1
|
Hasegawa K, Zhao Y, Garbuzov A, Corces MR, Neuhöfer P, Gillespie VM, Cheung P, Belk JA, Huang YH, Wei Y, Chen L, Chang HY, Artandi SE. Clonal inactivation of TERT impairs stem cell competition. Nature 2024; 632:201-208. [PMID: 39020172 PMCID: PMC11291281 DOI: 10.1038/s41586-024-07700-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 06/11/2024] [Indexed: 07/19/2024]
Abstract
Telomerase is intimately associated with stem cells and cancer, because it catalytically elongates telomeres-nucleoprotein caps that protect chromosome ends1. Overexpression of telomerase reverse transcriptase (TERT) enhances the proliferation of cells in a telomere-independent manner2-8, but so far, loss-of-function studies have provided no evidence that TERT has a direct role in stem cell function. In many tissues, homeostasis is shaped by stem cell competition, a process in which stem cells compete on the basis of inherent fitness. Here we show that conditional deletion of Tert in the spermatogonial stem cell (SSC)-containing population in mice markedly impairs competitive clone formation. Using lineage tracing from the Tert locus, we find that TERT-expressing SSCs yield long-lived clones, but that clonal inactivation of TERT promotes stem cell differentiation and a genome-wide reduction in open chromatin. This role for TERT in competitive clone formation occurs independently of both its reverse transcriptase activity and the canonical telomerase complex. Inactivation of TERT causes reduced activity of the MYC oncogene, and transgenic expression of MYC in the TERT-deleted pool of SSCs efficiently rescues clone formation. Together, these data reveal a catalytic-activity-independent requirement for TERT in enhancing stem cell competition, uncover a genetic connection between TERT and MYC and suggest that a selective advantage for stem cells with high levels of TERT contributes to telomere elongation in the male germline during homeostasis and ageing.
Collapse
Affiliation(s)
- Kazuteru Hasegawa
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA
| | - Yang Zhao
- Center for Personal Dynamic Regulomes, Stanford, CA, USA
| | - Alina Garbuzov
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA
| | - M Ryan Corces
- Center for Personal Dynamic Regulomes, Stanford, CA, USA
| | - Patrick Neuhöfer
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA
| | - Victoria M Gillespie
- Nuclear Dynamics and Cancer Program, Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Peggie Cheung
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA
| | - Julia A Belk
- Department of Computer Science, Stanford University, Stanford, CA, USA
| | | | - Yuning Wei
- Center for Personal Dynamic Regulomes, Stanford, CA, USA
| | - Lu Chen
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA
- Nuclear Dynamics and Cancer Program, Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Howard Y Chang
- Center for Personal Dynamic Regulomes, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Steven E Artandi
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
2
|
Le Clercq LS, Kotzé A, Grobler JP, Dalton DL. Biological clocks as age estimation markers in animals: a systematic review and meta-analysis. Biol Rev Camb Philos Soc 2023; 98:1972-2011. [PMID: 37356823 DOI: 10.1111/brv.12992] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 06/04/2023] [Accepted: 06/08/2023] [Indexed: 06/27/2023]
Abstract
Various biological attributes associated with individual fitness in animals change predictably over the lifespan of an organism. Therefore, the study of animal ecology and the work of conservationists frequently relies upon the ability to assign animals to functionally relevant age classes to model population fitness. Several approaches have been applied to determining individual age and, while these methods have proved useful, they are not without limitations and often lack standardisation or are only applicable to specific species. For these reasons, scientists have explored the potential use of biological clocks towards creating a universal age-determination method. Two biological clocks, tooth layer annulation and otolith layering have found universal appeal. Both methods are highly invasive and most appropriate for post-mortem age-at-death estimation. More recently, attributes of cellular ageing previously explored in humans have been adapted to studying ageing in animals for the use of less-invasive molecular methods for determining age. Here, we review two such methods, assessment of methylation and telomere length, describing (i) what they are, (ii) how they change with age, and providing (iii) a summary and meta-analysis of studies that have explored their utility in animal age determination. We found that both attributes have been studied across multiple vertebrate classes, however, telomere studies were used before methylation studies and telomere length has been modelled in nearly twice as many studies. Telomere length studies included in the review often related changes to stress responses and illustrated that telomere length is sensitive to environmental and social stressors and, in the absence of repair mechanisms such as telomerase or alternative lengthening modes, lacks the ability to recover. Methylation studies, however, while also detecting sensitivity to stressors and toxins, illustrated the ability to recover from such stresses after a period of accelerated ageing, likely due to constitutive expression or reactivation of repair enzymes such as DNA methyl transferases. We also found that both studied attributes have parentally heritable features, but the mode of inheritance differs among taxa and may relate to heterogamy. Our meta-analysis included more than 40 species in common for methylation and telomere length, although both analyses included at least 60 age-estimation models. We found that methylation outperforms telomere length in terms of predictive power evidenced from effect sizes (more than double that observed for telomeres) and smaller prediction intervals. Both methods produced age correlation models using similar sample sizes and were able to classify individuals into young, middle, or old age classes with high accuracy. Our review and meta-analysis illustrate that both methods are well suited to studying age in animals and do not suffer significantly from variation due to differences in the lifespan of the species, genome size, karyotype, or tissue type but rather that quantitative method, patterns of inheritance, and environmental factors should be the main considerations. Thus, provided that complex factors affecting the measured trait can be accounted for, both methylation and telomere length are promising targets to develop as biomarkers for age determination in animals.
Collapse
Affiliation(s)
- Louis-Stéphane Le Clercq
- South African National Biodiversity Institute, P.O. Box 754, Pretoria, 0001, South Africa
- Department of Genetics, University of the Free State, P.O. Box 339, Bloemfontein, 9300, South Africa
| | - Antoinette Kotzé
- South African National Biodiversity Institute, P.O. Box 754, Pretoria, 0001, South Africa
- Department of Genetics, University of the Free State, P.O. Box 339, Bloemfontein, 9300, South Africa
| | - J Paul Grobler
- Department of Genetics, University of the Free State, P.O. Box 339, Bloemfontein, 9300, South Africa
| | - Desiré Lee Dalton
- School of Health and Life Sciences, Teesside University, Middlesbrough, TS1 3BA, UK
| |
Collapse
|
3
|
Ale-Agha N, Jakobs P, Goy C, Zurek M, Rosen J, Dyballa-Rukes N, Metzger S, Greulich J, von Ameln F, Eckermann O, Unfried K, Brack F, Grandoch M, Thielmann M, Kamler M, Gedik N, Kleinbongard P, Heinen A, Heusch G, Gödecke A, Altschmied J, Haendeler J. Mitochondrial Telomerase Reverse Transcriptase Protects from Myocardial Ischemia/reperfusion Injury by Improving Complex I Composition and Function. Circulation 2021; 144:1876-1890. [PMID: 34672678 DOI: 10.1161/circulationaha.120.051923] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background: The catalytic subunit of telomerase, Telomerase Reverse Transcriptase (TERT) has protective functions in the cardiovascular system. TERT is not only present in the nucleus, but also in mitochondria. However, it is unclear whether nuclear or mitochondrial TERT is responsible for the observed protection and appropriate tools are missing to dissect this. Methods: We generated new mouse models containing TERT exclusively in the mitochondria (mitoTERT mice) or the nucleus (nucTERT mice) to finally distinguish between the functions of nuclear and mitochondrial TERT. Outcome after ischemia/reperfusion, mitochondrial respiration in the heart as well as cellular functions of cardiomyocytes, fibroblasts, and endothelial cells were determined. Results: All mice were phenotypically normal. While respiration was reduced in cardiac mitochondria from TERT-deficient and nucTERT mice, it was increased in mitoTERT animals. The latter also had smaller infarcts than wildtype mice, whereas nucTERT animals had larger infarcts. The decrease in ejection fraction after one, two and four weeks of reperfusion was attenuated in mitoTERT mice. Scar size was also reduced and vascularization increased. Mitochondrial TERT protected a cardiomyocyte cell line from apoptosis. Myofibroblast differentiation, which depends on complex I activity, was abrogated in TERT-deficient and nucTERT cardiac fibroblasts and completely restored in mitoTERT cells. In endothelial cells, mitochondrial TERT enhanced migratory capacity and activation of endothelial NO synthase. Mechanistically, mitochondrial TERT improved the ratio between complex I matrix arm and membrane subunits explaining the enhanced complex I activity. In human right atrial appendages, TERT was localized in mitochondria and there increased by remote ischemic preconditioning. The Telomerase activator, TA-65 evoked a similar effect in endothelial cells, thereby increasing their migratory capacity, and enhanced myofibroblast differentiation. Conclusions: Mitochondrial, but not nuclear TERT, is critical for mitochondrial respiration and during ischemia/reperfusion injury. Mitochondrial TERT improves complex I subunit composition. TERT is present in human heart mitochondria, and remote ischemic preconditioning increases its level in those organelles. TA-65 has comparable effects ex vivo and improves migratory capacity of endothelial cells and myofibroblast differentiation. We conclude that mitochondrial TERT is responsible for cardioprotection and its increase could serve as a therapeutic strategy.
Collapse
Affiliation(s)
- Niloofar Ale-Agha
- Environmentally-induced Cardiovascular Degeneration, Clinical Chemistry and Laboratory Diagnostics, Medical Faculty, University Hospital and Heinrich-Heine University Düsseldorf, Germany
| | - Philipp Jakobs
- Environmentally-induced Cardiovascular Degeneration, Clinical Chemistry and Laboratory Diagnostics, Medical Faculty, University Hospital and Heinrich-Heine University Düsseldorf, Germany
| | - Christine Goy
- Environmentally-induced Cardiovascular Degeneration, Clinical Chemistry and Laboratory Diagnostics, Medical Faculty, University Hospital and Heinrich-Heine University Düsseldorf, Germany; IUF-Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Mark Zurek
- Environmentally-induced Cardiovascular Degeneration, Clinical Chemistry and Laboratory Diagnostics, Medical Faculty, University Hospital and Heinrich-Heine University Düsseldorf, Germany
| | - Julia Rosen
- Environmentally-induced Cardiovascular Degeneration, Clinical Chemistry and Laboratory Diagnostics, Medical Faculty, University Hospital and Heinrich-Heine University Düsseldorf, Germany
| | - Nadine Dyballa-Rukes
- Environmentally-induced Cardiovascular Degeneration, Clinical Chemistry and Laboratory Diagnostics, Medical Faculty, University Hospital and Heinrich-Heine University Düsseldorf, Germany; IUF-Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Sabine Metzger
- IUF-Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Jan Greulich
- Environmentally-induced Cardiovascular Degeneration, Clinical Chemistry and Laboratory Diagnostics, Medical Faculty, University Hospital and Heinrich-Heine University Düsseldorf, Germany; IUF-Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Florian von Ameln
- Environmentally-induced Cardiovascular Degeneration, Clinical Chemistry and Laboratory Diagnostics, Medical Faculty, University Hospital and Heinrich-Heine University Düsseldorf, Germany; IUF-Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Olaf Eckermann
- Environmentally-induced Cardiovascular Degeneration, Clinical Chemistry and Laboratory Diagnostics, Medical Faculty, University Hospital and Heinrich-Heine University Düsseldorf, Germany; IUF-Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Klaus Unfried
- IUF-Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Fedor Brack
- Institute for Pharmacology and Clinical Pharmacology, Medical Faculty, University Hospital and Heinrich-Heine University Düsseldorf, Germany
| | - Maria Grandoch
- Institute for Pharmacology and Clinical Pharmacology, Medical Faculty, University Hospital and Heinrich-Heine University Düsseldorf, Germany
| | - Matthias Thielmann
- Department of Thoracic and Cardiovascular Surgery West German Heart Center, University of Duisburg-Essen, Essen Germany
| | - Markus Kamler
- Department of Thoracic and Cardiovascular Surgery West German Heart Center, University of Duisburg-Essen, Essen Germany
| | - Nilgün Gedik
- Institute for Pathophysiology, West German Heart and Vascular Center, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Petra Kleinbongard
- Institute for Pathophysiology, West German Heart and Vascular Center, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Andre Heinen
- Institute for Cardiovascular Physiology, Medical Faculty, University Hospital and Heinrich-Heine University, Düsseldorf, Germany
| | - Gerd Heusch
- Institute for Pathophysiology, West German Heart and Vascular Center, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Axel Gödecke
- Institute for Cardiovascular Physiology, Medical Faculty, University Hospital and Heinrich-Heine University, Düsseldorf, Germany
| | - Joachim Altschmied
- Environmentally-induced Cardiovascular Degeneration, Clinical Chemistry and Laboratory Diagnostics, Medical Faculty, University Hospital and Heinrich-Heine University Düsseldorf, Germany; IUF-Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Judith Haendeler
- Environmentally-induced Cardiovascular Degeneration, Clinical Chemistry and Laboratory Diagnostics, Medical Faculty, University Hospital and Heinrich-Heine University Düsseldorf, Germany
| |
Collapse
|
4
|
Zheng Q, Huang J, Wang G. Mitochondria, Telomeres and Telomerase Subunits. Front Cell Dev Biol 2019; 7:274. [PMID: 31781563 PMCID: PMC6851022 DOI: 10.3389/fcell.2019.00274] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 10/24/2019] [Indexed: 12/11/2022] Open
Abstract
Mitochondrial functions and telomere functions have mostly been studied independently. In recent years, it, however, has become clear that there are intimate links between mitochondria, telomeres, and telomerase subunits. Mitochondrial dysfunctions cause telomere attrition, while telomere damage leads to reprogramming of mitochondrial biosynthesis and mitochondrial dysfunctions, which has important implications in aging and diseases. In addition, evidence has accumulated that telomere-independent functions of telomerase also exist and that the protein component of telomerase TERT shuttles between the nucleus and mitochondria under oxidative stress. Our previously published data show that the RNA component of telomerase TERC is also imported into mitochondria, processed, and exported back to the cytosol. These data show a complex regulation network where telomeres, nuclear genome, and mitochondria are co-regulated by multi-localization and multi-function proteins and RNAs. This review summarizes the connections between mitochondria and telomeres, the mitochondrion-related functions of telomerase subunits, and how they play a role in crosstalk between mitochondria and the nucleus.
Collapse
Affiliation(s)
- Qian Zheng
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Jinliang Huang
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Geng Wang
- School of Life Sciences, Tsinghua University, Beijing, China.,School of Life Sciences, Xiamen University, Xiamen, China
| |
Collapse
|
5
|
Transient induction of telomerase expression mediates senescence and reduces tumorigenesis in primary fibroblasts. Proc Natl Acad Sci U S A 2019; 116:18983-18993. [PMID: 31481614 PMCID: PMC6754593 DOI: 10.1073/pnas.1907199116] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Telomerase is an enzymatic ribonucleoprotein complex that acts as a reverse transcriptase in the elongation of telomeres. Telomerase activity is well documented in embryonic stem cells and the vast majority of tumor cells, but its role in somatic cells remains to be understood. Here, we report an unexpected function of telomerase during cellular senescence and tumorigenesis. We crossed Tert heterozygous knockout mice (mTert +/- ) for 26 generations, during which time there was progressive shortening of telomeres, and obtained primary skin fibroblasts from mTert +/+ and mTert -/- progeny of the 26th cross. As a consequence of insufficient telomerase activities in prior generations, both mTert +/+ and mTert -/- fibroblasts showed comparable and extremely short telomere length. However, mTert -/- cells approached cellular senescence faster and exhibited a significantly higher rate of malignant transformation than mTert +/+ cells. Furthermore, an evident up-regulation of telomerase reverse-transcriptase (TERT) expression was detected in mTert +/+ cells at the presenescence stage. Moreover, removal or down-regulation of TERT expression in mTert +/+ and human primary fibroblast cells via CRISPR/Cas9 or shRNA recapitulated mTert -/- phenotypes of accelerated senescence and transformation, and overexpression of TERT in mTert -/- cells rescued these phenotypes. Taking these data together, this study suggests that TERT has a previously underappreciated, protective role in buffering senescence stresses due to short, dysfunctional telomeres, and preventing malignant transformation.
Collapse
|
6
|
Maekawa T, Liu B, Nakai D, Yoshida K, Nakamura KI, Yasukawa M, Koike M, Takubo K, Chatton B, Ishikawa F, Masutomi K, Ishii S. ATF7 mediates TNF-α-induced telomere shortening. Nucleic Acids Res 2019; 46:4487-4504. [PMID: 29490055 PMCID: PMC5961373 DOI: 10.1093/nar/gky155] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 02/20/2018] [Indexed: 12/23/2022] Open
Abstract
Telomeres maintain the integrity of chromosome ends and telomere length is an important marker of aging. The epidemiological studies suggested that many types of stress including psychosocial stress decrease telomere length. However, it remains unknown how various stresses induce telomere shortening. Here, we report that the stress-responsive transcription factor ATF7 mediates TNF-α–induced telomere shortening. ATF7 and telomerase, an enzyme that elongates telomeres, are localized on telomeres via interactions with the Ku complex. In response to TNF-α, which is induced by various stresses including psychological stress, ATF7 was phosphorylated by p38, leading to the release of ATF7 and telomerase from telomeres. Thus, a decrease of ATF7 and telomerase on telomeres in response to stress causes telomere shortening, as observed in ATF7-deficient mice. These findings give credence to the idea that various types of stress might shorten telomere.
Collapse
Affiliation(s)
- Toshio Maekawa
- Laboratory of Molecular Genetics, RIKEN Tsukuba Institute, 3-1-1 Koyadai, Tsukuba, Ibaraki 305-0074, Japan
| | - Binbin Liu
- Laboratory of Molecular Genetics, RIKEN Tsukuba Institute, 3-1-1 Koyadai, Tsukuba, Ibaraki 305-0074, Japan.,Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8577, Japan
| | - Daisuke Nakai
- Laboratory of Molecular Genetics, RIKEN Tsukuba Institute, 3-1-1 Koyadai, Tsukuba, Ibaraki 305-0074, Japan.,Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8577, Japan
| | - Keisuke Yoshida
- Laboratory of Molecular Genetics, RIKEN Tsukuba Institute, 3-1-1 Koyadai, Tsukuba, Ibaraki 305-0074, Japan
| | - Ken-Ichi Nakamura
- Research Team for Geriatric Diseases, Tokyo Metropolitan Institute of Gerontology, Sakaecho 35-2, Itabashi-ku, Tokyo 173-0015, Japan
| | - Mami Yasukawa
- Division of Cancer Stem Cell, National Cancer Center Research Institute, Tokyo, Japan
| | - Manabu Koike
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Kaiyo Takubo
- Research Team for Geriatric Diseases, Tokyo Metropolitan Institute of Gerontology, Sakaecho 35-2, Itabashi-ku, Tokyo 173-0015, Japan
| | - Bruno Chatton
- Université de Strasbourg, UMR7242 Biotechnologie et Signalisation Cellulaire, Ecole Supérieure de Biotechnologie de Strasbourg, BP10413, Illkirch, France
| | - Fuyuki Ishikawa
- Department of Gene Mechanisms, Graduate School of Biostudies, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Kenkichi Masutomi
- Division of Cancer Stem Cell, National Cancer Center Research Institute, Tokyo, Japan
| | - Shunsuke Ishii
- Laboratory of Molecular Genetics, RIKEN Tsukuba Institute, 3-1-1 Koyadai, Tsukuba, Ibaraki 305-0074, Japan.,Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8577, Japan
| |
Collapse
|
7
|
Zhang L, Zeng H, Cheng WH. Beneficial and paradoxical roles of selenium at nutritional levels of intake in healthspan and longevity. Free Radic Biol Med 2018; 127:3-13. [PMID: 29782991 DOI: 10.1016/j.freeradbiomed.2018.05.067] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 05/15/2018] [Accepted: 05/17/2018] [Indexed: 11/15/2022]
Abstract
Accumulation of genome and macromolecule damage is a hallmark of aging, age-associated degeneration, and genome instability syndromes. Although processes of aging are irreversible, they can be modulated by genome maintenance pathways and environmental factors such as diet. Selenium (Se) confers its physiological functions mainly through selenoproteins, but Se compounds and other proteins that incorporate Se nonspecifically also impact optimal health. Bruce Ames proposed that the aging process could be mitigated by a subset of low-hierarchy selenoproteins whose levels are preferentially reduced in response to Se deficiency. Consistent with this notion, results from two selenotranscriptomic studies collectively implicate three low-hierarchy selenoproteins in age or senescence. Experimental evidence generally supports beneficial roles of selenoproteins in the protection against damage accumulation and redox imbalance, but some selenoproteins have also been reported to unexpectedly display harmful functions under sporadic conditions. While longevity and healthspan are usually thought to be projected in parallel, emerging evidence suggests a trade-off between longevity promotion and healthspan deterioration with damage accumulation. We propose that longevity promotion under conditions of Se deficiency may be attributed to 1) stress-response hormesis, an advantageous event of resistance to toxic chemicals at low doses; 2) reduced expression of selenoproteins with paradoxical functions to a lesser extent. In particular, selenoprotein H is an evolutionally conserved nuclear selenoprotein postulated to confer Se functions in redox regulation, genome maintenance, and senescence. This review highlights the need to pinpoint roles of specific selenoproteins and Se compounds in healthspan and lifespan for a better understanding of Se contribution at nutritional levels of intake to healthy aging.
Collapse
Affiliation(s)
- Li Zhang
- Department of Food Science, Nutrition and Health Promotion, Mississippi State University, MS 39762, USA
| | - Huawei Zeng
- USDA, Agricultural Research Service, Grand Forks Human Nutrition Center, Grand Forks, ND 58202, USA
| | - Wen-Hsing Cheng
- Department of Food Science, Nutrition and Health Promotion, Mississippi State University, MS 39762, USA.
| |
Collapse
|
8
|
Matsumoto C, Jiang Y, Emathinger J, Quijada P, Nguyen N, De La Torre A, Moshref M, Nguyen J, Levinson AB, Shin M, Sussman MA, Hariharan N. Short Telomeres Induce p53 and Autophagy and Modulate Age-Associated Changes in Cardiac Progenitor Cell Fate. Stem Cells 2018; 36:868-880. [PMID: 29441645 DOI: 10.1002/stem.2793] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Revised: 01/07/2018] [Accepted: 01/24/2018] [Indexed: 12/12/2022]
Abstract
Aging severely limits myocardial repair and regeneration. Delineating the impact of age-associated factors such as short telomeres is critical to enhance the regenerative potential of cardiac progenitor cells (CPCs). We hypothesized that short telomeres activate p53 and induce autophagy to elicit the age-associated change in CPC fate. We isolated CPCs and compared mouse strains with different telomere lengths for phenotypic characteristics of aging. Wild mouse strain Mus musculus castaneus (CAST) possessing short telomeres exhibits early cardiac aging with cardiac dysfunction, hypertrophy, fibrosis, and senescence, as compared with common lab strains FVB and C57 bearing longer telomeres. CAST CPCs with short telomeres demonstrate altered cell fate as characterized by cell cycle arrest, senescence, basal commitment, and loss of quiescence. Elongation of telomeres using a modified mRNA for telomerase restores youthful properties to CAST CPCs. Short telomeres induce autophagy in CPCs, a catabolic protein degradation process, as evidenced by reduced p62 and increased accumulation of autophagic puncta. Pharmacological inhibition of autophagosome formation reverses the cell fate to a more youthful phenotype. Mechanistically, cell fate changes induced by short telomeres are partially p53 dependent, as p53 inhibition rescues senescence and commitment observed in CAST CPCs, coincident with attenuation of autophagy. In conclusion, short telomeres activate p53 and autophagy to tip the equilibrium away from quiescence and proliferation toward differentiation and senescence, leading to exhaustion of CPCs. This study provides the mechanistic basis underlying age-associated cell fate changes that will enable identification of molecular strategies to prevent senescence of CPCs. Stem Cells 2018;36:868-880.
Collapse
Affiliation(s)
- Collin Matsumoto
- Department of Pharmacology, University of California at Davis, Davis, California, USA
| | - Yan Jiang
- Department of Pharmacology, University of California at Davis, Davis, California, USA
| | | | - Pearl Quijada
- Department of Biology, San Diego State University, San Diego, California, USA
| | - Nathalie Nguyen
- Department of Biology, San Diego State University, San Diego, California, USA
| | - Andrea De La Torre
- Department of Biology, San Diego State University, San Diego, California, USA
| | - Maryam Moshref
- Department of Pharmacology, University of California at Davis, Davis, California, USA
| | - Jonathan Nguyen
- Department of Biology, San Diego State University, San Diego, California, USA
| | - Aimee B Levinson
- Department of Pharmacology, University of California at Davis, Davis, California, USA
| | - Minyoung Shin
- Department of Pharmacology, University of California at Davis, Davis, California, USA
| | - Mark A Sussman
- Department of Biology, San Diego State University, San Diego, California, USA
| | - Nirmala Hariharan
- Department of Pharmacology, University of California at Davis, Davis, California, USA.,Department of Biology, San Diego State University, San Diego, California, USA
| |
Collapse
|
9
|
Zhou QG, Liu MY, Lee HW, Ishikawa F, Devkota S, Shen XR, Jin X, Wu HY, Liu Z, Liu X, Jin X, Zhou HH, Ro EJ, Zhang J, Zhang Y, Lin YH, Suh H, Zhu DY. Hippocampal TERT Regulates Spatial Memory Formation through Modulation of Neural Development. Stem Cell Reports 2017; 9:543-556. [PMID: 28757168 PMCID: PMC5550029 DOI: 10.1016/j.stemcr.2017.06.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 06/27/2017] [Accepted: 06/27/2017] [Indexed: 01/29/2023] Open
Abstract
The molecular mechanism of memory formation remains a mystery. Here, we show that TERT, the catalytic subunit of telomerase, gene knockout (Tert−/−) causes extremely poor ability in spatial memory formation. Knockdown of TERT in the dentate gyrus of adult hippocampus impairs spatial memory processes, while overexpression facilitates it. We find that TERT plays a critical role in neural development including dendritic development and neuritogenesis of hippocampal newborn neurons. A monosynaptic pseudotyped rabies virus retrograde tracing method shows that TERT is required for neural circuit integration of hippocampal newborn neurons. Interestingly, TERT regulated neural development and spatial memory formation in a reverse transcription activity-independent manner. Using X-ray irradiation, we find that hippocampal newborn neurons mediate the modulation of spatial memory processes by TERT. These observations reveal an important function of TERT through a non-canonical pathway and encourage the development of a TERT-based strategy to treat neurological disease-associated memory impairment. Tert gene knockout causes extremely poor ability in spatial memory formation Dendritic development and neuritogenesis are impaired in Tert−/− mice TERT is required for neural circuit integration of hippocampal newborn neurons TERT regulates spatial memory formation in an activity-independent manner
Collapse
Affiliation(s)
- Qi-Gang Zhou
- Department of Clinical Pharmacology, Institution of Stem Cells and Neuroregeneration, Pharmacy College, Nanjing Medical University, Nanjing 211166, P.R. China; Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA.
| | - Meng-Ying Liu
- Department of Clinical Pharmacology, Institution of Stem Cells and Neuroregeneration, Pharmacy College, Nanjing Medical University, Nanjing 211166, P.R. China
| | - Han-Woong Lee
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei Laboratory Animal Research Center, Yonsei University, Seoul 120-749, Korea
| | - Fuyuki Ishikawa
- Departments of Gene Mechanisms, Graduate School of Biostudies, Kyoto University, Kyoto 606-850, Japan
| | - Sushil Devkota
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei Laboratory Animal Research Center, Yonsei University, Seoul 120-749, Korea
| | - Xin-Ru Shen
- Department of Clinical Pharmacology, Institution of Stem Cells and Neuroregeneration, Pharmacy College, Nanjing Medical University, Nanjing 211166, P.R. China
| | - Xin Jin
- Department of Clinical Pharmacology, Institution of Stem Cells and Neuroregeneration, Pharmacy College, Nanjing Medical University, Nanjing 211166, P.R. China
| | - Hai-Yin Wu
- Department of Clinical Pharmacology, Institution of Stem Cells and Neuroregeneration, Pharmacy College, Nanjing Medical University, Nanjing 211166, P.R. China
| | - Zhigang Liu
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Xiao Liu
- Department of Chinese Medicine, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, P.R. China
| | - Xun Jin
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; Department of Neurosurgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325015 Zhejiang, P.R. China
| | - Hai-Hui Zhou
- Department of Clinical Pharmacology, Institution of Stem Cells and Neuroregeneration, Pharmacy College, Nanjing Medical University, Nanjing 211166, P.R. China
| | - Eun Jeoung Ro
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Jing Zhang
- Department of Clinical Pharmacology, Institution of Stem Cells and Neuroregeneration, Pharmacy College, Nanjing Medical University, Nanjing 211166, P.R. China
| | - Yu Zhang
- Department of Clinical Pharmacology, Institution of Stem Cells and Neuroregeneration, Pharmacy College, Nanjing Medical University, Nanjing 211166, P.R. China
| | - Yu-Hui Lin
- Department of Clinical Pharmacology, Institution of Stem Cells and Neuroregeneration, Pharmacy College, Nanjing Medical University, Nanjing 211166, P.R. China
| | - Hoonkyo Suh
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA.
| | - Dong-Ya Zhu
- Department of Clinical Pharmacology, Institution of Stem Cells and Neuroregeneration, Pharmacy College, Nanjing Medical University, Nanjing 211166, P.R. China.
| |
Collapse
|
10
|
Im E, Yoon JB, Lee HW, Chung KC. Human Telomerase Reverse Transcriptase (hTERT) Positively Regulates 26S Proteasome Activity. J Cell Physiol 2017; 232:2083-2093. [PMID: 27648923 DOI: 10.1002/jcp.25607] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 09/19/2016] [Indexed: 02/02/2023]
Abstract
Human telomerase reverse transcriptase (hTERT) is the catalytic subunit of telomerase, an RNA-dependent DNA polymerase that elongates telomeric DNA. hTERT displays several extra-telomeric functions that are independent of its telomere-regulatory function, including tumor progression, and neuronal cell death regulation. In this study, we evaluated these additional hTERT non-telomeric functions. We determined that hTERT interacts with several 19S and 20S proteasome subunits. The 19S regulatory particle and 20S core particle are part of 26S proteasome complex, which plays a central role in ubiquitin-dependent proteolysis. In addition, hTERT positively regulated 26S proteasome activity independent of its enzymatic activity. Moreover, hTERT enhanced subunit interactions, which may underlie hTERT's ability of hTERT to stimulate the 26S proteasome. Furthermore, hTERT displayed cytoprotective effect against ER stress via the activation of 26S proteasome in acute myeloid leukemia cells. Our data suggest that hTERT acts as a novel chaperone to promote 26S proteasome assembly and maintenance. J. Cell. Physiol. 232: 2083-2093, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Eunju Im
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| | - Jong Bok Yoon
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| | - Han-Woong Lee
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| | - Kwang Chul Chung
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| |
Collapse
|
11
|
Wu RT, Cao L, Mattson E, Witwer KW, Cao J, Zeng H, He X, Combs GF, Cheng W. Opposing impacts on healthspan and longevity by limiting dietary selenium in telomere dysfunctional mice. Aging Cell 2017; 16:125-135. [PMID: 27653523 PMCID: PMC5242309 DOI: 10.1111/acel.12529] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/18/2016] [Indexed: 01/06/2023] Open
Abstract
Selenium (Se) is a trace metalloid essential for life, but its nutritional and physiological roles during the aging process remain elusive. While telomere attrition contributes to replicative senescence mainly through persistent DNA damage response, such an aging process is mitigated in mice with inherently long telomeres. Here, weanling third generation telomerase RNA component knockout mice carrying short telomeres were fed a Se‐deficient basal diet or the diet supplemented with 0.15 ppm Se as sodium selenate to be nutritionally sufficient throughout their life. Dietary Se deprivation delayed wound healing and accelerated incidence of osteoporosis, gray hair, alopecia, and cataract, but surprisingly promoted longevity. Plasma microRNA profiling revealed a circulating signature of Se deprivation, and subsequent ontological analyses predicted dominant changes in metabolism. Consistent with this observation, dietary Se deprivation accelerated age‐dependent declines in glucose tolerance, insulin sensitivity, and glucose‐stimulated insulin production in the mice. Moreover, DNA damage and senescence responses were enhanced and Pdx1 and MafA mRNA expression were reduced in pancreas of the Se‐deficient mice. Altogether, these results suggest a novel model of aging with conceptual advances, whereby Se at low levels may be considered a hormetic chemical and decouple healthspan and longevity.
Collapse
Affiliation(s)
- Ryan T. Wu
- Department of Nutrition and Food Science University of Maryland College Park MD 20742 USA
| | - Lei Cao
- Department of Food Science, Nutrition and Health Promotion Mississippi State University Mississippi State MS 39762 USA
| | - Elliot Mattson
- Department of Nutrition and Food Science University of Maryland College Park MD 20742 USA
| | - Kenneth W. Witwer
- Department of Molecular & Comparative Pathobiology Johns Hopkins University Baltimore MD 21205 USA
| | - Jay Cao
- USDA Agricultural Research Service Grand Forks Human Nutrition Center Grand Forks ND 58202 USA
| | - Huawei Zeng
- USDA Agricultural Research Service Grand Forks Human Nutrition Center Grand Forks ND 58202 USA
| | - Xin He
- Department of Epidemiology and Biostatistics University of Maryland College Park MD 20742 USA
| | - Gerald F. Combs
- USDA Agricultural Research Service Grand Forks Human Nutrition Center Grand Forks ND 58202 USA
| | - Wen‐Hsing Cheng
- Department of Nutrition and Food Science University of Maryland College Park MD 20742 USA
- Department of Food Science, Nutrition and Health Promotion Mississippi State University Mississippi State MS 39762 USA
| |
Collapse
|
12
|
Endorf EB, Qing H, Aono J, Terami N, Doyon G, Hyzny E, Jones KL, Findeisen HM, Bruemmer D. Telomerase Reverse Transcriptase Deficiency Prevents Neointima Formation Through Chromatin Silencing of E2F1 Target Genes. Arterioscler Thromb Vasc Biol 2016; 37:301-311. [PMID: 27932351 DOI: 10.1161/atvbaha.116.308717] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Accepted: 11/20/2016] [Indexed: 12/28/2022]
Abstract
OBJECTIVE Aberrant proliferation of smooth muscle cells (SMC) in response to injury induces pathological vascular remodeling during atherosclerosis and neointima formation. Telomerase is rate limiting for tissue renewal and cell replication; however, the physiological role of telomerase in vascular diseases remains to be determined. The goal of the present study was to determine whether telomerase reverse transcriptase (TERT) affects proliferative vascular remodeling and to define the molecular mechanism by which TERT supports SMC proliferation. APPROACH AND RESULTS We first demonstrate high levels of TERT expression in replicating SMC of atherosclerotic and neointimal lesions. Using a model of guidewire-induced arterial injury, we demonstrate decreased neointima formation in TERT-deficient mice. Studies in SMC isolated from TERT-deficient and TERT overexpressing mice with normal telomere length established that TERT is necessary and sufficient for cell proliferation. TERT deficiency did not induce a senescent phenotype but resulted in G1 arrest albeit hyperphosphorylation of the retinoblastoma protein. This proliferative arrest was associated with stable silencing of the E2F1-dependent S-phase gene expression program and not reversed by ectopic overexpression of E2F1. Finally, chromatin immunoprecipitation and accessibility assays revealed that TERT is recruited to E2F1 target sites and promotes chromatin accessibility for E2F1 by facilitating the acquisition of permissive histone modifications. CONCLUSIONS These data indicate a previously unrecognized role for TERT in neointima formation through epigenetic regulation of proliferative gene expression in SMC.
Collapse
MESH Headings
- Acetylation
- Animals
- Atherosclerosis/enzymology
- Atherosclerosis/genetics
- Atherosclerosis/pathology
- Binding Sites
- Cell Proliferation
- Cells, Cultured
- Chromatin Assembly and Disassembly
- Disease Models, Animal
- E2F1 Transcription Factor/genetics
- E2F1 Transcription Factor/metabolism
- Femoral Artery/enzymology
- Femoral Artery/injuries
- Femoral Artery/pathology
- G1 Phase Cell Cycle Checkpoints
- Gene Silencing
- Genetic Predisposition to Disease
- Histones/metabolism
- Humans
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Muscle, Smooth, Vascular/enzymology
- Muscle, Smooth, Vascular/injuries
- Muscle, Smooth, Vascular/pathology
- Neointima
- Phenotype
- Phosphorylation
- Protein Binding
- RNA Interference
- Retinoblastoma Protein/metabolism
- Signal Transduction
- Telomerase/deficiency
- Telomerase/genetics
- Telomerase/metabolism
- Time Factors
- Transfection
- Vascular Remodeling
- Vascular System Injuries/enzymology
- Vascular System Injuries/genetics
- Vascular System Injuries/pathology
Collapse
Affiliation(s)
- Elizabeth B Endorf
- From the Saha Cardiovascular Research Center, and Graduate Center for Nutritional Sciences, University of Kentucky, Lexington (E.B.E., H.Q., J.A., K.L.J., H.M.F.); and Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Division of Cardiology, Department of Medicine, UPMC and University of Pittsburgh School of Medicine, PA (N.T., G.D., E.H., D.B.)
| | - Hua Qing
- From the Saha Cardiovascular Research Center, and Graduate Center for Nutritional Sciences, University of Kentucky, Lexington (E.B.E., H.Q., J.A., K.L.J., H.M.F.); and Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Division of Cardiology, Department of Medicine, UPMC and University of Pittsburgh School of Medicine, PA (N.T., G.D., E.H., D.B.)
| | - Jun Aono
- From the Saha Cardiovascular Research Center, and Graduate Center for Nutritional Sciences, University of Kentucky, Lexington (E.B.E., H.Q., J.A., K.L.J., H.M.F.); and Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Division of Cardiology, Department of Medicine, UPMC and University of Pittsburgh School of Medicine, PA (N.T., G.D., E.H., D.B.)
| | - Naoto Terami
- From the Saha Cardiovascular Research Center, and Graduate Center for Nutritional Sciences, University of Kentucky, Lexington (E.B.E., H.Q., J.A., K.L.J., H.M.F.); and Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Division of Cardiology, Department of Medicine, UPMC and University of Pittsburgh School of Medicine, PA (N.T., G.D., E.H., D.B.)
| | - Geneviève Doyon
- From the Saha Cardiovascular Research Center, and Graduate Center for Nutritional Sciences, University of Kentucky, Lexington (E.B.E., H.Q., J.A., K.L.J., H.M.F.); and Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Division of Cardiology, Department of Medicine, UPMC and University of Pittsburgh School of Medicine, PA (N.T., G.D., E.H., D.B.)
| | - Eric Hyzny
- From the Saha Cardiovascular Research Center, and Graduate Center for Nutritional Sciences, University of Kentucky, Lexington (E.B.E., H.Q., J.A., K.L.J., H.M.F.); and Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Division of Cardiology, Department of Medicine, UPMC and University of Pittsburgh School of Medicine, PA (N.T., G.D., E.H., D.B.)
| | - Karrie L Jones
- From the Saha Cardiovascular Research Center, and Graduate Center for Nutritional Sciences, University of Kentucky, Lexington (E.B.E., H.Q., J.A., K.L.J., H.M.F.); and Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Division of Cardiology, Department of Medicine, UPMC and University of Pittsburgh School of Medicine, PA (N.T., G.D., E.H., D.B.)
| | - Hannes M Findeisen
- From the Saha Cardiovascular Research Center, and Graduate Center for Nutritional Sciences, University of Kentucky, Lexington (E.B.E., H.Q., J.A., K.L.J., H.M.F.); and Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Division of Cardiology, Department of Medicine, UPMC and University of Pittsburgh School of Medicine, PA (N.T., G.D., E.H., D.B.)
| | - Dennis Bruemmer
- From the Saha Cardiovascular Research Center, and Graduate Center for Nutritional Sciences, University of Kentucky, Lexington (E.B.E., H.Q., J.A., K.L.J., H.M.F.); and Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Division of Cardiology, Department of Medicine, UPMC and University of Pittsburgh School of Medicine, PA (N.T., G.D., E.H., D.B.).
| |
Collapse
|
13
|
Liu CC, Ma DL, Yan TD, Fan X, Poon Z, Poon LF, Goh SA, Rozen SG, Hwang WYK, Tergaonkar V, Tan P, Ghosh S, Virshup DM, Goh ELK, Li S. Distinct Responses of Stem Cells to Telomere Uncapping-A Potential Strategy to Improve the Safety of Cell Therapy. Stem Cells 2016; 34:2471-2484. [PMID: 27299710 DOI: 10.1002/stem.2431] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 04/18/2016] [Accepted: 05/14/2016] [Indexed: 12/29/2022]
Abstract
In most human somatic cells, the lack of telomerase activity results in progressive telomere shortening during each cell division. Eventually, DNA damage responses triggered by critically short telomeres induce an irreversible cell cycle arrest termed replicative senescence. However, the cellular responses of human pluripotent stem cells to telomere uncapping remain unknown. We generated telomerase knockout human embryonic stem (ES) cells through gene targeting. Telomerase inactivation in ES cells results in progressive telomere shortening. Telomere DNA damage in ES cells and neural progenitor cells induces rapid apoptosis when telomeres are uncapped, in contrast to fibroblast cells that enter a state of replicative senescence. Significantly, telomerase inactivation limits the proliferation capacity of human ES cells without affecting their pluripotency. By targeting telomerase activity, we can functionally separate the two unique properties of human pluripotent stem cells, namely unlimited self-renewal and pluripotency. We show that the potential of ES cells to form teratomas in vivo is dictated by their telomere length. By controlling telomere length of ES cells through telomerase inactivation, we can inhibit teratoma formation and potentially improve the safety of cell therapies involving terminally differentiated cells as well as specific progenitor cells that do not require sustained cellular proliferation in vivo, and thus sustained telomerase activity. Stem Cells 2016;34:2471-2484.
Collapse
Affiliation(s)
| | - Dong Liang Ma
- Neuroscience Academic Clinical Programme.,Department of Research, National Neuroscience Institute, Singapore
| | | | - XiuBo Fan
- Cancer and Stem Cell Biology Programme.,Department of Hematology, Singapore General Hospital, Singapore
| | - Zhiyong Poon
- BioSystems and Micromechanics, , Singapore-MIT Alliance for Research & Technology, Singapore
| | | | | | | | - William Ying Khee Hwang
- Cancer and Stem Cell Biology Programme.,Department of Hematology, Singapore General Hospital, Singapore
| | - Vinay Tergaonkar
- Division of Cancer Genetics and Therapeutics, Institute of Molecular and Cell Biology (IMCB), Singapore.,Department of Biochemistry.,Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, Australia
| | | | - Sujoy Ghosh
- Cardiovascular and Metabolic Disorders Programme, Duke-NUS Medical School, Singapore
| | | | - Eyleen L K Goh
- Neuroscience Academic Clinical Programme.,Department of Research, National Neuroscience Institute, Singapore.,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,KK Women's and Children's Hospital, KK Research Center, Singapore
| | - Shang Li
- Cancer and Stem Cell Biology Programme. .,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| |
Collapse
|
14
|
Reactivation of Tert in the medial prefrontal cortex and hippocampus rescues aggression and depression of Tert(-/-) mice. Transl Psychiatry 2016; 6:e836. [PMID: 27300262 PMCID: PMC4931604 DOI: 10.1038/tp.2016.106] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 04/19/2016] [Accepted: 04/24/2016] [Indexed: 12/25/2022] Open
Abstract
The role of telomerase reverse transcriptase (TERT) has been extensively investigated in the contexts of aging and cancer. Interestingly, Tert(-/-) mice exhibit additional but unexpected aggressive and depressive behaviors, implying the potential involvement of TERT function in mood control. Our conditional rescue experiments revealed that the depressive and aggressive behaviors of Tert(-/-) mice originate from Tert deficiency in two distinct brain structures. Reactivation of Tert in the hippocampus was sufficient to normalize the depressive but not the aggressive behaviors of Tert(-/-) mice. Conversely, re-expression of Tert in the medial prefrontal cortex (mPFC) reversed the aggressive but not the depressive behavior of Tert(-/-) mice. Mechanistically, decreased serotonergic signaling and increased nitric oxide (NO) transmission in the hippocampus transduced Tert deficiency into depression as evidenced by our observation that the infusion of a pharmacological agonist for serotonin receptor 1a (5-HTR1A) and a selective antagonist for neuronal NO synthase into the hippocampus successfully normalized the depressive behavior of Tert(-/-) mice. In addition, increased serotonergic transmission by the 5-HTR1A agonist in the mPFC was sufficient to rescue the aggressive behavior of Tert(-/-) mice. Thus, our studies revealed a novel function of TERT in the pathology of depression and aggression in a brain structure-specific manner, providing direct evidence for the contribution of TERT to emotional control.
Collapse
|
15
|
Van houcke J, De Groef L, Dekeyster E, Moons L. The zebrafish as a gerontology model in nervous system aging, disease, and repair. Ageing Res Rev 2015; 24:358-68. [PMID: 26538520 DOI: 10.1016/j.arr.2015.10.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 10/14/2015] [Accepted: 10/26/2015] [Indexed: 12/12/2022]
Abstract
Considering the increasing number of elderly in the world's population today, developing effective treatments for age-related pathologies is one of the biggest challenges in modern medical research. Age-related neurodegeneration, in particular, significantly impacts important sensory, motor, and cognitive functions, seriously constraining life quality of many patients. Although our understanding of the causal mechanisms of aging has greatly improved in recent years, animal model systems still have much to tell us about this complex process. Zebrafish (Danio rerio) have gained enormous popularity for this research topic over the past decade, since their life span is relatively short but, like humans, they are still subject to gradual aging. In addition, the extensive characterization of its well-conserved molecular and cellular physiology makes the zebrafish an excellent model to unravel the underlying mechanisms of aging, disease, and repair. This review provides a comprehensive overview of the progress made in zebrafish gerontology, with special emphasis on nervous system aging. We review the evidence that classic hallmarks of aging can also be recognized within this small vertebrate, both at the molecular and cellular level. Moreover, we illustrate the high level of similarity with age-associated human pathologies through a survey of the functional deficits that arise as zebrafish age.
Collapse
|
16
|
Koh CM, Khattar E, Leow SC, Liu CY, Muller J, Ang WX, Li Y, Franzoso G, Li S, Guccione E, Tergaonkar V. Telomerase regulates MYC-driven oncogenesis independent of its reverse transcriptase activity. J Clin Invest 2015; 125:2109-22. [PMID: 25893605 PMCID: PMC4463203 DOI: 10.1172/jci79134] [Citation(s) in RCA: 125] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 03/12/2015] [Indexed: 12/25/2022] Open
Abstract
Constitutively active MYC and reactivated telomerase often coexist in cancers. While reactivation of telomerase is thought to be essential for replicative immortality, MYC, in conjunction with cofactors, confers several growth advantages to cancer cells. It is known that the reactivation of TERT, the catalytic subunit of telomerase, is limiting for reconstituting telomerase activity in tumors. However, while reactivation of TERT has been functionally linked to the acquisition of several "hallmarks of cancer" in tumors, the molecular mechanisms by which this occurs and whether these mechanisms are distinct from the role of telomerase on telomeres is not clear. Here, we demonstrated that first-generation TERT-null mice, unlike Terc-null mice, show delayed onset of MYC-induced lymphomagenesis. We further determined that TERT is a regulator of MYC stability in cancer. TERT stabilized MYC levels on chromatin, contributing to either activation or repression of its target genes. TERT regulated MYC ubiquitination and proteasomal degradation, and this effect of TERT was independent of its reverse transcriptase activity and role in telomere elongation. Based on these data, we conclude that reactivation of TERT, a direct transcriptional MYC target in tumors, provides a feed-forward mechanism to potentiate MYC-dependent oncogenesis.
Collapse
MESH Headings
- Animals
- Cell Line, Tumor
- Cell Transformation, Neoplastic/genetics
- Enzyme Activation
- Feedback, Physiological
- Gene Expression Regulation, Neoplastic/genetics
- Genes, myc
- Glycogen Synthase Kinase 3/physiology
- Glycogen Synthase Kinase 3 beta
- Heterografts
- Humans
- Lymphoma, Non-Hodgkin/pathology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Neoplasm Proteins/genetics
- Neoplasm Proteins/metabolism
- Neoplasm Proteins/physiology
- Neoplasm Transplantation
- Phosphorylation
- Promoter Regions, Genetic
- Protein Processing, Post-Translational
- Protein Stability
- Proto-Oncogene Proteins c-myc/genetics
- Proto-Oncogene Proteins c-myc/metabolism
- Proto-Oncogene Proteins c-myc/physiology
- RNA/genetics
- RNA/physiology
- RNA Interference
- Telomerase/deficiency
- Telomerase/genetics
- Telomerase/physiology
- Telomere Homeostasis/genetics
- Time Factors
- Transcription, Genetic
- Ubiquitination
Collapse
Affiliation(s)
- Cheryl M. Koh
- Division of Cancer Genetics and Therapeutics, Laboratory of Methyltransferases in Development and Disease, and
| | - Ekta Khattar
- Division of Cancer Genetics and Therapeutics, Laboratory of NF-κB Signaling, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Shi Chi Leow
- Division of Cancer Genetics and Therapeutics, Laboratory of NF-κB Signaling, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Chia Yi Liu
- Division of Cancer Genetics and Therapeutics, Laboratory of NF-κB Signaling, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Julius Muller
- Division of Cancer Genetics and Therapeutics, Laboratory of Methyltransferases in Development and Disease, and
| | - Wei Xia Ang
- Division of Cancer Genetics and Therapeutics, Laboratory of Methyltransferases in Development and Disease, and
| | - Yinghui Li
- Division of Cancer Genetics and Therapeutics, Laboratory of NF-κB Signaling, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Guido Franzoso
- Department of Medicine, Imperial College London, London, United Kingdom
| | - Shang Li
- Program in Cancer and Stem Cell Biology, Duke-NUS Graduate Medical School, Singapore
- Department of Physiology and
| | - Ernesto Guccione
- Division of Cancer Genetics and Therapeutics, Laboratory of Methyltransferases in Development and Disease, and
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Vinay Tergaonkar
- Division of Cancer Genetics and Therapeutics, Laboratory of NF-κB Signaling, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
17
|
Sunami Y, von Figura G, Kleger A, Strnad P, Hüser N, Hartmann D. The role of telomeres in liver disease. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2015; 125:159-72. [PMID: 24993702 DOI: 10.1016/b978-0-12-397898-1.00007-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Telomeres stabilize open chromosome ends and protect them against chromosomal end-to-end fusions, breakage, instability, and nonreciprocal translocations. Telomere dysfunction is known to lead to an impaired regenerative capacity of hepatocytes and an increased cirrhosis formation in the context of acute and chronic liver injury. In addition, telomere dysfunction and telomerase mutations have been associated with the induction of chromosomal instability and consequently with cirrhosis development and hepatocarcinogenesis. The identification of molecular mechanisms related to telomere dysfunction and telomerase activation might lead to new therapeutic strategies. In this chapter, we are reviewing the current knowledge about the importance of telomere dysfunction in liver diseases.
Collapse
Affiliation(s)
- Yoshiaki Sunami
- Department of General Surgery, Klinikum rechts der Isar, Technical University Munich, Munich, Germany
| | - Guido von Figura
- Department of Internal Medicine II, Klinikum rechts der Isar, Technical University Munich, Munich, Germany
| | - Alexander Kleger
- Department of Internal Medicine I, Ulm University Hospital, Ulm, Germany
| | - Pavel Strnad
- Department of Internal Medicine III and IZKF, University Hospital Aachen, Aachen, Germany
| | - Norbert Hüser
- Department of General Surgery, Klinikum rechts der Isar, Technical University Munich, Munich, Germany
| | - Daniel Hartmann
- Department of General Surgery, Klinikum rechts der Isar, Technical University Munich, Munich, Germany
| |
Collapse
|
18
|
Religa AA, Ramesar J, Janse CJ, Scherf A, Waters AP. P. berghei telomerase subunit TERT is essential for parasite survival. PLoS One 2014; 9:e108930. [PMID: 25275500 PMCID: PMC4183507 DOI: 10.1371/journal.pone.0108930] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 09/04/2014] [Indexed: 11/29/2022] Open
Abstract
Telomeres define the ends of chromosomes protecting eukaryotic cells from chromosome instability and eventual cell death. The complex regulation of telomeres involves various proteins including telomerase, which is a specialized ribonucleoprotein responsible for telomere maintenance. Telomeres of chromosomes of malaria parasites are kept at a constant length during blood stage proliferation. The 7-bp telomere repeat sequence is universal across different Plasmodium species (GGGTTT/CA), though the average telomere length varies. The catalytic subunit of telomerase, telomerase reverse transcriptase (TERT), is present in all sequenced Plasmodium species and is approximately three times larger than other eukaryotic TERTs. The Plasmodium RNA component of TERT has recently been identified in silico. A strategy to delete the gene encoding TERT via double cross-over (DXO) homologous recombination was undertaken to study the telomerase function in P. berghei. Expression of both TERT and the RNA component (TR) in P. berghei blood stages was analysed by Western blotting and Northern analysis. Average telomere length was measured in several Plasmodium species using Telomere Restriction Fragment (TRF) analysis. TERT and TR were detected in blood stages and an average telomere length of ∼950 bp established. Deletion of the tert gene was performed using standard transfection methodologies and we show the presence of tert− mutants in the transfected parasite populations. Cloning of tert- mutants has been attempted multiple times without success. Thorough analysis of the transfected parasite populations and the parasite obtained from extensive parasite cloning from these populations provide evidence for a so called delayed death phenotype as observed in different organisms lacking TERT. The findings indicate that TERT is essential for P. berghei cell survival. The study extends our current knowledge on telomere biology in malaria parasites and validates further investigations to identify telomerase inhibitors to induce parasite cell death.
Collapse
Affiliation(s)
- Agnieszka A. Religa
- Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Jai Ramesar
- Leiden Malaria Research Group, Parasitology, Leiden University Medical Centre, Leiden, the Netherlands
| | - Chris J. Janse
- Leiden Malaria Research Group, Parasitology, Leiden University Medical Centre, Leiden, the Netherlands
| | - Artur Scherf
- Biology of Host-Parasite Interactions Unit, Institut Pasteur, Paris, France
| | - Andrew P. Waters
- Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
- * E-mail:
| |
Collapse
|
19
|
Lee JH, Anver M, Kost-Alimova M, Protopopov A, DePinho RA, Rane SG. Telomere dysfunction suppresses multiple endocrine neoplasia in mice. Genes Cancer 2014; 5:306-19. [PMID: 25352948 PMCID: PMC4209601 DOI: 10.18632/genesandcancer.31] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 09/05/2014] [Indexed: 11/30/2022] Open
Abstract
Multiple endocrine neoplasia (MEN) syndrome is typified by the occurrence of tumors in two or more hormonal tissues. Whereas the genetics of MEN syndrome is relatively well understood, the tumorigenic mechanisms for these cancers remain relatively obscure. The Cdk4 (R24C) mouse model develops highly penetrant pituitary tumors and endocrine pancreas adenomas, and, as such, this model is appropriate to gain insight into mechanisms underlying MEN. Using this model, here we provide evidence supporting an important role for telomerase in the pathogenesis of MEN. We observed increased aneuploidy in Cdk4 (R/R) fibroblasts along with significantly elevated telomerase activity and telomere length in Cdk4 (R/R) islets and embryonic fibroblasts. To better understand the role of telomerase, we generated Cdk4 (R24C) mice with inactivation of the mTERC locus, which codes for the essential RNA component of the enzyme telomerase (mTERC (-/-) Cdk4 (R/R) mice). Embryonic fibroblasts and islets derived from mTERC (-/-) Cdk4 (R/R) mice exhibit reduced telomere length and proliferative capacity. Further, mTERC (-/-) Cdk4 (R/R) fibroblasts display reduced transformation potential. Importantly, mTERC (-/-) Cdk4 (R/R) mice display significantly reduced spontaneous tumorigenesis. Strikingly, we observed dramatic suppression of pituitary tumors and endocrine pancreas adenomas in mTERC (-/-) Cdk4 (R/R) mice. Telomere dysfunction suppressed tumor initiation and increased latency of tumor development while not affecting the progression of established tumors. In summary, these results are suggestive of an important role for telomerase in tumor development in the Cdk4 (R24C) mouse model, specifically in the genesis of tumors in the pituitary and the endocrine pancreas.
Collapse
Affiliation(s)
- Ji-Hyeon Lee
- Diabetes, Endocrinology & Obesity Branch, National Institute of Diabetes & Digestive & Kidney Diseases, Bethesda, MD
| | - Miriam Anver
- Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD
| | - Maria Kost-Alimova
- Dana-Farber Cancer Institute, Boston, MA
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX
| | - Alexei Protopopov
- Dana-Farber Cancer Institute, Boston, MA
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX
| | - Ronald A. DePinho
- Dana-Farber Cancer Institute, Boston, MA
- Department of Cell Biology, University of Texas MD Anderson Cancer Center, Houston, TX
| | - Sushil G. Rane
- Diabetes, Endocrinology & Obesity Branch, National Institute of Diabetes & Digestive & Kidney Diseases, Bethesda, MD
| |
Collapse
|
20
|
Kinoshita T, Nagamatsu G, Saito S, Takubo K, Horimoto K, Suda T. Telomerase reverse transcriptase has an extratelomeric function in somatic cell reprogramming. J Biol Chem 2014; 289:15776-87. [PMID: 24733392 DOI: 10.1074/jbc.m113.536037] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Reactivation of the endogenous telomerase reverse transcriptase (TERT) catalytic subunit and telomere elongation occur during the reprogramming of somatic cells to induced pluripotent stem (iPS) cells. However, the role of TERT in the reprogramming process is unclear. To clarify its function, the reprogramming process was examined in TERT-KO somatic cells. To exclude the effect of telomere elongation, tail-tip fibroblasts (TTFs) from first generation TERT-KO mice were used. Although iPS cells were successfully generated from TERT-KO TTFs, the efficiency of reprogramming these cells was markedly lower than that of WT TTFs. The gene expression profiles of iPS cells induced from TERT-KO TTFs were similar to those of WT iPS cells and ES cells, and TERT-KO iPS cells formed teratomas that differentiated into all three germ layers. These data indicate that TERT plays an extratelomeric role in the reprogramming process, but its function is dispensable. However, TERT-KO iPS cells showed transient defects in growth and teratoma formation during continuous growth. In addition, TERT-KO iPS cells developed chromosome fusions that accumulated with increasing passage numbers, consistent with the fact that TERT is essential for the maintenance of genome structure and stability in iPS cells. In a rescue experiment, an enzymatically inactive mutant of TERT (D702A) had a positive effect on somatic cell reprogramming of TERT-KO TTFs, which confirmed the extratelomeric role of TERT in this process.
Collapse
Affiliation(s)
- Taisuke Kinoshita
- From the Department of Cell Differentiation, The Sakaguchi Laboratory, School of Medicine, Keio University, Tokyo, 160-8582
| | - Go Nagamatsu
- From the Department of Cell Differentiation, The Sakaguchi Laboratory, School of Medicine, Keio University, Tokyo, 160-8582, Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012, the Department of Stem Cell Biology and Medicine, Graduate School of Medical Science, Kyushu University, Fukuoka, 812-8582,
| | - Shigeru Saito
- Data Science Laboratory, OPT Inc., Tokyo, 102-0081, and
| | - Keiyo Takubo
- From the Department of Cell Differentiation, The Sakaguchi Laboratory, School of Medicine, Keio University, Tokyo, 160-8582
| | - Katsuhisa Horimoto
- the Molecular Profiling Research Center for Drug Discovery, National Institute of Advanced Industrial Science and Technology, Tokyo 135-0064, Japan
| | - Toshio Suda
- From the Department of Cell Differentiation, The Sakaguchi Laboratory, School of Medicine, Keio University, Tokyo, 160-8582
| |
Collapse
|
21
|
Liu T, Ullenbruch M, Young Choi Y, Yu H, Ding L, Xaubet A, Pereda J, Feghali-Bostwick CA, Bitterman PB, Henke CA, Pardo A, Selman M, Phan SH. Telomerase and telomere length in pulmonary fibrosis. Am J Respir Cell Mol Biol 2013; 49:260-8. [PMID: 23526226 DOI: 10.1165/rcmb.2012-0514oc] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
In addition to its expression in stem cells and many cancers, telomerase activity is transiently induced in murine bleomycin (BLM)-induced pulmonary fibrosis with increased levels of telomerase transcriptase (TERT) expression, which is essential for fibrosis. To extend these observations to human chronic fibrotic lung disease, we investigated the expression of telomerase activity in lung fibroblasts from patients with interstitial lung diseases (ILDs), including idiopathic pulmonary fibrosis (IPF). The results showed that telomerase activity was induced in more than 66% of IPF lung fibroblast samples, in comparison with less than 29% from control samples, some of which were obtained from lung cancer resections. Less than 4% of the human IPF lung fibroblast samples exhibited shortened telomeres, whereas less than 6% of peripheral blood leukocyte samples from patients with IPF or hypersensitivity pneumonitis demonstrated shortened telomeres. Moreover, shortened telomeres in late-generation telomerase RNA component knockout mice did not exert a significant effect on BLM-induced pulmonary fibrosis. In contrast, TERT knockout mice exhibited deficient fibrosis that was independent of telomere length. Finally, TERT expression was up-regulated by a histone deacetylase inhibitor, while the induction of TERT in lung fibroblasts was associated with the binding of acetylated histone H3K9 to the TERT promoter region. These findings indicate that significant telomerase induction was evident in fibroblasts from fibrotic murine lungs and a majority of IPF lung samples, whereas telomere shortening was not a common finding in the human blood and lung fibroblast samples. Notably, the animal studies indicated that the pathogenesis of pulmonary fibrosis was independent of telomere length.
Collapse
Affiliation(s)
- Tianju Liu
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109-2200, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Anchelin M, Alcaraz-Pérez F, Martínez CM, Bernabé-García M, Mulero V, Cayuela ML. Premature aging in telomerase-deficient zebrafish. Dis Model Mech 2013; 6:1101-12. [PMID: 23744274 PMCID: PMC3759330 DOI: 10.1242/dmm.011635] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The study of telomere biology is crucial to the understanding of aging and cancer. In the pursuit of greater knowledge in the field of human telomere biology, the mouse has been used extensively as a model. However, there are fundamental differences between mouse and human cells. Therefore, additional models are required. In light of this, we have characterized telomerase-deficient zebrafish (Danio rerio) as the second vertebrate model for human telomerase-driven diseases. We found that telomerase-deficient zebrafish show p53-dependent premature aging and reduced lifespan in the first generation, as occurs in humans but not in mice, probably reflecting the similar telomere length in fish and humans. Among these aging symptoms, spinal curvature, liver and retina degeneration, and infertility were the most remarkable. Although the second-generation embryos died in early developmental stages, restoration of telomerase activity rescued telomere length and survival, indicating that telomerase dosage is crucial. Importantly, this model also reproduces the disease anticipation observed in humans with dyskeratosis congenita (DC). Thus, telomerase haploinsufficiency leads to anticipation phenomenon in longevity, which is related to telomere shortening and, specifically, with the proportion of short telomeres. Furthermore, p53 was induced by telomere attrition, leading to growth arrest and apoptosis. Importantly, genetic inhibition of p53 rescued the adverse effects of telomere loss, indicating that the molecular mechanisms induced by telomere shortening are conserved from fish to mammals. The partial rescue of telomere length and longevity by restoration of telomerase activity, together with the feasibility of the zebrafish for high-throughput chemical screening, both point to the usefulness of this model for the discovery of new drugs able to reactivate telomerase in individuals with DC.
Collapse
Affiliation(s)
- Monique Anchelin
- Telomerase, Aging and Cancer Group, Research Unit, Department of Surgery, CIBERehd, University Hospital "Virgen de la Arrixaca", Murcia, Spain
| | | | | | | | | | | |
Collapse
|
23
|
Abstract
In recent years, the highly conserved Lin28 RNA-binding proteins have emerged as factors that define stemness in several tissue lineages. Lin28 proteins repress let-7 microRNAs and influence mRNA translation, thereby regulating the self-renewal of mammalian embryonic stem cells. Subsequent discoveries revealed that Lin28a and Lin28b are also important in organismal growth and metabolism, tissue development, somatic reprogramming, and cancer. In this review, we discuss the Lin28 pathway and its regulation, outline its roles in stem cells, tissue development, and pathogenesis, and examine the ramifications for re-engineering mammalian physiology.
Collapse
Affiliation(s)
- Ng Shyh-Chang
- Stem Cell Transplantation Program, Division of Pediatric Hematology/Oncology, Boston Children’s Hospital and Dana Farber Cancer Institute, Boston, Massachusetts, USA. Harvard Stem Cell Institute, Boston, Massachusetts, USA. Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA. Manton Center for Orphan Disease Research, Boston, Massachusetts, USA. Howard Hughes Medical Institute, Boston, Massachusetts, USA
| | - George Q. Daley
- Stem Cell Transplantation Program, Division of Pediatric Hematology/Oncology, Boston Children’s Hospital and Dana Farber Cancer Institute, Boston, Massachusetts, USA. Harvard Stem Cell Institute, Boston, Massachusetts, USA. Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA. Manton Center for Orphan Disease Research, Boston, Massachusetts, USA. Howard Hughes Medical Institute, Boston, Massachusetts, USA
| |
Collapse
|
24
|
Xu L, Li S, Stohr BA. The role of telomere biology in cancer. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2012; 8:49-78. [PMID: 22934675 DOI: 10.1146/annurev-pathol-020712-164030] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Telomere biology plays a critical and complex role in the initiation and progression of cancer. Although telomere dysfunction resulting from replicative attrition constrains tumor growth by engaging DNA-damage signaling pathways, it can also promote tumorigenesis by causing oncogenic chromosomal rearrangements. Expression of the telomerase enzyme enables telomere-length homeostasis and allows tumor cells to escape the antiproliferative barrier posed by short telomeres. Telomeres and telomerase also function independently of one another. Recent work has suggested that telomerase promotes cell growth through pathways unrelated to telomere maintenance, and a subset of tumors elongate telomeres through telomerase-independent mechanisms. In an effort to exploit the integral link between telomere biology and cancer growth, investigators have developed several telomerase-based therapeutic strategies, which are currently in clinical trials. Here, we broadly review the state of the field with a particular focus on recent developments of interest.
Collapse
Affiliation(s)
- Lifeng Xu
- Department of Microbiology, University of California-Davis, CA 95616, USA
| | | | | |
Collapse
|
25
|
Strong MA, Vidal-Cardenas SL, Karim B, Yu H, Guo N, Greider CW. Phenotypes in mTERT⁺/⁻ and mTERT⁻/⁻ mice are due to short telomeres, not telomere-independent functions of telomerase reverse transcriptase. Mol Cell Biol 2011; 31:2369-79. [PMID: 21464209 PMCID: PMC3133422 DOI: 10.1128/mcb.05312-11] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Accepted: 03/23/2011] [Indexed: 02/01/2023] Open
Abstract
Telomerase is essential for telomere length maintenance. Mutations in either of the two core components of telomerase, telomerase RNA (TR) or the catalytic protein component telomerase reverse transcriptase (TERT), cause the genetic disorders dyskeratosis congenita, pulmonary fibrosis, and other degenerative diseases. Overexpression of the TERT protein has been reported to have telomere length-independent roles, including regulation of the Wnt signaling pathway. To examine the phenotypes of TERT haploinsufficiency and determine whether loss of function of TERT has effects other than those associated with telomere shortening, we characterized both mTERT⁺/⁻ and mTERT⁻/⁻ mice on the CAST/EiJ genetic background. Phenotypic analysis showed a loss of tissue renewal capacity with progressive breeding of heterozygous mice that was indistinguishable from that of mTR-deficient mice. mTERT⁻/⁻ mice, from heterozygous mTERT⁺/⁻ mouse crosses, were born at the expected Mendelian ratio (26.5%; n = 1,080 pups), indicating no embryonic lethality of this genotype. We looked for, and failed to find, hallmarks of Wnt deficiency in various adult and embryonic tissues, including those of the lungs, kidneys, brain, and skeleton. Finally, mTERT⁻/⁻ cells showed wild-type levels of Wnt signaling in vitro. Thus, while TERT overexpression in some settings may activate the Wnt pathway, loss of function in a physiological setting has no apparent effects on Wnt signaling. Our results indicate that both TERT and TR are haploinsufficient and that their deficiency leads to telomere shortening, which limits tissue renewal. Our studies imply that hypomorphic loss-of-function alleles of hTERT and hTR should cause a similar disease spectrum in humans.
Collapse
Affiliation(s)
| | | | - Baktiar Karim
- Department of Molecular & Comparative Pathobiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Huimin Yu
- Department of Molecular Biology & Genetics
| | - Nini Guo
- Department of Molecular Biology & Genetics
| | | |
Collapse
|
26
|
Telomerase reverse transcriptase protects ATM-deficient hematopoietic stem cells from ROS-induced apoptosis through a telomere-independent mechanism. Blood 2011; 117:4169-80. [PMID: 21297001 DOI: 10.1182/blood-2010-08-297390] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Telomerase reverse transcriptase (TERT) contributes to the prevention of aging by a largely unknown mechanism that is unrelated to telomere lengthening. The current study used ataxia-telangiectasia mutated (ATM) and TERT doubly deficient mice to evaluate the contributions of 2 aging-regulating molecules, TERT and ATM, to the aging process. ATM and TERT doubly deficient mice demonstrated increased progression of aging and had shorter lifespans than ATM-null mice, while TERT alone was insufficient to affect lifespan. ATM-TERT doubly null mice show in vivo senescence, especially in hematopoietic tissues, that was dependent on p16(INK4a) and p19(ARF), but not on p21. As their HSCs show decreased stem cell activities, accelerated aging seen in these mice has been attributed to impaired stem cell function. TERT-deficient HSCs are characterized by reactive oxygen species (ROS) fragility, which has been suggested to cause stem cell impairment during aging, and apoptotic HSCs are markedly increased in these mice. p38MAPK activation was indicated to be partially involved in ROS-induced apoptosis in TERT-null HSCs, and BCL-2 is suggested to provide a part of the protective mechanisms of HSCs by TERT. The current study demonstrates that TERT mitigates aging by protecting HSCs under stressful conditions through telomere length-independent mechanisms.
Collapse
|
27
|
Nabetani A, Ishikawa F. Alternative lengthening of telomeres pathway: recombination-mediated telomere maintenance mechanism in human cells. J Biochem 2011; 149:5-14. [PMID: 20937668 DOI: 10.1093/jb/mvq119] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Unlimitedly proliferating cells need to acquire the telomere DNA maintenance mechanism, to counteract possible shortening through multiple rounds of replication and segregation of linear chromosomes. Most human cancer cells express telomerase whereas the other cells utilize the alternative lengthening of telomeres (ALT) pathway to elongate telomere DNA. It is suggested that ALT depends on the recombination between telomere repetitive DNAs. However, the molecular details remain unknown. Recent studies have provided evidence of special structures of telomere DNA and genes essential for the phenotypes of ALT cells. The molecular models of the ALT pathway should be validated to elucidate recombination-mediated telomere maintenance and promote the applications to anti-cancer therapy.
Collapse
Affiliation(s)
- Akira Nabetani
- Laboratory of Cell Cycle Regulation, Department of Gene Mechanisms, Graduate School of Biostudies, Kyoto University,Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan.
| | | |
Collapse
|
28
|
Madonna R, De Caterina R, Willerson JT, Geng YJ. Biologic function and clinical potential of telomerase and associated proteins in cardiovascular tissue repair and regeneration. Eur Heart J 2010; 32:1190-6. [PMID: 21148539 DOI: 10.1093/eurheartj/ehq450] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Telomeres comprise long tracts of double-stranded TTAGGG repeats that extend for 9-15 kb in humans. Telomere length is maintained by telomerase, a specialized ribonucleoprotein that prevents the natural ends of linear chromosomes from undergoing inappropriate repair, which could otherwise lead to deleterious chromosomal fusions. During the development of cardiovascular tissues, telomerase activity is strong but diminishes with age in adult hearts. Dysfunction of telomerase is associated with the impairment of tissue repair or regeneration in several pathologic conditions, including heart failure and infarction. Under both physiologic and pathophysiologic conditions, telomerase interacts with promyogenic nuclear transcription factors (e.g. myocardin, serum response factor) to augment the potency of cardiovascular cells during growth, survival, and differentiation. We review recent findings on the biologic function of telomerase and its potential for clinical application in cardiovascular development and repair. Understanding the roles of telomerase and its associated proteins in the functional regulation of cardiovascular cells and their progenitors may lead to new strategies for cardiovascular tissue repair and regeneration.
Collapse
Affiliation(s)
- Rosalinda Madonna
- Texas Heart Institute at St. Luke's Episcopal Hospital, Houston, TX, USA
| | | | | | | |
Collapse
|
29
|
Findeisen HM, Gizard F, Zhao Y, Cohn D, Heywood EB, Jones KL, Lovett DH, Howatt DA, Daugherty A, Bruemmer D. Telomerase deficiency in bone marrow-derived cells attenuates angiotensin II-induced abdominal aortic aneurysm formation. Arterioscler Thromb Vasc Biol 2010; 31:253-60. [PMID: 21088250 DOI: 10.1161/atvbaha.110.218545] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
OBJECTIVE Abdominal aortic aneurysms (AAA) are an age-related vascular disease and an important cause of morbidity and mortality. In this study, we sought to determine whether the catalytic component of telomerase, telomerase reverse transcriptase (TERT), modulates angiotensin (Ang) II-induced AAA formation. METHODS AND RESULTS Low-density lipoprotein receptor-deficient (LDLr-/-) mice were lethally irradiated and reconstituted with bone marrow-derived cells from TERT-deficient (TERT-/-) mice or littermate wild-type mice. Mice were placed on a diet enriched in cholesterol, and AAA formation was quantified after 4 weeks of Ang II infusion. Repopulation of LDLr-/- mice with TERT-/- bone marrow-derived cells attenuated Ang II-induced AAA formation. TERT-deficient recipient mice revealed modest telomere attrition in circulating leukocytes at the study end point without any overt effect of the donor genotype on white blood cell counts. In mice repopulated with TERT-/- bone marrow, aortic matrix metalloproteinase-2 (MMP-2) activity was reduced, and TERT-/- macrophages exhibited decreased expression and activity of MMP-2 in response to stimulation with Ang II. Finally, we demonstrated in transient transfection studies that TERT overexpression activates the MMP-2 promoter in macrophages. CONCLUSIONS TERT deficiency in bone marrow-derived macrophages attenuates Ang II-induced AAA formation in LDLr-/- mice and decreases MMP-2 expression. These results point to a previously unrecognized role of TERT in the pathogenesis of AAA.
Collapse
Affiliation(s)
- Hannes M Findeisen
- Saha Cardiovascular Research Center, University of Kentucky, 900 S Limestone St., Lexington, KY 40536-0200, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Eaton KA, Opp JS, Gray BM, Bergin IL, Young VB. Ulcerative typhlocolitis associated with Helicobacter mastomyrinus in telomerase-deficient mice. Vet Pathol 2010; 48:713-25. [PMID: 20926734 DOI: 10.1177/0300985810383876] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Telomerase deficiency induces early senescence and defects in proliferating cell populations, but in mice it has not been associated with inflammatory bowel disease. Genetically engineered mice lacking either telomerase reverse transcriptase (TERT) or telomerase RNA were examined for chronic diarrhea and wasting. Affected mice had pasty stools, thickened nondistensible colon walls, and contracted ceca. Histologically, the cecal mucosa was largely replaced by inflammatory infiltrate consisting of plasma cells, neutrophils, lymphocytes, and macrophages with marked widespread fibrosis and ulceration. Remaining epithelium was disorganized and hyperplastic, with multifocal dysplasia. Colonic mucosa was markedly hyperplastic with similar inflammation and epithelial dysplasia. Multifocal adenomatous hyperplasia, but no inflammation, was present in the small intestine. Microaerophilic spiral bacteria with 16S rRNA gene sequences identical to Helicobacter mastomyrinus were isolated from the colon and cecum. Severe granulomatous typhlocolitis without epithelial dysplasia developed in germ-free recombination-activating gene (RAG) knockout (KO) recipients of CD4+ T cells and inoculated with cecal contents from affected TERT KO mice and in specific pathogen-free recipient RAG KO mice and interleukin-10 KO mice inoculated with H mastomyrinus. Typhlocolitis in mice given H mastomyrinus was more severe than in mice given Helicobacter hepaticus. Telomerase-deficient mice are susceptible to helicobacter-associated typhlocolitis. H mastomyrinus causes severe disease in susceptible mouse strains.
Collapse
Affiliation(s)
- K A Eaton
- University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| | | | | | | | | |
Collapse
|
31
|
Gordon DM, Santos JH. The emerging role of telomerase reverse transcriptase in mitochondrial DNA metabolism. J Nucleic Acids 2010; 2010. [PMID: 20936168 PMCID: PMC2945669 DOI: 10.4061/2010/390791] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2010] [Revised: 07/26/2010] [Accepted: 08/31/2010] [Indexed: 01/18/2023] Open
Abstract
Telomerase is a reverse transcriptase specialized in telomere synthesis. The enzyme is primarily nuclear where it elongates telomeres but recent reports have shown that it also localizes to mitochondria. The function of TERT in mitochondria is largely unknown but the available findings point to a role in mitochondrial DNA metabolism. This paper discusses the available data on mitochondrial telomerase with particular emphasis on its effects upon the organellar DNA.
Collapse
Affiliation(s)
- Donna M Gordon
- Department of Biological Sciences, Mississippi State University, 114 Harned Hall, 295 Lee Boulevard, Mississippi State, MS 39762, USA
| | | |
Collapse
|
32
|
Brennan SK, Wang Q, Tressler R, Harley C, Go N, Bassett E, Huff CA, Jones RJ, Matsui W. Telomerase inhibition targets clonogenic multiple myeloma cells through telomere length-dependent and independent mechanisms. PLoS One 2010; 5. [PMID: 20824134 PMCID: PMC2931698 DOI: 10.1371/journal.pone.0012487] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2010] [Accepted: 08/09/2010] [Indexed: 12/28/2022] Open
Abstract
Background Plasma cells constitute the majority of tumor cells in multiple myeloma (MM) but lack the potential for sustained clonogenic growth. In contrast, clonotypic B cells can engraft and recapitulate disease in immunodeficient mice suggesting they serve as the MM cancer stem cell (CSC). These tumor initiating B cells also share functional features with normal stem cells such as drug resistance and self-renewal potential. Therefore, the cellular processes that regulate normal stem cells may serve as therapeutic targets in MM. Telomerase activity is required for the maintenance of normal adult stem cells, and we examined the activity of the telomerase inhibitor imetelstat against MM CSC. Moreover, we carried out both long and short-term inhibition studies to examine telomere length-dependent and independent activities. Methodology/Principal Findings Human MM CSC were isolated from cell lines and primary clinical specimens and treated with imetelstat, a specific inhibitor of the reverse transcriptase activity of telomerase. Two weeks of exposure to imetelstat resulted in a significant reduction in telomere length and the inhibition of clonogenic MM growth both in vitro and in vivo. In addition to these relatively long-term effects, 72 hours of imetelstat treatment inhibited clonogenic growth that was associated with MM CSC differentiation based on expression of the plasma cell antigen CD138 and the stem cell marker aldehyde dehydrogenase. Short-term treatment of MM CSC also decreased the expression of genes typically expressed by stem cells (OCT3/4, SOX2, NANOG, and BMI1) as revealed by quantitative real-time PCR. Conclusions Telomerase activity regulates the clonogenic growth of MM CSC. Moreover, reductions in MM growth following both long and short-term telomerase inhibition suggest that it impacts CSC through telomere length-dependent and independent mechanisms.
Collapse
Affiliation(s)
- Sarah K. Brennan
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Qiuju Wang
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Robert Tressler
- Geron Corporation, Menlo Park, California, United States of America
| | - Calvin Harley
- Geron Corporation, Menlo Park, California, United States of America
| | - Ning Go
- Geron Corporation, Menlo Park, California, United States of America
| | | | - Carol Ann Huff
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Richard J. Jones
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - William Matsui
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
33
|
Rhee DB, Wang Y, Mizesko M, Zhou F, Haneline L, Liu Y. FANCC suppresses short telomere-initiated telomere sister chromatid exchange. Hum Mol Genet 2009; 19:879-87. [PMID: 20022886 DOI: 10.1093/hmg/ddp556] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Telomere shortening has been linked to rare human disorders that present with bone marrow failure including Fanconi anemia (FA). FANCC is one of the most commonly mutated FA genes in FA patients and the FANCC subtype tends to have a relatively early onset of bone marrow failure and hematologic malignancies. Here, we studied the role of Fancc in telomere length regulation in mice. Deletion of Fancc (Fancc(-/-)) did not affect telomerase activity, telomere length or telomeric end-capping in a mouse strain possessing intrinsically long telomeres. However, ablation of Fancc did exacerbate telomere attrition when murine bone marrow cells experienced high cell turnover after serial transplantation. When Fancc(-/-) mice were crossed into a telomerase reverse transcriptase heterozygous or null background (Tert(+/-) or Tert(-/-)) with short telomeres, Fancc deficiency led to an increase in the incidence of telomere sister chromatid exchange. In contrast, these phenotypes were not observed in Tert mutant mice with long telomeres. Our data indicate that Fancc deficiency accelerates telomere shortening during high turnover of hematopoietic cells and promotes telomere recombination initiated by short telomeres.
Collapse
Affiliation(s)
- David B Rhee
- Laboratory of Molecular Gerontology, NIH Biomedical Research Center, National Institute on Aging, Baltimore, MD 21224-6825, USA
| | | | | | | | | | | |
Collapse
|
34
|
A crucial role for adipose tissue p53 in the regulation of insulin resistance. Nat Med 2009; 15:1082-7. [PMID: 19718037 DOI: 10.1038/nm.2014] [Citation(s) in RCA: 653] [Impact Index Per Article: 43.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2009] [Accepted: 06/29/2009] [Indexed: 12/21/2022]
Abstract
Various stimuli, such as telomere dysfunction and oxidative stress, can induce irreversible cell growth arrest, which is termed 'cellular senescence'. This response is controlled by tumor suppressor proteins such as p53 and pRb. There is also evidence that senescent cells promote changes related to aging or age-related diseases. Here we show that p53 expression in adipose tissue is crucially involved in the development of insulin resistance, which underlies age-related cardiovascular and metabolic disorders. We found that excessive calorie intake led to the accumulation of oxidative stress in the adipose tissue of mice with type 2 diabetes-like disease and promoted senescence-like changes, such as increased activity of senescence-associated beta-galactosidase, increased expression of p53 and increased production of proinflammatory cytokines. Inhibition of p53 activity in adipose tissue markedly ameliorated these senescence-like changes, decreased the expression of proinflammatory cytokines and improved insulin resistance in mice with type 2 diabetes-like disease. Conversely, upregulation of p53 in adipose tissue caused an inflammatory response that led to insulin resistance. Adipose tissue from individuals with diabetes also showed senescence-like features. Our results show a previously unappreciated role of adipose tissue p53 expression in the regulation of insulin resistance and suggest that cellular aging signals in adipose tissue could be a new target for the treatment of diabetes (pages 996-967).
Collapse
|
35
|
Lee J, Jo YS, Sung YH, Hwang IK, Kim H, Kim SY, Yi SS, Choi JS, Sun W, Seong JK, Lee HW. Telomerase deficiency affects normal brain functions in mice. Neurochem Res 2009; 35:211-8. [PMID: 19685288 DOI: 10.1007/s11064-009-0044-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2009] [Accepted: 08/01/2009] [Indexed: 01/08/2023]
Abstract
Telomerase maintains telomere structures and chromosome stability, and it is essential for preserving the characteristics of stem and progenitor cells. In the brain, the hippocampus and the olfactory bulbs are continuously supplied with neural stem and progenitor cells that are required for adult neurogenesis throughout the life. Therefore, we examined whether telomerase plays important roles in maintaining normal brain functions in vivo. Telomerase reverse transcriptase (TERT) expression was observed in the hippocampus, the olfactory bulbs, and the cerebellum, but the telomerase RNA component (TERC) was not detected in hippocampus and olfactory bulbs. Interestingly, TERT-deficient mice exhibited significantly altered anxiety-like behaviors and abnormal olfaction measuring the functions of the hippocampus and the olfactory bulbs, respectively. However, the cerebellum-dependent behavior was not changed in these mutant mice. These results suggest that TERT is constitutively expressed in the hippocampus and the olfactory bulbs, and that it is important for regulating normal brain functions.
Collapse
Affiliation(s)
- Jaehoon Lee
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon 440-746, Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
The genomes of prokaryotes and eukaryotic organelles are usually circular as are most plasmids and viral genomes. In contrast, the nuclear genomes of eukaryotes are organized on linear chromosomes, which require mechanisms to protect and replicate DNA ends. Eukaryotes navigate these problems with the advent of telomeres, protective nucleoprotein complexes at the ends of linear chromosomes, and telomerase, the enzyme that maintains the DNA in these structures. Mammalian telomeres contain a specific protein complex, shelterin, that functions to protect chromosome ends from all aspects of the DNA damage response and regulates telomere maintenance by telomerase. Recent experiments, discussed here, have revealed how shelterin represses the ATM and ATR kinase signaling pathways and hides chromosome ends from nonhomologous end joining and homology-directed repair.
Collapse
Affiliation(s)
- Wilhelm Palm
- Laboratory for Cell Biology and Genetics, The Rockefeller University, New York, NY 10021, USA
| | | |
Collapse
|
37
|
Wong LS, Oeseburg H, de Boer RA, van Gilst WH, van Veldhuisen DJ, van der Harst P. Telomere biology in cardiovascular disease: the TERC-/- mouse as a model for heart failure and ageing. Cardiovasc Res 2008; 81:244-52. [DOI: 10.1093/cvr/cvn337] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
38
|
A non-canonical function of zebrafish telomerase reverse transcriptase is required for developmental hematopoiesis. PLoS One 2008; 3:e3364. [PMID: 18846223 PMCID: PMC2561060 DOI: 10.1371/journal.pone.0003364] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2008] [Accepted: 07/23/2008] [Indexed: 11/19/2022] Open
Abstract
Although it is clear that telomerase expression is crucial for the maintenance of telomere homeostasis, there is increasing evidence that the TERT protein can have physiological roles that are independent of this central function. To further examine the role of telomerase during vertebrate development, the zebrafish telomerase reverse transcriptase (zTERT) was functionally characterized. Upon zTERT knockdown, zebrafish embryos show reduced telomerase activity and are viable, but develop pancytopenia resulting from aberrant hematopoiesis. The blood cell counts in TERT-depleted zebrafish embryos are markedly decreased and hematopoietic cell differentiation is impaired, whereas other somatic lineages remain morphologically unaffected. Although both primitive and definitive hematopoiesis is disrupted by zTERT knockdown, the telomere lengths are not significantly altered throughout early development. Induced p53 deficiency, as well as overexpression of the anti-apoptotic proteins Bcl-2 and E1B-19K, significantly relieves the decreased blood cells numbers caused by zTERT knockdown, but not the impaired blood cell differentiation. Surprisingly, only the reverse transcriptase motifs of zTERT are crucial, but the telomerase RNA-binding domain of zTERT is not required, for rescuing complete hematopoiesis. This is therefore the first demonstration of a non-canonical catalytic activity of TERT, which is different from “authentic” telomerase activity, is required for during vertebrate hematopoiesis. On the other hand, zTERT deficiency induced a defect in hematopoiesis through a potent and specific effect on the gene expression of key regulators in the absence of telomere dysfunction. These results suggest that TERT non-canonically functions in hematopoietic cell differentiation and survival in vertebrates, independently of its role in telomere homeostasis. The data also provide insights into a non-canonical pathway by which TERT functions to modulate specification of hematopoietic stem/progenitor cells during vertebrate development. (276 words)
Collapse
|
39
|
Abstract
Dyskeratosis congenita (DC) is a rare syndrome, characterized by cutaneous abnormalities and premature death caused by bone marrow failure. In this issue of Genes & Development, Hockemeyer and colleagues (pp. 1773-1785) report a new mouse model that reconstitutes key features of DC. Disease phenotypes are generated by a POT1b deletion in a telomerase-deficient background that accelerates the shortening of telomeres by degradation.
Collapse
Affiliation(s)
- Chantal Autexier
- Department of Anatomy and Cell Biology and Department of Medicine, McGill University, Montreal, Quebec H3T 1E2, Canada.
| |
Collapse
|
40
|
Hockemeyer D, Palm W, Wang RC, Couto SS, de Lange T. Engineered telomere degradation models dyskeratosis congenita. Genes Dev 2008; 22:1773-85. [PMID: 18550783 DOI: 10.1101/gad.1679208] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Dyskeratosis congenita (DC) is an inherited bone marrow failure syndrome characterized by cutaneous symptoms, including hyperpigmentation and nail dystrophy. Some forms of DC are caused by mutations in telomerase, the enzyme that counteracts telomere shortening, suggesting a telomere-based disease mechanism. However, mice with extensively shortened telomeres due to telomerase deficiency do not develop the characteristics of DC, raising questions about the etiology of DC and/or mouse models for human telomere dysfunction. Here we describe mice engineered to undergo telomere degradation due to the absence of the shelterin component POT1b. When combined with reduced telomerase activity, POT1b deficiency elicits several characteristics of DC, including hyperpigmentation and fatal bone marrow failure at 4-5 mo of age. These results provide experimental support for the notion that DC is caused by telomere dysfunction, and demonstrate that key aspects of a human telomere-based disease can be modeled in the mouse.
Collapse
Affiliation(s)
- Dirk Hockemeyer
- Laboratory for Cell Biology and Genetics, The Rockefeller University, New York, New York 10065, USA
| | | | | | | | | |
Collapse
|
41
|
Agarwal M, Pandita S, Hunt CR, Gupta A, Yue X, Khan S, Pandita RK, Pratt D, Shay JW, Taylor JSA, Pandita TK. Inhibition of telomerase activity enhances hyperthermia-mediated radiosensitization. Cancer Res 2008; 68:3370-8. [PMID: 18451164 DOI: 10.1158/0008-5472.can-07-5831] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Hyperthermia is a potent sensitizer of cell killing by ionizing radiation (IR); however, hyperthermia also induces heat shock protein 70 (HSP70) synthesis and HSP70 expression is associated with radioresistance. Because HSP70 interacts with the telomerase complex and expression of the telomerase catalytic unit (hTERT) extends the life span of the human cells, we determined if heat shock influences telomerase activity and whether telomerase inhibition enhances heat-mediated IR-induced cell killing. In the present study, we show that moderate hyperthermia (43 degrees C) enhances telomerase activity. Inhibition of telomerase activity with human telomerase RNA-targeted antisense agents, and in particular GRN163L, results in enhanced hyperthermia-mediated IR-induced cell killing, and ectopic expression of catalytic unit of telomerase (TERT) decreased hyperthermia-mediated IR-induced cell killing. The increased cell killing by heat and IR exposure in telomerase-inhibited cells correlates with delayed appearance and disappearance of gamma-H2AX foci as well as decreased chromosome repair. These results suggest that inactivation of telomerase before combined hyperthermia and radiotherapy could improve tumor killing.
Collapse
Affiliation(s)
- Manjula Agarwal
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO 63108, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Raices M, Verdun RE, Compton SA, Haggblom CI, Griffith JD, Dillin A, Karlseder J. C. elegans telomeres contain G-strand and C-strand overhangs that are bound by distinct proteins. Cell 2008; 132:745-57. [PMID: 18329362 DOI: 10.1016/j.cell.2007.12.039] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2007] [Revised: 11/21/2007] [Accepted: 12/15/2007] [Indexed: 11/18/2022]
Abstract
Single-strand extensions of the G strand of telomeres are known to be critical for chromosome-end protection and length regulation. Here, we report that in C. elegans, chromosome termini possess 3' G-strand overhangs as well as 5' C-strand overhangs. C tails are as abundant as G tails and are generated by a well-regulated process. These two classes of overhangs are bound by two single-stranded DNA binding proteins, CeOB1 and CeOB2, which exhibit specificity for G-rich or C-rich telomeric DNA. Strains of worms deleted for CeOB1 have elongated telomeres as well as extended G tails, whereas CeOB2 deficiency leads to telomere-length heterogeneity. Both CeOB1 and CeOB2 contain OB (oligo-saccharide/oligo-nucleotide binding) folds, which exhibit structural similarity to the second and first OB folds of the mammalian telomere binding protein hPOT1, respectively. Our results suggest that C. elegans telomere homeostasis relies on a novel mechanism that involves 5' and 3' single-stranded termini.
Collapse
Affiliation(s)
- Marcela Raices
- The Salk Institute for Biological Studies, 10010 North Torrey Pines Road., La Jolla, CA 92037, USA
| | | | | | | | | | | | | |
Collapse
|
43
|
Liu T, Chung MJ, Ullenbruch M, Yu H, Jin H, Hu B, Choi YY, Ishikawa F, Phan SH. Telomerase activity is required for bleomycin-induced pulmonary fibrosis in mice. J Clin Invest 2008; 117:3800-9. [PMID: 18008008 DOI: 10.1172/jci32369] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2007] [Accepted: 09/12/2007] [Indexed: 01/01/2023] Open
Abstract
In addition to its well-known expression in the germline and in cells of certain cancers, telomerase activity is induced in lung fibrosis, although its role in this process is unknown. To identify the pathogenetic importance of telomerase in lung fibrosis, we examined the effects of telomerase reverse transcriptase (TERT) deficiency in a murine model of pulmonary injury. TERT-deficient mice showed significantly reduced lung fibrosis following bleomycin (BLM) insult. This was accompanied by a significant reduction in expression of lung alpha-SMA, a marker of myofibroblast differentiation. Furthermore, lung fibroblasts isolated from BLM-treated TERT-deficient mice showed significantly decreased proliferation and increased apoptosis rates compared with cells isolated from control mice. Transplantation of WT BM into TERT-deficient mice restored BLM-induced lung telomerase activity and fibrosis to WT levels. Conversely, transplantation of BM from TERT-deficient mice into WT recipients resulted in reduced telomerase activity and fibrosis. These findings suggest that induction of telomerase in injured lungs may be caused by BM-derived cells, which appear to play an important role in pulmonary fibrosis. Moreover, TERT induction is associated with increased survival of lung fibroblasts, which favors the development of fibrosis instead of injury resolution.
Collapse
Affiliation(s)
- Tianju Liu
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan 48109-2200, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
The expression level of the telomerase catalytic subunit (telomerase reverse transcriptase, TERT) positively correlates with cell survival after exposure to several lethal stresses. However, whether the protective role of TERT is independent of telomerase activity has not yet been clearly explored. Here, we genetically evaluated the protective roles of both TERT and telomerase activity against cell death induced by staurosporine (STS) and N-methyl-D-aspartic acid (NMDA). First generation (G1) TERT-deficient mouse embryonic fibroblasts (MEFs) displayed an increased sensitivity to STS, while TERT transgenic MEFs were more resistant to STS-induced apoptosis than wild-type. Deletion of the telomerase RNA component (TERC) failed to alter the sensitivity of TERT transgenic MEFs to STS treatment. Similarly, NMDA-induced excitotoxic cell death of primary neurons was suppressed by TERT, but not by TERC both in vitro and in vivo. Specifically, NMDA accelerated death of TERT-deficient mice, while TERT transgenic mice showed enhanced survival when compared with wild-type littermates after administration of NMDA. In addition, the transgenic expression of TERT protected motor neurons from apoptosis induced by sciatic nerve axotomy. These results indicate that telomerase activity is not essential for the protective function of TERT. This telomerase activity-independent TERT function may contribute to cancer development and aging independently of telomere lengthening.
Collapse
|
45
|
Choi J, Southworth LK, Sarin KY, Venteicher AS, Ma W, Chang W, Cheung P, Jun S, Artandi MK, Shah N, Kim SK, Artandi SE. TERT promotes epithelial proliferation through transcriptional control of a Myc- and Wnt-related developmental program. PLoS Genet 2007; 4:e10. [PMID: 18208333 PMCID: PMC2211538 DOI: 10.1371/journal.pgen.0040010] [Citation(s) in RCA: 244] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2007] [Accepted: 12/06/2007] [Indexed: 12/17/2022] Open
Abstract
Telomerase serves a critical role in stem cell function and tissue homeostasis. This role depends on its ability to synthesize telomere repeats in a manner dependent on the reverse transcriptase (RT) function of its protein component telomerase RT (TERT), as well as on a novel pathway whose mechanism is poorly understood. Here, we use a TERT mutant lacking RT function (TERTci) to study the mechanism of TERT action in mammalian skin, an ideal tissue for studying progenitor cell biology. We show that TERTci retains the full activities of wild-type TERT in enhancing keratinocyte proliferation in skin and in activating resting hair follicle stem cells, which triggers initiation of a new hair follicle growth phase and promotes hair synthesis. To understand the nature of this RT-independent function for TERT, we studied the genome-wide transcriptional response to acute changes in TERT levels in mouse skin. We find that TERT facilitates activation of progenitor cells in the skin and hair follicle by triggering a rapid change in gene expression that significantly overlaps the program controlling natural hair follicle cycling in wild-type mice. Statistical comparisons to other microarray gene sets using pattern-matching algorithms revealed that the TERT transcriptional response strongly resembles those mediated by Myc and Wnt, two proteins intimately associated with stem cell function and cancer. These data show that TERT controls tissue progenitor cells via transcriptional regulation of a developmental program converging on the Myc and Wnt pathways. Stem cells and progenitor cells within a tissue are required to maintain tissue homeostasis and to repair tissues after injury by giving rise to differentiated daughter cells. Many progenitor cells express telomerase, a reverse transcriptase enzyme that adds DNA repeats to telomeres, the protective structures that cap chromosome ends. Telomere addition by telomerase is important for normal progenitor cell function and is crucial for enabling cancer cells to divide an unlimited number of times. In addition to its telomere-lengthening function, telomerase reverse transcriptase (TERT) can directly activate quiescent epidermal stem cells. However, the mechanism underlying this novel function for TERT is still not understood. In this study, we demonstrate that the catalytic activity of TERT is dispensable for its ability to activate tissue progenitor cells in vivo. Furthermore, using gene microarrays, we show that TERT controls a developmental program that overlaps the natural transcriptional program of hair follicle cycling in mouse skin. Using pattern-matching algorithms, we find that the TERT-controlled genetic program significantly resembles programs regulated by Myc and Wnt, two pathways critical for stem cell function and tumorigenesis. This paper reveals critical new insights into novel mechanisms of non-telomerase functions of TERT, identifying TERT as a developmental regulator linked to control of transcriptional responses.
Collapse
Affiliation(s)
- Jinkuk Choi
- Department of Medicine, Stanford School of Medicine, Stanford, California, United States of America
- Cancer Biology Program, Stanford School of Medicine, Stanford, California, United States of America
| | - Lucinda K Southworth
- Department of Genetics, Stanford School of Medicine, Stanford, California, United States of America
- Biomedical Informatics Program, Stanford School of Medicine, Stanford, California, United States of America
| | - Kavita Y Sarin
- Department of Medicine, Stanford School of Medicine, Stanford, California, United States of America
- Department of Genetics, Stanford School of Medicine, Stanford, California, United States of America
| | - Andrew S Venteicher
- Department of Medicine, Stanford School of Medicine, Stanford, California, United States of America
| | - Wenxiu Ma
- Department of Computer Science, Stanford University, Stanford, California, United States of America
| | - Woody Chang
- Department of Medicine, Stanford School of Medicine, Stanford, California, United States of America
| | - Peggie Cheung
- Department of Medicine, Stanford School of Medicine, Stanford, California, United States of America
| | - Sohee Jun
- Department of Medicine, Stanford School of Medicine, Stanford, California, United States of America
| | - Maja K Artandi
- Department of Medicine, Stanford School of Medicine, Stanford, California, United States of America
| | - Naman Shah
- Department of Medicine, Stanford School of Medicine, Stanford, California, United States of America
| | - Stuart K Kim
- Department of Genetics, Stanford School of Medicine, Stanford, California, United States of America
- Department of Developmental Biology, Stanford School of Medicine, Stanford, California, United States of America
| | - Steven E Artandi
- Department of Medicine, Stanford School of Medicine, Stanford, California, United States of America
- Cancer Biology Program, Stanford School of Medicine, Stanford, California, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
46
|
Ujike-Asai A, Okada A, Du Y, Maruyama M, Yuan X, Ishikawa F, Motoo Y, Isobe K, Nakajima H. Large defects of type I allergic response in telomerase reverse transcriptase knockout mice. J Leukoc Biol 2007; 82:429-35. [PMID: 17456801 DOI: 10.1189/jlb.1006638] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Telomerase is critically important for the maintenance of a constant telomere length, which in turn, is related to the concepts of longevity and oncogenesis. In addition, it has been well documented that telomerase activity is expressed in immune cells in a highly regulated manner. We have studied systemic anaphylaxis in mouse telomerase reverse transcriptase knockout (mTERT(-/-)) mice to understand the significance of telomerase activity and telomere stability in mast cells, which induce a type I allergic response. Compared with wild-type mice, mTERT(-/-) mice displayed largely attenuated, IgE-mediated, passive anaphylactic responses, which were observed even in the early generations of mTERT(-/-) mice, and had decreased numbers of mast cells in vivo and impaired development of bone marrow-derived mast cells (BMMCs) induced by IL-3 or stem cell factor in vitro. Moreover, in mTERT(-/-) mice, BMMCs exhibited a large morphology and low proliferation rate, while they possessed a comparable degranulation capacity and cell surface expression level of c-kit and FcepsilonRI. These findings imply that telomerase activity has a definitive impact on the type I allergic response by altering the character of effecter mast cells.
Collapse
Affiliation(s)
- Azusa Ujike-Asai
- Department of Basic Gerontology, National Institute for Longevity Sciences, Obu, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
The wear and tear processes that are thought to contribute to human ageing may play an important role in the development of vascular diseases. One such process is cellular senescence. In endothelial cells the senescent phenotype can be induced by a number of factors, including telomere damage, oxidative stress and sustained mitogenic stimulation. Several lines of evidence indicate that endothelial cell senescence maybe relevant to vascular disease. In this chapter we examine the causes, mechanisms and regulation of endothelial cell senescence as they emerge from studies in cell culture. We also describe the senescent phenotype and discuss its pathophysiological implications. We review the evidence for the occurrence of endothelial cell senescence in vivo and examine findings in animal models of ageing and human genetic disorders that argue for and against a role of endothelial cell senescence in age-related vascular pathology. Finally, we address the particular case of endothelial progenitor cell senescence and discuss the relevance of this phenomenon for angiogenesis and vascular repair.
Collapse
Affiliation(s)
- J D Erusalimsky
- Cardiff School of Health Sciences, University of Wales Institute Cardiff, Llandaff Campus, Western Avenue, Cardiff CF5 2YB, UK.
| | | |
Collapse
|
48
|
Jefford CE, Irminger-Finger I. Mechanisms of chromosome instability in cancers. Crit Rev Oncol Hematol 2006; 59:1-14. [PMID: 16600619 DOI: 10.1016/j.critrevonc.2006.02.005] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2005] [Revised: 02/22/2006] [Accepted: 02/22/2006] [Indexed: 12/31/2022] Open
Abstract
Most tumours arise through clonal selection and waves of expansion of a somatic cell that has acquired genetic alterations in essential genes either controlling cell death or cell proliferation. Furthermore, stability of the genome in cancer cells becomes precarious and compromised because several cancer-predisposing mutations affect genes that are responsible for maintaining the integrity and number of chromosomes during cell division. Consequently, the archetypical transformation in tumour cells results in aneuploidy. Indeed, almost all tumour cells display a host of karyotype alterations, showing translocations, gains or losses of entire or large parts of chromosomes. Cancers do not necessarily have a higher mutation rate than normal tissue at the nucleotide level, unless they have gained a mutator phenotype through exposure to environmental stress, but rather exhibit gross chromosomal changes. Therefore, it appears that the main mechanism of tumour progression stems from chromosome instability. Chromosomal instability prevailing in tumour cells arises through several different pathways and is probably controlled by hundreds of genes. Therefore, this review describes the main factors that control chromosome stability through telomere maintenance, mechanisms of cell division, and the mitotic checkpoints that govern centrosome duplication and correct chromosome segregation.
Collapse
Affiliation(s)
- Charles Edward Jefford
- Biology of Aging Laboratory, Department of Geriatrics, University Hospitals Geneva HUG, Switzerland.
| | | |
Collapse
|
49
|
Marrone A, Walne A, Dokal I. Dyskeratosis congenita: telomerase, telomeres and anticipation. Curr Opin Genet Dev 2005; 15:249-57. [PMID: 15917199 DOI: 10.1016/j.gde.2005.04.004] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2004] [Accepted: 04/06/2005] [Indexed: 01/07/2023]
Abstract
Dyskeratosis congenita (DC) is a rare bone marrow failure syndrome that displays marked clinical and genetic heterogeneity. The identification of dyskeratosis congenita gene 1 (DKC1) mutations in X-linked recessive patients initially suggested that DC is a defective pseudouridylation disorder. The subsequent identification of mutations in the telomerase RNA component (TERC) of autosomal dominant DC patients together with the discovery that both TERC and the DKC1-encoded protein, dyskerin, are closely associated in the telomerase complex have suggested that the pathophysiology of DC predominantly relates to defective telomere maintenance. Recent discoveries have shown that autosomal dominant DC exhibits disease anticipation and that this is associated with progressive telomere shortening owing to the haplo-insufficiency of TERC.
Collapse
Affiliation(s)
- Anna Marrone
- Department of Haematology, Imperial College London, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK.
| | | | | |
Collapse
|
50
|
Wang Y, Erdmann N, Giannone RJ, Wu J, Gomez M, Liu Y. An increase in telomere sister chromatid exchange in murine embryonic stem cells possessing critically shortened telomeres. Proc Natl Acad Sci U S A 2005; 102:10256-60. [PMID: 16000404 PMCID: PMC1177420 DOI: 10.1073/pnas.0504635102] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Telomerase deficiency leads to a progressive loss of telomeric DNA that eventually triggers cell apoptosis in human primary cells during prolonged growth in culture. Rare survivors can maintain telomere length through either activation of telomerase or recombination-based telomere lengthening, and thus proliferate indefinitely. We have explored the possibility that telomeres may be maintained through telomere sister chromatid exchange (T-SCE) in murine telomere reverse transcriptase-deficient (mTert-/-) splenocytes and ES cells. Because telomerase deficiency leads to gradual loss of telomeric DNA in mTert-/- splenocytes and ES cells and eventually to chromosomes with telomere signal-free ends (SFEs), we examined these cell types for evidence of sister chromatid exchange at telomeres, and observed an increase in T-SCEs only in a subset of mTert-/- splenocytes or ES cells that possessed multiple SFEs. Furthermore, T-SCEs were more often detected in ES cells than in splenocytes that harbored a similar frequency of SFEs. In mTert heterozygous (mTert+/-) ES cells or splenocytes, which are known to exhibit a decrease in average telomere length but no SFEs, no increase in T-SCE was observed. In addition to T-SCE, other genomic rearrangements (i.e., SCE) were also significantly increased in mTert-/- ES cells possessing critically short telomeres, but not in splenocytes. Our results suggest that animals and cell culture differ in their ability to carry out genomic rearrangements as a means of maintaining telomere integrity when telomeres become critically shortened.
Collapse
Affiliation(s)
- Yisong Wang
- Life Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6445, USA
| | | | | | | | | | | |
Collapse
|