
- Institute of Computer-assisted Cardiovascular Medicine, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany; Institute of Biochemistry, Charitá - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Sarah Nordmeyer
- Institute of Computer-assisted Cardiovascular Medicine, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany; Department of Congenital Heart Disease - Pediatric Cardiology, Deutsches Herzzentrum Berlin (DHZB), Berlin, Germany
| | - Marcus Kelm
- Institute of Computer-assisted Cardiovascular Medicine, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany; Department of Congenital Heart Disease - Pediatric Cardiology, Deutsches Herzzentrum Berlin (DHZB), Berlin, Germany; Deutsches Zentrum für Herz-Kreislauf-Forschung e. V. (DZHK), Berlin, Germany; Berlin Institute of Health (BIH), Berlin, Germany
| | - Marieluise Kirchner
- Berlin Institute of Health (BIH), Berlin, Germany; Proteomics Platform, Max Delbrück Center for Molecular Medicine (MDC), Berlin, Germany
| | - Leonid Goubergrits
- Institute of Computer-assisted Cardiovascular Medicine, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany; Einstein Center Digital Future, Berlin, Germany
| | - Marie Schafstedde
- Institute of Computer-assisted Cardiovascular Medicine, Charité; Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany; Department of Congenital Heart Disease - Pediatric Cardiology, Deutsches Herzzentrum Berlin (DHZB), Berlin, Germany; Berlin Institute of Health (BIH), Berlin, Germany
| | - Anja Hennemuth
- Institute of Computer-assisted Cardiovascular Medicine, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Milena Kraus
- Digital Health Center, Hasso Plattner Institute, University of Potsdam, Germany
| | - Tilman Grune
- Deutsches Zentrum für Herz-Kreislauf-Forschung e. V. (DZHK), Berlin, Germany; Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Nuthetal, Germany
| | - Philipp Mertins
- Berlin Institute of Health (BIH), Berlin, Germany; Proteomics Platform, Max Delbrück Center for Molecular Medicine (MDC), Berlin, Germany
| | - Titus Kuehne
- Institute of Computer-assisted Cardiovascular Medicine, Charité; Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany; Department of Congenital Heart Disease - Pediatric Cardiology, Deutsches Herzzentrum Berlin (DHZB), Berlin, Germany; Deutsches Zentrum für Herz-Kreislauf-Forschung e. V. (DZHK), Berlin, Germany
| | - Hermann-Georg Holzhütter
- Institute of Biochemistry, Charitá - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
7
|
Christiansen LB, Reimann MJ, Schou-Pedersen AMV, Larsen S, Lykkesfeldt J, Olsen LH. Depleted Myocardial Coenzyme Q10 in Cavalier King Charles Spaniels with Congestive Heart Failure Due to Myxomatous Mitral Valve Disease. Antioxidants (Basel) 2021; 10:antiox10020161. [PMID: 33499156 PMCID: PMC7911325 DOI: 10.3390/antiox10020161] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/18/2021] [Accepted: 01/19/2021] [Indexed: 12/21/2022] Open
Abstract
Congestive heart failure (CHF) has been associated with depleted myocardial coenzyme Q10 (Q10) concentrations in human patients. The aim of this study was to investigate associations between myocardial Q10 concentrations and myxomatous mitral valve disease (MMVD) severity in dogs. Furthermore, citrate synthase (CS) activity was analysed to determine if a reduction in myocardial Q10 was associated with mitochondrial depletion in the myocardium. Thirty Cavalier King Charles spaniels (CKCS) in MMVD stages B1 (n = 11), B2 (n = 5) and C (n = 14) according to the American College of Veterinary Internal Medicine (ACVIM) guidelines and 10 control (CON) dogs of other breeds were included. Myocardial Q10 concentration was analysed in left ventricular tissue samples using HPLC-ECD. CKCS with congestive heart failure (CHF; group C) had significantly reduced Q10 concentrations (median, 1.54 µg/mg; IQR, 1.36–1.94), compared to B1 (2.76 µg/mg; 2.10–4.81, p < 0.0018), B2 (3.85 µg/mg; 3.13–4.46, p < 0.0054) and CON dogs (2.8 µg/mg; 1.64–4.88, p < 0.0089). CS activity was comparable between disease groups. In conclusion, dogs with CHF due to MMVD had reduced myocardial Q10 concentrations. Studies evaluating antioxidant defense mechanisms as a therapeutic target for treatment of CHF in dogs are warranted.
Collapse
Affiliation(s)
- Liselotte B. Christiansen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Ridebanevej 9, 1870 Frederiksberg C, Denmark; (L.B.C.); (M.J.R.); (A.M.V.S.-P.); (J.L.)
| | - Maria J. Reimann
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Ridebanevej 9, 1870 Frederiksberg C, Denmark; (L.B.C.); (M.J.R.); (A.M.V.S.-P.); (J.L.)
| | - Anne Marie V. Schou-Pedersen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Ridebanevej 9, 1870 Frederiksberg C, Denmark; (L.B.C.); (M.J.R.); (A.M.V.S.-P.); (J.L.)
| | - Steen Larsen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark;
- Clinical Research Centre, Medical University of Bialystok, 15-089 Bialystok, Poland
| | - Jens Lykkesfeldt
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Ridebanevej 9, 1870 Frederiksberg C, Denmark; (L.B.C.); (M.J.R.); (A.M.V.S.-P.); (J.L.)
| | - Lisbeth H. Olsen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Ridebanevej 9, 1870 Frederiksberg C, Denmark; (L.B.C.); (M.J.R.); (A.M.V.S.-P.); (J.L.)
- Correspondence:
| |
Collapse
|
8
|
Peterzan MA, Clarke WT, Lygate CA, Lake HA, Lau JYC, Miller JJ, Johnson E, Rayner JJ, Hundertmark MJ, Sayeed R, Petrou M, Krasopoulos G, Srivastava V, Neubauer S, Rodgers CT, Rider OJ. Cardiac Energetics in Patients With Aortic Stenosis and Preserved Versus Reduced Ejection Fraction. Circulation 2020; 141:1971-1985. [PMID: 32438845 PMCID: PMC7294745 DOI: 10.1161/circulationaha.119.043450] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Supplemental Digital Content is available in the text. Why some but not all patients with severe aortic stenosis (SevAS) develop otherwise unexplained reduced systolic function is unclear. We investigate the hypothesis that reduced creatine kinase (CK) capacity and flux is associated with this transition.
Collapse
Affiliation(s)
- Mark A Peterzan
- Oxford Centre for Clinical Magnetic Resonance Research, Division of Cardiovascular Medicine (M.A.P., J.Y.C.L., J.J.M., J.J.R., M.J.H., S.N., O.J.R.), University of Oxford, United Kingdom
| | - William T Clarke
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences (W.T.C.), University of Oxford, United Kingdom
| | | | - Hannah A Lake
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine (H.A.L.), University of Oxford, United Kingdom
| | - Justin Y C Lau
- Oxford Centre for Clinical Magnetic Resonance Research, Division of Cardiovascular Medicine (M.A.P., J.Y.C.L., J.J.M., J.J.R., M.J.H., S.N., O.J.R.), University of Oxford, United Kingdom
| | - Jack J Miller
- Oxford Centre for Clinical Magnetic Resonance Research, Division of Cardiovascular Medicine (M.A.P., J.Y.C.L., J.J.M., J.J.R., M.J.H., S.N., O.J.R.), University of Oxford, United Kingdom
| | - Errin Johnson
- Dunn School of Pathology (E.J.), University of Oxford, United Kingdom
| | - Jennifer J Rayner
- Oxford Centre for Clinical Magnetic Resonance Research, Division of Cardiovascular Medicine (M.A.P., J.Y.C.L., J.J.M., J.J.R., M.J.H., S.N., O.J.R.), University of Oxford, United Kingdom
| | - Moritz J Hundertmark
- Oxford Centre for Clinical Magnetic Resonance Research, Division of Cardiovascular Medicine (M.A.P., J.Y.C.L., J.J.M., J.J.R., M.J.H., S.N., O.J.R.), University of Oxford, United Kingdom
| | - Rana Sayeed
- Department of Cardiothoracic Surgery, Oxford Heart Centre, John Radcliffe Hospital, United Kingdom (R.S., G.K., V.S.)
| | - Mario Petrou
- Department of Cardiothoracic Surgery, Royal Brompton and Harefield National Health Service Foundation Trust, London, United Kingdom (M.P.)
| | - George Krasopoulos
- Department of Cardiothoracic Surgery, Oxford Heart Centre, John Radcliffe Hospital, United Kingdom (R.S., G.K., V.S.)
| | - Vivek Srivastava
- Department of Cardiothoracic Surgery, Oxford Heart Centre, John Radcliffe Hospital, United Kingdom (R.S., G.K., V.S.)
| | - Stefan Neubauer
- Oxford Centre for Clinical Magnetic Resonance Research, Division of Cardiovascular Medicine (M.A.P., J.Y.C.L., J.J.M., J.J.R., M.J.H., S.N., O.J.R.), University of Oxford, United Kingdom
| | | | - Oliver J Rider
- Oxford Centre for Clinical Magnetic Resonance Research, Division of Cardiovascular Medicine (M.A.P., J.Y.C.L., J.J.M., J.J.R., M.J.H., S.N., O.J.R.), University of Oxford, United Kingdom
| |
Collapse
|
9
|
Wen J, Zhang L, Liu H, Wang J, Li J, Yang Y, Wang Y, Cai H, Li R, Zhao Y. Salsolinol Attenuates Doxorubicin-Induced Chronic Heart Failure in Rats and Improves Mitochondrial Function in H9c2 Cardiomyocytes. Front Pharmacol 2019; 10:1135. [PMID: 31680945 PMCID: PMC6797600 DOI: 10.3389/fphar.2019.01135] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 09/03/2019] [Indexed: 02/06/2023] Open
Abstract
Backgrounds: Salsolinol (SAL), a plant-based isoquinoline alkaloid, was initially isolated from Aconiti Lateralis Radix Praeparata (ALRP) and identified as the active cardiotonic component of ALRP. This study was aimed to explore the therapeutic effect and mechanism by which SAL attenuates doxorubicin (DOX)-induced chronic heart failure (CHF) in rats and improves mitochondrial function in H9c2 cardiomyocytes. Methods: Rats were intraperitoneally injected with DOX to establish CHF model. Therapeutic effects of SAL on hemodynamic parameters, serum indices, and the histopathology of the heart were analyzed in vivo. Moreover, H9c2 cardiomyocytes were pretreated with SAL for 2 h before DOX treatment in all procedures in vitro. Cell viability, cardiomyocyte morphology, proliferation, and mitochondrial function were detected by a high-content screening (HCS) assay. In addition, a Seahorse Extracellular Flux (XFp) analyzer was used to evaluate the cell energy respiratory and energy metabolism function. To further investigate the potential mechanism of SAL, relative mRNA and protein expression of key enzymes in the tricarboxylic acid cycle in vivo and mitochondrial calcium uniporter (MCU) signaling pathway-related molecules in vitro were detected. Results: The present data demonstrated the pharmacological effect of SAL on DOX-induced CHF, which was through ameliorating heart function, downregulating serum levels of myocardial injury markers, alleviating histological injury to the heart, increasing the relative mRNA expression levels of key enzymes downstream of the tricarboxylic acid cycle in vivo, and thus enhancing myocardial energy metabolism. In addition, SAL had effects on increasing cell viability, ameliorating DOX-induced mitochondrial dysfunction, and increasing mitochondrial oxygen consumption rate (OCR) and extracellular acidification rate (ECAR) in H9c2 cardiomyocyte. Moreover, we found that SAL might have an effect on improving mitochondrial respiratory function and energy metabolism via inhibiting excessive activation of MCU pathway in H9c2 cells. However, the protective effect could be ameliorated by ruthenium red (an MCU inhibitor) and abrogated by spermine (an MCU activator) in vitro. Conclusion: The therapeutic effects of SAL on CHF are possibly related to ameliorating cardiomyocyte function resulting in promotion of mitochondrial respiratory and energy metabolism. Furthermore, the potential mechanism might be related to downregulating MCU pathway. These findings may provide a potential therapy for CHF.
Collapse
Affiliation(s)
- Jianxia Wen
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Department of Pharmacy, Fifth Medical Center, General Hospital of Chinese PLA, Beijing, China
| | - Lu Zhang
- College of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Honghong Liu
- Integrative Medical Center, Fifth Medical Center, General Hospital of Chinese PLA, Beijing, China
| | - Jiabo Wang
- Integrative Medical Center, Fifth Medical Center, General Hospital of Chinese PLA, Beijing, China
| | - Jianyu Li
- Integrative Medical Center, Fifth Medical Center, General Hospital of Chinese PLA, Beijing, China
| | - Yuxue Yang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Department of Pharmacy, Fifth Medical Center, General Hospital of Chinese PLA, Beijing, China
| | - Yingying Wang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Department of Pharmacy, Fifth Medical Center, General Hospital of Chinese PLA, Beijing, China
| | - Huadan Cai
- Department of Pharmacy, Fifth Medical Center, General Hospital of Chinese PLA, Beijing, China
| | - Ruisheng Li
- Research Center for Clinical and Translational Medicine, Fifth Medical Center, General Hospital of Chinese PLA, Beijing, China
| | - Yanling Zhao
- Department of Pharmacy, Fifth Medical Center, General Hospital of Chinese PLA, Beijing, China
| |
Collapse
|
10
|
Coats CJ, Heywood WE, Virasami A, Ashrafi N, Syrris P, Dos Remedios C, Treibel TA, Moon JC, Lopes LR, McGregor CGA, Ashworth M, Sebire NJ, McKenna WJ, Mills K, Elliott PM. Proteomic Analysis of the Myocardium in Hypertrophic Obstructive Cardiomyopathy. CIRCULATION-GENOMIC AND PRECISION MEDICINE 2019; 11:e001974. [PMID: 30562113 DOI: 10.1161/circgen.117.001974] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Hypertrophic cardiomyopathy (HCM) is characterized by a complex phenotype that is only partly explained by the biological effects of individual genetic variants. The aim of this study was to use proteomic analysis of myocardial tissue to explore the postgenomic phenotype. METHODS Label-free proteomic analysis was used initially to compare protein profiles in myocardial samples from 11 patients with HCM undergoing surgical myectomy with control samples from 6 healthy unused donor hearts. Differentially expressed proteins of interest were validated in myocardial samples from 65 unrelated individuals (HCM [n=51], controls [n=7], and aortic stenosis [n=7]) by the development and use of targeted multiple reaction monitoring-based triple quadrupole mass spectrometry. RESULTS In this exploratory study, 1586 proteins were identified with 151 proteins differentially expressed in HCM samples compared with controls ( P<0.05). Protein expression profiling showed that many proteins identified in the initial discovery study were associated with metabolism, muscle contraction, calcium regulation, and oxidative stress. Proteins downregulated in HCM versus controls included creatine kinase M-type, fructose-bisphosphate aldolase A, and phosphoglycerate mutase ( P<0.001). Proteins upregulated in HCM included lumican, carbonic anhydrase 3, desmin, α-actin skeletal, and FHL1 (four and a half LIM domain protein 1; P<0.01). Myocardial lumican concentration correlated with the left atrial area (ρ=0.34, P=0.015), late gadolinium enhancement on cardiac magnetic resonance imaging ( P=0.03) and the presence of a pathogenic sarcomere mutation ( P=0.04). CONCLUSIONS The myocardial proteome of HCM provides supporting evidence for dysregulation of metabolic and structural proteins. The finding that lumican is raised in HCM hearts provides insight into the myocardial fibrosis that characterizes this disease.
Collapse
Affiliation(s)
- Caroline J Coats
- University College London Institute of Cardiovascular Science, London, United Kingdom (C.J.C., P.S., T.A.T., J.C.M., L.R.L., C.G.A.M., W.J.M., P.M.E.).,University College London Great Ormond Street Institute of Child Health, London, United Kingdom (C.J.C., W.E.H., N.A., K.M.)
| | - Wendy E Heywood
- University College London Great Ormond Street Institute of Child Health, London, United Kingdom (C.J.C., W.E.H., N.A., K.M.)
| | - Alex Virasami
- Histopathology Unit, Great Ormond Street Hospital for Children, London, United Kingdom (A.V., M.A., N.J.S.)
| | - Nadia Ashrafi
- University College London Great Ormond Street Institute of Child Health, London, United Kingdom (C.J.C., W.E.H., N.A., K.M.)
| | - Petros Syrris
- University College London Institute of Cardiovascular Science, London, United Kingdom (C.J.C., P.S., T.A.T., J.C.M., L.R.L., C.G.A.M., W.J.M., P.M.E.)
| | - Cris Dos Remedios
- Department of Anatomy and Histology, Bosch Institute, The University of Sydney, New South Wales, Australia (C.d.R.)
| | - Thomas A Treibel
- University College London Institute of Cardiovascular Science, London, United Kingdom (C.J.C., P.S., T.A.T., J.C.M., L.R.L., C.G.A.M., W.J.M., P.M.E.).,Barts Heart Centre, Barts Health NHS Trust, London, United Kingdom (T.A.T., J.C.M., L.R.L., P.M.E.)
| | - James C Moon
- University College London Institute of Cardiovascular Science, London, United Kingdom (C.J.C., P.S., T.A.T., J.C.M., L.R.L., C.G.A.M., W.J.M., P.M.E.).,Barts Heart Centre, Barts Health NHS Trust, London, United Kingdom (T.A.T., J.C.M., L.R.L., P.M.E.)
| | - Luis R Lopes
- University College London Institute of Cardiovascular Science, London, United Kingdom (C.J.C., P.S., T.A.T., J.C.M., L.R.L., C.G.A.M., W.J.M., P.M.E.).,Barts Heart Centre, Barts Health NHS Trust, London, United Kingdom (T.A.T., J.C.M., L.R.L., P.M.E.)
| | - Christopher G A McGregor
- University College London Institute of Cardiovascular Science, London, United Kingdom (C.J.C., P.S., T.A.T., J.C.M., L.R.L., C.G.A.M., W.J.M., P.M.E.)
| | - Michael Ashworth
- Histopathology Unit, Great Ormond Street Hospital for Children, London, United Kingdom (A.V., M.A., N.J.S.)
| | - Neil J Sebire
- Histopathology Unit, Great Ormond Street Hospital for Children, London, United Kingdom (A.V., M.A., N.J.S.)
| | - William J McKenna
- University College London Institute of Cardiovascular Science, London, United Kingdom (C.J.C., P.S., T.A.T., J.C.M., L.R.L., C.G.A.M., W.J.M., P.M.E.)
| | - Kevin Mills
- University College London Great Ormond Street Institute of Child Health, London, United Kingdom (C.J.C., W.E.H., N.A., K.M.)
| | - Perry M Elliott
- University College London Institute of Cardiovascular Science, London, United Kingdom (C.J.C., P.S., T.A.T., J.C.M., L.R.L., C.G.A.M., W.J.M., P.M.E.).,Barts Heart Centre, Barts Health NHS Trust, London, United Kingdom (T.A.T., J.C.M., L.R.L., P.M.E.)
| |
Collapse
|
11
|
Antoniou CK, Manolakou P, Magkas N, Konstantinou K, Chrysohoou C, Dilaveris P, Gatzoulis KA, Tousoulis D. Cardiac Resynchronisation Therapy and Cellular Bioenergetics: Effects Beyond Chamber Mechanics. Eur Cardiol 2019; 14:33-44. [PMID: 31131035 PMCID: PMC6523053 DOI: 10.15420/ecr.2019.2.2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Cardiac resynchronisation therapy is a cornerstone in the treatment of advanced dyssynchronous heart failure. However, despite its widespread clinical application, precise mechanisms through which it exerts its beneficial effects remain elusive. Several studies have pointed to a metabolic component suggesting that, both in concert with alterations in chamber mechanics and independently of them, resynchronisation reverses detrimental changes to cellular metabolism, increasing energy efficiency and metabolic reserve. These actions could partially account for the existence of responders that improve functionally but not echocardiographically. This article will attempt to summarise key components of cardiomyocyte metabolism in health and heart failure, with a focus on the dyssynchronous variant. Both chamber mechanics-related and -unrelated pathways of resynchronisation effects on bioenergetics – stemming from the ultramicroscopic level – and a possible common underlying mechanism relating mechanosensing to metabolism through the cytoskeleton will be presented. Improved insights regarding the cellular and molecular effects of resynchronisation on bioenergetics will promote our understanding of non-response, optimal device programming and lead to better patient care.
Collapse
Affiliation(s)
| | - Panagiota Manolakou
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens Athens, Greece
| | - Nikolaos Magkas
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens Athens, Greece
| | - Konstantinos Konstantinou
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens Athens, Greece
| | - Christina Chrysohoou
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens Athens, Greece
| | - Polychronis Dilaveris
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens Athens, Greece
| | - Konstantinos A Gatzoulis
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens Athens, Greece
| | - Dimitrios Tousoulis
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens Athens, Greece
| |
Collapse
|
12
|
Coats CJ, Heywood WE, Virasami A, Ashrafi N, Syrris P, dos Remedios C, Treibel TA, Moon JC, Lopes LR, McGregor CG, Ashworth M, Sebire NJ, McKenna WJ, Mills K, Elliott PM. Proteomic Analysis of the Myocardium in Hypertrophic Obstructive Cardiomyopathy. CIRCULATION-GENOMIC AND PRECISION MEDICINE 2018. [DOI: 10.1161/circgenetics.117.001974] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Caroline J. Coats
- University College London Institute of Cardiovascular Science, London, United Kingdom (C.J.C., P.S., T.A.T., J.C.M., L.R.L., C.G.A.M., W.J.M., P.M.E.)
- University College London Great Ormond Street Institute of Child Health, London, United Kingdom (C.J.C., W.E.H., N.A., K.M.)
| | - Wendy E. Heywood
- University College London Great Ormond Street Institute of Child Health, London, United Kingdom (C.J.C., W.E.H., N.A., K.M.)
| | - Alex Virasami
- Histopathology Unit, Great Ormond Street Hospital for Children, London, United Kingdom (A.V., M.A., N.J.S.)
| | - Nadia Ashrafi
- University College London Great Ormond Street Institute of Child Health, London, United Kingdom (C.J.C., W.E.H., N.A., K.M.)
| | - Petros Syrris
- University College London Institute of Cardiovascular Science, London, United Kingdom (C.J.C., P.S., T.A.T., J.C.M., L.R.L., C.G.A.M., W.J.M., P.M.E.)
| | - Cris dos Remedios
- Department of Anatomy and Histology, Bosch Institute, The University of Sydney, New South Wales, Australia (C.d.R.)
| | - Thomas A. Treibel
- University College London Institute of Cardiovascular Science, London, United Kingdom (C.J.C., P.S., T.A.T., J.C.M., L.R.L., C.G.A.M., W.J.M., P.M.E.)
- Barts Heart Centre, Barts Health NHS Trust, London, United Kingdom (T.A.T., J.C.M., L.R.L., P.M.E.)
| | - James C. Moon
- University College London Institute of Cardiovascular Science, London, United Kingdom (C.J.C., P.S., T.A.T., J.C.M., L.R.L., C.G.A.M., W.J.M., P.M.E.)
- Barts Heart Centre, Barts Health NHS Trust, London, United Kingdom (T.A.T., J.C.M., L.R.L., P.M.E.)
| | - Luis R. Lopes
- University College London Institute of Cardiovascular Science, London, United Kingdom (C.J.C., P.S., T.A.T., J.C.M., L.R.L., C.G.A.M., W.J.M., P.M.E.)
- Barts Heart Centre, Barts Health NHS Trust, London, United Kingdom (T.A.T., J.C.M., L.R.L., P.M.E.)
| | - Christopher G.A. McGregor
- University College London Institute of Cardiovascular Science, London, United Kingdom (C.J.C., P.S., T.A.T., J.C.M., L.R.L., C.G.A.M., W.J.M., P.M.E.)
| | - Michael Ashworth
- Histopathology Unit, Great Ormond Street Hospital for Children, London, United Kingdom (A.V., M.A., N.J.S.)
| | - Neil J. Sebire
- Histopathology Unit, Great Ormond Street Hospital for Children, London, United Kingdom (A.V., M.A., N.J.S.)
| | - William J. McKenna
- University College London Institute of Cardiovascular Science, London, United Kingdom (C.J.C., P.S., T.A.T., J.C.M., L.R.L., C.G.A.M., W.J.M., P.M.E.)
| | - Kevin Mills
- University College London Great Ormond Street Institute of Child Health, London, United Kingdom (C.J.C., W.E.H., N.A., K.M.)
| | - Perry M. Elliott
- University College London Institute of Cardiovascular Science, London, United Kingdom (C.J.C., P.S., T.A.T., J.C.M., L.R.L., C.G.A.M., W.J.M., P.M.E.)
- Barts Heart Centre, Barts Health NHS Trust, London, United Kingdom (T.A.T., J.C.M., L.R.L., P.M.E.)
| |
Collapse
|
13
|
Birkenfeld AL, Jordan J, Dworak M, Merkel T, Burnstock G. Myocardial metabolism in heart failure: Purinergic signalling and other metabolic concepts. Pharmacol Ther 2018; 194:132-144. [PMID: 30149104 DOI: 10.1016/j.pharmthera.2018.08.015] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Despite significant therapeutic advances in heart failure (HF) therapy, the morbidity and mortality associated with this disease remains unacceptably high. The concept of metabolic dysfunction as an important underlying mechanism in HF is well established. Cardiac function is inextricably linked to metabolism, with dysregulation of cardiac metabolism pathways implicated in a range of cardiac complications, including HF. Modulation of cardiac metabolism has therefore become an attractive clinical target. Cardiac metabolism is based on the integration of adenosine triphosphate (ATP) production and utilization pathways. ATP itself impacts the heart not only by providing energy, but also represents a central element in the purinergic signaling pathway, which has received considerable attention in recent years. Furthermore, novel drugs that have received interest in HF include angiotensin receptor blocker-neprilysin inhibitor (ARNi) and sodium glucose cotransporter 2 (SGLT-2) inhibitors, whose favorable cardiovascular profile has been at least partly attributed to their effects on metabolism. This review, describes the major metabolic pathways and concepts of the healthy heart (including fatty acid oxidation, glycolysis, Krebs cycle, Randle cycle, and purinergic signaling) and their dysregulation in the progression to HF (including ketone and amino acid metabolism). The cardiac implications of HF comorbidities, including metabolic syndrome, diabetes mellitus and cachexia are also discussed. Finally, the impact of current HF and diabetes therapies on cardiac metabolism pathways and the relevance of this knowledge for current clinical practice is discussed. Targeting cardiac metabolism may have utility for the future treatment of patients with HF, complementing current approaches.
Collapse
Affiliation(s)
- Andreas L Birkenfeld
- Medical Clinic III, Universitätsklinikum "Carl Gustav Carus", Technische Universität Dresden, Dresden, Germany; Paul Langerhans Institute Dresden, Helmholtz Center Munich, University Hospital, Faculty of Medicine, Dresden, German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany; Division of Diabetes and Nutritional Sciences, Rayne Institute, King's College London, London, UK
| | - Jens Jordan
- Institute of Aerospace Medicine, German Aerospace Center and Chair of Aerospace Medicine, University of Cologne, Cologne, Germany
| | | | | | - Geoffrey Burnstock
- Autonomic Neuroscience Centre, Royal Free Campus, University College Medical School, London, UK; Department of Pharmacology and Therapeutics, The University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
14
|
Xing B, Cao A, Sun W, Hou X. Relationship between left ventricular diastolic dyssynchrony and systolic dyssynchrony in hypertrophic cardiomyopathy by single-cardiac real-time three-dimensional ultrasonography. Exp Ther Med 2018; 15:3769-3774. [PMID: 29556262 PMCID: PMC5844065 DOI: 10.3892/etm.2018.5872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 01/09/2018] [Indexed: 11/24/2022] Open
Abstract
The relationship between left ventricular diastolic and systolic dyssynchrony in hypertrophic cardiomyopathy (HCM) was investigated by single-cardiac real-time three-dimensional ultrasonography. A total of 52 patients with HCM were selected in Jining No. 1 People's Hospital from July 2016 to June 2017. Additionally, a total of 52 healthy people were selected to serve as the control group. All participants received real-time two- and three-dimensional ultrasonography to evaluate left ventricular morphology, function and systolic and diastolic function. The relevant parameters included left ventricular end-diastolic volume (LVEDV), left ventricular end-systolic volume (LVESV), left ventricular ejection fraction (LVEF), end-systolic/diastolic sphericity index (ESSI/EDSI), systolic dyssynchrony index (SDI), diastolic dyssynchrony index (DDI), dispersion end systole (DISPES), diastolic dyssynchrony index-late (DDI-late) and dispersion end diastole (DISPED-late). The LVEF of observation group was significantly lower than that of the control group, while LVEDV, LVESV, E/A and E/Ea were significantly higher than those in control group (P<0.05); EDSI, DDI-late and DISPED-late were significantly higher in observation than in control group (P<0.05); ESSI, SDI and DISPES in observation were significantly higher than those in control group (P<0.05); The 16-segment time-volume curve of observation group was disordered without synchronization, while the curve of control group was regular and smooth with synchronization; Pearson's correlation analysis showed that SDI and DDI were positively correlated (P<0.05). In conclusion, three-dimensional ultrasonography can be used to effectively evaluate left ventricular diastolic and systolic dyssynchrony in HCM. The severity of diastolic is positively correlated with systolic dyssynchrony.
Collapse
Affiliation(s)
- Bing Xing
- Department of Cardiology, Jining No. 1 People's Hospital, Jining, Shandong 273200, P.R. China
| | - Ailin Cao
- Department of Cardiology, Affiliated Hospital of Jining Medical University, Jining, Shandong 272029, P.R. China
| | - Wei Sun
- Department of Cardiology, Jining No. 1 People's Hospital, Jining, Shandong 273200, P.R. China
| | - Xiyan Hou
- Department of Emergency, Affiliated Hospital of Jining Medical University, Jining, Shandong 272029, P.R. China
| |
Collapse
|
15
|
Abstract
The heart failure accounts for the highest mortality rate all over the world. The development of preventive therapeutic approaches is still in their infancy. Owing to the extremely high energy demand of the heart, the bioenergetics pathways need to respond efficiently based on substrate availability. The metabolic regulation of such heart bioenergetics is mediated by various rate limiting enzymes involved in energy metabolism. Although all the pertinent mechanisms are not clearly understood, the progressive decline in the activity of metabolic enzymes leading to diminished ATP production is known to cause progression of the heart failure. Therefore, metabolic therapy that can maintain the appropriate activities of metabolic enzymes can be a promising approach for the prevention and treatment of the heart failure. The flavonoids that constitute various human dietary ingredients also effectively offer a variety of health benefits. The flavonoids target a variety of metabolic enzymes and facilitate effective management of the equilibrium between production and utilization of energy in the heart. This review discusses the broad impact of metabolic enzymes in the heart functions and explains how the dysregulated enzyme activity causes the heart failure. In addition, the prospects of targeting dysregulated metabolic enzymes by developing flavonoid-based metabolic approaches are discussed.
Collapse
|
16
|
Chen Y, Chen S, Yue Z, Zhang Y, Zhou C, Cao W, Chen X, Zhang L, Liu P. Receptor-interacting protein 140 overexpression impairs cardiac mitochondrial function and accelerates the transition to heart failure in chronically infarcted rats. Transl Res 2017; 180:91-102.e1. [PMID: 27639592 DOI: 10.1016/j.trsl.2016.08.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 08/23/2016] [Accepted: 08/23/2016] [Indexed: 10/21/2022]
Abstract
Heart failure (HF) is associated with myocardial energy metabolic abnormality. Receptor-interacting protein 140 (RIP140) is an important transcriptional cofactor for maintaining energy balance in high-oxygen consumption tissues. However, the role of RIP140 in the pathologic processes of HF remains to be elucidated. In this study, we investigated the role of RIP140 in mitochondrial and cardiac functions in rodent hearts under myocardial infarction (MI) stress. MI was created by a permanent ligation of left anterior descending coronary artery and exogenous expression of RIP140 by adenovirus (Ad) vector delivery. Four weeks after MI or Ad-RIP140 treatment, cardiac function was assessed by echocardiographic and hemodynamics analyses, and the mitochondrial function was determined by mitochondrial genes expression, biogenesis, and respiration rates. In Ad-RIP140 or MI group, a subset of metabolic genes changed, accompanied with slight reductions in mitochondrial biogenesis and respiration rates but no change in adenosine triphosphate (ATP) content. Cardiac malfunction was compensated. However, under MI stress, rats overexpressing RIP140 exhibited greater repressions in mitochondrial genes, state 3 respiration rates, respiration control ratio, and ATP content and had further deteriorated cardiac malfunction. In conclusion, RIP140 overexpression leads to comparable cardiac function as resulted from MI, but RIP140 aggravates metabolic repression, mitochondrial malfunction, and further accelerates the transition to HF in response to MI stress.
Collapse
Affiliation(s)
- YanFang Chen
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, People's Republic of China; Department of Pharmacy, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China; National and Local United Engineering Laboratory of Druggability and New Drug Evaluation, Guangzhou, People's Republic of China
| | - ShaoRui Chen
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, People's Republic of China; National and Local United Engineering Laboratory of Druggability and New Drug Evaluation, Guangzhou, People's Republic of China
| | - ZhongBao Yue
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - YiQiang Zhang
- Division of Cardiology, and Institute of Stem Cell and Regenerative Medicine, School of Medicine, University of Washington, Seattle, Wash
| | - ChangHua Zhou
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - WeiWei Cao
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Xi Chen
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - LuanKun Zhang
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - PeiQing Liu
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, People's Republic of China; National and Local United Engineering Laboratory of Druggability and New Drug Evaluation, Guangzhou, People's Republic of China.
| |
Collapse
|
17
|
Toczek M, Zielonka D, Zukowska P, Marcinkowski JT, Slominska E, Isalan M, Smolenski RT, Mielcarek M. An impaired metabolism of nucleotides underpins a novel mechanism of cardiac remodeling leading to Huntington's disease related cardiomyopathy. Biochim Biophys Acta Mol Basis Dis 2016; 1862:2147-2157. [PMID: 27568644 DOI: 10.1016/j.bbadis.2016.08.019] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 08/04/2016] [Accepted: 08/23/2016] [Indexed: 01/28/2023]
Abstract
Huntington's disease (HD) is mainly thought of as a neurological disease, but multiple epidemiological studies have demonstrated a number of cardiovascular events leading to heart failure in HD patients. Our recent studies showed an increased risk of heart contractile dysfunction and dilated cardiomyopathy in HD pre-clinical models. This could potentially involve metabolic remodeling, that is a typical feature of the failing heart, with reduced activities of high energy phosphate generating pathways. In this study, we sought to identify metabolic abnormalities leading to HD-related cardiomyopathy in pre-clinical and clinical settings. We found that HD mouse models developed a profound deterioration in cardiac energy equilibrium, despite AMP-activated protein kinase hyperphosphorylation. This was accompanied by a reduced glucose usage and a significant deregulation of genes involved in de novo purine biosynthesis, in conversion of adenine nucleotides, and in adenosine metabolism. Consequently, we observed increased levels of nucleotide catabolites such as inosine, hypoxanthine, xanthine and uric acid, in murine and human HD serum. These effects may be caused locally by mutant HTT, via gain or loss of function effects, or distally by a lack of trophic signals from central nerve stimulation. Either may lead to energy equilibrium imbalances in cardiac cells, with activation of nucleotide catabolism plus an inhibition of re-synthesis. Our study suggests that future therapies should target cardiac mitochondrial dysfunction to ameliorate energetic dysfunction. Importantly, we describe the first set of biomarkers related to heart and skeletal muscle dysfunction in both pre-clinical and clinical HD settings.
Collapse
Affiliation(s)
- Marta Toczek
- Department of Biochemistry, Medical University of Gdansk, 1 Debinki Str, 80-210 Gdansk, Poland
| | - Daniel Zielonka
- Department of Social Medicine, Poznan University of Medical Sciences, 6 Rokietnicka Str, 60-806 Poznan, Poland
| | - Paulina Zukowska
- Department of Biochemistry, Medical University of Gdansk, 1 Debinki Str, 80-210 Gdansk, Poland
| | - Jerzy T Marcinkowski
- Department of Social Medicine, Poznan University of Medical Sciences, 6 Rokietnicka Str, 60-806 Poznan, Poland
| | - Ewa Slominska
- Department of Biochemistry, Medical University of Gdansk, 1 Debinki Str, 80-210 Gdansk, Poland
| | - Mark Isalan
- Department of Life Sciences, Imperial College London, Exhibition Road, SW7 2AZ London, UK
| | - Ryszard T Smolenski
- Department of Biochemistry, Medical University of Gdansk, 1 Debinki Str, 80-210 Gdansk, Poland.
| | - Michal Mielcarek
- Department of Life Sciences, Imperial College London, Exhibition Road, SW7 2AZ London, UK.
| |
Collapse
|
18
|
Sheeran FL, Pepe S. Posttranslational modifications and dysfunction of mitochondrial enzymes in human heart failure. Am J Physiol Endocrinol Metab 2016; 311:E449-60. [PMID: 27406740 DOI: 10.1152/ajpendo.00127.2016] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 06/28/2016] [Indexed: 11/22/2022]
Abstract
Deficiency of energy supply is a major complication contributing to the syndrome of heart failure (HF). Because the concurrent activity profile of mitochondrial bioenergetic enzymes has not been studied collectively in human HF, our aim was to examine the mitochondrial enzyme defects in left ventricular myocardium obtained from explanted end-stage failing hearts. Compared with nonfailing donor hearts, activity rates of complexes I and IV and the Krebs cycle enzymes isocitrate dehydrogenase, malate dehydrogenase, and aconitase were lower in HF, as determined spectrophotometrically. However, activity rates of complexes II and III and citrate synthase did not differ significantly between the two groups. Protein expression, determined by Western blotting, did not differ between the groups, implying posttranslational perturbation. In the face of diminished total glutathione and coenzyme Q10 levels, oxidative modification was explored as an underlying cause of enzyme dysfunction. Of the three oxidative modifications measured, protein carbonylation was increased significantly by 31% in HF (P < 0.01; n = 18), whereas levels of 4-hydroxynonenal and protein nitration, although elevated, did not differ. Isolation of complexes I and IV and F1FoATP synthase by immunocapture revealed that proteins containing iron-sulphur or heme redox centers were targets of oxidative modification. Energy deficiency in end-stage failing human left ventricle involves impaired activity of key electron transport chain and Krebs cycle enzymes without altered expression of protein levels. Augmented oxidative modification of crucial enzyme subunit structures implicates dysfunction due to diminished capacity for management of mitochondrial reactive oxygen species, thus contributing further to reduced bioenergetics in human HF.
Collapse
Affiliation(s)
- Freya L Sheeran
- Heart Research, Clinical Sciences, Murdoch Children's Research Institute, and Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Melbourne, Australia; and Department of Surgery at Alfred Hospital, Monash University, Melbourne, Australia
| | - Salvatore Pepe
- Heart Research, Clinical Sciences, Murdoch Children's Research Institute, and Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Melbourne, Australia; and Department of Surgery at Alfred Hospital, Monash University, Melbourne, Australia
| |
Collapse
|
19
|
Park SY, Trinity JD, Gifford JR, Diakos NA, McCreath L, Drakos S, Richardson RS. Mitochondrial function in heart failure: The impact of ischemic and non-ischemic etiology. Int J Cardiol 2016; 220:711-7. [PMID: 27394972 DOI: 10.1016/j.ijcard.2016.06.147] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 06/15/2016] [Accepted: 06/24/2016] [Indexed: 10/21/2022]
Abstract
BACKGROUND Although cardiac mitochondrial dysfunction is associated with heart failure (HF), this is a complex syndrome with two predominant etiologies, ischemic HF (iHF) and non-ischemic HF (niHF), and the exact impact of mitochondrial dysfunction in these two distinct forms of HF is unknown. METHODS AND RESULTS To determine the impact of HF etiology on mitochondrial function, respiration was measured in permeabilized cardiac muscle fibers from patients with iHF (n=17), niHF (n=18), and healthy donor hearts (HdH). Oxidative phosphorylation capacity (OXPHOS), assessed as state 3 respiration, fell progressively from HdH to niHF, to iHF (Complex I+II: 54±1; 34±4; 27±3pmol·s(-1)·mg(-1)) as did citrate synthase activity (CSA: 206±18; 129±6; 82±6nmol·mg(-1)·min(-1)). Although still significantly lower than HdH, normalization of OXPHOS by CSA negated the difference in mass specific OXPHOS between iHF and niHF. Interestingly, Complex I state 2 respiration increased progressively from HdH, to niHF, to iHF, whether or not normalized for CSA (0.6±0.2; 1.1±0.3; 2.3±0.3; pmol·mg(-1)·CSA), such that the respiratory control ratio (RCR), fell in the same manner across groups. Finally, both the total free radical levels (60±6; 46±4AU) and level of mitochondrial derived superoxide (1.0±0.2; 0.7±0.1AU) were greater in iHF compared to niHF, respectively. CONCLUSIONS Thus, the HF-related attenuation in OXPHOS actually appears to be independent of etiology when the lower mitochondrial content of iHF is taken into account. However, these findings provide evidence of deleterious intrinsic mitochondrial changes in iHF, compared to niHF, including greater proton leak, attenuated OXPHOS efficiency, and augmented free radical levels.
Collapse
Affiliation(s)
- Song-Young Park
- Geriatric Research, Education, and Clinical Center, George E. Whalen VA Medical Center, Salt Lake City, UT, USA; Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, USA
| | - Joel D Trinity
- Geriatric Research, Education, and Clinical Center, George E. Whalen VA Medical Center, Salt Lake City, UT, USA; Department of Internal Medicine, Division of Cardiovascular Medicine, University of Utah, Salt Lake City, UT, USA
| | - Jayson R Gifford
- Geriatric Research, Education, and Clinical Center, George E. Whalen VA Medical Center, Salt Lake City, UT, USA; Department of Internal Medicine, Division of Cardiovascular Medicine, University of Utah, Salt Lake City, UT, USA
| | - Nikolaos A Diakos
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Utah, Salt Lake City, UT, USA
| | - Lauren McCreath
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Utah, Salt Lake City, UT, USA
| | - Stavros Drakos
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Utah, Salt Lake City, UT, USA
| | - Russell S Richardson
- Geriatric Research, Education, and Clinical Center, George E. Whalen VA Medical Center, Salt Lake City, UT, USA; Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT, USA; Department of Internal Medicine, Division of Cardiovascular Medicine, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
20
|
Gao W, Wang ZM, Zhu M, Lian XQ, Zhao H, Zhao D, Yang ZJ, Lu X, Wang LS. Altered long noncoding RNA expression profiles in the myocardium of rats with ischemic heart failure. J Cardiovasc Med (Hagerstown) 2016; 16:473-9. [PMID: 26002832 DOI: 10.2459/jcm.0b013e32836499cd] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
AIMS Despite significant advances in the treatment of coronary artery disease, the prevalence of ischemic heart failure is still increasing rapidly. Long noncoding RNAs are a novel class of gene regulators and may contribute to disease cause. The aim of the present study was to investigate the expression profiles of long noncoding RNAs and their potential functional roles in ischemic heart failure. METHODS We applied a well-established ischemic heart failure rat model and performed long noncoding RNA microarray experiments on the left ventricular tissue of rats with ischemic heart failure and under sham control. Differentially expressed long noncoding RNAs and mRNAs were identified through fold-change filtering. Bioinformatic analyses were performed to predict the potential biological roles of key long noncoding RNAs. RESULTS We found that 1197 long noncoding RNAs and 2066 mRNAs were upregulated, whereas 1403 long noncoding RNAs and 2871 mRNAs were downregulated in failing hearts (fold-change > 2.0). We also identified 331 pairs of differentially expressed long noncoding RNAs and nearby coding genes, which contained 291 long noncoding RNAs and 296 mRNAs. Expression levels of four long noncoding RNA-mRNA pairs, which might be involved in the pathogenesis of ischemic heart failure were confirmed by quantitative real-time PCR. CONCLUSION Our study identified a set of long noncoding RNAs that were aberrantly expressed in rats with ischemic heart failure and might be involved in the pathogenesis of ischemic heart failure. The results of our study may provide a novel perspective for better understanding the molecular basis of ischemic heart failure.
Collapse
Affiliation(s)
- Wei Gao
- aDepartment of Cardiology, the First Affiliated Hospital of Nanjing Medical University bDepartment of Geriatrics, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, China *Wei Gao and Ze-Mu Wang contributed equally to this work
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Ultrastructural myocardial changes in seven cats with spontaneous hypertrophic cardiomyopathy. J Vet Cardiol 2015; 17 Suppl 1:S220-32. [DOI: 10.1016/j.jvc.2015.10.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 10/05/2015] [Accepted: 10/15/2015] [Indexed: 11/22/2022]
|
22
|
Shi J, Dai W, Hale SL, Brown DA, Wang M, Han X, Kloner RA. Bendavia restores mitochondrial energy metabolism gene expression and suppresses cardiac fibrosis in the border zone of the infarcted heart. Life Sci 2015; 141:170-8. [PMID: 26431885 DOI: 10.1016/j.lfs.2015.09.022] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 09/02/2015] [Accepted: 09/29/2015] [Indexed: 12/31/2022]
Abstract
AIMS We have observed that Bendavia, a mitochondrial-targeting peptide that binds the phospholipid cardiolipin and stabilizes the components of electron transport and ATP generation, improves cardiac function and prevents left ventricular remodeling in a 6week rat myocardial infarction (MI) model. We hypothesized that Bendavia restores mitochondrial biogenesis and gene expression, suppresses cardiac fibrosis, and preserves sarco/endoplasmic reticulum (SERCA2a) level in the noninfarcted border zone of infarcted hearts. MAIN METHODS Starting 2h after left coronary artery ligation, rats were randomized to receive Bendavia (3mg/kg/day), water or sham operation. At 6weeks, PCR array and qRT-PCR was performed to detect gene expression. Picrosirius red staining was used to analyze collagen deposition. KEY FINDINGS There was decreased expression of 70 out of 84 genes related to mitochondrial energy metabolism in the border zone of untreated hearts. This down-regulation was largely reversed by Bendavia treatment. Downregulated mitochondrial biogenesis and glucose & fatty acid (FA) oxidation related genes were restored by administration of Bendavia. Matrix metalloproteinase (MMP9) and tissue inhibitor of metalloproteinase (TIMP1) gene expression were significantly increased in the border zone of untreated hearts. Bendavia completely prevented up-regulation of MMP9, but maintained TIMP1 gene expression. Picrosirius red staining demonstrated that Bendavia suppressed collagen deposition within border zone. In addition, Bendavia showed a trend toward restoring SERCA2a expression. SIGNIFICANCE Bendavia restored expression of mitochondrial energy metabolism related genes, prevented myocardial matrix remodeling and preserved SERCA2a expression in the noninfarcted border, which may have contributed to the preservation of cardiac structure and function.
Collapse
Affiliation(s)
- Jianru Shi
- Huntington Medical Research Institutes, Pasadena, CA, United States; Heart Institute, Good Samaritan Hospital, Los Angeles, CA, United States; Division of Cardiovascular Medicine of the Keck School of Medicine, University of Southern California, Los Angeles, CA, United States.
| | - Wangde Dai
- Huntington Medical Research Institutes, Pasadena, CA, United States; Heart Institute, Good Samaritan Hospital, Los Angeles, CA, United States; Division of Cardiovascular Medicine of the Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Sharon L Hale
- Huntington Medical Research Institutes, Pasadena, CA, United States; Heart Institute, Good Samaritan Hospital, Los Angeles, CA, United States; Division of Cardiovascular Medicine of the Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - David A Brown
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, United States
| | - Miao Wang
- Diabetes and Obesity Research Center, Sanford-Burnham Medical Research Institute, Orlando, FL, United States
| | - Xianlin Han
- Diabetes and Obesity Research Center, Sanford-Burnham Medical Research Institute, Orlando, FL, United States
| | - Robert A Kloner
- Huntington Medical Research Institutes, Pasadena, CA, United States; Heart Institute, Good Samaritan Hospital, Los Angeles, CA, United States; Division of Cardiovascular Medicine of the Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
23
|
Dass S, Cochlin LE, Suttie JJ, Holloway CJ, Rider OJ, Carden L, Tyler DJ, Karamitsos TD, Clarke K, Neubauer S, Watkins H. Exacerbation of cardiac energetic impairment during exercise in hypertrophic cardiomyopathy: a potential mechanism for diastolic dysfunction. Eur Heart J 2015; 36:1547-54. [PMID: 25990345 DOI: 10.1093/eurheartj/ehv120] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2013] [Accepted: 03/24/2015] [Indexed: 11/14/2022] Open
Abstract
AIMS Hypertrophic cardiomyopathy (HCM) is the commonest cause of sudden cardiac death in the young, with an excess of exercise-related deaths. The HCM sarcomere mutations increase the energy cost of contraction and impaired resting cardiac energetics has been documented by measurement of phosphocreatine/ATP (PCr/ATP) using (31)Phosphorus MR Spectroscopy ((31)P MRS). We hypothesized that cardiac energetics are further impaired acutely during exercise in HCM and that this would have important functional consequences. METHODS AND RESULTS (31)P MRS was performed in 35 HCM patients and 20 age- and gender-matched normal volunteers at rest and during leg exercise with 2.5 kg ankle weights. Peak left-ventricular filling rates (PFRs) and myocardial perfusion reserve (MPRI) were calculated during adenosine stress. Resting PCr/ATP was significantly reduced in HCM (HCM: 1.71 ± 0.35, normal 2.14 ± 0.35 P < 0.0001). During exercise, there was a further reduction in PCr/ATP in HCM (1.56 ± 0.29, P = 0.02 compared with rest) but not in normals (2.16 ± 0.26, P = 0.98 compared with rest). There was no correlation between PCr/ATP reduction and cardiac mass, wall thickness, MPRI, or late-gadolinium enhancement. PFR and PCr/ATP were significantly correlated at rest (r = 0.48, P = 0.02) and stress (r = 0.53, P = 0.01). CONCLUSION During exercise, the pre-existing energetic deficit in HCM is further exacerbated independent of hypertrophy, perfusion reserve, or degree of fibrosis. This is in keeping with the change at the myofilament level. We offer a potential explanation for exercise-related diastolic dysfunction in HCM.
Collapse
Affiliation(s)
- Sairia Dass
- Division of Cardiovascular Medicine, Anatomy and Genetics, Oxford University, Oxford, UK
| | - Lowri E Cochlin
- Department of Physiology, Anatomy and Genetics, Oxford University, Oxford, UK
| | - Joseph J Suttie
- Division of Cardiovascular Medicine, Anatomy and Genetics, Oxford University, Oxford, UK
| | - Cameron J Holloway
- Division of Cardiovascular Medicine, Anatomy and Genetics, Oxford University, Oxford, UK
| | - Oliver J Rider
- Division of Cardiovascular Medicine, Anatomy and Genetics, Oxford University, Oxford, UK
| | - Leah Carden
- Division of Cardiovascular Medicine, Anatomy and Genetics, Oxford University, Oxford, UK
| | - Damian J Tyler
- Department of Physiology, Anatomy and Genetics, Oxford University, Oxford, UK
| | - Theodoros D Karamitsos
- Division of Cardiovascular Medicine, Anatomy and Genetics, Oxford University, Oxford, UK
| | - Kieran Clarke
- Department of Physiology, Anatomy and Genetics, Oxford University, Oxford, UK
| | - Stefan Neubauer
- Division of Cardiovascular Medicine, Anatomy and Genetics, Oxford University, Oxford, UK
| | - Hugh Watkins
- Division of Cardiovascular Medicine, Anatomy and Genetics, Oxford University, Oxford, UK
| |
Collapse
|
24
|
Christiansen LB, Dela F, Koch J, Hansen CN, Leifsson PS, Yokota T. Impaired cardiac mitochondrial oxidative phosphorylation and enhanced mitochondrial oxidative stress in feline hypertrophic cardiomyopathy. Am J Physiol Heart Circ Physiol 2015; 308:H1237-47. [DOI: 10.1152/ajpheart.00727.2014] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 03/10/2015] [Indexed: 12/12/2022]
Abstract
Mitochondrial dysfunction and oxidative stress are important players in the development of various cardiovascular diseases, but their roles in hypertrophic cardiomyopathy (HCM) remain unknown. We examined whether mitochondrial oxidative phosphorylation (OXPHOS) capacity was impaired with enhanced mitochondrial oxidative stress in HCM. Cardiac and skeletal muscles were obtained from 9 domestic cats with spontaneously occurring HCM with preserved left ventricular systolic function and from 15 age-matched control cats. Mitochondrial OXPHOS capacities with nonfatty acid and fatty acid substrates in permeabilized fibers and isolated mitochondria were assessed using high-resolution respirometry. ROS release originating from isolated mitochondria was assessed by spectrofluorometry. Thiobarbituric acid-reactive substances were also measured as a marker of oxidative damage. Mitochondrial ADP-stimulated state 3 respiration with complex I-linked nonfatty acid substrates and with fatty acid substrates, respectively, was significantly lower in the hearts of HCM cats compared with control cats. Mitochondrial ROS release during state 3 with complex I-linked substrates and thiobarbituric acid-reactive substances in the heart were significantly increased in cats with HCM. In contrast, there were no significant differences in mitochondrial OXPHOS capacity, mitochondrial ROS release, and oxidative damage in skeletal muscle between groups. Mitochondrial OXPHOS capacity with both nonfatty acid substrates and fatty acid substrates was impaired with increased mitochondrial ROS release in the feline HCM heart. These findings provide new insights into the pathophysiology of HCM and support the hypothesis that restoration of the redox state in the mitochondria is beneficial in the treatment of HCM.
Collapse
Affiliation(s)
- Liselotte B. Christiansen
- Department of Veterinary Clinical and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Biomedical Sciences, Center for Healthy Aging, University of Copenhagen, Copenhagen, Denmark; and
| | - Flemming Dela
- Department of Biomedical Sciences, Center for Healthy Aging, University of Copenhagen, Copenhagen, Denmark; and
| | - Jørgen Koch
- Department of Veterinary Clinical and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Christina N. Hansen
- Department of Biomedical Sciences, Center for Healthy Aging, University of Copenhagen, Copenhagen, Denmark; and
| | - Pall S. Leifsson
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Takashi Yokota
- Department of Biomedical Sciences, Center for Healthy Aging, University of Copenhagen, Copenhagen, Denmark; and
| |
Collapse
|
25
|
Cossette SM, Gastonguay AJ, Bao X, Lerch-Gaggl A, Zhong L, Harmann LM, Koceja C, Miao RQ, Vakeel P, Chun C, Li K, Foeckler J, Bordas M, Weiler H, Strande J, Palecek SP, Ramchandran R. Sucrose non-fermenting related kinase enzyme is essential for cardiac metabolism. Biol Open 2014; 4:48-61. [PMID: 25505152 PMCID: PMC4295165 DOI: 10.1242/bio.20149811] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
In this study, we have identified a novel member of the AMPK family, namely Sucrose non-fermenting related kinase (Snrk), that is responsible for maintaining cardiac metabolism in mammals. SNRK is expressed in the heart, and brain, and in cell types such as endothelial cells, smooth muscle cells and cardiomyocytes (CMs). Snrk knockout (KO) mice display enlarged hearts, and die at postnatal day 0. Microarray analysis of embryonic day 17.5 Snrk hearts, and blood profile of neonates display defect in lipid metabolic pathways. SNRK knockdown CMs showed altered phospho-acetyl-coA carboxylase and phospho-AMPK levels similar to global and endothelial conditional KO mouse. Finally, adult cardiac conditional KO mouse displays severe cardiac functional defects and lethality. Our results suggest that Snrk is essential for maintaining cardiac metabolic homeostasis, and shows an autonomous role for SNRK during mammalian development.
Collapse
Affiliation(s)
- Stephanie M Cossette
- Department of Pediatrics, Developmental Vascular Biology Program, Children's Research Institute, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Adam J Gastonguay
- Department of Pediatrics, Developmental Vascular Biology Program, Children's Research Institute, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Xiaoping Bao
- Department of Chemical and Biological Engineering, University of Wisconsin, Madison, WI 53706, USA
| | - Alexandra Lerch-Gaggl
- Division of Pediatric Pathology, Medical College of Wisconsin, Milwaukee, WI 53226, USA. Department of Pathology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Ling Zhong
- Department of Pediatrics, Developmental Vascular Biology Program, Children's Research Institute, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Leanne M Harmann
- Division of Cardiovascular Medicine, Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA. Clinical and Translational Science Institute, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Christopher Koceja
- Department of Pediatrics, Developmental Vascular Biology Program, Children's Research Institute, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Robert Q Miao
- Division of Pediatric Surgery, Medical College of Wisconsin, Milwaukee, WI 53226, USA. Department of Surgery, Medical College of Wisconsin, Milwaukee, WI 53226, USA Division of Pediatric Pathology, Medical College of Wisconsin, Milwaukee, WI 53226, USA. Department of Pathology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Padmanabhan Vakeel
- Department of Pediatrics, Developmental Vascular Biology Program, Children's Research Institute, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Changzoon Chun
- Division of Nephrology, Hypertension and Renal Transplantation, College of Medicine, University of Florida, Gainesville, FL 32610, USA. Department of Medicine, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Keguo Li
- Department of Pediatrics, Developmental Vascular Biology Program, Children's Research Institute, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Jamie Foeckler
- Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, WI 53226, USA
| | - Michelle Bordas
- Department of Pediatrics, Developmental Vascular Biology Program, Children's Research Institute, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Hartmut Weiler
- Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, WI 53226, USA
| | - Jennifer Strande
- Division of Cardiovascular Medicine, Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA. Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Sean P Palecek
- Department of Chemical and Biological Engineering, University of Wisconsin, Madison, WI 53706, USA
| | - Ramani Ramchandran
- Department of Pediatrics, Developmental Vascular Biology Program, Children's Research Institute, Medical College of Wisconsin, Milwaukee, WI 53226, USA Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
26
|
Papadimitriou A, Silva KC, Peixoto EBMI, Borges CM, Lopes de Faria JM, Lopes de Faria JB. Theobromine increases NAD⁺/Sirt-1 activity and protects the kidney under diabetic conditions. Am J Physiol Renal Physiol 2014; 308:F209-25. [PMID: 25411384 DOI: 10.1152/ajprenal.00252.2014] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Reduction in sirtuin 1 (Sirt-1) is associated with extracellular matrix (ECM) accumulation in the diabetic kidney. Theobromine may reduce kidney ECM accumulation in diabetic rats. In the current study, we aimed to unravel, under diabetic conditions, the mechanism of kidney ECM accumulation induced by a reduction in Sirt-1 and the effect of theobromine in these events. In vitro, we used immortalized human mesangial cells (iHMCs) exposed to high glucose (HG; 30 mM), with or without small interfering RNA for NOX4 and Sirt-1. In vivo, spontaneously hypertensive rats (SHR) were rendered diabetic by means of streptozotocin and studied after 12 wk. The effects of treatment with theobromine were investigated under both conditions. HG leads to a decrease in Sirt-1 activity and NAD(+) levels in iHMCs. Sirt-1 activity could be reestablished by treatment with NAD(+), silencing NOX4, and poly (ADP-ribose) polymerase-1 (PARP-1) blockade, or with theobromine. HG also leads to a low AMP/ATP ratio, acetylation of SMAD3, and increased collagen IV, which is prevented by theobromine. Sirt-1 or AMPK blockade abolished these effects of theobromine. In diabetic SHR, theobromine prevented increases in albuminuria and kidney collagen IV, reduced AMPK, elevated NADPH oxidase activity and PARP-1, and reduced NAD(+) levels and Sirt-1 activity. These results suggest that in diabetes mellitus, Sirt-1 activity is reduced by PARP-1 activation and NAD(+) depletion due to low AMPK, which increases NOX4 expression, leading to ECM accumulation mediated by transforming growth factor (TGF)-β1 signaling. It is suggested that Sirt-1 activation by theobromine may have therapeutic potential for diabetic nephropathy.
Collapse
Affiliation(s)
- Alexandros Papadimitriou
- Renal Pathophysiology Laboratory, Investigation on Diabetes Complications, Faculty of Medical Sciences, State University of Campinas (Unicamp), Campinas, São Paulo, Brazil
| | - Kamila C Silva
- Renal Pathophysiology Laboratory, Investigation on Diabetes Complications, Faculty of Medical Sciences, State University of Campinas (Unicamp), Campinas, São Paulo, Brazil
| | - Elisa B M I Peixoto
- Renal Pathophysiology Laboratory, Investigation on Diabetes Complications, Faculty of Medical Sciences, State University of Campinas (Unicamp), Campinas, São Paulo, Brazil
| | - Cynthia M Borges
- Renal Pathophysiology Laboratory, Investigation on Diabetes Complications, Faculty of Medical Sciences, State University of Campinas (Unicamp), Campinas, São Paulo, Brazil
| | - Jacqueline M Lopes de Faria
- Renal Pathophysiology Laboratory, Investigation on Diabetes Complications, Faculty of Medical Sciences, State University of Campinas (Unicamp), Campinas, São Paulo, Brazil
| | - José B Lopes de Faria
- Renal Pathophysiology Laboratory, Investigation on Diabetes Complications, Faculty of Medical Sciences, State University of Campinas (Unicamp), Campinas, São Paulo, Brazil
| |
Collapse
|
27
|
Zhang L, Chen Y, Yue Z, He Y, Zou J, Chen S, Liu M, Chen X, Liu Z, Liu X, Feng X, Li M, Liu P. The p65 subunit of NF-κB involves in RIP140-mediated inflammatory and metabolic dysregulation in cardiomyocytes. Arch Biochem Biophys 2014; 554:22-7. [DOI: 10.1016/j.abb.2014.05.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 04/13/2014] [Accepted: 05/03/2014] [Indexed: 12/16/2022]
|
28
|
Witjas-Paalberends ER, Güçlü A, Germans T, Knaapen P, Harms HJ, Vermeer AMC, Christiaans I, Wilde AAM, Dos Remedios C, Lammertsma AA, van Rossum AC, Stienen GJM, van Slegtenhorst M, Schinkel AF, Michels M, Ho CY, Poggesi C, van der Velden J. Gene-specific increase in the energetic cost of contraction in hypertrophic cardiomyopathy caused by thick filament mutations. Cardiovasc Res 2014; 103:248-57. [PMID: 24835277 DOI: 10.1093/cvr/cvu127] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
AIMS Disease mechanisms regarding hypertrophic cardiomyopathy (HCM) are largely unknown and disease onset varies. Sarcomere mutations might induce energy depletion for which until now there is no direct evidence at sarcomere level in human HCM. This study investigated if mutations in genes encoding myosin-binding protein C (MYBPC3) and myosin heavy chain (MYH7) underlie changes in the energetic cost of contraction in the development of human HCM disease. METHODS AND RESULTS Energetic cost of contraction was studied in vitro by measurements of force development and ATPase activity in cardiac muscle strips from 26 manifest HCM patients (11 MYBPC3mut, 9 MYH7mut, and 6 sarcomere mutation-negative, HCMsmn). In addition, in vivo, the ratio between external work (EW) and myocardial oxygen consumption (MVO2) to obtain myocardial external efficiency (MEE) was determined in 28 pre-hypertrophic mutation carriers (14 MYBPC3mut and 14 MYH7mut) and 14 healthy controls using [(11)C]-acetate positron emission tomography and cardiovascular magnetic resonance imaging. Tension cost (TC), i.e. ATPase activity during force development, was higher in MYBPC3mut and MYH7mut compared with HCMsmn at saturating [Ca(2+)]. TC was also significantly higher in MYH7mut at submaximal, more physiological [Ca(2+)]. EW was significantly lower in both mutation carrier groups, while MVO2 did not differ. MEE was significantly lower in both mutation carrier groups compared with controls, showing the lowest efficiency in MYH7 mutation carriers. CONCLUSION We provide direct evidence that sarcomere mutations perturb the energetic cost of cardiac contraction. Gene-specific severity of cardiac abnormalities may underlie differences in disease onset and suggests that early initiation of metabolic treatment may be beneficial, in particular, in MYH7 mutation carriers.
Collapse
Affiliation(s)
- E Rosalie Witjas-Paalberends
- Department of Physiology, Institute for Cardiovascular Research (ICaR-VU), VU University Medical Center, Amsterdam, The Netherlands
| | - Ahmet Güçlü
- Department of Cardiology, Institute for Cardiovascular Research (ICaR-VU), VU University Medical Center, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands ICIN Netherlands Heart Institute, Utrecht, The Netherlands
| | - Tjeerd Germans
- Department of Cardiology, Institute for Cardiovascular Research (ICaR-VU), VU University Medical Center, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | - Paul Knaapen
- Department of Cardiology, Institute for Cardiovascular Research (ICaR-VU), VU University Medical Center, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | - Hendrik J Harms
- Department of Radiology and Nuclear Medicine, Institute for Cardiovascular Research (ICaR-VU), VU University Medical Center, Amsterdam, The Netherlands
| | - Alexa M C Vermeer
- Department of Clinical Genetics, Academic Medical Center, Amsterdam, The Netherlands
| | - Imke Christiaans
- Department of Clinical Genetics, Academic Medical Center, Amsterdam, The Netherlands
| | - Arthur A M Wilde
- Department of Cardiology, Academic Medical Center, Amsterdam, The Netherlands
| | - Cris Dos Remedios
- Institute for Biomedical Research, Muscle Research Unit, University of Sydney, Sydney, Australia
| | - Adriaan A Lammertsma
- Department of Radiology and Nuclear Medicine, Institute for Cardiovascular Research (ICaR-VU), VU University Medical Center, Amsterdam, The Netherlands
| | - Albert C van Rossum
- Department of Cardiology, Institute for Cardiovascular Research (ICaR-VU), VU University Medical Center, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | - Ger J M Stienen
- Department of Physiology, Institute for Cardiovascular Research (ICaR-VU), VU University Medical Center, Amsterdam, The Netherlands Department of Physics and Astronomy, VU University, Amsterdam, The Netherlands
| | | | - Arend F Schinkel
- Thorax Center, Cardiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Michelle Michels
- Thorax Center, Cardiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Carolyn Y Ho
- Brigham and Women's Hospital, Cardiology, Boston, MA, USA
| | - Corrado Poggesi
- Department of Physiology, University of Florence, Florence, Italy
| | - Jolanda van der Velden
- Department of Physiology, Institute for Cardiovascular Research (ICaR-VU), VU University Medical Center, Amsterdam, The Netherlands ICIN Netherlands Heart Institute, Utrecht, The Netherlands
| |
Collapse
|
29
|
Stride N, Larsen S, Hey-Mogensen M, Sander K, Lund JT, Gustafsson F, Køber L, Dela F. Decreased mitochondrial oxidative phosphorylation capacity in the human heart with left ventricular systolic dysfunction. Eur J Heart Fail 2014; 15:150-7. [DOI: 10.1093/eurjhf/hfs172] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Affiliation(s)
- Nis Stride
- Xlab, Center for Healthy Aging, Department of Biomedical Sciences, Faculty of Health Sciences; University of Copenhagen; Blegdamsvej 3b DK-2200 Copenhagen Denmark
| | - Steen Larsen
- Xlab, Center for Healthy Aging, Department of Biomedical Sciences, Faculty of Health Sciences; University of Copenhagen; Blegdamsvej 3b DK-2200 Copenhagen Denmark
| | - Martin Hey-Mogensen
- Xlab, Center for Healthy Aging, Department of Biomedical Sciences, Faculty of Health Sciences; University of Copenhagen; Blegdamsvej 3b DK-2200 Copenhagen Denmark
| | - Kåre Sander
- Department of Cardiothoracic Surgery; University of Copenhagen; Copenhagen Denmark
| | - Jens T. Lund
- Department of Cardiothoracic Surgery; University of Copenhagen; Copenhagen Denmark
| | - Finn Gustafsson
- Department of Cardiology, Rigshospitalet; University of Copenhagen; Copenhagen Denmark
| | - Lars Køber
- Department of Cardiology, Rigshospitalet; University of Copenhagen; Copenhagen Denmark
| | - Flemming Dela
- Xlab, Center for Healthy Aging, Department of Biomedical Sciences, Faculty of Health Sciences; University of Copenhagen; Blegdamsvej 3b DK-2200 Copenhagen Denmark
| |
Collapse
|
30
|
Cordero-Reyes AM, Gupte AA, Youker KA, Loebe M, Hsueh WA, Torre-Amione G, Taegtmeyer H, Hamilton DJ. Freshly isolated mitochondria from failing human hearts exhibit preserved respiratory function. J Mol Cell Cardiol 2014; 68:98-105. [PMID: 24412531 DOI: 10.1016/j.yjmcc.2013.12.029] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Revised: 12/19/2013] [Accepted: 12/31/2013] [Indexed: 12/20/2022]
Abstract
In heart failure mitochondrial dysfunction is thought to be responsible for energy depletion and contractile dysfunction. The difficulties in procuring fresh left ventricular (LV) myocardium from humans for assessment of mitochondrial function have resulted in the reliance on surrogate markers of mitochondrial function and limited our understanding of cardiac energetics. We isolated mitochondria from fresh LV wall tissue of patients with heart failure and reduced systolic function undergoing heart transplant or left ventricular assist device placement, and compared their function to mitochondria isolated from the non-failing LV (NFLV) wall tissue with normal systolic function from patients with pulmonary hypertension undergoing heart-lung transplant. We performed detailed mitochondrial functional analyses using 4 substrates: glutamate-malate (GM), pyruvate-malate (PM) palmitoyl carnitine-malate (PC) and succinate. NFLV mitochondria showed preserved respiratory control ratios and electron chain integrity with only few differences for the 4 substrates. In contrast, HF mitochondria had greater respiration with GM, PM and PC substrates and higher electron chain capacity for PM than for PC. Surprisingly, HF mitochondria had greater respiratory control ratios and lower ADP-independent state 4 rates than NFLV mitochondria for GM, PM and PC substrates demonstrating that HF mitochondria are capable of coupled respiration ex vivo. Gene expression studies revealed decreased expression of key genes in pathways for oxidation of both fatty acids and glucose. Our results suggest that mitochondria from the failing LV myocardium are capable of tightly coupled respiration when isolated and supplied with ample substrates. Thus energy starvation in the failing heart may be the result of dysregulation of metabolic pathways, impaired substrate supply or reduced mitochondrial number but not the result of reduced mitochondrial electron transport capacity.
Collapse
Affiliation(s)
| | - Anisha A Gupte
- Bioenergetics Program, Houston Methodist Research Institute, Weill Cornell Medical College, USA
| | - Keith A Youker
- Methodist DeBakey Heart and Vascular Institute, Weill Cornell Medical College, USA
| | - Matthias Loebe
- Methodist DeBakey Heart and Vascular Institute, Weill Cornell Medical College, USA
| | - Willa A Hsueh
- Methodist Diabetes and Metabolism Institute, Houston Methodist Research Institute, Weill Cornell Medical College, USA; Houston Methodist Hospital Department of Medicine, Weill Cornell Medical College, USA
| | - Guillermo Torre-Amione
- Methodist DeBakey Heart and Vascular Institute, Weill Cornell Medical College, USA; Catedra de Cardiologia y Medicina Vascular, Tecnologico de Monterrey, Nuevo Leon, Mexico
| | - Heinrich Taegtmeyer
- The University of Texas Medical School at Houston, Department of Internal Medicine, USA
| | - Dale J Hamilton
- Bioenergetics Program, Houston Methodist Research Institute, Weill Cornell Medical College, USA; Houston Methodist Hospital Department of Medicine, Weill Cornell Medical College, USA.
| |
Collapse
|
31
|
Chen Y, Wang Y, Chen J, Chen X, Cao W, Chen S, Xu S, Huang H, Liu P. Roles of transcriptional corepressor RIP140 and coactivator PGC-1α in energy state of chronically infarcted rat hearts and mitochondrial function of cardiomyocytes. Mol Cell Endocrinol 2012; 362:11-8. [PMID: 22503866 DOI: 10.1016/j.mce.2012.03.023] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2011] [Revised: 02/25/2012] [Accepted: 03/30/2012] [Indexed: 11/24/2022]
Abstract
Transcriptional coactivator PPARγ coactivator-1α (PGC-1α) and corepressor receptor-interacting protein 140 (RIP140) are opposing-functional regulators in maintaining energy balance of most metabolic tissues and cells. However, the relative contributions of both factors to energy metabolism in cardiomyocytes remain largely unknown. Herein, we reported that the relative protein levels of RIP140/PGC-1α were up-regulated in the failing hearts after chronic myocardial infarction (MI), and correlated negatively with the energy state index phosphocreatine (PCr)/ATP ratios. Real-time PCR analysis revealed that mRNA expressions of estrogen related receptor α (ERRα), peroxisome proliferate activated receptor α and β (PPARα, PPARβ), nuclear respiratory factor 1 (NRF1) and their target genes were repressed by RIP140 and induced by PGC-1α in a dose dependent manner in neonatal rat cardiomyocytes. We also observed that overexpression of RIP140 through adenovirus delivery can abrogate the PGC-1α-mediated induction of mitochondrial membrane potential elevation and mitochondrial biogenesis, and activate both autophagy and apoptosis pathways. We conclude that RIP140 and PGC-1α exert antagonistic role in regulating cardiac energy state and mitochondrial biogenesis.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/metabolism
- Adaptor Proteins, Signal Transducing/physiology
- Adenosine Triphosphate/metabolism
- Animals
- Cell Culture Techniques
- Energy Metabolism
- Fatty Acids, Nonesterified/blood
- Gene Expression Regulation
- Heart Ventricles/metabolism
- Heart Ventricles/pathology
- Male
- Metabolic Networks and Pathways
- Mitochondria, Heart/metabolism
- Mitochondria, Heart/physiology
- Mitochondrial Turnover
- Myocardial Infarction/blood
- Myocardial Infarction/metabolism
- Myocardial Infarction/pathology
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- Myocytes, Cardiac/physiology
- Nuclear Proteins/genetics
- Nuclear Proteins/metabolism
- Nuclear Proteins/physiology
- Nuclear Receptor Interacting Protein 1
- Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha
- Phosphocreatine/metabolism
- Primary Cell Culture
- RNA-Binding Proteins/genetics
- RNA-Binding Proteins/metabolism
- RNA-Binding Proteins/physiology
- Rats
- Rats, Sprague-Dawley
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Transcription Factors/physiology
Collapse
Affiliation(s)
- Yanfang Chen
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
White MY, Edwards AVG, Cordwell SJ, Van Eyk JE. Mitochondria: A mirror into cellular dysfunction in heart disease. Proteomics Clin Appl 2012; 2:845-61. [PMID: 21136884 DOI: 10.1002/prca.200780135] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Cardiovascular (CV) disease is the single most significant cause of morbidity and mortality worldwide. The emerging global impact of CV disease means that the goals of early diagnosis and a wider range of treatment options are now increasingly pertinent. As such, there is a greater need to understand the molecular mechanisms involved and potential targets for intervention. Mitochondrial function is important for physiological maintenance of the cell, and when this function is altered, the cell can begin to suffer. Given the broad range and significant impacts of the cellular processes regulated by the mitochondria, it becomes important to understand the roles of the proteins associated with this organelle. Proteomic investigations of the mitochondria are hampered by the intrinsic properties of the organelle, including hydrophobic mitochondrial membranes; high proportion of basic proteins (pI greater than 8.0); and the relative dynamic range issues of the mitochondria. For these reasons, many proteomic studies investigate the mitochondria as a discrete subproteome. Once this has been achieved, the alterations that result in functional changes with CV disease can be observed. Those alterations that lead to changes in mitochondrial function, signaling and morphology, which have significant implications for the cardiomyocyte in the development of CV disease, are discussed.
Collapse
Affiliation(s)
- Melanie Y White
- School of Molecular and Microbial Biosciences, University of Sydney, New South Wales, Australia; Department of Medicine, Johns Hopkins University, Baltimore, MD, USA.
| | | | | | | |
Collapse
|
33
|
Consoli C, Gatta L, Iellamo F, Molinari F, Rosano GMC, Marlier LNJL. Severity of left ventricular dysfunction in heart failure patients affects the degree of serum-induced cardiomyocyte apoptosis. Importance of inflammatory response and metabolism. Int J Cardiol 2012; 167:2859-66. [PMID: 22882964 DOI: 10.1016/j.ijcard.2012.07.025] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Revised: 07/10/2012] [Accepted: 07/21/2012] [Indexed: 11/28/2022]
Abstract
BACKGROUND/OBJECTIVES In heart failure pro-inflammatory cytokines contribute to cardiomyocytes loss by apoptosis and play a role in the remodelling of the extracellular matrix (ECM). Myocardial injury recruits endothelial progenitor cells (EPCs) to the site of damage and stimulates their differentiation, contributing to myocardial tissue repair. We investigated if the severity of left ventricular dysfunction in heart failure patients (HF) may influence the ability of serum to induce cardiomyocytes death and whether this effect is affected by inflammation and intracellular oxidative stress pathways. METHODS Adult murine cardiomyocytes HL-5 were incubated with 2% human serum from patients with heart failure (NYHA classes I to IV). Apoptosis was analysed by two different methods. TNF-α, IL-1β, IL-6, matrix metalloproteinase 1 (MMP-1) and tissue inhibitor of metalloproteinases 1 (TIMP-1) were measured in sera from patients. RESULTS Cytokine levels were higher in sera from moderate-severe CHF compared to that of patients with mild CHF. Levels of CD117(+) (c-Kit(+)) cells and EPCs were significantly lower in blood from moderate-severe HF patients. Serum from HF patients induced a significantly higher ROS production involving p38 MAPK signalling and apoptosis in cardiomyocytes. NAC treatment prevented serum-induced oxidative effects. The increase of AMPK phosphorylation showed an involvement of FFA β-oxidation during apoptotic stress. CONCLUSIONS All these alterations could be used as predictive factors of worsening in heart failure and culture of cardiomyocytes could be employed to test pharmacological effects.
Collapse
Affiliation(s)
- Claudia Consoli
- Centre for Clinical & Basic Research, Cardiovascular Research Unit, Department. of Medical Sciences, IRCCS San Raffaele Pisana, Rome, Italy
| | | | | | | | | | | |
Collapse
|
34
|
Micro-RNA-195 and -451 regulate the LKB1/AMPK signaling axis by targeting MO25. PLoS One 2012; 7:e41574. [PMID: 22844503 PMCID: PMC3402395 DOI: 10.1371/journal.pone.0041574] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Accepted: 06/27/2012] [Indexed: 02/07/2023] Open
Abstract
Background Recently, MicroRNAs (miR) and AMP-kinase (AMPK) have emerged as prominent players in the development of cardiac hypertrophy and heart failure. We hypothesized that components of the adenosine monophosphate-activated kinase (AMPK) pathway are targeted by miRs and alter AMPK signaling during pathological cardiac stress. Methodology/Principal Findings Using a mouse model of hypertrophic cardiomyopathy (HCM), we demonstrated early elevation of miR-195 and miR-451 in HCM hearts, which targets MO25, a central component of the MO25/STRAD/LKB1 complex that acts as an upstream kinase for AMPK. We show functional targeting of MO25 by miR-195 and -451. Further in vitro interrogation of MO25 as a functional target validated this hypothesis where over-expression of miR-195 in C2C12 cells knocked down MO25 expression levels and downstream AMPK signaling (phosphorylation of Acetyl CoA carboxylase [ACC] and AMPK activity assay), similar to MO25 knockdown in C2C12 cells by siRNA. Parallel changes were measured in 60 day R403Q HCM male hearts that were rescued by short-term administration of AICAR, an AMPK agonist. Conclusions/Significance Elevated miR-195 targets the LKB1/AMPK signaling axis in HCM progression and implicates a functional role in HCM disease progression. MiR-195 may serve as potential therapeutics or therapeutic targets for heart disease.
Collapse
|
35
|
Abstract
The heart exhibits remarkable adaptive responses to a wide array of genetic and extrinsic factors to maintain contractile function. When compensatory responses are not sustainable, cardiac dysfunction occurs, leading to cardiomyopathy. The many forms of cardiomyopathy exhibit a set of overlapping phenotypes reflecting the limited range of compensatory responses that the heart can use. These include cardiac hypertrophy, induction of genes normally expressed during development, fibrotic deposits that replace necrotic and apoptotic cardiomyocytes, and metabolic disturbances. The compensatory responses are mediated by signaling pathways that initially serve to maintain normal contractility; however, persistent activation of these pathways leads to cardiac dysfunction. Current research focuses on ways to target these specific pathways therapeutically.
Collapse
Affiliation(s)
- Pamela A Harvey
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado at Boulder, USA
| | | |
Collapse
|
36
|
Lemieux H, Semsroth S, Antretter H, Höfer D, Gnaiger E. Mitochondrial respiratory control and early defects of oxidative phosphorylation in the failing human heart. Int J Biochem Cell Biol 2011; 43:1729-38. [PMID: 21871578 DOI: 10.1016/j.biocel.2011.08.008] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Revised: 07/27/2011] [Accepted: 08/09/2011] [Indexed: 12/25/2022]
Abstract
Heart failure is a consequence of progressive deterioration of cardiac performance. Little is known about the role of impaired oxidative phosphorylation in the progression of the disease, since previous studies of mitochondrial injuries are restricted to end-stage chronic heart failure. The present study aimed at evaluating the involvement of mitochondrial dysfunction in the development of human heart failure. We measured the control of oxidative phosphorylation with high-resolution respirometry in permeabilized myocardial fibres from donor hearts (controls), and patients with no or mild heart failure but presenting with heart disease, or chronic heart failure due to dilated or ischemic cardiomyopathy. The capacity of the phosphorylation system exerted a strong limitation on oxidative phosphorylation in the human heart, estimated at 121 pmol O(2)s(-1)mg(-1) in the healthy left ventricle. In heart disease, a specific defect of the phosphorylation system, Complex I-linked respiration, and mass-specific fatty acid oxidation were identified. These early defects were also significant in chronic heart failure, where the capacities of the oxidative phosphorylation and electron transfer systems per cardiac tissue mass were decreased with all tested substrate combinations, suggesting a decline of mitochondrial density. Oxidative phosphorylation and electron transfer system capacities were higher in ventricles compared to atria, but the impaired mitochondrial quality was identical in the four cardiac chambers of chronic heart failure patients. Coupling was preserved in heart disease and chronic heart failure, in contrast to the mitochondrial dysfunction observed after prolonged cold storage of cardiac tissue. Mitochondrial defects in the phosphorylation system, Complex I respiration and mass-specific fatty acid oxidation occurred early in the development of heart failure. Targeting these mitochondrial injuries with metabolic therapy may offer a promising approach to delay the progression of heart disease.
Collapse
Affiliation(s)
- Hélène Lemieux
- D. Swarovski Research Laboratory, Department of Visceral, Transplant and Thoracic Surgery, Medical University of Innsbruck, A-6020 Innsbruck, Austria
| | | | | | | | | |
Collapse
|
37
|
Ventura-Clapier R, Garnier A, Veksler V, Joubert F. Bioenergetics of the failing heart. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2011; 1813:1360-72. [DOI: 10.1016/j.bbamcr.2010.09.006] [Citation(s) in RCA: 135] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Revised: 08/24/2010] [Accepted: 09/14/2010] [Indexed: 10/19/2022]
|
38
|
Pellatt LJ, Rice S, Mason HD. Phosphorylation and activation of AMP-activated protein kinase (AMPK) by metformin in the human ovary requires insulin. Endocrinology 2011; 152:1112-8. [PMID: 21209024 DOI: 10.1210/en.2009-1429] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Metformin is commonly used to treat women with polycystic ovary syndrome, but its precise mechanism of action is unclear, and it even appears to have direct ovarian effects. At the cellular level, it may act either via an insulin-dependent pathway or an independent pathway by activating AMP-activated protein kinase (AMPK). In the ovary, metformin directly decreased estradiol and progesterone production by human granulosa cells, and inhibition of progesterone production by metformin in rat granulosa cells caused an increase in phosphorylated AMPK (pAMPK). We investigated whether metformin activates AMPK in the human ovary by looking for changes in phosphorylation of AMPK and its downstream target acetyl CoA carboxylase (ACC). mRNA and protein for α1 and α2 AMPK subunits were present in all human ovarian tissue. Neither 100 nm nor 2 mm of metformin affected subunit expression. After 1 or 4 h, neither dose of metformin increased pAMPK or pACC, although after 1 h, the addition of insulin significantly enhanced pAMPK, whereas insulin alone had no effect on phosphorylation of either AMPK or ACC. The addition of compound C, an inhibitor of AMPK, negated the effect of metformin in the presence of insulin on pAMPK. This effect on AMPK was not due to a change in the ADP/ATP ratio measured by HPLC. In summary, the presence of insulin was required to cause a metformin-induced increase in pAMPK in these human ovarian cells. Although previous data suggest that metformin may act via an insulin-independent pathway, our results therefore imply that insulin may be required to initiate an effect.
Collapse
Affiliation(s)
- Laura Jane Pellatt
- Basic Medical Sciences, St. George's University of London, Cramner Terrace, London SW17 0RE, United Kingdom.
| | | | | |
Collapse
|
39
|
Mielniczuk LM, Birnie D, Ziadi MC, deKemp RA, DaSilva JN, Burwash I, Tang AT, Davies RA, Haddad H, Guo A, Aung M, Williams K, Ukkonen H, Beanlands RS. Relation Between Right Ventricular Function and Increased Right Ventricular [
18
F]Fluorodeoxyglucose Accumulation in Patients With Heart Failure. Circ Cardiovasc Imaging 2011; 4:59-66. [DOI: 10.1161/circimaging.109.905984] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background—
Left heart failure is characterized by alterations in metabolic substrate utilization, and metabolic modulation may be a future strategy in the management of heart failure. Little is known about cardiac metabolism in the right ventricle and how it relates to other measures of right ventricular (RV) function. This study was designed to measure glucose metabolism in the right ventricle, as estimated by [
18
F]fluorodeoxyglucose (FDG) positron emission tomography imaging and to determine the relation between RV function and FDG uptake in patients with heart failure.
Methods and Results—
A total of 68 patients underwent cardiac [
18
F]FDG positron emission tomography scanning with measurement of RV FDG uptake as a standardized uptake value. Perfusion imaging was acquired at rest with rubidium-82 or [
13
N]ammonia. RV function was determined by equilibrium radionuclide ventriculography. Relative RV FDG uptake was determined as the ratio of RV to LV standardized uptake value. Fifty-five percent of these patients had ischemic cardiomyopathy. The mean LV and RV ejection fractions were 21±7% and 35±10%, respectively. There was a correlation between RV ejection fraction and the ratio of RV to LV FDG uptake whether the entire LV myocardium (
r
=−0.40,
P
<0.001) or LV free wall (
r
=−0.43,
P
<0.001) was used. This relation persisted in the subgroup with nonischemic cardiomyopathy (
r
=−0.37,
P
=0.04). RV FDG uptake was weakly related to increased RV systolic pressure but not related to LV size, function, or FDG uptake. The correlation between RV ejection fraction and RV/LV FDG was maintained after partial-volume correction (
r
=−0.68,
P
<0.001).
Conclusions—
RV dysfunction is associated with an increase in RV FDG uptake, the magnitude of which may be correlated with severity.
Collapse
Affiliation(s)
- Lisa M. Mielniczuk
- From the Division of Cardiology (L.M.M., D.BM.C.Z., R.A.d.K., J.N.D.S., I.B., R.A.D., H.H., A.G., M.A., K.W., R.S.B.B.), University of Ottawa Heart Institute, Ottawa, and Division of Cardiology (A.T.T.), University of Victoria, Victoria, Canada; and Division of Cardiology (H.U.), Turku University Hospital, Turku, Finland
| | - David Birnie
- From the Division of Cardiology (L.M.M., D.BM.C.Z., R.A.d.K., J.N.D.S., I.B., R.A.D., H.H., A.G., M.A., K.W., R.S.B.B.), University of Ottawa Heart Institute, Ottawa, and Division of Cardiology (A.T.T.), University of Victoria, Victoria, Canada; and Division of Cardiology (H.U.), Turku University Hospital, Turku, Finland
| | - Maria C. Ziadi
- From the Division of Cardiology (L.M.M., D.BM.C.Z., R.A.d.K., J.N.D.S., I.B., R.A.D., H.H., A.G., M.A., K.W., R.S.B.B.), University of Ottawa Heart Institute, Ottawa, and Division of Cardiology (A.T.T.), University of Victoria, Victoria, Canada; and Division of Cardiology (H.U.), Turku University Hospital, Turku, Finland
| | - Robert A. deKemp
- From the Division of Cardiology (L.M.M., D.BM.C.Z., R.A.d.K., J.N.D.S., I.B., R.A.D., H.H., A.G., M.A., K.W., R.S.B.B.), University of Ottawa Heart Institute, Ottawa, and Division of Cardiology (A.T.T.), University of Victoria, Victoria, Canada; and Division of Cardiology (H.U.), Turku University Hospital, Turku, Finland
| | - Jean N. DaSilva
- From the Division of Cardiology (L.M.M., D.BM.C.Z., R.A.d.K., J.N.D.S., I.B., R.A.D., H.H., A.G., M.A., K.W., R.S.B.B.), University of Ottawa Heart Institute, Ottawa, and Division of Cardiology (A.T.T.), University of Victoria, Victoria, Canada; and Division of Cardiology (H.U.), Turku University Hospital, Turku, Finland
| | - Ian Burwash
- From the Division of Cardiology (L.M.M., D.BM.C.Z., R.A.d.K., J.N.D.S., I.B., R.A.D., H.H., A.G., M.A., K.W., R.S.B.B.), University of Ottawa Heart Institute, Ottawa, and Division of Cardiology (A.T.T.), University of Victoria, Victoria, Canada; and Division of Cardiology (H.U.), Turku University Hospital, Turku, Finland
| | - Anthony T. Tang
- From the Division of Cardiology (L.M.M., D.BM.C.Z., R.A.d.K., J.N.D.S., I.B., R.A.D., H.H., A.G., M.A., K.W., R.S.B.B.), University of Ottawa Heart Institute, Ottawa, and Division of Cardiology (A.T.T.), University of Victoria, Victoria, Canada; and Division of Cardiology (H.U.), Turku University Hospital, Turku, Finland
| | - Ross A. Davies
- From the Division of Cardiology (L.M.M., D.BM.C.Z., R.A.d.K., J.N.D.S., I.B., R.A.D., H.H., A.G., M.A., K.W., R.S.B.B.), University of Ottawa Heart Institute, Ottawa, and Division of Cardiology (A.T.T.), University of Victoria, Victoria, Canada; and Division of Cardiology (H.U.), Turku University Hospital, Turku, Finland
| | - Haissam Haddad
- From the Division of Cardiology (L.M.M., D.BM.C.Z., R.A.d.K., J.N.D.S., I.B., R.A.D., H.H., A.G., M.A., K.W., R.S.B.B.), University of Ottawa Heart Institute, Ottawa, and Division of Cardiology (A.T.T.), University of Victoria, Victoria, Canada; and Division of Cardiology (H.U.), Turku University Hospital, Turku, Finland
| | - Ann Guo
- From the Division of Cardiology (L.M.M., D.BM.C.Z., R.A.d.K., J.N.D.S., I.B., R.A.D., H.H., A.G., M.A., K.W., R.S.B.B.), University of Ottawa Heart Institute, Ottawa, and Division of Cardiology (A.T.T.), University of Victoria, Victoria, Canada; and Division of Cardiology (H.U.), Turku University Hospital, Turku, Finland
| | - May Aung
- From the Division of Cardiology (L.M.M., D.BM.C.Z., R.A.d.K., J.N.D.S., I.B., R.A.D., H.H., A.G., M.A., K.W., R.S.B.B.), University of Ottawa Heart Institute, Ottawa, and Division of Cardiology (A.T.T.), University of Victoria, Victoria, Canada; and Division of Cardiology (H.U.), Turku University Hospital, Turku, Finland
| | - Kathryn Williams
- From the Division of Cardiology (L.M.M., D.BM.C.Z., R.A.d.K., J.N.D.S., I.B., R.A.D., H.H., A.G., M.A., K.W., R.S.B.B.), University of Ottawa Heart Institute, Ottawa, and Division of Cardiology (A.T.T.), University of Victoria, Victoria, Canada; and Division of Cardiology (H.U.), Turku University Hospital, Turku, Finland
| | - Heikki Ukkonen
- From the Division of Cardiology (L.M.M., D.BM.C.Z., R.A.d.K., J.N.D.S., I.B., R.A.D., H.H., A.G., M.A., K.W., R.S.B.B.), University of Ottawa Heart Institute, Ottawa, and Division of Cardiology (A.T.T.), University of Victoria, Victoria, Canada; and Division of Cardiology (H.U.), Turku University Hospital, Turku, Finland
| | - Rob S.B. Beanlands
- From the Division of Cardiology (L.M.M., D.BM.C.Z., R.A.d.K., J.N.D.S., I.B., R.A.D., H.H., A.G., M.A., K.W., R.S.B.B.), University of Ottawa Heart Institute, Ottawa, and Division of Cardiology (A.T.T.), University of Victoria, Victoria, Canada; and Division of Cardiology (H.U.), Turku University Hospital, Turku, Finland
| |
Collapse
|
40
|
Turer AT, Malloy CR, Newgard CB, Podgoreanu MV. Energetics and metabolism in the failing heart: important but poorly understood. Curr Opin Clin Nutr Metab Care 2010; 13:458-65. [PMID: 20453645 PMCID: PMC2892827 DOI: 10.1097/mco.0b013e32833a55a5] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
PURPOSE OF REVIEW Profound abnormalities in myocardial energy metabolism occur in heart failure and correlate with clinical symptoms and survival. Available comprehensive human metabolic data come from small studies, enrolling patients across heart failure causes, at different disease stages, and using different methodologies, and is often contradictory. Remaining fundamental gaps in knowledge include whether observed shifts in cardiac substrate utilization are adaptive or maladaptive, causal or an epiphenomenon of heart failure. RECENT FINDINGS Recent studies have characterized the temporal changes in myocardial substrate metabolism involved in progression of heart failure, the role of insulin resistance, and the mechanisms of mitochondrial dysfunction in heart failure. The concept of metabolic inflexibility has been proposed to explain the lack of energetic and mechanical reserve in the failing heart. SUMMARY Despite current therapies, which provide substantial benefits to patients, heart failure remains a progressive disease, and new approaches to treatment are necessary. Developing metabolic interventions would be facilitated by systems-level integration of current knowledge on myocardial metabolic control. Although preliminary evidence suggests that metabolic modulators inducing a shift towards carbohydrate utilization seem generally beneficial in the failing heart, such interventions should be matched to the stage of metabolic deregulation in the progression of heart failure.
Collapse
Affiliation(s)
- Aslan T Turer
- Division of Cardiology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9047, USA.
| | | | | | | |
Collapse
|
41
|
What we know and do not know about sex and cardiac disease. J Biomed Biotechnol 2010; 2010:562051. [PMID: 20445744 PMCID: PMC2860154 DOI: 10.1155/2010/562051] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2009] [Accepted: 02/16/2010] [Indexed: 12/11/2022] Open
Abstract
Cardiovascular disease (CVD) remains the single leading cause of death in both men and women. A large proportion of the population with CVD will die with a diagnosis of congestive heart failure (CHF). It is becoming increasingly recognized that sex differences exist in the etiology, development, and outcome of CHF. For example, compared to male counterparts, women that present with CHF are typically older and have systolic cardiac function that is not impaired. Despite a growing body of literature addressing the underlying mechanisms of sex dimorphisms in cardiac disease, there remain significant inconsistencies reported in these studies. Given that the development of CHF results from the complex integration of genetic and nongenetic cues, it is not surprising that the elucidation and subsequent identification of molecular mechanisms remains unclear. In this review, key aspects of sex differences in CVD and CHF will be highlighted with an emphasis on some of the unanswered questions regarding these differences. The contention is presented that it becomes critical to reference cellular mechanisms within the context of each sex to better understand these sex dimorphisms.
Collapse
|
42
|
Cardiac fibrosis and cellular hypertrophy decrease the degree of reverse remodeling and improvement in cardiac function during left ventricular assist. J Heart Lung Transplant 2010; 29:672-9. [PMID: 20188595 DOI: 10.1016/j.healun.2010.01.007] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2009] [Revised: 01/14/2010] [Accepted: 01/14/2010] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND This study investigated if the degree of cardiac fibrosis and myocyte size at the time of left ventricular assist device (LVAD) implantation predicts the degree of improvement in cardiac function and sustained recovery after LVAD explantation. METHODS The study included 34 patients who underwent LVAD-off test. LV end-diastolic (LVEDD) and end-systolic diameter (LVESD), LV ejection fraction (LVEF), mean pulmonary artery pressure (mPAP), pulmonary capillary wedge pressure (PCWP), and cardiac index (CI) were measured before LVAD implantation and during LVAD-off test. Myocardial tissue was obtained from the apical core at LVAD implantation. RESULTS The degree of cardiac fibrosis had significant correlations with changes in LVEDD (r = -0.725, p < 0.0001), LVESD (r = -0.800, p < 0.0001), LVEF (r = -0.637, p < 0.0001), mPAP (r = -0.569, p = 0.0010), PCWP (r = -0.463, p = 0.0123), and CI (r = -0.544, p = 0.0015). Myocyte size also had significant correlations with changes in LVEDD (r = -0.386, p = 0.0235), LVESD (r = -0.414, p = 0.0141), and LVEF (r = -0.528, p = 0.0015). The LVAD was successfully removed in 9 patients. The degree of cardiac fibrosis and myocyte size in these patients was significantly smaller compared with the patients who did not undergo LVAD removal. CONCLUSIONS Cardiac fibrosis and myocyte size at the time of LVAD implantation were significant predictors of degree of improvement of cardiac function and the sustained recovery after the LVAD explantation.
Collapse
|
43
|
Yeih DF, Yeh HI, Lin LY, Tsay YG, Chiang FT, Tseng CD, Tseng YZ. Enhanced activity and subcellular redistribution of myocardial hexokinase after acute myocardial infarction. Int J Cardiol 2010; 149:74-9. [PMID: 20060179 DOI: 10.1016/j.ijcard.2009.12.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2009] [Revised: 11/29/2009] [Accepted: 12/04/2009] [Indexed: 12/22/2022]
Abstract
BACKGROUND Hexokinase (HK) is known to possess both anti-oxidant and anti-apoptotic properties. This study investigated the behavior of myocardial HK in response to myocardial infarction (MI). METHODS Adult male Wistar rats with various degrees of MI after coronary ligation were examined 4 weeks after operation and were divided dichotomously into small and large MI groups. The activity and subcellular distribution of HK in the non-infarcted myocardium were determined. In parallel, myocardial oxidative stress determined using aconitase activity and malondialdehyde content, and left ventricular function using echocardiography were studied. RESULTS In the mitochondria and the cytosol, HK activity was enhanced after MI and paralleled the increases in oxidative stress and left ventricular end-diastolic dimension (LVEDD). The enhancement in HK activity varied between subcellular compartments and resulted in an increase in the ratio of cytosol to whole-cell HK activity, which was proportional to oxidative stress and LVEDD. CONCLUSIONS The activities of HK in all subcellular fractions are enhanced in response to MI. However, enhanced proportion of cytosolic HK relative to whole-cell HK activity is associated with higher oxidative stress and LVEDD, suggesting that altered myocardial HK activity and subcellular redistribution might be involved in the pathogenesis of postinfarct heart failure.
Collapse
Affiliation(s)
- Dong-Feng Yeih
- Department of Cardiology, Far Eastern Memorial Hospital, Pan-Chiao, Taipei County, Taiwan
| | | | | | | | | | | | | |
Collapse
|
44
|
Hoppel CL, Tandler B, Fujioka H, Riva A. Dynamic organization of mitochondria in human heart and in myocardial disease. Int J Biochem Cell Biol 2009; 41:1949-56. [PMID: 19446651 DOI: 10.1016/j.biocel.2009.05.004] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2009] [Revised: 05/04/2009] [Accepted: 05/06/2009] [Indexed: 01/13/2023]
Abstract
Heart mitochondria, which, depending on their location within cardiomyofibers, are classified as either subsarcolemmal or interfibrillar, are the major sources of the high energy compound, adenosine triphosphate. Physiological differences between these two populations are reflected by differences in the morphology of their cristae, with those of subsarcolemmal mitochondria being mostly lamelliform, and those of interfibrillar mitochondria being mostly tubular. What determines the configuration of cristae, not only in cardiac mitochondria but in mitochondria in general, is unclear. The morphology of cardiac mitochondria, as well as their physiology, is responsive to the exigencies posed by a large variety of pathological situations. Giant cardiac mitochondria make an appearance in certain types of cardiomyopathy and as a result of dietary, pharmacological, and toxicological manipulation; such megamitochondria probably arise by a combination of fusion and true growth. Some of these enlarged organelles occasionally contain a membrane-bound deposit of beta-glycogen. Those giant mitochondria induced by experimental treatment usually can be restored to normal dimensions simply by supplying the missing nutrient or by deleting the noxious substance. In some conditions, such as endurance training and ischemia, the mitochondrial matrices become pale. Dense rods or plates are present in the outer compartment of mitochondria under certain conditions. Biochemical alterations in cardiac mitochondria appear to be important in heart failure. In aging, only interfibrillar mitochondria exhibit such changes, with the subsarcolemmal mitochondria unaffected. In certain heart afflictions, biochemical defects are not accompanied by obvious morphological transformations. Mitochondria clearly play a cardinal role in homeostasis of the heart.
Collapse
Affiliation(s)
- Charles L Hoppel
- Department of Pharmacology and Medicine and Center for Mitochondrial Disease, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA.
| | | | | | | |
Collapse
|
45
|
Nofziger C, Brown KK, Smith CD, Harrington W, Murray D, Bisi J, Ashton TT, Maurio FP, Kalsi K, West TA, Baines D, Blazer-Yost BL. PPARgamma agonists inhibit vasopressin-mediated anion transport in the MDCK-C7 cell line. Am J Physiol Renal Physiol 2009; 297:F55-62. [PMID: 19403648 DOI: 10.1152/ajprenal.00090.2009] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
PPARgamma agonists are synthetic ligands for the peroxisome proliferator-activated receptor-gamma (PPARgamma). These agents have insulin-sensitizing properties but can cause fluid retention, thereby limiting their usefulness in patients at risk for cardiovascular disease. The side effect etiology is unknown, but the nature of presentation suggests modulation of renal salt and water homeostasis. In a well-characterized cell culture model of the principal cell type [Madin-Darby canine kidney (MDCK)-C7], PPARgamma agonists inhibit vasopressin-stimulated Cl(-) secretion with agonist dose-response relationships that mirror receptor transactivation profiles. Analyses of the components of the vasopressin-stimulated intracellular signaling pathway indicated no PPARgamma agonist-induced changes in basolateral membrane conductances, intracellular cAMP, protein kinase A, or total cellular adenine nucleotides. The PPARgamma agonist-induced decrease in anion secretion is the result of decreased mRNA of the final effector in the pathway, the apically located cystic fibrosis transmembrane regulator (CFTR). These data showing that CFTR is a target for PPARgamma agonists may provide new insights into the physiology of PPARgamma agonist-induced fluid retention.
Collapse
Affiliation(s)
- Charity Nofziger
- Department of Biology, Indiana University-Purdue University at Indianapolis, Indianapolis, Indiana 46202, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
|
47
|
van Bilsen M, van Nieuwenhoven FA, van der Vusse GJ. Metabolic remodelling of the failing heart: beneficial or detrimental? Cardiovasc Res 2008; 81:420-8. [PMID: 18854380 DOI: 10.1093/cvr/cvn282] [Citation(s) in RCA: 138] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The failing heart is characterized by alterations in energy metabolism, including mitochondrial dysfunction and a reduction in fatty acid (FA) oxidation rate, which is partially compensated by an increase in glucose utilization. Together, these changes lead to an impaired capacity to convert chemical energy into mechanical work. This has led to the concept that supporting cardiac energy conversion through metabolic interventions provides an important adjuvant therapy for heart failure. The potential success of such a therapy depends on whether the shift from FA towards glucose utilization should be considered beneficial or detrimental, a question still incompletely resolved. In this review, the current status of the literature is evaluated and possible causes of observed discrepancies are discussed. It is cautiously concluded that for the failing heart, from a therapeutic point of view, it is preferable to further stimulate glucose oxidation rather than to normalize substrate metabolism by stimulating FA utilization. Whether this also applies to the pre-stages of cardiac failure remains to be established.
Collapse
Affiliation(s)
- Marc van Bilsen
- Department of Physiology, Cardiovascular Research Institute Maastricht, Maastricht University, PO Box 616, 6200 MD Maastricht, the Netherlands.
| | | | | |
Collapse
|
48
|
Eisen HJ. Exercise Training and Myocardial Energetics in Patients With Heart Failure. J Am Coll Cardiol 2008; 51:1892-5. [DOI: 10.1016/j.jacc.2008.02.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2008] [Accepted: 02/08/2008] [Indexed: 10/22/2022]
|
49
|
Nabben M, Hoeks J. Mitochondrial uncoupling protein 3 and its role in cardiac- and skeletal muscle metabolism. Physiol Behav 2007; 94:259-69. [PMID: 18191161 DOI: 10.1016/j.physbeh.2007.11.039] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2007] [Revised: 11/22/2007] [Accepted: 11/23/2007] [Indexed: 11/20/2022]
Abstract
Uncoupling protein 3 (UCP3), is primarily expressed in skeletal muscle mitochondria and has been suggested to be involved in mediating energy expenditure via uncoupling, hereby dissipating the mitochondrial proton gradient necessary for adenosine triphosphate (ATP) synthesis. Although some studies support a role for UCP3 in energy metabolism, other studies pointed towards a function in fatty acid metabolism. Thus, the protein is up regulated or high when fatty acid supply to the mitochondria exceeds the capacity to oxidize fatty acids and down regulated or low when oxidative capacity is high or improved. Irrespective of the exact operating mechanism, UCP3 seems to protect mitochondria against lipid-induced oxidative stress, which makes this protein a potential player in the development of type 2 diabetes mellitus. Next to skeletal muscle, UCP3 is also expressed in cardiac muscle where its role is relatively unexplored. Interestingly, energy deficiency in cardiac muscle is associated to heart failure and UCP3 might contribute to this energy deficiency. It has been suggested that UCP3 decreases energy status via uncoupling of mitochondrial respiration, but the available data does not provide a unified answer. In fact, the results obtained regarding cardiac UCP3 are very similar as in skeletal muscle, implying that its physiological function can be extrapolated. Therefore, cardiac UCP3 can just as well serve to protect the heart against lipid-induced oxidative stress, similar to the function described for skeletal muscle UCP3. The present review will deal with the available literature on both skeletal muscle- and cardiac UCP3 to elucidate its physiological function in these tissues.
Collapse
Affiliation(s)
- Miranda Nabben
- Department of Human Biology, Nutrition and Toxicology Research Institute Maastricht (NUTRIM), Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands.
| | | |
Collapse
|
50
|
Woollhead AM, Sivagnanasundaram J, Kalsi KK, Pucovsky V, Pellatt LJ, Scott JW, Mustard KJ, Hardie DG, Baines DL. Pharmacological activators of AMP-activated protein kinase have different effects on Na+ transport processes across human lung epithelial cells. Br J Pharmacol 2007; 151:1204-15. [PMID: 17603555 PMCID: PMC2189835 DOI: 10.1038/sj.bjp.0707343] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND AND PURPOSE AMP-activated protein kinase (AMPK) is activated by metformin, phenformin, and the AMP mimetic, 5-aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside (AICAR). We have completed an extensive study of the pharmacological effects of these drugs on AMPK activation, adenine nucleotide concentration, transepithelial amiloride-sensitive (I(amiloride)) and ouabain-sensitive basolateral (I(ouabain)) short circuit current in H441 lung epithelial cells. EXPERIMENTAL APPROACH H441 cells were grown on permeable filters at air interface. I(amiloride), I(ouabain) and transepithelial resistance were measured in Ussing chambers. AMPK activity was measured as the amount of radiolabelled phosphate transferred to the SAMS peptide. Adenine nucleotide concentration was analysed by reverse phase HPLC and NAD(P)H autofluorescence was measured using confocal microscopy. KEY RESULTS Phenformin, AICAR and metformin increased AMPK (alpha1) activity and decreased I(amiloride). The AMPK inhibitor Compound C prevented the action of metformin and AICAR but not phenformin. Phenformin and AICAR decreased I(ouabain) across H441 monolayers and decreased monolayer resistance. The decrease in I(amiloride) was closely related to I(ouabain) with phenformin, but not in AICAR treated monolayers. Metformin and phenformin increased the cellular AMP:ATP ratio but only phenformin and AICAR decreased cellular ATP. CONCLUSIONS AND IMPLICATIONS Activation of alpha1-AMPK is associated with inhibition of apical amiloride-sensitive Na(+) channels (ENaC), which has important implications for the clinical use of metformin. Additional pharmacological effects evoked by AICAR and phenformin on I(ouabain), with potential secondary effects on apical Na+ conductance, ENaC activity and monolayer resistance, have important consequences for their use as pharmacological activators of AMPK in cell systems where Na+K+ATPase is an important component.
Collapse
Affiliation(s)
- A M Woollhead
- Centre for Ion Channels and Cell Signalling, Div. of Basic Medical Sciences, St George's, University of London London, UK
| | - J Sivagnanasundaram
- Centre for Ion Channels and Cell Signalling, Div. of Basic Medical Sciences, St George's, University of London London, UK
| | - K K Kalsi
- Centre for Ion Channels and Cell Signalling, Div. of Basic Medical Sciences, St George's, University of London London, UK
| | - V Pucovsky
- Centre for Ion Channels and Cell Signalling, Div. of Basic Medical Sciences, St George's, University of London London, UK
| | - L J Pellatt
- Centre for Ion Channels and Cell Signalling, Div. of Basic Medical Sciences, St George's, University of London London, UK
| | - J W Scott
- Division of Molecular Physiology, School of Life Sciences, University of Dundee Dundee, UK
| | - K J Mustard
- Division of Molecular Physiology, School of Life Sciences, University of Dundee Dundee, UK
| | - D G Hardie
- Division of Molecular Physiology, School of Life Sciences, University of Dundee Dundee, UK
| | - D L Baines
- Centre for Ion Channels and Cell Signalling, Div. of Basic Medical Sciences, St George's, University of London London, UK
- Author for correspondence:
| |
Collapse
|