1
|
Megía-Palma R, Cuervo JJ, Fitze PS, Martínez J, Jiménez-Robles O, De la Riva I, Reguera S, Moreno-Rueda G, Blaimont P, Kopena R, Barrientos R, Martín J, Merino S. Do sexual differences in life strategies make male lizards more susceptible to parasite infection? J Anim Ecol 2024. [PMID: 39044387 DOI: 10.1111/1365-2656.14154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 06/05/2024] [Indexed: 07/25/2024]
Abstract
Female and male hosts may maximise their fitness by evolving different strategies to compensate for the costs of parasite infections. The resulting sexual dimorphism might be apparent in differential relationships between parasite load and body condition, potentially reflecting differences in energy allocation to anti-parasitic defences. For example, male lacertids with high body condition may produce many offspring while being intensely parasitised. In contrast, female lacertids may show a different outcome of the trade-offs between body condition and immunity, aiming to better protect themselves from the harm of parasites. We predicted that females would have fewer parasites than males and a lower body condition across parasitaemia levels because they would invest resources in parasite defence to mitigate the costs of infection. In contrast, the male strategy to maximise access to females would imply some level of parasite tolerance and, thus, higher parasitaemia. We analysed the relationship between the body condition of lizards and the parasitemias of Karyolysus and Schellackia, two genera of blood parasites with different phylogenetic origins, in 565 females and 899 males belonging to 10 species of the Lacertidae (Squamata). These lizards were sampled over a period of 12 years across 34 sampling sites in southwestern Europe. The results concerning the Karyolysus infections were consistent with the predictions, with males having similar body condition across parasitaemia levels even though they had higher infection intensities than females. On the other hand, females with higher levels of Karyolysus parasitaemia had lower body condition. This is consistent with the prediction that different life strategies of male and female lacertids can explain the infection patterns of Karyolysus. In contrast, the parasitaemia of Schellackia was consistently low in both male and female hosts, with no significant effect on the body condition of lizards. This suggests that lizards of both sexes maintain this parasite below a pathogenic threshold.
Collapse
Affiliation(s)
- Rodrigo Megía-Palma
- Department of Biomedicine and Biotechnology, School of Pharmacy, Universidad de Alcalá (UAH), Madrid, Spain
- CIBIO, Centro de Investigação Em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal
| | - José J Cuervo
- Museo Nacional de Ciencias Naturales (MNCN-CSIC), Madrid, Spain
| | - Patrick S Fitze
- Museo Nacional de Ciencias Naturales (MNCN-CSIC), Madrid, Spain
| | - Javier Martínez
- Department of Biomedicine and Biotechnology, School of Pharmacy, Universidad de Alcalá (UAH), Madrid, Spain
| | - Octavio Jiménez-Robles
- Division of Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, Australia
- Institut de Biologie, École Normale Supérieure, Paris, France
| | | | - Senda Reguera
- Department of Biology and Geology, IES don Pelayo, Madrid, Spain
| | - Gregorio Moreno-Rueda
- Facultad de Ciencias, Departamento de Zoología, Universidad de Granada (UGR), Granada, Spain
| | - Pauline Blaimont
- Department of Biology, University of Houston Downtown, Houston, Texas, USA
| | - Renata Kopena
- ELKH Centre for Ecological Research, Evolutionary Ecology Research Group, Institute of Ecology and Botany, Vácrátót, Hungary
| | - Rafael Barrientos
- Universidad Complutense de Madrid, School of Biology, Department of Biodiversity Ecology and Evolution, Road Ecology Lab, Madrid, Spain
| | - José Martín
- Museo Nacional de Ciencias Naturales (MNCN-CSIC), Madrid, Spain
| | - Santiago Merino
- Museo Nacional de Ciencias Naturales (MNCN-CSIC), Madrid, Spain
| |
Collapse
|
2
|
Conrad H, Pollock NB, John‐Alder H. Chigger mite ( Eutrombicula alfreddugesi) ectoparasitism does not contribute to sex differences in growth rate in eastern fence lizards ( Sceloporus undulatus). Ecol Evol 2023; 13:e10590. [PMID: 37829181 PMCID: PMC10565727 DOI: 10.1002/ece3.10590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 09/15/2023] [Accepted: 09/22/2023] [Indexed: 10/14/2023] Open
Abstract
Parasitism is nearly ubiquitous in animals and is frequently associated with fitness costs in host organisms, including reduced growth, foraging, and reproduction. In many species, males tend to be more heavily parasitized than females and thus may bear greater costs of parasitism. Sceloporus undulatus is a female-larger, sexually size dimorphic lizard species that is heavily parasitized by chigger mites (Eutrombicula alfreddugesi). In particular, the intensity of mite parasitism is higher in male than in female juveniles during the period of time when sex differences in growth rate lead to the development of sexual size dimorphism (SSD). Sex-biased differences in fitness costs of parasitism have been documented in other species. We investigated whether there are growth costs of mite ectoparasitism, at a time coinciding with sex differences in growth rate and the onset of SSD. If there are sex-biased growth costs of parasitism, then this could suggest a contribution to the development of SSD in S. undulatus. We measured growth and mite loads in two cohorts of unmanipulated, field-active yearlings by conducting descriptive mark-recapture studies during the activity seasons of 2016 and 2019. Yearling males had consistently higher mid-summer mite loads and consistently lower growth rates than females. However, we found that growth rate and body condition were independent of mite load in both sexes. Furthermore, growth rates and mite loads were higher in 2019 than in 2016. Our findings suggest that juveniles of S. undulatus are highly tolerant of chigger mites and that any costs imposed by mites may be at the expense of functions other than growth. We conclude that sex-biased mite ectoparasitism does not contribute to sex differences in growth rate and, therefore, does not contribute to the development of SSD.
Collapse
Affiliation(s)
- Hailey Conrad
- Department of Ecology, Evolution, and Natural ResourcesRutgers UniversityNew BrunswickNew JerseyUSA
- Present address:
Department of Biological SciencesVirginia Polytechnic Institute and State UniversityBlacksburgVirginiaUSA
| | - Nicholas B. Pollock
- Graduate Program in Ecology and EvolutionRutgers UniversityNew BrunswickNew JerseyUSA
- Present address:
Department of BiologyUniversity of Texas at ArlingtonArlingtonTexasUSA
| | - Henry John‐Alder
- Department of Ecology, Evolution, and Natural ResourcesRutgers UniversityNew BrunswickNew JerseyUSA
- Rutgers Pinelands Field StationRutgers UniversityNew LisbonNew JerseyUSA
| |
Collapse
|
3
|
Yu W, Zhu Z, Zhao X, Cui S, Liu Z, Zeng Z. Altitudinal variation in life-history features of a Qinghai-Tibetan Plateau lizard. Curr Zool 2023; 69:284-293. [PMID: 37351291 PMCID: PMC10284057 DOI: 10.1093/cz/zoac052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/17/2022] [Accepted: 06/30/2022] [Indexed: 09/18/2023] Open
Abstract
Environmental changes along an altitudinal gradient can facilitate the differentiation of life-history features in ectothermic species, but little attention has been devoted to the reciprocal influence of altitude and alpine slope directionality on life-history variation. According to life-history theory, increased environmental stress causes a change in reproductive allocation from number to quality of offspring, as well as a stronger trade-off between size and number of offspring. To clarify the influence of environmental pressures on the life-history features of the Qinghai toad-headed lizard Phrynocephalus vlangalii along an altitudinal cline, we surveyed late pregnant females from 3 populations of low (2,600 m), middle (3,400 m), and high (3,600 m) elevations in the Dangjin Mountain of Gansu, China from July to October 2019, and compared their inter-population differences in maternal body size, reproductive characteristics, offspring growth, and locomotor performance. Because of lower temperatures, higher humidity, and lower light intensity caused by slope aspect and altitude, the middle-altitude region experienced stronger environmental stress than the high- and low-altitude regions. Our results showed that females were larger at middle- and high-altitude sites and smaller at the low-altitude site, following Bergmann's rule. We also found that females from low-altitude population gave birth earlier than those from the middle and high altitudes. Our results showed a shift in the offspring size-number trade-off of P. vlangalii in response to colder and harsher environments, with lizards from the alpine steppe (i.e. the middle- and high-altitude habitats) producing fewer but larger offspring than those from the warm steppe (i.e. the low-altitude habitat). Low-altitude juveniles grew faster than high-altitude ones, but at the same rates as middle-altitude juveniles. This result demonstrates that the growth of P. vlangalii was associated with temperature and light intensity. Our findings contribute to enhancing our understanding of the altitudinal variation in life-history features of plateau ectotherms and their phenotypic plasticity or local adaptation.
Collapse
Affiliation(s)
- Wei Yu
- College of Wildlife Resources, Northeast Forestry University, Harbin 150040, China
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zeyu Zhu
- College of Wildlife Resources, Northeast Forestry University, Harbin 150040, China
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaolong Zhao
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- The Key Laboratory of Zoological Systematics and Application, School of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding 071002, Hebei, China
| | - Shuang Cui
- College of Wildlife Resources, Northeast Forestry University, Harbin 150040, China
| | - Zhensheng Liu
- College of Wildlife Resources, Northeast Forestry University, Harbin 150040, China
- Key Laboratory of Conservation Biology, State Forestry Administration, Harbin 150040, China
| | - Zhigao Zeng
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
4
|
Aggression, Boldness, and Exploration Personality Traits in the Subterranean Naked Mole-Rat ( Heterocephalus glaber) Disperser Morphs. Animals (Basel) 2022; 12:ani12223083. [PMID: 36428311 PMCID: PMC9686569 DOI: 10.3390/ani12223083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/28/2022] [Accepted: 10/31/2022] [Indexed: 11/11/2022] Open
Abstract
Animal personality traits (consistent behavioral differences between individuals in their behavior across time and/or situation) affect individual fitness through facets, such as dispersal. In eusocial naked mole-rat (Heterocephalus glaber) colonies, a disperser morph may arise with distinct morphological, behavioral, and physiological characteristics. This study aimed to quantify the personality traits of a cohort of disperser morphs of naked mole-rat (NMR). Behavioral tests were performed on twelve disperser morphs (six males and six females) in an observation tunnel system that was novel and unfamiliar. Novel stimuli (fresh snakeskin, tissue paper, and conspecific of the same sex) were introduced for fifteen minutes, and the behavioral acts of the individual were recorded. A total of 30 behaviors were noted during the behavioral tests of which eight were used to quantify aggression, boldness, and exploration. The NMR disperser morphs showed consistent individual differences in boldness, and exploration across time and test, indicating a distinct personality. In addition, new naked mole-rat responses including disturbance behaviors; confront, barricade, and stay-away, were recorded. Further investigations into the relationships between animal personality traits and social hierarchy position in entire colonies are needed for more informative results as we further investigate the role of personality in cooperatively breeding societies.
Collapse
|
5
|
Abalos J, Pérez i de Lanuza G, Bartolomé A, Aubret F, Uller T, Font E. Viability, behavior, and color expression in the offspring of matings between common wall lizard Podarcis muralis color morphs. Curr Zool 2022; 68:41-55. [PMID: 35169628 PMCID: PMC8836344 DOI: 10.1093/cz/zoab039] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 05/07/2021] [Indexed: 01/21/2023] Open
Abstract
Color polymorphisms are widely studied to identify the mechanisms responsible for the origin and maintenance of phenotypic variability in nature. Two of the mechanisms of balancing selection currently thought to explain the long-term persistence of polymorphisms are the evolution of alternative phenotypic optima through correlational selection on suites of traits including color and heterosis. Both of these mechanisms can generate differences in offspring viability and fitness arising from different morph combinations. Here, we examined the effect of parental morph combination on fertilization success, embryonic viability, newborn quality, antipredator, and foraging behavior, as well as inter-annual survival by conducting controlled matings in a polymorphic lacertid Podarcis muralis, where color morphs are frequently assumed to reflect alternative phenotypic optima (e.g., alternative reproductive strategies). Juveniles were kept in outdoor tubs for a year in order to study inter-annual growth, survival, and morph inheritance. In agreement with a previous genome-wide association analysis, morph frequencies in the year-old juveniles matched the frequencies expected if orange and yellow expressions depended on recessive homozygosity at 2 separate loci. Our findings also agree with previous literature reporting higher reproductive output of heavy females and the higher overall viability of heavy newborn lizards, but we found no evidence for the existence of alternative breeding investment strategies in female morphs, or morph-combination effects on offspring viability and behavior. We conclude that inter-morph breeding remains entirely viable and genetic incompatibilities are of little significance for the maintenance of discrete color morphs in P. muralis from the Pyrenees.
Collapse
Affiliation(s)
- Javier Abalos
- Ethology Lab, Instituto Cavanilles de Biodiversidad y Biología Evolutiva, Universitat de València, Valencia, Spain
| | - Guillem Pérez i de Lanuza
- Ethology Lab, Instituto Cavanilles de Biodiversidad y Biología Evolutiva, Universitat de València, Valencia, Spain
- CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos da Universidade do Porto, Porto, Portugal
| | - Alicia Bartolomé
- Ethology Lab, Instituto Cavanilles de Biodiversidad y Biología Evolutiva, Universitat de València, Valencia, Spain
| | - Fabien Aubret
- SETE, Station d’Ecologie Théorique et Expérimentale, UPR2001, Centre National de la Recherche Scientifique, Paris, France
| | - Tobias Uller
- Department of Biology, Lund University, Lund, Sweden
| | - Enrique Font
- Ethology Lab, Instituto Cavanilles de Biodiversidad y Biología Evolutiva, Universitat de València, Valencia, Spain
| |
Collapse
|
6
|
Abstract
AbstractTrade-offs and constraints are inherent to life, and studies of these phenomena play a central role in both organismal and evolutionary biology. Trade-offs can be defined, categorized, and studied in at least six, not mutually exclusive, ways. (1) Allocation constraints are caused by a limited resource (e.g., energy, time, space, essential nutrients), such that increasing allocation to one component necessarily requires a decrease in another (if only two components are involved, this is referred to as the Y-model, e.g., energy devoted to size versus number of offspring). (2) Functional conflicts occur when features that enhance performance of one task decrease performance of another (e.g., relative lengths of in-levers and out-levers, force-velocity trade-offs related to muscle fiber type composition). (3) Shared biochemical pathways, often involving integrator molecules (e.g., hormones, neurotransmitters, transcription factors), can simultaneously affect multiple traits, with some effects being beneficial for one or more components of Darwinian fitness (e.g., survival, age at first reproduction, fecundity) and others detrimental. (4) Antagonistic pleiotropy describes genetic variants that increase one component of fitness (or a lower-level trait) while simultaneously decreasing another. (5) Ecological circumstances (or selective regime) may impose trade-offs, such as when foraging behavior increases energy availability yet also decreases survival. (6) Sexual selection may lead to the elaboration of (usually male) secondary sexual characters that improve mating success but handicap survival and/or impose energetic costs that reduce other fitness components. Empirical studies of trade-offs often search for negative correlations between two traits that are the expected outcomes of the trade-offs, but this will generally be inadequate if more than two traits are involved and especially for complex physiological networks of interacting traits. Moreover, trade-offs often occur only in populations that are experiencing harsh environmental conditions or energetic challenges at the extremes of phenotypic distributions, such as among individuals or species that have exceptional athletic abilities. Trade-offs may be (partially) circumvented through various compensatory mechanisms, depending on the timescale involved, ranging from acute to evolutionary. Going forward, a pluralistic view of trade-offs and constraints, combined with integrative analyses that cross levels of biological organization and traditional boundaries among disciplines, will enhance the study of evolutionary organismal biology.
Collapse
|
7
|
Martins LF, Choueri EL, Oliveira AFS, Domingos FMCB, Caetano GHO, Cavalcante VHGL, Leite RN, Fouquet A, Rodrigues MT, Carnaval AC, Colli GR, Werneck FP. Whiptail lizard lineage delimitation and population expansion as windows into the history of Amazonian open ecosystems. SYST BIODIVERS 2021. [DOI: 10.1080/14772000.2021.1953185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Lidia F. Martins
- Programa de Pós-Graduação em Ecologia, Instituto Nacional de Pesquisas da Amazônia, Manaus, AM, Brazil
| | - Erik L. Choueri
- Programa de Pós-Graduação em Genética, Conservação e Biologia Evolutiva, Instituto Nacional de Pesquisas da Amazônia, Manaus, AM, Brazil
| | - Alan F. S. Oliveira
- Programa de Pós-Graduação em Ecologia, Instituto Nacional de Pesquisas da Amazônia, Manaus, AM, Brazil
| | | | - Gabriel H. O. Caetano
- Mitrani Department of Desert Ecology, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, 849900 Midreshet Ben-Gurion, Israel
| | | | - Rafael N. Leite
- Programa de Pós-Graduação em Ecologia, Instituto Nacional de Pesquisas da Amazônia, Manaus, AM, Brazil
- Programa de Pós-Graduação em Genética, Conservação e Biologia Evolutiva, Instituto Nacional de Pesquisas da Amazônia, Manaus, AM, Brazil
| | - Antoine Fouquet
- Laboratoire Evolution et Diversité Biologique (EDB), UMR5174, Bâtiment 4R1, 118 Route de Narbonne 31077, Toulouse, France
| | - Miguel T. Rodrigues
- Departamento de Zoologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Ana C. Carnaval
- City College of New York and Biology Ph.D. Program, The Graduate Center City University of New York, New York, NY 10031, USA
| | - Guarino R. Colli
- Departamento de Zoologia, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, DF, Brazil
| | - Fernanda P. Werneck
- Programa de Pós-Graduação em Ecologia, Instituto Nacional de Pesquisas da Amazônia, Manaus, AM, Brazil
- Programa de Coleções Científicas Biológicas, Coordenação de Biodiversidade, Instituto Nacional de Pesquisas da Amazônia, Manaus, AM, Brazil
| |
Collapse
|
8
|
Natural selection increases female fitness by reversing the exaggeration of a male sexually selected trait. Nat Commun 2021; 12:3420. [PMID: 34103535 PMCID: PMC8187464 DOI: 10.1038/s41467-021-23804-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 05/17/2021] [Indexed: 02/05/2023] Open
Abstract
Theory shows how sexual selection can exaggerate male traits beyond naturally selected optima and also how natural selection can ultimately halt trait elaboration. Empirical evidence supports this theory, but to our knowledge, there have been no experimental evolution studies directly testing this logic, and little examination of possible associated effects on female fitness. Here we use experimental evolution of replicate populations of broad-horned flour beetles to test for effects of sex-specific predation on an exaggerated sexually selected male trait (the mandibles), while also testing for effects on female lifetime reproductive success. We find that populations subjected to male-specific predation evolve smaller sexually selected mandibles and this indirectly increases female fitness, seemingly through intersexual genetic correlations we document. Predation solely on females has no effects. Our findings support fundamental theory, but also reveal unforseen outcomes-the indirect effect on females-when natural selection targets sex-limited sexually selected characters.
Collapse
|
9
|
Cabrera D, Nilsson JR, Griffen BD. The development of animal personality across ontogeny: a cross-species review. Anim Behav 2021. [DOI: 10.1016/j.anbehav.2021.01.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
10
|
Sex- and Age-Specific Effects are Superimposed on Seasonal Variation in Mite Parasitism in Eastern Fence Lizards (Sceloporus undulatus). J HERPETOL 2020. [DOI: 10.1670/18-167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
11
|
Moss JB, Gerber GP, Welch ME. Heterozygosity-Fitness Correlations Reveal Inbreeding Depression in Neonatal Body Size in a Critically Endangered Rock Iguana. J Hered 2019; 110:818-829. [PMID: 31617903 DOI: 10.1093/jhered/esz060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 10/09/2019] [Indexed: 01/16/2023] Open
Abstract
Inbreeding depression, though challenging to identify in nature, may play an important role in regulating the dynamics of small and isolated populations. Conversely, greater expression of genetic load can enhance opportunities for natural selection. Conditional expression concentrates these opportunities for selection and may lead to failure of detection. This study investigates the possibility for age-dependent expression of inbreeding depression in a critically endangered population of rock iguanas, Cyclura nubila caymanensis. We employ heterozygote-fitness correlations to examine the contributions of individual genetic factors to body size, a fitness-related trait. Nonsignificant reductions in homozygosity (up to 7%) were detected between neonates and individuals surviving past their first year, which may reflect natural absorption of inbreeding effects by this small, fecund population. The majority of variation in neonate body size was attributed to maternal or environmental effects (i.e., clutch identity and incubation length); however, heterozygosity across 22 microsatellite loci also contributed significantly and positively to model predictions. Conversely, effects of heterozygosity on fitness were not detectable when adults were examined, suggesting that inbreeding depression in body size may be age dependent in this taxon. Overall, these findings emphasize the importance of taking holistic, cross-generational approaches to genetic monitoring of endangered populations.
Collapse
Affiliation(s)
- Jeanette B Moss
- Biological Sciences Department, Mississippi State University, Mississippi State, MS
| | - Glenn P Gerber
- Institute for Conservation Research, San Diego Zoo Global, Escondido, CA
| | - Mark E Welch
- Biological Sciences Department, Mississippi State University, Mississippi State, MS
| |
Collapse
|
12
|
Husak JF, Lailvaux SP. Experimentally enhanced performance decreases survival in nature. Biol Lett 2019; 15:20190160. [PMID: 30991916 DOI: 10.1098/rsbl.2019.0160] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Superior locomotor performance confers advantages in terms of male combat success, survival and fitness in a variety of organisms. In humans, investment in increased performance via the exercise response is also associated with numerous health benefits, and aerobic capacity is an important predictor of longevity. Although the response to exercise is conserved across vertebrates, no studies have tested whether non-human animals that invest in increased athletic performance through exercise realize a survival advantage in nature. Green anole lizards respond to exercise training, and enhanced performance drives trade-offs with reproduction and immunocompetence. We released sprint-trained, endurance-trained and untrained-control male and female green anole lizards into an isolated, urban island in New Orleans, LA, USA and monitored their survival. Sedentary controls realized a significant survivorship advantage compared to trained lizards. Our results suggest that locomotor capacity is currently optimized to maximize survival in green anoles, and that forcing additional investment in performance moves them into a suboptimal phenotypic space relative to their current environmental demands.
Collapse
Affiliation(s)
- Jerry F Husak
- 1 Department of Biology, University of St. Thomas , St. Paul, MN 55105 , USA
| | - Simon P Lailvaux
- 2 Department of Biological Sciences, University of New Orleans , New Orleans, LA 70148 , USA
| |
Collapse
|
13
|
Dupoué A, Blaimont P, Rozen‐Rechels D, Richard M, Meylan S, Clobert J, Miles DB, Martin R, Decencière B, Agostini S, Le Galliard J. Water availability and temperature induce changes in oxidative status during pregnancy in a viviparous lizard. Funct Ecol 2019. [DOI: 10.1111/1365-2435.13481] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Andréaz Dupoué
- Station d'Ecologie Théorique et Expérimentale de Moulis CNRS‐UMR 5321 Saint Girons France
| | - Pauline Blaimont
- Department of Ecology & Evolutionary Biology University of California, Santa Cruz Santa Cruz CA USA
| | | | - Murielle Richard
- Station d'Ecologie Théorique et Expérimentale de Moulis CNRS‐UMR 5321 Saint Girons France
| | - Sandrine Meylan
- Sorbonne Université, iEES ParisCNRS‐UMR 7618 Paris France
- ESPE de Paris, Sorbonne Université Paris France
| | - Jean Clobert
- Station d'Ecologie Théorique et Expérimentale de Moulis CNRS‐UMR 5321 Saint Girons France
| | - Donald B. Miles
- Department of Biological Sciences Ohio University Athens OH USA
| | - Rémi Martin
- Station d'Ecologie Théorique et Expérimentale de Moulis CNRS‐UMR 5321 Saint Girons France
| | - Beatriz Decencière
- Centre de Recherche en Ecologie Expérimentale et Prédictive (CEREEP‐Ecotron Ile De France) Ecole Normale Supérieure CNRS‐UMS 3194 PSL Research University Saint‐Pierre‐lès‐Nemours France
| | - Simon Agostini
- Centre de Recherche en Ecologie Expérimentale et Prédictive (CEREEP‐Ecotron Ile De France) Ecole Normale Supérieure CNRS‐UMS 3194 PSL Research University Saint‐Pierre‐lès‐Nemours France
| | - Jean‐François Le Galliard
- Sorbonne Université, iEES ParisCNRS‐UMR 7618 Paris France
- Centre de Recherche en Ecologie Expérimentale et Prédictive (CEREEP‐Ecotron Ile De France) Ecole Normale Supérieure CNRS‐UMS 3194 PSL Research University Saint‐Pierre‐lès‐Nemours France
| |
Collapse
|
14
|
Horváth G, Rodríguez‐Ruiz G, Martín J, López P, Herczeg G. Maternal diet affects juvenile Carpetan rock lizard performance and personality. Ecol Evol 2019; 9:14476-14488. [PMID: 31938534 PMCID: PMC6953655 DOI: 10.1002/ece3.5882] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 10/14/2019] [Accepted: 11/03/2019] [Indexed: 11/07/2022] Open
Abstract
Differences in both stable and labile state variables are known to affect the emergence and maintenance of consistent interindividual behavioral variation (animal personality or behavioral syndrome), especially when experienced early in life. Variation in environmental conditions experienced by gestating mothers (viz. nongenetic maternal effects) is known to have significant impact on offspring condition and behavior; yet, their effect on behavioral consistency is not clear. Here, by applying an orthogonal experimental design, we aimed to study whether increased vitamin D3 content in maternal diet during gestation (vitamin-supplemented vs. vitamin control treatments) combined with corticosterone treatment (corticosterone-treated vs. corticosterone control treatments) applied on freshly hatched juveniles had an effect on individual state and behavioral consistency of juvenile Carpetan rock lizards (Iberolacerta cyreni). We tested the effect of our treatments on (a) climbing speed and the following levels of behavioral variation, (b) strength of animal personality (behavioral repeatability), (c) behavioral type (individual mean behavior), and (d) behavioral predictability (within-individual behavioral variation unrelated to environmental change). We found higher locomotor performance of juveniles from the vitamin-supplemented group (42.4% increase), irrespective of corticosterone treatment. While activity personality was present in all treatments, shelter use personality was present only in the vitamin-supplemented × corticosterone-treated treatment and risk-taking personality was present in corticosterone control treatments. Contrary to our expectations, behavioral type was not affected by our treatments, indicating that individual quality can affect behavioral strategies without affecting group-level mean behavior. Behavioral predictability decreased in individuals with low climbing speed, which could be interpreted as a form of antipredator strategy. Our results clearly demonstrate that maternal diet and corticosterone treatment have the potential to induce or hamper between-individual variation in different components of boldness, often in interactions.
Collapse
Affiliation(s)
- Gergely Horváth
- Behavioural Ecology GroupDepartment of Systematic Zoology and EcologyEötvös Loránd UniversityBudapestHungary
| | | | - José Martín
- Department of Evolutionary EcologyMuseo Nacional de Ciencias NaturalesCSICMadridSpain
| | - Pilar López
- Department of Evolutionary EcologyMuseo Nacional de Ciencias NaturalesCSICMadridSpain
| | - Gábor Herczeg
- Behavioural Ecology GroupDepartment of Systematic Zoology and EcologyEötvös Loránd UniversityBudapestHungary
| |
Collapse
|
15
|
Gilbert AL, Brooks OL, Lattanzio MS. Multiple behavioral contexts of a melanized tail display in a desert lizard. Ethology 2019. [DOI: 10.1111/eth.12975] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Anthony L. Gilbert
- Department of Biological Sciences Ohio University Athens Ohio
- Ohio Center for Ecological and Evolutionary Studies Athens Ohio
| | - Olivia L. Brooks
- Department of Biology John Carroll University University Heights Ohio
| | - Matthew S. Lattanzio
- Department of Organismal and Environmental Biology Christopher Newport University Newport News Virginia
| |
Collapse
|
16
|
Arakelyan M, Harutyunyan T, Aghayan SA, Carretero MA. Infection of parthenogenetic lizards by blood parasites does not support the "Red Queen hypothesis" but reveals the costs of sex. ZOOLOGY 2019; 136:125709. [PMID: 31539860 DOI: 10.1016/j.zool.2019.125709] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 07/24/2019] [Accepted: 08/01/2019] [Indexed: 11/25/2022]
Abstract
Sexual organisms should be better suited than asexual ones in a context of continuous evolution in response to opposite organisms in changing environments ("Red Queen" hypothesis of sex). However, sex also carries costs associated with the maintenance of males and mating (sex cost hypothesis). Here, both non-mutually excluding hypotheses are tested by analysing the infestation by haemogregarines of mixed communities of Darevskia rock lizards composed of parthenogens generated by hybridisation and their bisexual relatives. Prevalence and intensity were recorded from 339 adult lizards belonging to six species from five syntopic localities and analysed using Generalized Mixed-Models (GLMM). Both infestation parameters depended on host-size (like due to longer exposure with age), sex and, for intensity, species. Once accounting for locality and species, males were more parasitized than conspecific females with bisexual species, but no signal of reproductive mode itself on parasitization was recovered. Essentially, male-male interactions increased haemogregarine intensity while females either sexual or asexual had similar reproductive costs when in the same conditions. These findings deviate from the predictions from "Red Queen" dynamics while asymmetric gender costs are here confirmed. Thus, increased parasitization pressure on males adds to other costs, such as higher social interactions and lower fecundity, to explain why parthenogenetic lizards apparently prevail in the short-term evolutionary scale. How this is translated in the long-term requires further phylogenetic analysis.
Collapse
Affiliation(s)
- Marine Arakelyan
- Faculty of Biology, Yerevan State University, Alek Manoogian 1, 0025, Yerevan, Armenia.
| | - Tehmine Harutyunyan
- Faculty of Biology, Yerevan State University, Alek Manoogian 1, 0025, Yerevan, Armenia
| | - Sargis A Aghayan
- Faculty of Biology, Yerevan State University, Alek Manoogian 1, 0025, Yerevan, Armenia; Scientific Center of Zoology and Hydroecology, Sevak str 7, 0014, Yerevan, Armenia
| | - Miguel A Carretero
- CIBIO Research Centre in Biodiversity and Genetic Resources, InBIO, Universidade do Porto, Campus de Vairão, Rua Padre Armando Quintas, Nº7, 4485-661 Vairão, Vila do Conde, Portugal
| |
Collapse
|
17
|
Hazard LC, Nagy KA, Miles DB, Svensson EI, Costa D, Sinervo B. Integration of Genotype, Physiological Performance, and Survival in a Lizard (Uta stansburiana) with Alternative Mating Strategies. Physiol Biochem Zool 2019; 92:303-315. [DOI: 10.1086/703136] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
18
|
Petelle MB, Martin JG, Blumstein DT. Mixed support for state maintaining risky personality traits in yellow-bellied marmots. Anim Behav 2019. [DOI: 10.1016/j.anbehav.2019.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
19
|
Han GD, Cartwright SR, Ganmanee M, Chan BKK, Adzis KAA, Hutchinson N, Wang J, Hui TY, Williams GA, Dong YW. High thermal stress responses of Echinolittorina snails at their range edge predict population vulnerability to future warming. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 647:763-771. [PMID: 30092533 DOI: 10.1016/j.scitotenv.2018.08.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Revised: 07/26/2018] [Accepted: 08/01/2018] [Indexed: 06/08/2023]
Abstract
Populations at the edge of their species' distribution ranges are typically living at the physiological extreme of the environmental conditions they can tolerate. As a species' response to global change is likely to be largely determined by its physiological performance, subsequent changes in environmental conditions can profoundly influence populations at range edges, resulting in range extensions or retractions. To understand the differential physiological performance among populations at their distribution range edge and center, we measured levels of mRNA for heat shock protein 70 (hsp70) as an indicator of temperature sensitivity in two high-shore littorinid snails, Echinolittorina malaccana and E. radiata, between 1°N to 36°N along the NW Pacific coast. These Echinolittorina snails are extremely heat-tolerant and frequently experience environmental temperatures in excess of 55 °C when emersed. It was assumed that animals exhibiting high temperature sensitivity will synthesize higher levels of mRNA, which will thus lead to higher energetic costs for thermal defense. Populations showed significant geographic variation in temperature sensitivity along their range. Snails at the northern range edge of E. malaccana and southern range edge of E. radiata exhibited higher levels of hsp70 expression than individuals collected from populations at the center of their respective ranges. The high levels of hsp70 mRNA in populations at the edge of a species' distribution range may serve as an adaptive response to locally stressful thermal environments, suggesting populations at the edge of their distribution range are potentially more sensitive to future global warming.
Collapse
Affiliation(s)
- Guo-Dong Han
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Stephen R Cartwright
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong Special Administrative Region
| | - Monthon Ganmanee
- Faculty of Agricultural Technology, King Mongkut's Institute of Technology Ladkrabang, Bangkok 10520, Thailand
| | - Benny K K Chan
- Research Centre for Biodiversity, Academia Sinica, Taipei 115, Taiwan
| | - Kee A A Adzis
- Marine Ecosystem Research Center, National University of Malaysia, 43600 UKM Bangi, Malaysia; SEAlutions Sdn Bhd, B-11-1, Viva building, No 378, Jalan Ipoh, 51200 Kuala Lumpur, Malaysia
| | - Neil Hutchinson
- TropWATER-Centre for Tropical Water and Aquatic Ecosystem Research, James Cook University Singapore, 149 Sims Drive, Singapore 387380, Singapore
| | - Jie Wang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Tommy Y Hui
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong Special Administrative Region
| | - Gray A Williams
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong Special Administrative Region.
| | - Yun-Wei Dong
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
20
|
Matsumura K, Ito R, Miyatake T. Pace-of-life: Relationships among locomotor activity, life history, and circadian rhythm in the assassin bug, Amphibolus venator. Ethology 2019. [DOI: 10.1111/eth.12831] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Kentarou Matsumura
- Laboratory of Evolutionary Ecology, Graduate School of Environmental and Life Science; Okayama University; Okayama Japan
| | - Ryohei Ito
- Laboratory of Evolutionary Ecology, Graduate School of Environmental and Life Science; Okayama University; Okayama Japan
| | - Takahisa Miyatake
- Laboratory of Evolutionary Ecology, Graduate School of Environmental and Life Science; Okayama University; Okayama Japan
| |
Collapse
|
21
|
Lu HL, Xu CX, Zeng ZG, Du WG. Environmental causes of between-population difference in growth rate of a high-altitude lizard. BMC Ecol 2018; 18:37. [PMID: 30249235 PMCID: PMC6154872 DOI: 10.1186/s12898-018-0194-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 09/14/2018] [Indexed: 11/26/2022] Open
Abstract
Background Ectothermic animals living in cold (high latitude or high elevation) regions are predicted to grow slower due to limited thermal opportunities for activity and food resources than those living in warm regions. However, the Qinghai toad-headed lizards (Phrynocephalus vlangalii) grow faster and reach a larger adult size at a high-elevation site than at a low-elevation site. In this study, we aimed to identify the genetic and environmental causes of this between-population difference in growth rate by conducting mark-recapture and common garden experiments on juvenile growth rate, and investigating the thermal environment, lizard body temperature, potential prey availability at the two elevation sites. Results Compared with low-elevation individuals, high-elevation juvenile lizards had higher growth rates in the field, but grew at similar rates in the laboratory. High-elevation lizards had higher active body temperatures than low-elevation lizards despite similar air temperatures in the period of field investigation. The high-elevation site had relatively more and larger preys than the low-elevation site. Conclusions Inter-population difference in growth rate of P. vlangalii may primarily result from developmental plasticity in response to the difference in environmental resources, rather than genetic differentiation. The higher growth rate of high-elevation lizards is likely associated with higher potential food availability and higher active body temperatures.
Collapse
Affiliation(s)
- Hong-Liang Lu
- Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, Zhejiang, China
| | - Chun-Xia Xu
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zhi-Gao Zeng
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Wei-Guo Du
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
22
|
Fu C, Cao ZD, Fu SJ. Predation experience underlies the relationship between locomotion capability and survival. Comp Biochem Physiol A Mol Integr Physiol 2018; 227:32-38. [PMID: 30236912 DOI: 10.1016/j.cbpa.2018.09.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 09/07/2018] [Indexed: 10/28/2022]
Abstract
The positive relationship between locomotion performance and survival under predation has long been suggested yet seldom demonstrated with direct evidence. We investigate the effects of predator exposure on locomotion capacity (both fast-start escape and critical swimming performance), survival under predation and the relationships between these factors in juvenile Chinese bream (Parabramis pekinensis). This study aims to test whether there is a positive relationship between the above factors and whether such relationships are context dependent (i.e., with or without 20 d of predator exposure). We found that predator-exposed Chinese bream showed higher rates of survival under predation and improved fast-start swimming performance compared with individuals not exposed to predation. At individual level, no relationship was found between survival and any locomotion performance component in the no-predator group, but mean fast-start swimming speed, maneuverability and responsiveness were all positively related to survival in the predator group after 20 d of exposure. This finding indicates that the recognition of and vigilance for predators achieved through predation experience can be crucial preconditions for prey to employ the fast-start escape response, especially to escape ambush predators. Furthermore, a tradeoff was observed between the critical and fast-start swimming performances in the predator group, but not in the no-predator group, which may have been due to the intensified competition throughout the entire locomotion-support system (e.g., energy, proportions of slow- and fast-twitch muscle fibers) between critical and fast-start swimming because the increased demand for fast-start escape capacity constrains (or compromises) critical swimming performance under the threat of predation.
Collapse
Affiliation(s)
- Cheng Fu
- Laboratory of Evolutionary Physiology and Behavior, Chongqing Normal University, Chongqing, China
| | - Zhen-Dong Cao
- Laboratory of Evolutionary Physiology and Behavior, Chongqing Normal University, Chongqing, China
| | - Shi-Jian Fu
- Laboratory of Evolutionary Physiology and Behavior, Chongqing Normal University, Chongqing, China.
| |
Collapse
|
23
|
Foucart T, Heulin B, Lourdais O. Small changes, big benefits: testing the significance of maternal thermoregulation in a lizard with extended egg retention. Biol J Linn Soc Lond 2018. [DOI: 10.1093/biolinnean/bly105] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Thomas Foucart
- Station Biologique de Paimpont, UMR 6553 CNRS, Paimpont, France
- Centre d’étude biologique de Chizé CNRS, Villiers en Bois, France
| | - Benoit Heulin
- Station Biologique de Paimpont, UMR 6553 CNRS, Paimpont, France
| | - Olivier Lourdais
- Centre d’étude biologique de Chizé CNRS, Villiers en Bois, France
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| |
Collapse
|
24
|
Hope SF, Kennamer RA, Moore IT, Hopkins WA. Incubation temperature influences the behavioral traits of a young precocial bird. JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2018; 329:191-202. [PMID: 29806120 DOI: 10.1002/jez.2176] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 04/28/2018] [Accepted: 05/01/2018] [Indexed: 12/20/2022]
Abstract
The environment in which animals develop can have important consequences for their phenotype. In reptiles, incubation temperature is a critical aspect of the early developmental environment. Incubation temperature influences morphology, physiology, and behavior of non-avian reptiles, however, little is known about how incubation temperature influences offspring phenotype and behaviors important to avian survival. To investigate whether incubation temperature influences avian behaviors, we collected wood duck (Aix sponsa) eggs from the field and incubated them at three naturally occurring incubation temperatures (35.0, 35.8, and 37.0°C). We conducted multiple repeated behavioral trials on individual ducklings between 5 and 15 days post-hatch to assess activity, exploratory, and boldness behaviors, classified along a proactive-reactive continuum. We measured growth rates and circulating levels of baseline and stress-induced corticosterone levels to investigate possible physiological correlates of behavior. Ducklings incubated at the lowest temperature displayed more proactive behaviors than those incubated at the two higher temperatures. We also found that younger ducklings exhibited more proactive behavior than older ducklings and males exhibited more proactive behavior than females. Further, duckling behaviors were repeatable across time and contexts, indicative of a proactive-reactive continuum of behavioral tendencies. However, neither corticosterone levels nor growth rates were related to behavior. This provides some of the first evidence that incubation temperature, a critical parental effect, influences avian offspring behaviors that may be important for survival. Our results identify incubation temperature as a mechanism that contributes to the development of behavioral traits and, in part, explains how multiple behavioral types may be maintained within populations.
Collapse
Affiliation(s)
- Sydney F Hope
- Department of Fish and Wildlife Conservation, Virginia Tech, Blacksburg, Virginia
| | - Robert A Kennamer
- Savannah River Ecology Laboratory, University of Georgia, Aiken, South Carolina
| | - Ignacio T Moore
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia
| | - William A Hopkins
- Department of Fish and Wildlife Conservation, Virginia Tech, Blacksburg, Virginia
| |
Collapse
|
25
|
Extinction risks forced by climatic change and intraspecific variation in the thermal physiology of a tropical lizard. J Therm Biol 2018; 73:50-60. [DOI: 10.1016/j.jtherbio.2018.01.013] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Revised: 01/11/2018] [Accepted: 01/31/2018] [Indexed: 11/22/2022]
|
26
|
Yap KN, Serota MW, Williams TD. The Physiology of Exercise in Free-Living Vertebrates: What Can We Learn from Current Model Systems? Integr Comp Biol 2018; 57:195-206. [PMID: 28662569 DOI: 10.1093/icb/icx016] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
SYNOPSIS Many behaviors crucial for survival and reproductive success in free-living animals, including migration, foraging, and escaping from predators, involve elevated levels of physical activity. However, although there has been considerable interest in the physiological and biomechanical mechanisms that underpin individual variation in exercise performance, to date, much work on the physiology of exercise has been conducted in laboratory settings that are often quite removed from the animal's ecology. Here we review current, laboratory-based model systems for exercise (wind or swim tunnels for migration studies in birds and fishes, manipulation of exercise associated with non-migratory activity in birds, locomotion in lizards, and wheel running in rodents) to identify common physiological markers of individual variation in exercise capacity and/or costs of increased activity. Secondly, we consider how physiological responses to exercise might be influenced by (1) the nature of the activity (i.e., voluntary or involuntary, intensity, and duration), and (2) resource acquisition and food availability, in the context of routine activities in free-living animals. Finally, we consider evidence that the physiological effects of experimentally-elevated activity directly affect components of fitness such as reproduction and survival. We suggest that developing more ecologically realistic laboratory systems, incorporating resource-acquisition, functional studies across multiple physiological systems, and a life-history framework, with reproduction and survival end-points, will help reveal the mechanisms underlying the consequences of exercise, and will complement studies in free-living animals taking advantage of new developments in wildlife-tracking.
Collapse
Affiliation(s)
- Kang Nian Yap
- Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, British V5A 1S6, Canada, Columbia
| | - Mitchell W Serota
- Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, British V5A 1S6, Canada, Columbia
| | - Tony D Williams
- Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, British V5A 1S6, Canada, Columbia
| |
Collapse
|
27
|
Lailvaux SP, Husak JF. Introduction to the Symposium: Integrative Life-History of Whole-Organism Performance. Integr Comp Biol 2018; 57:320-324. [PMID: 28859412 DOI: 10.1093/icb/icx084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
SYNOPSIS A strong case can be made for whole-organism performance traits (i.e., dynamic, ecologically relevant traits whose expression is shaped by underlying morphological factors) as being the ultimate integrative traits. This is not only because they capture the output of multiple lower levels of biological organization, but also because they are directly relevant to individual fitness in multiple ecological contexts, and are in many cases important proximate determinants of survival and/or reproductive success. But although many ecological and evolutionary phenomena can be examined through the lens of performance (and vice-versa), performance research has been surprisingly slow to incorporate concepts from the large and important field of life-history evolution. Such a synthesis is necessary, because shifts in resource allocation strategies can have implications for these highly ecologically relevant, functional traits, whose expression may trade-off against fecundity, immune function, or longevity, among other key life-history traits. The papers in this symposium showcase many of the ways in which life-history strategies can have direct consequences for the expression, maintenance, and evolution of whole-organism performance (and at least one case where they may not). By approaching the issue of life-history trade-offs from a number of diverse perspectives, this symposium reveals the scope for future explicit integration of life-history techniques with those of whole-organism performance studies for a more complete understanding of multivariate phenotypic evolution.
Collapse
Affiliation(s)
- Simon P Lailvaux
- Department of Biological Sciences, The University of New Orleans, 2000 Lakeshore Drive, New Orleans, LA 70148, USA
| | - Jerry F Husak
- Department of Biology, University of St. Thomas, 2115 Summit Avenue, St Paul, MN 55105, USA
| |
Collapse
|
28
|
Judson JLM, Knapp CR, Welch ME. Age-dependent, negative heterozygosity-fitness correlations and local effects in an endangered Caribbean reptile, Iguana delicatissima. Ecol Evol 2018; 8:2088-2096. [PMID: 29468027 PMCID: PMC5817140 DOI: 10.1002/ece3.3826] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Revised: 12/15/2017] [Accepted: 12/18/2017] [Indexed: 01/15/2023] Open
Abstract
Inbreeding depression can have alarming impacts on threatened species with small population sizes. Assessing inbreeding has therefore become an important focus of conservation research. In this study, heterozygosity-fitness correlations (HFCs) were measured by genotyping 7 loci in 83 adult and 184 hatchling Lesser Antillean Iguanas, Iguana delicatissima, at a communal nesting site in Dominica to assess the role of inbreeding depression on hatchling fitness and recruitment to the adult population in this endangered species. We found insignificant correlations between multilocus heterozygosity and multiple fitness proxies in hatchlings and adults. Further, multilocus heterozygosity did not differ significantly between hatchlings and adults, which suggests that the survivorship of homozygous hatchlings does not differ markedly from that of their heterozygous counterparts. However, genotypes at two individual loci were correlated with hatching date, a finding consistent with the linkage between specific marker loci and segregating deleterious recessive alleles. These results provide only modest evidence that inbreeding depression influences the population dynamics of I. delicatissima on Dominica.
Collapse
Affiliation(s)
| | - Charles R. Knapp
- San Diego Zoo Institute for Conservation ResearchEscondidoCAUSA
- Present address:
Daniel P. Haerter Center for Conservation and ResearchJohn G. Shedd AquariumChicagoILUSA
| | - Mark E. Welch
- Department of Biological SciencesMississippi State UniversityMississippi StateMSUSA
| |
Collapse
|
29
|
Singleton JM, Garland T. Among-Individual Variation in Desert Iguanas (Squamata: Dipsosaurus dorsalis): Endurance Capacity Is Positively Related to Home Range Size. Physiol Biochem Zool 2017; 91:725-730. [PMID: 29200361 DOI: 10.1086/695692] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Among species of lizards, endurance capacity measured on a motorized treadmill is positively related to daily movement distance and time spent moving, but few studies have addressed such relationships at the level of individual variation within a sex and age category in a single population. Both endurance capacity and home range size show substantial individual variation in lizards, rendering them suitable for such studies. We predicted that these traits would be positively related because endurance capacity is one of the factors that has the potential to limit home range size. We measured the endurance capacity and home range size of adult male desert iguanas (Dipsosaurus dorsalis). Lizards were field captured for measurements of endurance, and home range data were gathered using visual identification of previously marked individuals. Endurance was significantly repeatable between replicate trials, conducted 1-17 d apart ([Formula: see text] for log-transformed values, [Formula: see text], [Formula: see text]). The log of the higher of two endurance trials was positively but not significantly related to log body mass. The log of home range area was positively but not significantly related to log body mass, the number of sightings, or the time span from first to last sighting. As predicted, log endurance was positively correlated with log home range area ([Formula: see text], [Formula: see text], one-tailed [Formula: see text]; for body-mass residual endurance values: [Formula: see text], one-tailed [Formula: see text]). These results suggest that endurance capacity may have a permissive effect on home range size. Alternatively, individuals with larger home ranges may experience training effects (phenotypic plasticity) that increase their endurance.
Collapse
|
30
|
Romero-Diaz C, Breedveld MC, Fitze PS. Climate Effects on Growth, Body Condition, and Survival Depend on the Genetic Characteristics of the Population. Am Nat 2017; 190:649-662. [DOI: 10.1086/693780] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
31
|
How Ecology Could Affect Cerebral Lateralization for Explorative Behaviour in Lizards. Symmetry (Basel) 2017. [DOI: 10.3390/sym9080144] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
32
|
Simmonds AIM, Seebacher F. Histone deacetylase activity modulates exercise-induced skeletal muscle plasticity in zebrafish ( Danio rerio). Am J Physiol Regul Integr Comp Physiol 2017; 313:R35-R43. [PMID: 28404582 DOI: 10.1152/ajpregu.00378.2016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 03/15/2017] [Accepted: 04/03/2017] [Indexed: 12/31/2022]
Abstract
Aerobic exercise has a positive impact on animals by enhancing skeletal muscle function and locomotor performance. Responses of skeletal muscle to exercise involve changes in energy metabolism, calcium handling, and the composition of contractile protein isoforms, which together influence contractile properties. Histone deacetylases (HDAC) can cause short-term changes in gene expression and may thereby mediate plasticity in contractile properties of skeletal muscle in response to exercise. The aim of this project was to determine (in zebrafish, Danio rerio) the traits that mediate interindividual differences in sustained and sprint performance and to determine whether inhibiting class I and II HDACs mediates exercise-induced changes in these traits. High sustained performers had greater aerobic metabolic capacity [citrate synthase (CS) activity], calcium handling capacity [sarco/endoplasmic reticulum ATPase (SERCA) activity], and slow contractile protein concentration [slow myosin heavy chain (MHC)] compared with low performers. High sprint performers had lower CS activity and slow MHC concentrations compared with low performers, but there were no significant differences in lactate dehydrogenase activity or fast MHC concentrations. Four weeks of aerobic exercise training increased sustained performance, CS activity, SERCA activity, and slow MHC concentration. Inhibiting class I and II HDACs increased slow MHC concentration in untrained fish but not in trained fish. However, inhibiting HDACs reduced SERCA activity, which was paralleled by a reduction in sustained and sprint performance. The regulation of muscle phenotypes by HDACs could be a mechanism underlying the adaptation of sustained locomotor performance to different environmental conditions, and may therefore be of therapeutic and ecological significance.
Collapse
Affiliation(s)
- Alec I M Simmonds
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Frank Seebacher
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
33
|
Moretti EH, Titon B, Madelaire CB, de Arruda R, Alvarez T, Gomes FR. Behavioral, physiological and morphological correlates of parasite intensity in the wild Cururu toad ( Rhinella icterica). INTERNATIONAL JOURNAL FOR PARASITOLOGY-PARASITES AND WILDLIFE 2017; 6:146-154. [PMID: 28725553 PMCID: PMC5502792 DOI: 10.1016/j.ijppaw.2017.06.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 06/06/2017] [Accepted: 06/08/2017] [Indexed: 11/28/2022]
Abstract
Large numbers of parasites are found in various organs of anuran amphibians, with parasite intensities thought to modulate the host's Darwinian fitness traits. Interaction between the anuran hosts and their multiple parasites should modulate the host's phenotypic characteristic, such as those associated with high energetic demand (such as calling effort and locomotor performance), energy balance (standard metabolic rate), and morphological plasticity (as indicated by organ masses). The present study investigated the impact of parasite intensities on the behavioral, physiological, and morphological traits of wild adult male Rhinella icterica (Anura: Bufonidae). We tested as to whether individuals with higher parasite intensities would present: 1) lower vocal calling effort in the field, as well as poorer locomotor performance and body-condition index; and 2) higher standard metabolic rates and internal organ masses. Measurements included: calling effort in the field; standard metabolic rate; locomotor performance; parasite intensity; internal organ masses (heart, liver, kidneys, intestines, stomach, lungs, hind limb muscle, and spleen); and the body-condition index. Results showed a negative association of parasite intensities with locomotor performance, and standard metabolic rate of R. icterica. A positive association between parasite intensities and relative organ masses (heart, intestines and kidneys) was also evident. Toads with higher pulmonary and intestinal parasites intensities also showed higher total parasite intensities.
Collapse
Affiliation(s)
- Eduardo Hermógenes Moretti
- Departamento de Fisiologia, Instituto de Biociências, Universidade Estadual Paulista "Júlio de Mesquita Filho", Rua Prof. Dr. Antônio Celso Wagner Zanin, s/n, 18618-689, Botucatu, SP, Brazil
| | - Braz Titon
- Departamento de Fisiologia, Instituto de Biociências, Universidade Estadual Paulista "Júlio de Mesquita Filho", Rua Prof. Dr. Antônio Celso Wagner Zanin, s/n, 18618-689, Botucatu, SP, Brazil
| | - Carla Bonetti Madelaire
- Departamento de Fisiologia, Instituto de Biociências, Universidade Estadual Paulista "Júlio de Mesquita Filho", Rua Prof. Dr. Antônio Celso Wagner Zanin, s/n, 18618-689, Botucatu, SP, Brazil
| | - Raquel de Arruda
- Departamento de Fisiologia, Instituto de Biociências, Universidade Estadual Paulista "Júlio de Mesquita Filho", Rua Prof. Dr. Antônio Celso Wagner Zanin, s/n, 18618-689, Botucatu, SP, Brazil
| | - Tatiana Alvarez
- Departamento de Fisiologia, Instituto de Biociências, Universidade Estadual Paulista "Júlio de Mesquita Filho", Rua Prof. Dr. Antônio Celso Wagner Zanin, s/n, 18618-689, Botucatu, SP, Brazil
| | - Fernando Ribeiro Gomes
- Departamento de Fisiologia, Instituto de Biociências, Universidade Estadual Paulista "Júlio de Mesquita Filho", Rua Prof. Dr. Antônio Celso Wagner Zanin, s/n, 18618-689, Botucatu, SP, Brazil
| |
Collapse
|
34
|
San-Jose LM, Huyghe K, Schuerch J, Fitze PS. More melanized males bite stronger but run slower: potential performance trade-offs related to melanin-based coloration. Biol J Linn Soc Lond 2017. [DOI: 10.1093/biolinnean/blx045] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
35
|
Garland T, Cadney MD, Waterland RA. Early-Life Effects on Adult Physical Activity: Concepts, Relevance, and Experimental Approaches. Physiol Biochem Zool 2016; 90:1-14. [PMID: 28051947 PMCID: PMC6397655 DOI: 10.1086/689775] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Locomotion is a defining characteristic of animal life and plays a crucial role in most behaviors. Locomotion involves physical activity, which can have far-reaching effects on physiology and neurobiology, both acutely and chronically. In human populations and in laboratory rodents, higher levels of physical activity are generally associated with positive health outcomes, although excessive exercise can have adverse consequences. Whether and how such relationships occur in wild animals is unknown. Behavioral variation among individuals arises from genetic and environmental factors and their interactions as well as from developmental programming (persistent effects of early-life environment). Although tremendous progress has been made in identifying genetic and environmental influences on individual differences in behavior, early-life effects are not well understood. Early-life effects can in some cases persist across multiple generations following a single exposure and, in principle, may constrain or facilitate the rate of evolution at multiple levels of biological organization. Understanding the mechanisms of such transgenerational effects (e.g., exposure to stress hormones in utero, inherited epigenetic alterations) may prove crucial to explaining unexpected and/or sex-specific responses to selection as well as limits to adaptation. One area receiving increased attention is early-life effects on adult physical activity. Correlational data from epidemiological studies suggest that early-life nutritional stress can (adversely) affect adult human activity levels and associated physiological traits (e.g., body composition, metabolic health). The few existing studies of laboratory rodents demonstrate that both maternal and early-life exercise can affect adult levels of physical activity and related phenotypes. Going forward, rodents offer many opportunities for experimental studies of (multigenerational) early-life effects, including studies that use maternal exposures and cross-fostering designs.
Collapse
Affiliation(s)
- Theodore Garland
- Department of Biology, University of California, Riverside, California 92521
| | - Marcell D. Cadney
- Department of Biology, University of California, Riverside, California 92521
| | - Robert A. Waterland
- Departments of Pediatrics and Molecular & Human Genetics, Baylor College of Medicine, USDA/ARS Children’s Nutrition Research Center, Houston, Texas 77030
| |
Collapse
|
36
|
Hiramatsu L, Garland T. Nature or Nurture? Heritability in the Classroom. Physiol Biochem Zool 2016; 89:457-461. [PMID: 27792537 DOI: 10.1086/688289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Understanding evolution is a necessary component of undergraduate education in biology, and evolution is difficult to explain without studying the heritability of traits. However, in most classes, heritability is presented with only a handful of graphs showing typical morphological traits, for example, beak size in finches and height in humans. The active-inquiry exercise outlined in the following pages allows instructors to engage students in this formerly dry subject by bringing their own data as the basis for estimates of heritability. Students are challenged to come up with their own hypotheses regarding how and to what extent their traits are inherited from their parents and then gather, analyze data, and make inferences with help from the instructor. The exercise is simple in concept and execution but uncovers many new avenues of inquiry for students, including potential biases in their estimates of heritability and misconceptions that they may have had about the extent of inference that can be made from their heritability estimates. The active-inquiry format of the exercise prioritizes curiosity and discussion, leading to a much deeper understanding of heritability and the scientific method.
Collapse
|
37
|
Fresnillo B, Belliure J, Cuervo JJ. Ontogenetic shifts in risk behaviours are related to body size and coloration in spiny-footed lizards. Anim Behav 2016. [DOI: 10.1016/j.anbehav.2016.07.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
38
|
Gilbert AL, Lattanzio MS. Ontogenetic Variation in the Thermal Biology of Yarrow's Spiny Lizard, Sceloporus jarrovii. PLoS One 2016; 11:e0146904. [PMID: 26840620 PMCID: PMC4739709 DOI: 10.1371/journal.pone.0146904] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 12/23/2015] [Indexed: 11/18/2022] Open
Abstract
Climate change is rapidly altering the way current species interact with their environment to satisfy life-history demands. In areas anticipated to experience extreme warming, rising temperatures are expected to diminish population growth, due either to environmental degradation, or the inability to tolerate novel temperature regimes. Determining how at risk ectotherms, and lizards in particular, are to changes in climate traditionally emphasizes the thermal ecology and thermal sensitivity of physiology of adult members of a population. In this study, we reveal ontogenetic differences in thermal physiological and ecological traits that have been used to anticipate how ectotherms will respond to climate change. We show that the thermal biological traits of juvenile Yarrow's Spiny Lizards (Sceloporus jarrovii) differ from the published estimates of the same traits for adult lizards. Juvenile S. jarrovii differ in their optimal performance temperature, field field-active body temperature, and critical thermal temperatures compared to adult S. jarrovii. Within juvenile S. jarrovii, males and females exhibit differences in field-active body temperature and desiccation tolerance. Given the observed age- and sex-related variation in thermal physiology, we argue that not including physiological differences in thermal biology throughout ontogeny may lead to misinterpretation of patterns of ecological or evolutionary change due to climate warming. Further characterizing the potential for ontogenetic changes in thermal biology would be useful for a more precise and accurate estimation of the role of thermal physiology in mediating population persistence in warmer environments.
Collapse
Affiliation(s)
- Anthony L. Gilbert
- Department of Biological Sciences, Ohio University, Athens, Ohio, United States of America
- * E-mail:
| | - Matthew S. Lattanzio
- Department of Organismal and Environmental Biology, Christopher Newport University, Newport News, Virginia, United States of America
| |
Collapse
|
39
|
Husak JF. Measuring Selection on Physiology in the Wild and Manipulating Phenotypes (in Terrestrial Nonhuman Vertebrates). Compr Physiol 2015; 6:63-85. [PMID: 26756627 DOI: 10.1002/cphy.c140061] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
To understand why organisms function the way that they do, we must understand how evolution shapes physiology. This requires knowledge of how selection acts on physiological traits in nature. Selection studies in the wild allow us to determine how variation in physiology causes variation in fitness, revealing how evolution molds physiology over evolutionary time. Manipulating phenotypes experimentally in a selection study shifts the distribution of trait variation in a population to better explore potential constraints and the adaptive value of physiological traits. There is a large database of selection studies in the wild on a variety of traits, but very few of those are physiological traits. Nevertheless, data available so far suggest that physiological traits, including metabolic rate, thermal physiology, whole-organism performance, and hormone levels, are commonly subjected to directional selection in nature, with stabilizing and disruptive selection less common than predicted if physiological traits are optimized to an environment. Selection studies on manipulated phenotypes, including circulating testosterone and glucocorticoid levels, reinforce this notion, but reveal that trade-offs between survival and reproduction or correlational selection can constrain the evolution of physiology. More studies of selection on physiological traits in nature that quantify multiple traits are necessary to better determine the manner in which physiological traits evolve and whether different types of traits (dynamic performance vs. regulatory) evolve differently.
Collapse
Affiliation(s)
- Jerry F Husak
- Department of Biology, University of St. Thomas, St. Paul, Minnesota, USA
| |
Collapse
|
40
|
Svendsen JC, Tirsgaard B, Cordero GA, Steffensen JF. Intraspecific variation in aerobic and anaerobic locomotion: gilthead sea bream (Sparus aurata) and Trinidadian guppy (Poecilia reticulata) do not exhibit a trade-off between maximum sustained swimming speed and minimum cost of transport. Front Physiol 2015; 6:43. [PMID: 25741285 PMCID: PMC4330683 DOI: 10.3389/fphys.2015.00043] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 01/29/2015] [Indexed: 11/17/2022] Open
Abstract
Intraspecific variation and trade-off in aerobic and anaerobic traits remain poorly understood in aquatic locomotion. Using gilthead sea bream (Sparus aurata) and Trinidadian guppy (Poecilia reticulata), both axial swimmers, this study tested four hypotheses: (1) gait transition from steady to unsteady (i.e., burst-assisted) swimming is associated with anaerobic metabolism evidenced as excess post exercise oxygen consumption (EPOC); (2) variation in swimming performance (critical swimming speed; Ucrit) correlates with metabolic scope (MS) or anaerobic capacity (i.e., maximum EPOC); (3) there is a trade-off between maximum sustained swimming speed (Usus) and minimum cost of transport (COTmin); and (4) variation in Usus correlates positively with optimum swimming speed (Uopt; i.e., the speed that minimizes energy expenditure per unit of distance traveled). Data collection involved swimming respirometry and video analysis. Results showed that anaerobic swimming costs (i.e., EPOC) increase linearly with the number of bursts in S. aurata, with each burst corresponding to 0.53 mg O2 kg−1. Data are consistent with a previous study on striped surfperch (Embiotoca lateralis), a labriform swimmer, suggesting that the metabolic cost of burst swimming is similar across various types of locomotion. There was no correlation between Ucrit and MS or anaerobic capacity in S. aurata indicating that other factors, including morphological or biomechanical traits, influenced Ucrit. We found no evidence of a trade-off between Usus and COTmin. In fact, data revealed significant negative correlations between Usus and COTmin, suggesting that individuals with high Usus also exhibit low COTmin. Finally, there were positive correlations between Usus and Uopt. Our study demonstrates the energetic importance of anaerobic metabolism during unsteady swimming, and provides intraspecific evidence that superior maximum sustained swimming speed is associated with superior swimming economy and optimum speed.
Collapse
Affiliation(s)
- Jon C Svendsen
- Molecular Eco-physiology, Interdisciplinary Center of Marine and Environmental Research, University of Porto Porto, Portugal ; Fisheries and Maritime Museum Esbjerg, Denmark
| | - Bjørn Tirsgaard
- Marine Biological Section, Biological Institute, University of Copenhagen Helsingør, Denmark
| | - Gerardo A Cordero
- Ecology, Evolution, and Organismal Biology, Iowa State University Ames, IA, USA
| | - John F Steffensen
- Marine Biological Section, Biological Institute, University of Copenhagen Helsingør, Denmark
| |
Collapse
|
41
|
Lailvaux SP, Husak JF. The life history of whole-organism performance. QUARTERLY REVIEW OF BIOLOGY 2015; 89:285-318. [PMID: 25510077 DOI: 10.1086/678567] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
For almost 40 years, studies of whole-organism performance have formed a cornerstone of evolutionary physiology. Although its utility as a heuristic guide is beyond question, and we have learned much about morphological evolution from its application, the ecomorphological paradigm has frequently been applied to performance evolution in ways that range from unsatisfactory to inappropriate. More importantly, the standard ecomorphological paradigm does not account for tradeoffs among performance and other traits, nor between performance traits that are mediated by resource allocation. A revised paradigm that includes such tradeoffs, and the possible ways that performance and fitness-enhancing traits might affect each other, could potentially revivify the study of phenotypic evolution and make important inroads into understanding the relationships between morphology and performance and between performance and Darwinian fitness. We describe such a paradigm, and discuss the various ways that performance and key life-history traits might interact with and affect each other. We emphasize both the proximate mechanisms potentially linking such traits, and the likely ultimate factors driving those linkages, as well as the evolutionary implications for the overall, multivariate phenotype. Finally, we highlight several research directions that will shed light on the evolution and ecology of whole-organism performance and related life-history traits.
Collapse
|
42
|
Fu C, Fu SJ, Yuan XZ, Cao ZD. Predator-driven intra-species variation in locomotion, metabolism and water velocity preference in pale chub (Zacco platypus) along a river. ACTA ACUST UNITED AC 2014; 218:255-64. [PMID: 25452504 DOI: 10.1242/jeb.109561] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Fish inhabit environments that vary greatly in terms of predation intensity, and these predation regimes are generally expected to be a major driver of divergent natural selection. To test whether there is predator-driven intra-species variation in the locomotion, metabolism and water velocity preference of pale chub (Zacco platypus) along a river, we measured unsteady and steady swimming and water velocity preference among fish collected from both high- and low-predation habitats in the Wujiang River. We also measured the routine metabolic rate (RMR), maximum metabolic rate (MMR) and cost of transport (COT) and calculated the optimal swimming speed (Uopt). The fish from the high-predation populations showed a shorter response latency, elevated routine metabolism, lower swimming efficiency at low swimming speed and lower water velocity preference compared with those from the low-predation populations. Neither of the kinematic parameters fast-start and critical swimming speed (Ucrit) showed a significant difference between the high- and low-predation populations. The fish from the high-predation populations may improve their predator avoidance capacity primarily through an elevated routine metabolism and shorter response latency to achieve advanced warning and escape, rather than an improved fast-start swimming speed or acceleration. Thus, the cost of this strategy is an elevated RMR, and no trade-off between unsteady and steady swimming performance was observed in the pale chub population under various predation stresses. It was interesting to find that the high-predation fish showed an unexpected lower velocity preference, which might represent a compromise between predation avoidance, foraging and energy saving.
Collapse
Affiliation(s)
- Cheng Fu
- College of Resources and Environmental Science, Key Laboratory of Southwest Resource Exploitation and Environmental Disaster Controlling Project of the Education Ministry, Chongqing University, Chongqing 400044, China
| | - Shi-Jian Fu
- College of Resources and Environmental Science, Key Laboratory of Southwest Resource Exploitation and Environmental Disaster Controlling Project of the Education Ministry, Chongqing University, Chongqing 400044, China Laboratory of Evolutionary Physiology and Behaviour, Chongqing Key Laboratory of Animal Biology, Chongqing Normal University, Chongqing 400047, China
| | - Xin-Zhong Yuan
- College of Resources and Environmental Science, Key Laboratory of Southwest Resource Exploitation and Environmental Disaster Controlling Project of the Education Ministry, Chongqing University, Chongqing 400044, China
| | - Zhen-Dong Cao
- Laboratory of Evolutionary Physiology and Behaviour, Chongqing Key Laboratory of Animal Biology, Chongqing Normal University, Chongqing 400047, China
| |
Collapse
|
43
|
Radwan J, Kuduk K, Levy E, LeBas N, Babik W. Parasite load and MHC diversity in undisturbed and agriculturally modified habitats of the ornate dragon lizard. Mol Ecol 2014; 23:5966-78. [PMID: 25355141 DOI: 10.1111/mec.12984] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 10/13/2014] [Accepted: 10/15/2014] [Indexed: 11/26/2022]
Abstract
Major histocompatibility complex (MHC) gene polymorphism is thought to be driven by host-parasite co-evolution, but the evidence for an association between the selective pressure from parasites and the number of MHC alleles segregating in a population is scarce and inconsistent. Here, we characterized MHC class I polymorphism in a lizard whose habitat preferences (rock outcrops) lead to the formation of well-defined and stable populations. We investigated the association between the load of ticks, which were used as a proxy for the load of pathogens they transmit, and MHC class I polymorphism across populations in two types of habitat: undisturbed reserves and agricultural land. We hypothesized that the association would be positive across undisturbed reserve populations, but across fragmented agricultural land populations, the relationship would be distorted by the loss of MHC variation due to drift. After controlling for habitat, MHC diversity was not associated with tick number, and the habitats did not differ in this respect. Neither did we detect a difference between habitats in the relationship between MHC and neutral diversity, which was positive across all populations. However, there was extensive variation in the number of MHC alleles per individual, and we found that tick number was positively associated with the average number of alleles carried by lizards across reserve populations, but not across populations from disturbed agricultural land. Our results thus indicate that local differences in selection from parasites may contribute to MHC copy number variation within species, but habitat degradation can distort this relationship.
Collapse
Affiliation(s)
- Jacek Radwan
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| | | | | | | | | |
Collapse
|
44
|
Beal MS, Lattanzio MS, Miles DB. Differences in the thermal physiology of adult Yarrow's spiny lizards (Sceloporus jarrovii) in relation to sex and body size. Ecol Evol 2014; 4:4220-9. [PMID: 25540684 PMCID: PMC4267861 DOI: 10.1002/ece3.1297] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Revised: 09/22/2014] [Accepted: 10/01/2014] [Indexed: 11/30/2022] Open
Abstract
Sexual size dimorphism (SSD) is often assumed to reflect the phenotypic consequences of differential selection operating on each sex. Species that exhibit SSD may also show intersexual differences in other traits, including field-active body temperatures, preferred temperatures, and locomotor performance. For these traits, differences may be correlated with differences in body size or reflect sex-specific trait optima. Male and female Yarrow's spiny lizards, Sceloporus jarrovii, in a population in southeastern Arizona exhibit a difference in body temperature that is unrelated to variation in body size. The observed sexual variation in body temperature may reflect divergence in thermal physiology between the sexes. To test this hypothesis, we measured the preferred body temperatures of male and female lizards when recently fed and fasted. We also estimated the thermal sensitivity of stamina at seven body temperatures. Variation in these traits provided an opportunity to determine whether body size or sex-specific variation unrelated to size shaped their thermal physiology. Female lizards, but not males, preferred a lower body temperature when fasted, and this pattern was unrelated to body size. Larger individuals exhibited greater stamina, but we detected no significant effect of sex on the shape or height of the thermal performance curves. The thermal preference of males and females in a thermal gradient exceeded the optimal temperature for performance in both sexes. Our findings suggest that differences in thermal physiology are both sex- and size-based and that peak performance at low body temperatures may be adaptive given the reproductive cycles of this viviparous species. We consider the implications of our findings for the persistence of S. jarrovii and other montane ectotherms in the face of climate warming.
Collapse
Affiliation(s)
- Martin S Beal
- Department of Biological Sciences, 107 Irvine Hall, Ohio University Athens, Ohio, 45701
| | - Matthew S Lattanzio
- Department of Biological Sciences, 107 Irvine Hall, Ohio University Athens, Ohio, 45701
| | - Donald B Miles
- Department of Biological Sciences, 107 Irvine Hall, Ohio University Athens, Ohio, 45701
| |
Collapse
|
45
|
Qi Y, Noble DWA, Wu Y, Whiting MJ. Sex- and performance-based escape behaviour in an Asian agamid lizard, Phrynocephalus vlangalii. Behav Ecol Sociobiol 2014. [DOI: 10.1007/s00265-014-1809-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
46
|
Diamond K, Trovillion D, Allen KE, Malela KM, Noble DA, Powell R, Eifler DA, Gifford ME. Individual (co)variation of field behavior and locomotor performance in curly tailed lizards. J Zool (1987) 2014. [DOI: 10.1111/jzo.12175] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- K. Diamond
- Department of Biology University of Central Florida Orlando FL USA
| | - D. Trovillion
- Department of Fisheries and Wildlife Sciences Oregon State University Corvallis OR USA
| | - K. E. Allen
- Department of Biology Truman State University Kirksville MO USA
| | - K. M. Malela
- Department of Environmental Health University of Botswana Gaborone Botswana
| | - D. A. Noble
- Department of Biology Hendrix College Conway AR USA
| | - R. Powell
- Department of Biology Avila University Kansas City MO USA
| | | | - M. E. Gifford
- Department of Biology University of Central Arkansas Conway AR USA
| |
Collapse
|
47
|
The Relationships between Parasite Intensity, Locomotor Performance, and Body Condition in Adult Toads (Rhinella icterica) from the Wild. J HERPETOL 2014. [DOI: 10.1670/10-339] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
48
|
Calsbeek R, Duryea MC, Parker E, Cox RM. Sex-biased juvenile dispersal is adaptive but does not create genetic structure in island lizards. Behav Ecol 2014. [DOI: 10.1093/beheco/aru102] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
49
|
McElroy EJ, de Buron I. Host Performance as a Target of Manipulation by Parasites: A Meta-Analysis. J Parasitol 2014; 100:399-410. [DOI: 10.1645/13-488.1] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
50
|
Patterns of spatio-temporal variation in the survival rates of a viviparous lizard: the interacting effects of sex, reproductive trade-offs, aridity, and human-induced disturbance. POPUL ECOL 2014. [DOI: 10.1007/s10144-014-0447-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|