1
|
Fajardo J, Harrison B, Hervet VAD, Bakker MG. Microbiome profiling suggests novel endosymbiont associations of insect pests of stored grain. Can J Microbiol 2025; 71:1-6. [PMID: 39561350 DOI: 10.1139/cjm-2024-0095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
Many arthropods, including economically important pests of stored grains, host intracellular bacterial symbionts. These symbionts can have diverse impacts on host morphology, stress tolerance, and reproductive success. The ability to rapidly determine the infection status of host insects and the identity of intracellular symbionts, if present, is vital to understanding the biology and ecology of these organisms. We used a microbiome profiling method based on amplicon sequencing to rapidly screen 35 captive insect colonies. This method effectively revealed single and mixed infections by intracellular bacterial symbionts, as well as the presence or absence of a dominant symbiont, when that was the case. Because no a priori decisions are required about probable host-symbiont pairing, this method is able to quickly identify novel associations. This work highlights the frequency of endosymbionts, indicates some unexpected pairings that should be investigated further, such as dominant bacterial taxa that are not among the canonical genera of endosymbionts, and reveals different colonies of the same host insect species that differ in the presence and identity of endosymbiotic bacteria.
Collapse
Affiliation(s)
- Janice Fajardo
- Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Brian Harrison
- Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Vincent A D Hervet
- Morden Research and Development Centre, Agriculture and Agri-Food Canada, Morden, MB R6M 1Y5, Canada
| | - Matthew G Bakker
- Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| |
Collapse
|
2
|
Yu JB, Lv X, Liu Q, Tu JY, Yu XP, Xu YP. Death-Associated Protein-1 Plays a Role in the Reproductive Development of Nilaparvata lugens and the Transovarial Transmission of Its Yeast-Like Symbiont. INSECTS 2024; 15:425. [PMID: 38921140 PMCID: PMC11204009 DOI: 10.3390/insects15060425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/25/2024] [Accepted: 06/03/2024] [Indexed: 06/27/2024]
Abstract
Death-associated protein-1 (DAP-1) plays a crucial role in cell growth, migration, autophagy, and apoptosis in mammals. However, its function in insects remains unclear. In the present study, we cloned and identified Nilaparvata lugens DAP-1 (NlDAP-1). NlDAP-1 was expressed during all developmental stages and in all tissues of N. lugens, being particularly higher in the ovaries of female adults. RNAi with double-stranded NlDAP-1 RNA significantly inhibited the expression of NlDAP-1, leading to premature death (dying seven days earlier), delayed ovarian development, and fewer offspring (76.7% reduction in eggs with 77.4% reduction in egg hatching rate). Additionally, an immunofluorescence experiment showed that NlDAP-1 was highly expressed when yeast-like symbionts (YLSs) entered N. lugens oocytes, and inhibiting the expression of NlDAP-1 disturbed the process; the RNAi of NlDAP-1 caused a 34.9% reduction in the YLSs that entered oocytes. These results indicate that NlDAP-1 plays a crucial role in the reproductive development of N. lugens and the transovarial transmission of its YLSs.
Collapse
Affiliation(s)
| | | | | | | | | | - Yi-Peng Xu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, China Jiliang University, Hangzhou 310018, China; (J.-B.Y.); (X.L.); (Q.L.); (J.-Y.T.); (X.-P.Y.)
| |
Collapse
|
3
|
Zhang Y, Liu S, Jiang R, Zhang C, Gao T, Wang Y, Liu C, Long Y, Zhang Y, Yang Y. Wolbachia Strain wGri From the Tea Geometrid Moth Ectropis grisescens Contributes to Its Host's Fecundity. Front Microbiol 2021; 12:694466. [PMID: 34349742 PMCID: PMC8326765 DOI: 10.3389/fmicb.2021.694466] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 06/07/2021] [Indexed: 01/04/2023] Open
Abstract
Members of the Wolbachia genus manipulate insect-host reproduction and are the most abundant bacterial endosymbionts of insects. The tea Geometrid moth Ectropis grisescens (Warren) (Lepidoptera: Geometridae) is the most devastating insect pest of tea plants [Camellia sinensis (L.) O. Kuntze] in China. However, limited data on the diversity, typing, or phenotypes of Wolbachia in E. grisescens are available. Here, we used a culture-independent method to compare the gut bacteria of E. grisescens and other tea Geometridae moths. The results showed that the composition of core gut bacteria in larvae of the three Geometridae moth species was similar, except for the presence of Wolbachia. Moreover, Wolbachia was also present in adult female E. grisescens samples. A Wolbachia strain was isolated from E. grisescens and designated as wGri. Comparative analyses showed that this strain shared multilocus sequence types and Wolbachia surface protein hypervariable region profiles with cytoplasmic incompatibility (CI)-inducing strains in supergroup B; however, the wGri-associated phenotypes were undetermined. A reciprocal cross analysis showed that Wolbachia-uninfected females mated with infected males resulted in 100% embryo mortality (0% eggs hatched per female). Eggs produced by mating between uninfected males and infected females hatched normally. These findings indicated that wGri induces strong unidirectional CI in E. grisescens. Additionally, compared with uninfected females, Wolbachia-infected females produced approximately 30-40% more eggs. Together, these results show that this Wolbachia strain induces reproductive CI in E. grisescens and enhances the fecundity of its female host. We also demonstrated that wGri potential influences reproductive communication between E. grisescens and Ectropis obliqua through CI.
Collapse
Affiliation(s)
- Yong Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China.,School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Song Liu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Rui Jiang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Chen Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Tian Gao
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Yun Wang
- Lu'an Academy of Agricultural Sciences, Lu'an, China
| | - Cui Liu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Yanhua Long
- School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Yinglao Zhang
- School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Yunqiu Yang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| |
Collapse
|
4
|
Sanaei E, Charlat S, Engelstädter J. Wolbachia
host shifts: routes, mechanisms, constraints and evolutionary consequences. Biol Rev Camb Philos Soc 2020; 96:433-453. [DOI: 10.1111/brv.12663] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 10/18/2020] [Accepted: 10/20/2020] [Indexed: 12/31/2022]
Affiliation(s)
- Ehsan Sanaei
- School of Biological Sciences The University of Queensland Saint Lucia Brisbane QLD 4067 Australia
| | - Sylvain Charlat
- Laboratoire de Biométrie et Biologie Evolutive Université de Lyon, Université Lyon 1, CNRS, UMR 5558 43 boulevard du 11 novembre 1918 Villeurbanne F‐69622 France
| | - Jan Engelstädter
- School of Biological Sciences The University of Queensland Saint Lucia Brisbane QLD 4067 Australia
| |
Collapse
|
5
|
Pina T, Sabater-Muñoz B, Cabedo-López M, Cruz-Miralles J, Jaques JA, Hurtado-Ruiz MA. Molecular characterization of Cardinium, Rickettsia, Spiroplasma and Wolbachia in mite species from citrus orchards. EXPERIMENTAL & APPLIED ACAROLOGY 2020; 81:335-355. [PMID: 32529355 DOI: 10.1007/s10493-020-00508-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 05/29/2020] [Indexed: 06/11/2023]
Abstract
Tetranychidae spider mites are considered key citrus pests in some production areas, especially Tetranychus urticae Koch. Over the past decades, pesticide overuse seems to have promoted T. urticae population selection in citrus orchards. However, the microbiota has also been pointed out as a plausible explanation for population structure or plant host specialisation observed in several arthropod species. In this work, we have determined the incidence of Cardinium, Rickettsia, Spiroplasma and Wolbachia as representatives of major distorter bacteria genera in Aplonobia histricina (Berlese), Eutetranychus banksi (McGregor), Eutetranychus orientalis (Klein), Panonychus citri (McGregor), Tetranychus evansi Baker and Pritchard, Tetranychus turkestani Ugarov and Nikolskii, and T. urticae populations from Spanish citrus orchards. Only Wolbachia was detected by PCR. The multilocus alignment approach and phylogenetic inference indicated that all detected Wolbachia belong to supergroup B. The deep analysis of each 16S rDNA, ftsZ and wsp gene sequences allowed identifying several phylogenetically different Wolbachia sequences. It probably indicates the presence of several different races or strains, all of them belonging to supergroup B. The wsp sequence typing analysis unveiled the presence of the two already identified alleles (61 and 370) and allowed to contribute with five new alleles, supporting the presence of different but related B-races in the studied mite populations. The results are discussed and related to T. urticae population structure, previously observed in Spanish citrus orchards.
Collapse
Affiliation(s)
- Tatiana Pina
- Departament de Ciències Agràries i del Medi Natural, Universitat Jaume I (UJI), Campus del Riu Sec, 12071, Castellón de la Plana, Spain
- Departament de Didàctica de les Ciències Experimentals i Socials, Universitat de València, Avda. Tarongers, 46022, Valencia, Spain
| | - Beatriz Sabater-Muñoz
- Smurfit Institute of Genetics, Trinity College Dublin, University of Dublin, College Green, Dublin 2, Ireland
- Integrative and Systems Biology Group, Dpt. Molecular Mechanisms of Stress in Plants, Institute for Plant Molecular and Cell Biology (IBMCP), Spanish National Research Council (CSIC) - Polytechnic University of Valencia (UPV), Ingeniero Fausto Elio, 46022, Valencia, Spain
| | - Marc Cabedo-López
- Departament de Ciències Agràries i del Medi Natural, Universitat Jaume I (UJI), Campus del Riu Sec, 12071, Castellón de la Plana, Spain
| | - Joaquín Cruz-Miralles
- Departament de Ciències Agràries i del Medi Natural, Universitat Jaume I (UJI), Campus del Riu Sec, 12071, Castellón de la Plana, Spain
| | - Josep A Jaques
- Departament de Ciències Agràries i del Medi Natural, Universitat Jaume I (UJI), Campus del Riu Sec, 12071, Castellón de la Plana, Spain
| | - Mónica A Hurtado-Ruiz
- Departament de Ciències Agràries i del Medi Natural, Universitat Jaume I (UJI), Campus del Riu Sec, 12071, Castellón de la Plana, Spain.
| |
Collapse
|
6
|
Incipient sympatric speciation via host race formation in Phengaris arion (Lepidoptera: Lycaenidae). ORG DIVERS EVOL 2020. [DOI: 10.1007/s13127-019-00418-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
AbstractThe plausibility of sympatric speciation is still debated despite increasing evidence, such as host races in insects. This speciation process may be occurring in the case of the two phenological forms of the obligatorily myrmecophilous Phengaris arion. The main goal of our research was to study the nature and causes of difference between these forms focusing primarily on the incipient speciation via host races. Molecular analyses based on highly variable microsatellites together with Wolbachia screening, male genitalia morphometrics and host ant studies were carried out on four syntopic sample pairs. Our results show that the two phenological forms of P. arion may meet the criteria for host plant races. They coexist in sympatry in certain parts of the species range which is allowed by the adaptation to the distinct phenology of the host plants. Negative selection acts against the intermediate individuals which are on the wing in the inappropriate time frame. Thus, disruptive selection affects and produces bimodal distributions of phenotypes. However, the phenology of food plants is not entirely distinct and fluctuates year by year. Therefore, the two forms can exchange genes occasionally depending on the length of the time slot when they can meet with each other. Consequently, the reproductive isolation could not be completed and the existence of the two arion forms may represent only an incipient stage of sympatric speciation. It is also clear that Wolbachia is likely not a driver of sympatric speciation in this case.
Collapse
|
7
|
Liu QQ, Zhou JC, Zhang C, Ning SF, Duan LJ, Dong H. Co-occurrence of thelytokous and bisexual Trichogramma dendrolimi Matsumura (Hymenoptera: Trichogrammatidae) in a natural population. Sci Rep 2019; 9:17480. [PMID: 31767914 PMCID: PMC6877646 DOI: 10.1038/s41598-019-53992-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 11/06/2019] [Indexed: 11/24/2022] Open
Abstract
Trichogramma dendrolimi is one of the most successful biocontrol agents in China. However, an inundative condition is necessary to obtain acceptable parasitism effect. A good solution to this is the application of its thelytokous counterparts which unfortunately are scarce in field. We here report the first case of a natural T. dendrolimi population in China comprising both bisexual wasps and an extremely low proportion of thelytokous wasps. These two forms of T. dendrolimi are phylogenetically related based on the reconstructions of ITS-2 and COI genes. Also, the phylogenetic results suggested a potentially Wolbachia-drived ITS-2 variation. The expression of thelytoky was hardly affected by temperature, which might help control Asian corn borer and Dendrolimus punctatus. Wolbachia are responsible for current thelytoky according to phylogenetic analyses, antibiotic treatment and introgression experiment. We also present the third case of paternal sex ratio chromosome that restrains the expansion of Wolbachia. Moreover, the low frequency of thelytoky may be common in natural populations. Consequently if for biological control it is determined that a thelytokous strain is to be preferred, then large number of field collected females should be set up as isofemale lines, to detect the rare thelytoky.
Collapse
Affiliation(s)
- Quan-Quan Liu
- College of Plant Protection, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Jin-Cheng Zhou
- College of Plant Protection, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Chen Zhang
- College of Plant Protection, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Su-Fang Ning
- College of Plant Protection, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Li-Jia Duan
- College of Plant Protection, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Hui Dong
- College of Plant Protection, Shenyang Agricultural University, Shenyang, Liaoning, China.
| |
Collapse
|
8
|
Duffy E, Archer CR, Sharma MD, Prus M, Joag RA, Radwan J, Wedell N, Hosken DJ. Wolbachia infection can bias estimates of intralocus sexual conflict. Ecol Evol 2019; 9:328-338. [PMID: 30680117 PMCID: PMC6342094 DOI: 10.1002/ece3.4744] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 09/30/2018] [Accepted: 11/01/2018] [Indexed: 12/19/2022] Open
Abstract
Males and females share most of their genome and develop many of the same traits. However, each sex frequently has different optimal values for these shared traits, creating intralocus sexual conflict. This conflict has been observed in wild and laboratory populations of insects and affects important evolutionary processes such as sexual selection, the maintenance of genetic variation, and possibly even speciation. Given the broad impacts of intralocus conflict, accurately detecting and measuring it is important. A common way to detect intralocus sexual conflict is to calculate the intersexual genetic correlation for fitness, with negative values suggesting conflict. Here, we highlight a potential confounder of this measure-cytoplasmic incompatibility caused by the intracellular parasite Wolbachia. Infection with Wolbachia can generate negative intersexual genetic correlations for fitness in insects, suggestive of intralocus sexual conflict. This is because cytoplasmic incompatibility reduces the fitness of uninfected females mated to infected males, while uninfected males will not suffer reductions in fitness if they mate with infected females and may even be fitter than infected males. This can lead to strong negative intersexual genetic correlations for fitness, mimicking intralocus conflict. We illustrate this issue using simulations and then present Drosophila simulans data that show how reproductive incompatibilities caused by Wolbachia infection can generate signals of intralocus sexual conflict. Given that Wolbachia infection in insect populations is pervasive, but populations usually contain both infected and uninfected individuals providing scope for cytoplasmic incompatibility, this is an important consideration for sexual conflict research but one which, to date, has been largely underappreciated.
Collapse
Affiliation(s)
- Eoin Duffy
- Institute of Environmental SciencesJagiellonian UniversityKrakowPoland
- Science and Engineering Research Support Facility (SERSF)University of ExeterPenrynUK
| | - C. Ruth Archer
- Science and Engineering Research Support Facility (SERSF)University of ExeterPenrynUK
| | - Manmohan Dev Sharma
- Science and Engineering Research Support Facility (SERSF)University of ExeterPenrynUK
| | - Monika Prus
- Institute of Environmental SciencesJagiellonian UniversityKrakowPoland
| | - Richa A. Joag
- Institute of Environmental SciencesJagiellonian UniversityKrakowPoland
- Science and Engineering Research Support Facility (SERSF)University of ExeterPenrynUK
| | - Jacek Radwan
- Institute of Environmental SciencesJagiellonian UniversityKrakowPoland
- Faculty of BiologyAdam Mickiewicz UniversityPoznańPoland
| | - Nina Wedell
- Science and Engineering Research Support Facility (SERSF)University of ExeterPenrynUK
| | - David J. Hosken
- Science and Engineering Research Support Facility (SERSF)University of ExeterPenrynUK
| |
Collapse
|
9
|
Wolbachia Population in Vectors and Non-vectors: A Sustainable Approach Towards Dengue Control. Curr Microbiol 2018; 76:133-143. [PMID: 30426159 DOI: 10.1007/s00284-018-1596-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Accepted: 11/08/2018] [Indexed: 02/02/2023]
Abstract
Wolbachia is gram negative obligate endosymbiont known for reproductive manipulation in the host. It is important to study the presence of natural Wolbachia in mosquitoes which can later help in understanding the effect of transfected strain on indigenous strain. With this view, the present study is undertaken to focus on the prevalence, diversity, infection frequencies, phylogeny and density of indigenous Wolbachia strains in wild mosquito species of Odisha. Our study confirms Wolbachia presence in Ae. albopictus, Cx. quinquefasciatus, Cx. vishnui, Cx. gelidus, Ar. subalbatus, Mn. uniformis, and Mn. indiana. Wolbachia in the above mosquitoes were separated into two supergroups (A and B). Ae. albopictus, the major vector of dengue and chikungungunya had both super-infection and mono-infection. The ovaries of Ae. albopictus were highest in density of Wolbachia as compared to midguts or salivary glands. wAlBA and wAlbB density were variable in mosquitoes of F1 generation for both the sex and at different age. We also found that Wolbachia super-infection in females tends to increase whereas wAlbA density reduced completely as compared to wAlbB in males when they grew old. Giemsa stained squashed ovaries revealed pink pleomorphic Wolbachia cells with different shapes and forms. This study is unique in its kind covering the major aspects of the endosymbiont Wolbachia and focusing on its potential as a biocontrol agent in arboviral outbreaks. Knowledge on potential of the indigenous strain and interactions between Wolbachia and viruses can be utilized further to reduce the global burden of vector borne diseases.
Collapse
|
10
|
Abstract
Mosquito-transmitted viruses are spread globally and present a great risk to human health. Among the many approaches investigated to limit the diseases caused by these viruses are attempts to make mosquitos resistant to virus infection. Coinfection of mosquitos with the bacterium Wolbachia pipientis from supergroup A is a recent strategy employed to reduce the capacity for major vectors in the Aedes mosquito genus to transmit viruses, including dengue virus (DENV), Chikungunya virus (CHIKV), and Zika virus (ZIKV). Recently, a supergroup B Wolbachia wStri, isolated from Laodelphax striatellus, was shown to inhibit multiple lineages of ZIKV in Aedes albopictus cells. Here, we show that wStri blocks the growth of positive-sense RNA viruses DENV, CHIKV, ZIKV, and yellow fever virus by greater than 99.9%. wStri presence did not affect the growth of the negative-sense RNA viruses LaCrosse virus or vesicular stomatitis virus. Investigation of the stages of the ZIKV life cycle inhibited by wStri identified two distinct blocks in viral replication. We found a reduction of ZIKV entry into wStri-infected cells. This was partially rescued by the addition of a cholesterol-lipid supplement. Independent of entry, transfected viral genome was unable to replicate in Wolbachia-infected cells. RNA transfection and metabolic labeling studies suggested that this replication defect is at the level of RNA translation, where we saw a 66% reduction in mosquito protein synthesis in wStri-infected cells. This study’s findings increase the potential for application of wStri to block additional arboviruses and also identify specific blocks in viral infection caused by Wolbachia coinfection. Dengue, Zika, and yellow fever viruses are mosquito-transmitted diseases that have spread throughout the world, causing millions of infections and thousands of deaths each year. Existing programs that seek to contain these diseases through elimination of the mosquito population have so far failed, making it crucial to explore new ways of limiting the spread of these viruses. Here, we show that introduction of an insect symbiont Wolbachia wStri, into mosquito cells is highly effective at reducing yellow fever virus, dengue virus, Zika virus, and Chikungunya virus production. Reduction of virus replication was attributable to decreases in entry and a strong block of virus gene expression at the translational level. These findings expand the potential use of Wolbachia wStri to block viruses and identify two separate steps for limiting virus replication in mosquitos that could be targeted via microbes or other means as an antiviral strategy.
Collapse
|
11
|
Karimian F, Vatandoost H, Rassi Y, Maleki-Ravasan N, Choubdar N, Koosha M, Arzamani K, Moradi-Asl E, Veysi A, Alipour H, Shirani M, Oshaghi MA. wsp-based analysis of Wolbachia strains associated with Phlebotomus papatasi and P. sergenti (Diptera: Psychodidae) main cutaneous leishmaniasis vectors, introduction of a new subgroup wSerg. Pathog Glob Health 2018; 112:152-160. [PMID: 29745300 PMCID: PMC6056827 DOI: 10.1080/20477724.2018.1471438] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Sand flies of Phlebotomus papatasi and P. sergenti are the main vectors of cutaneous leishmanisis (CL) in the old world. We aimed to screen Iranian P. papatasi and P. sergenti for their natural infections with Wolbachia and to determine their phylogenetic association with other species. Wolbachia surface protein (wsp) gene was PCR amplified from DNA extracted from Phlebotomus species, sequenced, and were analysed in combination with wsp sequences related to Phelebtominae and other insects. All Wolbachia-infecting Iranian sand flies of P. papatasi and P. sergenti were classified in the Supergroup A., Wolbachia isolated from P. sergenti were clustered in a new subgroup within Supergroup A so-called wSreg. The Wolbachia strains identified from the P. papatasi clustered mainly in the subgroup wPap and partly in wSerg. Multiple Wholbachia infection within a single population of P.papatasi warrants investigation on existence and intensity of cytoplasmic incompatibility between the wPap and wSerg subgroups.
Collapse
Affiliation(s)
- Fateh Karimian
- Department of Medical Entomology and Vector Control, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Hassan Vatandoost
- Department of Medical Entomology and Vector Control, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Yavar Rassi
- Department of Medical Entomology and Vector Control, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Nayyereh Choubdar
- Department of Medical Entomology and Vector Control, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mona Koosha
- Department of Medical Entomology and Vector Control, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Kourosh Arzamani
- Department of Medical Entomology and Vector Control, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Vector-Borne Diseases Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Eslam Moradi-Asl
- Department of Public Health, School of Public Health, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Arshad Veysi
- Department of Medical Entomology and Vector Control, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamzeh Alipour
- Research Center for Health Sciences, Institute of Health, Shiraz University Of Medical Sciences, Shiraz, Iran
| | - Manouchehr Shirani
- Mamasani Health Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Ali Oshaghi
- Department of Medical Entomology and Vector Control, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
12
|
Almeida RP, Stouthamer R. Phylogeny of the Trichogramma endosymbiont Wolbachia, an alpha-proteobacteria (Rickettsiae). BRAZ J BIOL 2017; 78:421-428. [PMID: 29160361 DOI: 10.1590/1519-6984.166671] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 01/11/2017] [Indexed: 11/22/2022] Open
Abstract
Wolbachia (Hertig) endosymbionts are extensively studied in a wide range of organisms and are known to be transmitted through the egg cytoplasm to the offsping. Wolbachia may cause several types of reproductive modifications in arthropods. In Trichogramma species, parthenogenesis-inducing Wolbachia bacteria allow females wasps to produce daughters from unfertilized eggs and these bacteria are present in at least 9% of all Trichogramma species. Phylogenetic studies have led to the subdivision of the Wolbachia clade in five supergroups (A, B, C, D and E) and Wolbachia from Trichogramma belong to supergroup B. Here, using the wsp gene, four groups of Wolbachia that infect Trichogramma species were distinguished and the addition of a new group "Ato" was suggested due to the addition of Wolbachia from Trichogramma atopovirilia (Oatman and Platner). Specific primers were designed and tested for the "Ato" group. Seventy-five percent of all evaluated Wolbachia strains from Trichogramma fell within "Sib" group.
Collapse
Affiliation(s)
- R P Almeida
- Centro Nacional de Pesquisa de Algodão, Empresa Brasileira de Pesquisa Agropecuária - Embrapa Algodão, CP 174, Campina Grande, PB, Brazil
| | - R Stouthamer
- Department of Entomology, University of California, Riverside, CA 92521, USA
| |
Collapse
|
13
|
Variable Inhibition of Zika Virus Replication by Different Wolbachia Strains in Mosquito Cell Cultures. J Virol 2017; 91:JVI.00339-17. [PMID: 28446677 DOI: 10.1128/jvi.00339-17] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 04/10/2017] [Indexed: 12/11/2022] Open
Abstract
Mosquito-borne arboviruses are a major source of human disease. One strategy to reduce arbovirus disease is to reduce the mosquito's ability to transmit virus. Mosquito infection with the bacterial endosymbiont Wolbachia pipientis wMel is a novel strategy to reduce Aedes mosquito competency for flavivirus infection. However, experiments investigating cyclic environmental temperatures have shown a reduction in maternal transmission of wMel, potentially weakening the integration of this strain into a mosquito population relative to that of other Wolbachia strains. Consequently, it is important to investigate additional Wolbachia strains. All Zika virus (ZIKV) suppression studies are limited to the wMel Wolbachia strain. Here we show ZIKV inhibition by two different Wolbachia strains: wAlbB (isolated from Aedes albopictus mosquitoes) and wStri (isolated from the planthopper Laodelphax striatellus) in mosquito cells. Wolbachia strain wStri inhibited ZIKV most effectively. Single-cycle infection experiments showed that ZIKV RNA replication and nonstructural protein 5 translation were reduced below the limits of detection in wStri-containing cells, demonstrating early inhibition of virus replication. ZIKV replication was rescued when Wolbachia was inhibited with a bacteriostatic antibiotic. We observed a partial rescue of ZIKV growth when Wolbachia-infected cells were supplemented with cholesterol-lipid concentrate, suggesting competition for nutrients as one of the possible mechanisms of Wolbachia inhibition of ZIKV. Our data show that wAlbB and wStri infection causes inhibition of ZIKV, making them attractive candidates for further in vitro mechanistic and in vivo studies and future vector-centered approaches to limit ZIKV infection and spread.IMPORTANCE Zika virus (ZIKV) has swiftly spread throughout most of the Western Hemisphere. This is due in large part to its replication in and spread by a mosquito vector host. There is an urgent need for approaches that limit ZIKV replication in mosquitoes. One exciting approach for this is to use a bacterial endosymbiont called Wolbachia that can populate mosquito cells and inhibit ZIKV replication. Here we show that two different strains of Wolbachia, wAlbB and wStri, are effective at repressing ZIKV in mosquito cell lines. Repression of virus growth is through the inhibition of an early stage of infection and requires actively replicating Wolbachia Our findings further the understanding of Wolbachia viral inhibition and provide novel tools that can be used in an effort to limit ZIKV replication in the mosquito vector, thereby interrupting the transmission and spread of the virus.
Collapse
|
14
|
Ma WJ, Schwander T. Patterns and mechanisms in instances of endosymbiont-induced parthenogenesis. J Evol Biol 2017; 30:868-888. [PMID: 28299861 DOI: 10.1111/jeb.13069] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 03/05/2017] [Accepted: 03/10/2017] [Indexed: 12/11/2022]
Abstract
Female-producing parthenogenesis can be induced by endosymbionts that increase their transmission by manipulating host reproduction. Our literature survey indicates that such endosymbiont-induced parthenogenesis is known or suspected in 124 host species from seven different arthropod taxa, with Wolbachia as the most frequent endosymbiont (in 56-75% of host species). Most host species (81%, 100 out of 124) are characterized by haplo-diploid sex determination, but a strong ascertainment bias likely underestimates the frequency of endosymbiont-induced parthenogenesis in hosts with other sex determination systems. In at least one taxon, hymenopterans, endosymbionts are a significant driver of transitions from sexual to parthenogenetic reproduction, with one-third of lineages being parthenogenetic as a consequence of endosymbiont infection. Endosymbiont-induced parthenogenesis appears to facilitate the maintenance of reproductive polymorphism: at least 50% of species comprise both sexual (uninfected) and parthenogenetic (infected) strains. These strains feature distribution differences similar to the ones documented for lineages with genetically determined parthenogenesis, with endosymbiont-induced parthenogens occurring at higher latitudes than their sexual relatives. Finally, although gamete duplication is often considered as the main mechanism for endosymbiont-induced parthenogenesis, it underlies parthenogenesis in only half of the host species studied thus far. We point out caveats in the methods used to test for endosymbiont-induced parthenogenesis and suggest specific approaches that allow for firm conclusions about the involvement of endosymbionts in the origin of parthenogenesis.
Collapse
Affiliation(s)
- W-J Ma
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - T Schwander
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
15
|
Biological Control Strategies for Mosquito Vectors of Arboviruses. INSECTS 2017; 8:insects8010021. [PMID: 28208639 PMCID: PMC5371949 DOI: 10.3390/insects8010021] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 01/21/2017] [Indexed: 12/16/2022]
Abstract
Historically, biological control utilizes predatory species and pathogenic microorganisms to reduce the population of mosquitoes as disease vectors. This is particularly important for the control of mosquito-borne arboviruses, which normally do not have specific antiviral therapies available. Although development of resistance is likely, the advantages of biological control are that the resources used are typically biodegradable and ecologically friendly. Over the past decade, the advancement of molecular biology has enabled optimization by the manipulation of genetic materials associated with biological control agents. Two significant advancements are the discovery of cytoplasmic incompatibility induced by Wolbachia bacteria, which has enhanced replacement programs, and the introduction of dominant lethal genes into local mosquito populations through the release of genetically modified mosquitoes. As various arboviruses continue to be significant public health threats, biological control strategies have evolved to be more diverse and become critical tools to reduce the disease burden of arboviruses.
Collapse
|
16
|
Abstract
Wolbachia is an intracellular symbiont of invertebrates responsible for inducing a wide variety of phenotypes in its host. These host-Wolbachia relationships span the continuum from reproductive parasitism to obligate mutualism, and provide a unique system to study genomic changes associated with the evolution of symbiosis. We present the genome sequence from a parthenogenesis-inducing Wolbachia strain (wTpre) infecting the minute parasitoid wasp Trichogramma pretiosum. The wTpre genome is the most complete parthenogenesis-inducing Wolbachia genome available to date. We used comparative genomics across 16 Wolbachia strains, representing five supergroups, to identify a core Wolbachia genome of 496 sets of orthologous genes. Only 14 of these sets are unique to Wolbachia when compared to other bacteria from the Rickettsiales. We show that the B supergroup of Wolbachia, of which wTpre is a member, contains a significantly higher number of ankyrin repeat-containing genes than other supergroups. In the wTpre genome, there is evidence for truncation of the protein coding sequences in 20% of ORFs, mostly as a result of frameshift mutations. The wTpre strain represents a conversion from cytoplasmic incompatibility to a parthenogenesis-inducing lifestyle, and is required for reproduction in the Trichogramma host it infects. We hypothesize that the large number of coding frame truncations has accompanied the change in reproductive mode of the wTpre strain.
Collapse
|
17
|
Solovyev VI, Ilinsky Y, Kosterin OE. Genetic integrity of four species of Leptidea (Pieridae, Lepidoptera) as sampled in sympatry in West Siberia. COMPARATIVE CYTOGENETICS 2015; 9:299-324. [PMID: 26312129 PMCID: PMC4547032 DOI: 10.3897/compcytogen.v9i3.4636] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 05/27/2015] [Indexed: 06/04/2023]
Abstract
In southern West Siberia, as many as four Leptidea Billberg, 1820 species are present sympatrically: Leptideaamurensis (Ménétriés, 1859), Leptideamorsei (Ménétriés, 1859), Leptideasinapis (Linnaeus, 1758) and Leptideajuvernica Williams, 1946. The two latter were recently recognised as nearly sibling species on morphological and molecular characters. Specimens intermediate as to their subtle diagnostic characters occurring in West Siberia and elsewhere were interpreted as resulted from limited introgression. This supposition was tested via populational morphological and molecular analysis of spring brood specimens of all the four species taken from a limited (4.5 × 0.2 km) area in the suburbs of Novosibirsk. The samples were analysed with respect to the genitalic morphology, external characters, three nuclear (CAD, H1 gene and ITS2) and one mitochondrial (COI) molecular markers, infection of the intracellular maternally inherited bacterial symbiont Wolbachia Hertig, 1836 and its wsp gene coding for a hypervariable surface protein. Interspecific variation of the nuclear CAD and ITS2 sequences and the mitochondrial COI gene in Leptideasinapis and Leptideajuvernica turned out concordant. The absence of molecular evidence of introgression suggests genetic integrity of these two species and allows their reliable identification by molecular characters. The genitalic (lengths of the saccus and valva) and external characters (wing pattern) of males overlap in Leptideasinapis and Leptideajuvernica, as identified by molecular markers and thus are not so helpful in actual species identification. Only the ductus bursae length showed no overlap and can be used for identification of females. The histone H1 gene appeared five times less variable over the four studied species than COI, and found to be identical in species Leptideasinapis and Leptideajuvernica. Wolbachia infection was found in all studied species. We identified three wsp variants of Wolbachia: 1) wsp-10 allele in Leptideaamurensis, Leptideasinapis, Leptideajuvernica; 2) a very similar wsp-687 allele in Leptideasinapis; and 3) wsp-688, highly divergent to the previous ones, in Leptideamorsei.
Collapse
Affiliation(s)
- Vladimir I. Solovyev
- Institute of Cytology & Genetics of Siberian Branch of Russian Academy of Sciences, Acad. Lavrentyev ave. 10, Novosibirsk, 630090, Russia
- Novosibirsk State University, Pirogova str. 2, Novosibirsk, 630090, Russia
| | - Yury Ilinsky
- Institute of Cytology & Genetics of Siberian Branch of Russian Academy of Sciences, Acad. Lavrentyev ave. 10, Novosibirsk, 630090, Russia
- Novosibirsk State University, Pirogova str. 2, Novosibirsk, 630090, Russia
- Institute of Chemistry and Biology, Immanuil Kant Baltic Federal University, Alexander Nevsky str. 14, 236038 Kaliningrad, Russia
| | - Oleg E. Kosterin
- Institute of Cytology & Genetics of Siberian Branch of Russian Academy of Sciences, Acad. Lavrentyev ave. 10, Novosibirsk, 630090, Russia
- Novosibirsk State University, Pirogova str. 2, Novosibirsk, 630090, Russia
| |
Collapse
|
18
|
Hu HY, Li ZX. A novel Wolbachia strain from the rice moth Corcyra cephalonica induces reproductive incompatibility in the whitefly Bemisia tabaci: sequence typing combined with phenotypic evidence. ENVIRONMENTAL MICROBIOLOGY REPORTS 2015; 7:508-515. [PMID: 25683566 DOI: 10.1111/1758-2229.12279] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 01/30/2015] [Indexed: 06/04/2023]
Abstract
Wolbachia are a group of maternally inherited bacteria frequently found in arthropods and filarial nematodes. They have recently attracted attention for their ecological roles in manipulating host reproduction, their potential use in biological control of pest insects and medical significance. Classification of Wolbachia strains is currently solely based on molecular methods. However, the strains even with identical sequence types may induce different host phenotypes. Here we isolated a Wolbachia strain from the rice moth Corcyra cephalonica (designated as wCcep_B_BJ), which was shown to share multilocus sequence typing and Wolbachia surface protein hypervariable region profiles with a cytoplasmic incompatibility (CI)-inducing strain in supergroup B, but the phenotype wCcep_B_BJ may induce needs to be determined. We thus transinfected it into the whitefly Bemisia tabaci harbouring an A-Wolbachia through nymphal microinjection. Fluorescent in situ hybridization demonstrated that wCcep_B_BJ was successfully transinfected into B. tabaci and transmitted to offspring through host eggs. Reciprocal cross showed that wCcep_B_BJ induced a strong bidirectional CI in the transinfected host without imposing a significant cost on female fecundity. Our results suggest that wCcep_B_BJ may be a promising strain for biocontrol of B. tabaci, an important agricultural pest insect.
Collapse
Affiliation(s)
- Hong-Yan Hu
- Department of Entomology, China Agricultural University, 2 Yuanmingyuan West Road, Beijing, 100193, China
| | - Zheng-Xi Li
- Department of Entomology, China Agricultural University, 2 Yuanmingyuan West Road, Beijing, 100193, China
| |
Collapse
|
19
|
Toomey ME, Frydman HM. Extreme divergence of Wolbachia tropism for the stem-cell-niche in the Drosophila testis. PLoS Pathog 2014; 10:e1004577. [PMID: 25521619 PMCID: PMC4270793 DOI: 10.1371/journal.ppat.1004577] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 11/13/2014] [Indexed: 12/01/2022] Open
Abstract
Microbial tropism, the infection of specific cells and tissues by a microorganism, is a fundamental aspect of host-microbe interactions. The intracellular bacteria Wolbachia have a peculiar tropism for the stem cell niches in the Drosophila ovary, the microenvironments that support the cells producing the eggs. The molecular underpinnings of Wolbachia stem cell niche tropism are unknown. We have previously shown that the patterns of tropism in the ovary show a high degree of conservation across the Wolbachia lineage, with closely related Wolbachia strains usually displaying the same pattern of stem cell niche tropism. It has also been shown that tropism to these structures in the ovary facilitates both vertical and horizontal transmission, providing a strong selective pressure towards evolutionary conservation of tropism. Here we show great disparity in the evolutionary conservation and underlying mechanisms of stem cell niche tropism between male and female gonads. In contrast to females, niche tropism in the male testis is not pervasive, present in only 45% of niches analyzed. The patterns of niche tropism in the testis are not evolutionarily maintained across the Wolbachia lineage, unlike what was shown in the females. Furthermore, hub tropism does not correlate with cytoplasmic incompatibility, a Wolbachia-driven phenotype imprinted during spermatogenesis. Towards identifying the molecular mechanism of hub tropism, we performed hybrid analyses of Wolbachia strains in non-native hosts. These results indicate that both Wolbachia and host derived factors play a role in the targeting of the stem cell niche in the testis. Surprisingly, even closely related Wolbachia strains in Drosophila melanogaster, derived from a single ancestor only 8,000 years ago, have significantly different tropisms to the hub, highlighting that stem cell niche tropism is rapidly diverging in males. These findings provide a powerful system to investigate the mechanisms and evolution of microbial tissue tropism. Microbes evolve to infect structures favoring their transmission in host populations. A large fraction of insects are infected with Wolbachia bacteria. Usually Wolbachia are transmitted the same way we inherit our mitochondria, via the eggs from the mother. In fruit flies, to favor maternal transmission, Wolbachia infect the microenvironment containing the egg producing stem cells, called the “stem cell niche”. Targeting of the stem cell niche is evolutionary conserved in female fruit flies, observed in all Wolbachia strains analyzed to date. Remarkably, in males, we find many Wolbachia strains not infecting the stem cell niche present in the testis. We report a surprising diversity in stem cell niche infection in males, contrasting with extreme conservation in females. We further show that even closely related Wolbachia strains in D. melanogaster display rapidly evolving patterns of stem cell niche targeting in males. Understanding the molecular mechanisms driving these differences will identify sex specific features of stem cell niche biology. Because Wolbachia promote insect resistance against human diseases transmitted by mosquitos, Wolbachia are becoming a valuable tool in the control of several diseases, including Dengue and malaria. Knowledge emerging from this research will also provide novel tools towards Wolbachia based strategies of disease control.
Collapse
Affiliation(s)
- Michelle E. Toomey
- Department of Biology, Boston University, Boston, Massachusetts, United States of America
| | - Horacio M. Frydman
- Department of Biology, Boston University, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
20
|
Zha X, Zhang W, Zhou C, Zhang L, Xiang Z, Xia Q. Detection and characterization of Wolbachia infection in silkworm. Genet Mol Biol 2014; 37:573-80. [PMID: 25249781 PMCID: PMC4171764 DOI: 10.1590/s1415-47572014000400014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Accepted: 05/04/2014] [Indexed: 02/05/2023] Open
Abstract
Wolbachia naturally infects a wide variety of arthropods, where it plays important roles in host reproduction. It was previously reported that Wolbachia did not infect silkworm. By means of PCR and sequencing we found in this study that Wolbachia is indeed present in silkworm. Phylogenetic analysis indicates that Wolbachia infection in silkworm may have occurred via transfer from parasitic wasps. Furthermore, Southern blotting results suggest a lateral transfer of the wsp gene into the genomes of some wild silkworms. By antibiotic treatments, we found that tetracycline and ciprofloxacin can eliminate Wolbachia in the silkworm and Wolbachia is important to ovary development of silkworm. These results provide clues towards a more comprehensive understanding of the interaction between Wolbachia and silkworm and possibly other lepidopteran insects.
Collapse
Affiliation(s)
- Xingfu Zha
- State Key Laboratory of Silkworm Genome Biology , College of Biotechnology , Southwest University, Chongqing , P.R. China
| | - Wenji Zhang
- State Key Laboratory of Silkworm Genome Biology , College of Biotechnology , Southwest University, Chongqing , P.R. China
| | - Chunyan Zhou
- State Key Laboratory of Silkworm Genome Biology , College of Biotechnology , Southwest University, Chongqing , P.R. China
| | - Liying Zhang
- State Key Laboratory of Silkworm Genome Biology , College of Biotechnology , Southwest University, Chongqing , P.R. China
| | - Zhonghuai Xiang
- State Key Laboratory of Silkworm Genome Biology , College of Biotechnology , Southwest University, Chongqing , P.R. China
| | - Qingyou Xia
- State Key Laboratory of Silkworm Genome Biology , College of Biotechnology , Southwest University, Chongqing , P.R. China
| |
Collapse
|
21
|
Lashkari M, Manzari S, Sahragard A, Malagnini V, Boykin LM, Hosseini R. Global genetic variation in the Asian citrus psyllid, Diaphorina citri (Hemiptera: Liviidae) and the endosymbiont Wolbachia: links between Iran and the USA detected. PEST MANAGEMENT SCIENCE 2014; 70:1033-1040. [PMID: 24002991 DOI: 10.1002/ps.3643] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Revised: 07/25/2013] [Accepted: 09/03/2013] [Indexed: 06/02/2023]
Abstract
BACKGROUND The Asian citrus psyllid, Diaphorina citri Kuwayama (Hemiptera: Liviidae), is one of the most serious pests of citrus in the world, because it transmits the pathogen that causes citrus greening disease. To determine genetic variation among geographic populations of D. citri, microsatellite markers, mitochondrial gene cytochrome oxidase I (mtCOI) and the Wolbachia-Diaphorina, wDi, gene wsp sequence data were used to characterize Iranian and Pakistani populations. Also, a Bayesian phylogenetic technique was utilized to elucidate the relationships among the sequences data in this study and all mtCOI and wsp sequence data available in GenBank and the Wolbachia database. RESULTS Microsatellite markers revealed significant genetic differentiation among Iranian populations, as well as between Iranian and Pakistani populations (FST = 0.0428, p < 0.01). Within Iran, the Sistan-Baluchestan population is significantly different from the Hormozgan (Fareghan) and Fars populations. By contrast, mtCOI data revealed two polymorphic sites separating the sequences from Iran and Pakistan. Global phylogenetic analyses showed that D. citri populations in Iran, India, Saudi Arabia, Brazil, Mexico, Florida and Texas (USA) are similar. Wolbachia, wDi, wsp sequences were similar among Iranian populations, but different between Iranian and Pakistani populations. CONCLUSION The South West Asia (SWA) group is the most likely source of the introduced Iranian populations of D. citri. This assertion is also supported by the sequence similarity of the Wolbachia, wDi, strains from the Florida, USA and Iranian D. citri. These results should be considered when looking for biological controls in either country.
Collapse
Affiliation(s)
- Mohammadreza Lashkari
- Department of Plant Protection, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran
| | | | | | | | | | | |
Collapse
|
22
|
Parvizi P, Bordbar A, Najafzadeh N. Detection of Wolbachia pipientis, including a new strain containing the wsp gene, in two sister species of Paraphlebotomus sandflies, potential vectors of zoonotic cutaneous leishmaniasis. Mem Inst Oswaldo Cruz 2014; 108:414-20. [PMID: 23828002 DOI: 10.1590/s0074-0276108042013004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Accepted: 01/24/2013] [Indexed: 11/22/2022] Open
Abstract
Individual, naturally occurring Phlebotomus mongolensis and Phlebotomus caucasicus from Iran were screened for infections with the maternally inherited intracellular Rickettsia-like bacterium Wolbachia pipientis via targeting a major surface protein gene (wsp). The main objective of this study was to determine if W. pipientis could be detected in these species. The sandflies were screened using polymerase chain reaction to amplify a fragment of the Wolbachia surface protein gene. The obtained sequences were edited and aligned with database sequences to identify W. pipientis haplotypes. Two strains of Wolbachia were found. Strain Turk 54 (accession EU780683) is widespread and has previously been reported in Phlebotomus papatasi and other insects. Strain Turk 07 (accession KC576916) is a novel strain, found for first time in the two sister species. A-group strains of W. pipientis occur throughout much of the habitat of these sandflies. It is possible that Wolbachia is transferred via horizontal transmission. Horizontal transfer could shed light on sandfly control because Wolbachia is believed to drive a deleterious gene into sandflies that reduces their natural population density. With regard to our findings in this study, we can conclude that one species of sandfly can be infected with different Wolbachia strains and that different species of sandflies can be infected with a common strain.
Collapse
Affiliation(s)
- Parviz Parvizi
- Molecular Systematics Laboratory, Parasitology Department, Pasteur Institute of Iran, Tehran, Iran.
| | | | | |
Collapse
|
23
|
Bordbar A, Soleimani S, Fardid F, Zolfaghari MR, Parvizi P. Three strains of Wolbachia pipientis and high rates of infection in Iranian sandfly species. BULLETIN OF ENTOMOLOGICAL RESEARCH 2014; 104:195-202. [PMID: 24484966 DOI: 10.1017/s0007485313000631] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Individual wild-caught sandflies from Iran were examined for infections of Wolbachia pipientis by targeting the major surface protein gene wsp of this intracellular α-proteobacterium. In total, 638 male and female sandflies were screened, of which 241 were found to be positive for one of three wsp haplotypes. Regardless of geographical origins and habitats, Phlebotomus (Phlebotomus) papatasi and other sandfly species were found to be infected with one common, widespread strain of A-group W. pipientis (Turk 54, GenBank accession EU780683; AY288297). In addition, a new A-group haplotype (Turk07, GenBank accession KC576916) was isolated from Phlebotomus (Paraphlebotomus) mongolensis and Phlebotomus (Pa.) caucasicus, and a new B-group haplotype (AZ2331, GenBank accession JX488735) was isolated from Phlebotomus (Larroussius) perfiliewi. Therefore, Wolbachia was found to occur in at least three of the incriminated vectors of zoonotic cutaneous leishmaniasis and zoonotic visceral leishmaniasis in different geographical regions of Iran. It may provide a new tool for the future control of leishmaniasis.
Collapse
Affiliation(s)
- A Bordbar
- Molecular Systematics Laboratory, Parasitology Department, Pasteur Institute of Iran, Tehran, Iran
| | - S Soleimani
- Molecular Systematics Laboratory, Parasitology Department, Pasteur Institute of Iran, Tehran, Iran
| | - F Fardid
- Molecular Systematics Laboratory, Parasitology Department, Pasteur Institute of Iran, Tehran, Iran
| | - M R Zolfaghari
- Microbiology Department, Qom Branch, Islamic Azad University, Qom, Iran
| | - P Parvizi
- Molecular Systematics Laboratory, Parasitology Department, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
24
|
Yang XH, Zhu DH, Liu Z, Zhao L, Su CY. High levels of multiple infections, recombination and horizontal transmission of Wolbachia in the Andricus mukaigawae (Hymenoptera; Cynipidae) communities. PLoS One 2013; 8:e78970. [PMID: 24250820 PMCID: PMC3826730 DOI: 10.1371/journal.pone.0078970] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2012] [Accepted: 09/18/2013] [Indexed: 11/21/2022] Open
Abstract
Wolbachia are maternally inherited endosymbiotic bacteria of arthropods and nematodes. In arthropods, they manipulate the reproduction of their hosts to facilitate their own spread in host populations, causing cytoplasmic incompatibility, parthenogenesis induction, feminization of genetic males and male-killing. In this study, we investigated Wolbachia infection and studied wsp (Wolbachia surface protein) sequences in three wasp species associated with the unisexual galls of A. mukaigawae with the aim of determining the transmission mode and the reason for multiple infections of Wolbachia. Frequency of Wolbachia infected populations for A. mukaigawae, Synergus japonicus (inquiline), and Torymus sp. (parasitoid) was 75%, 100%, and 100%, respectively. Multiple Wolbachia infections were detected in A. mukaigawae and S. japonicus, with 5 and 8 Wolbachia strains, respectively. The two host species shared 5 Wolbachia strains and were infected by identical strains in several locations, indicating horizontal transmission of Wolbachia. The transmission potentially takes place through gall tissues, which the larvae of both wasps feed on. Furthermore, three recombination events of Wolbachia were observed: the strains W8, W2 and W6 apparently have derived from W3 and W5a, W6 and W7, W4 and W9, respectively. W8 and W2 and their respective parental strains were detected in S. japonicus. W6 was detected with only one parent (W4) in S. japonicus; W9 was detected in Torymus sp., suggesting horizontal transmission between hosts and parasitoids. In conclusion, our research supports earlier studies that horizontal transmission of Wolbachia, a symbiont of the Rickettsiales order, may be plant-mediated or take place between hosts and parasitoids. Our research provides novel molecular evidence for multiple recombination events of Wolbachia in gall wasp communities. We suggest that genomic recombination and potential plant-mediated horizontal transmission may be attributable to the high levels of multiple Wolbachia infections observed in A. mukaigawae and S. japonicus.
Collapse
Affiliation(s)
- Xiao-Hui Yang
- Laboratory of Insect Behavior and Evolutionary Ecology, Central South University of Forestry and Technology, Changsha, China
| | - Dao-Hong Zhu
- Laboratory of Insect Behavior and Evolutionary Ecology, Central South University of Forestry and Technology, Changsha, China
- * E-mail:
| | - Zhiwei Liu
- Department of Biological Sciences, Eastern Illinois University, Charleston, Illinois, United States of America
| | - Ling Zhao
- Laboratory of Insect Behavior and Evolutionary Ecology, Central South University of Forestry and Technology, Changsha, China
| | - Cheng-Yuan Su
- Laboratory of Insect Behavior and Evolutionary Ecology, Central South University of Forestry and Technology, Changsha, China
| |
Collapse
|
25
|
Zhang KJ, Han X, Hong XY. Various infection status and molecular evidence for horizontal transmission and recombination of Wolbachia and Cardinium among rice planthoppers and related species. INSECT SCIENCE 2013; 20:329-344. [PMID: 23955885 DOI: 10.1111/j.1744-7917.2012.01537.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/01/2012] [Indexed: 06/02/2023]
Abstract
Wolbachia and Cardinium are widely distributed and are considered important for their ability to disturb reproduction and affect other fitness-related traits of their hosts. By using multilocus sequence typing (MLST), RFLP (restriction fragment length polymorphism) and 16S ribosomal DNA gene sequencing methods, we extensively surveyed Wolbachia and Cardinium infection status of four predominant rice planthoppers and one kind of leafhopper in different rice fields. The results demonstrated that Sogatella furcifera (Horváth) and Laodelphax striatellus (Fallén) were infected with the same Wolbachia strain (wStri), while Nilaparvata lugens (Stål) and its closely related species Nilaparvata muiri China were infected with two phylogeneticlly distant strains, wLug and wMui, respectively. Three new Wolbachia strains (provisionally named wMfas1, wMfas2 and wMfas3) were detected in the leafhopper Macrosteles fascifrons (Stål). Only S. furcifera was co-infected with Cardinium, which indicated that the distribution of Cardinium in these rice planthoppers was narrower than that of Wolbachia. Unambiguous intragenic recombination events among these Wolbachia strains and incongruent phylogenetic relationships show that the connections between different Wolbachia strains and hosts were more complex than we expected. These results suggest that horizontal transmission and host associated specialization are two factors affecting Wolbachia and Cardinium infections among planthoppers and their related species.
Collapse
Affiliation(s)
- Kai-Jun Zhang
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| | | | | |
Collapse
|
26
|
Tay ST. Wolbachia endosymbionts, Rickettsia felis and Bartonella species, in Ctenocephalides felis fleas in a tropical region. JOURNAL OF VECTOR ECOLOGY : JOURNAL OF THE SOCIETY FOR VECTOR ECOLOGY 2013; 38:200-202. [PMID: 23701629 DOI: 10.1111/j.1948-7134.2013.12030.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Affiliation(s)
- S T Tay
- Tropical Infectious Diseases Research and Education Centre, Department of Medical Microbiology, Faculty of Medicine, University of Malaya, 56000 Kuala Lumpur, Malaysia.
| |
Collapse
|
27
|
Almerão MP, Fagundes NJR, de Araújo PB, Verne S, Grandjean F, Bouchon D, Araújo AM. First record of Wolbachia in South American terrestrial isopods: Prevalence and diversity in two species of Balloniscus (Crustacea, Oniscidea). Genet Mol Biol 2012; 35:980-9. [PMID: 23413179 PMCID: PMC3571423 DOI: 10.1590/s1415-47572012000600013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Wolbachia are endosymbiotic bacteria that commonly infect arthropods, inducing certain phenotypes in their hosts. So far, no endemic South American species of terrestrial isopods have been investigated for Wolbachia infection. In this work, populations from two species of Balloniscus (B. sellowii and B. glaber) were studied through a diagnostic PCR assay. Fifteen new Wolbachia 16S rDNA sequences were detected. Wolbachia found in both species were generally specific to one population, and five populations hosted two different Wolbachia 16S rDNA sequences. Prevalence was higher in B. glaber than in B. sellowii, but uninfected populations could be found in both species. Wolbachia strains from B. sellowii had a higher genetic variation than those isolated from B. glaber. AMOVA analyses showed that most of the genetic variance was distributed among populations of each species rather than between species, and the phylogenetic analysis suggested that Wolbachia strains from Balloniscus cluster within Supergroup B, but do not form a single monophyletic clade, suggesting multiple infections for this group. Our results highlight the importance of studying Wolbachia prevalence and genetic diversity in Neotropical species and suggest that South American arthropods may harbor a great number of diverse strains, providing an interesting model to investigate the evolution of Wolbachia and its hosts.
Collapse
Affiliation(s)
- Mauricio Pereira Almerão
- Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil. ; Departamento de Zoologia, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | | | | | | | | | | |
Collapse
|
28
|
de Albuquerque AL, Magalhães T, Ayres CFJ. High prevalence and lack of diversity of Wolbachia pipientis in Aedes albopictus populations from Northeast Brazil. Mem Inst Oswaldo Cruz 2012; 106:773-6. [PMID: 22012236 DOI: 10.1590/s0074-02762011000600021] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Accepted: 08/09/2011] [Indexed: 11/21/2022] Open
Abstract
The use of Wolbachia as a tool to control insect vectors has recently been suggested. In this context, studies on the prevalence and diversity of this bacterium in wild populations are relevant. Here, we evaluated the diversity of two Wolbachiagenes (ftsZ and wsp) and the prevalence of this endosymbiont in wild Aedes albopictus. Using semi-nested polymerase chain reaction, our results showed that 99.3% of the individuals were superinfected with Wolbachia. In regards to genetic diversity, the two genes showed no variation within or among mosquito populations. An analysis of other Wolbachia markers may help to clarify the relationship between insect and endosymbiont.
Collapse
|
29
|
Hurst TP, Pittman G, O'Neill SL, Ryan PA, Nguyen HL, Kay BH. Impacts of Wolbachia infection on predator prey relationships: evaluating survival and horizontal transfer between wMelPop infected Aedes aegypti and its predators. JOURNAL OF MEDICAL ENTOMOLOGY 2012; 49:624-630. [PMID: 22679870 DOI: 10.1603/me11277] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The wMelPop strain of Wolbachia is currently being investigated for its potential use as a biological control agent to reduce the ability of Aedes aegypti (L.) mosquitoes to transmit dengue viruses. The survival of a potential wMelPop infected Ae. aegypti strain for field release is important as a higher susceptibility to predation in the wMelPop strain could result in difficulties in achieving fixation. We investigated immature and adult survival as a function of susceptibility to predation by six naturally occurring predator species; cyclopoid copepods, fish, predatory Toxorhynchites mosquito larvae and a salticid jumping spider. The trials indicated that wMelPop infected and uninfected Ae. aegypti larvae and adults were equally susceptible to predation to all six tested predators. In addition to evaluating any potential fitness costs to the infected host, we were unable to demonstrate horizontal transfer of wMelPop via consumption of infected Ae. aegypti larvae to the above predators. That susceptibility to predation was consistent across mosquito life stage, predator species and experimental venue is strong evidence that despite the neurotrophic and extensive nature of wMelPop infection, behavioral changes are not occurring, or at least not a determining factor in survival when exposed to a predator. Based on our results and the ecology of Wolbachia and mosquito predators, horizontal transfer of wMelPop from Ae. aegypti into naturally occurring predators is not cause for concern.
Collapse
Affiliation(s)
- Timothy P Hurst
- Mosquito Control Laboratory, Queensland Institute of Medical Research, PO Royal Brisbane Hospital, Brisbane, QLD 4029, Australia.
| | | | | | | | | | | |
Collapse
|
30
|
Abstract
Background Wolbachia and Cardinium are endosymbiotic bacteria infecting many arthropods and manipulating host reproduction. Although these bacteria are maternally transmitted, incongruencies between phylogenies of host and parasite suggest an additional role for occasional horizontal transmission. Consistent with this view is the strong evidence for recombination in Wolbachia, although it is less clear to what extent recombination drives diversification within single host species and genera. Furthermore, little is known concerning the population structures of other insect endosymbionts which co-infect with Wolbachia, such as Cardinium. Here, we explore Wolbachia and Cardinium strain diversity within nine spider mite species (Tetranychidae) from 38 populations, and quantify the contribution of recombination compared to point mutation in generating Wolbachia diversity. Results We found a high level of genetic diversity for Wolbachia, with 36 unique strains detected (64 investigated mite individuals). Sequence data from four Wolbachia genes suggest that new alleles are 7.5 to 11 times more likely to be generated by recombination than point mutation. Consistent with previous reports on more diverse host samples, our data did not reveal evidence for co-evolution of Wolbachia with its host. Cardinium was less frequently found in the mites, but also showed a high level of diversity, with eight unique strains detected in 15 individuals on the basis of only two genes. A lack of congruence among host and Cardinium phylogenies was observed. Conclusions We found a high rate of recombination for Wolbachia strains obtained from host species of the spider mite family Tetranychidae, comparable to rates found for horizontally transmitted bacteria. This suggests frequent horizontal transmission of Wolbachia and/or frequent horizontal transfer of single genes. Our findings strengthens earlier reports of recombination for Wolbachia, and shows that high recombination rates are also present on strains from a restrictive host range. Cardinium was found co-infecting several spider mite species, and phylogenetic comparisons suggest also horizontal transmission of Cardinium among hosts.
Collapse
|
31
|
Alam U, Medlock J, Brelsfoard C, Pais R, Lohs C, Balmand S, Carnogursky J, Heddi A, Takac P, Galvani A, Aksoy S. Wolbachia symbiont infections induce strong cytoplasmic incompatibility in the tsetse fly Glossina morsitans. PLoS Pathog 2011; 7:e1002415. [PMID: 22174680 PMCID: PMC3234226 DOI: 10.1371/journal.ppat.1002415] [Citation(s) in RCA: 104] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Accepted: 10/17/2011] [Indexed: 11/18/2022] Open
Abstract
Tsetse flies are vectors of the protozoan parasite African trypanosomes, which cause sleeping sickness disease in humans and nagana in livestock. Although there are no effective vaccines and efficacious drugs against this parasite, vector reduction methods have been successful in curbing the disease, especially for nagana. Potential vector control methods that do not involve use of chemicals is a genetic modification approach where flies engineered to be parasite resistant are allowed to replace their susceptible natural counterparts, and Sterile Insect technique (SIT) where males sterilized by chemical means are released to suppress female fecundity. The success of genetic modification approaches requires identification of strong drive systems to spread the desirable traits and the efficacy of SIT can be enhanced by identification of natural mating incompatibility. One such drive mechanism results from the cytoplasmic incompatibility (CI) phenomenon induced by the symbiont Wolbachia. CI can also be used to induce natural mating incompatibility between release males and natural populations. Although Wolbachia infections have been reported in tsetse, it has been a challenge to understand their functional biology as attempts to cure tsetse of Wolbachia infections by antibiotic treatment damages the obligate mutualistic symbiont (Wigglesworthia), without which the flies are sterile. Here, we developed aposymbiotic (symbiont-free) and fertile tsetse lines by dietary provisioning of tetracycline supplemented blood meals with yeast extract, which rescues Wigglesworthia-induced sterility. Our results reveal that Wolbachia infections confer strong CI during embryogenesis in Wolbachia-free (Gmm(Apo)) females when mated with Wolbachia-infected (Gmm(Wt)) males. These results are the first demonstration of the biological significance of Wolbachia infections in tsetse. Furthermore, when incorporated into a mathematical model, our results confirm that Wolbachia can be used successfully as a gene driver. This lays the foundation for new disease control methods including a population replacement approach with parasite resistant flies. Alternatively, the availability of males that are reproductively incompatible with natural populations can enhance the efficacy of the ongoing sterile insect technique (SIT) applications by eliminating the need for chemical irradiation.
Collapse
Affiliation(s)
- Uzma Alam
- Yale University, School of Public Health, Division of Epidemiology of Microbial Diseases, New Haven, Connecticut, United States of America
| | - Jan Medlock
- Yale University, School of Public Health, Division of Epidemiology of Microbial Diseases, New Haven, Connecticut, United States of America
| | - Corey Brelsfoard
- Yale University, School of Public Health, Division of Epidemiology of Microbial Diseases, New Haven, Connecticut, United States of America
| | - Roshan Pais
- Yale University, School of Public Health, Division of Epidemiology of Microbial Diseases, New Haven, Connecticut, United States of America
| | - Claudia Lohs
- Yale University, School of Public Health, Division of Epidemiology of Microbial Diseases, New Haven, Connecticut, United States of America
| | - Séverine Balmand
- INSA-Lyon, UMR203 BF2I, INRA, Biologie Fonctionnelle Insectes et Interactions, Bat. Louis-Pasteur, Villeurbanne, France
| | - Jozef Carnogursky
- Institute of Zoology, Section of Molecular and Applied Zoology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Abdelaziz Heddi
- INSA-Lyon, UMR203 BF2I, INRA, Biologie Fonctionnelle Insectes et Interactions, Bat. Louis-Pasteur, Villeurbanne, France
| | - Peter Takac
- Institute of Zoology, Section of Molecular and Applied Zoology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Alison Galvani
- Yale University, School of Public Health, Division of Epidemiology of Microbial Diseases, New Haven, Connecticut, United States of America
| | - Serap Aksoy
- Yale University, School of Public Health, Division of Epidemiology of Microbial Diseases, New Haven, Connecticut, United States of America
- * E-mail:
| |
Collapse
|
32
|
Rugman-Jones PF, Hoddle MS, Phillips PA, Jeong G, Stouthamer R. Strong genetic structure among populations of the invasive avocado pest Pseudacysta perseae (Heidemann) (Hemiptera: Tingidae) reveals the source of introduced populations. Biol Invasions 2011. [DOI: 10.1007/s10530-011-0140-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
33
|
Yu MZ, Zhang KJ, Xue XF, Hong XY. Effects of Wolbachia on mtDNA variation and evolution in natural populations of Tetranychus urticae Koch. INSECT MOLECULAR BIOLOGY 2011; 20:311-321. [PMID: 21199022 DOI: 10.1111/j.1365-2583.2010.01066.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
We investigated the effects of Wolbachia infection on mtDNA variation in spider mites by sequencing a portion of the mitochondrial cytochrome oxidase I (COI) gene from 198 individuals of known infection status. Four Wolbachia strains were described in the current study, namely wUrtOri1, wUrtOri2, wUrtOri3 and wUrtCon1. As predicted, the haplotype and nucleotide diversity were lower in infected individuals than in uninfected individuals. However, these mtDNA haplotype data are not entirely concordant with the surface protein of wolbachia (wsp) sequence data and both infected and uninfected individuals were found of the same haplotype. Although values of Tajima's D and Fu & Li's F were consistently less than zero for most infected groups, McDonald-Kreitman tests suggested that the patterns of variation were different from those expected under neutrality in only the uninfected group. Thus, the neutrality tests do not show a clear effect of Wolbachia infection on patterns of mtDNA variation and substitution in spider mites.
Collapse
Affiliation(s)
- M-Z Yu
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | | | | | | |
Collapse
|
34
|
Ravikumar H, Ramachandraswamy N, Puttaraju HP. Molecular strain typing of Wolbachia infection from Indian mosquitoes using wsp gene. ASIAN PACIFIC JOURNAL OF TROPICAL DISEASE 2011. [DOI: 10.1016/s2222-1808(11)60046-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
35
|
|
36
|
Ahmed MZ, Ren SX, Mandour NS, Greeff JM, Qiu BL. Prevalence of Wolbachia supergroups A and B in Bemisia tabaci (Hemiptera: Aleyrodidae) and some of its natural enemies. JOURNAL OF ECONOMIC ENTOMOLOGY 2010; 103:1848-1859. [PMID: 21061989 DOI: 10.1603/ec10033] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Wolbachia, a bacterial symbiont, is maternally transmitted in arthropods and nematodes. We report a systematic survey of Wolbachia taxonomy in the sweetpotato whitefly, Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae), and in some of its natural enemies. For the first time, Wolbachia infections in B. tabaci are correlated with various whitefly genetic groups, host plants, and natural enemies as well as with geographical regions. Polymerase chain reaction using 16S rDNA and fisZ genes revealed two Wolbachia supergroups, A and B, exist as single or double infections in B. tabaci as well as in some of its aphelinid parasitoids and predatory beetles. Approximately 89% of B. tabaci sampled were infected by Wolbachia, among which 34% were infected by A, 51% were infected by B, and 5% were infected by both A and B supergroups. These infection frequencies differed among B. tabaci genetic groups and locations. The invasive B. tabaci genetic group from the Middle East Asia Minor 1 (also referred as B biotype) and Mediterranean (also referred as Q biotype) was more likely to harbor A than B, whereas native genetic groups in AsiaI and AsiaII were more likely to harbor B than A. Although 60% of aphelinid parasitoids and 72% of coccinellid beetles also were infected by Wolbachia, they were more likely to host B than A. Furthermore, for the first time we report Wolbachia in B biotype from specimens collected outside of China. Construction of a phylogenetic tree clearly indicated that the Wolbachia sequences from different genetic groups of B. tabaci were not only similar to each other but also to sequences from beetles and parasitoids, which may provide evidence of coevolution and horizontal transmission of Wolbachia populations.
Collapse
Affiliation(s)
- Muhammad Z Ahmed
- Department of Entomology, South China Agricultural University, Guangzhou 510640, China
| | | | | | | | | |
Collapse
|
37
|
Zhang X, Luckhart S, Tu Z, Pfeiffer DG. Analysis of Wolbachia strains associated with Conotrachelus nenuphar (Coleoptera: Curculionidae) in the Eastern United States. ENVIRONMENTAL ENTOMOLOGY 2010; 39:396-405. [PMID: 20388268 DOI: 10.1603/en09276] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
We studied the distribution patterns of Wolbachia infection associated with plum curculio strains in eight states of the eastern United States. The presence of the Wolbachia-specific gene wsp identified infections of this endosymbiont in 97.8% of the 93 samples tested. Three distinct Wolbachia strains were identified. The strains wCne1 (593 bp) and wCne2 (593 bp) were 97% identical, and their sequences were both 84% identical with wCne3 (590 bp). BLASTN searches through GenBank showed strong similarities between the wsp sequences of the three strains compared with Wolbachia sequenced from other hosts. Degree of similarity with sequences in other Wolbachia strains is discussed. Polymerase chain reaction-restriction fragment length polymorphism was used for superinfection detection. Of 93 samples, 15 (16.1%), 21 (22.6%), 19 (20.4%), and 36 (38.7%) samples were infected by wCne1, wCne2, wCne1 + 2, and wCne3, respectively. Only two (2.2%) samples had no infection. The wCne3 strain was always present as a single infection. Wolbachia strains approximate the distribution of plum curculio strains: northern strain infected with wCne1 and wCne2 strains in supergroup B, and southern strain infected with wCne3 strain in supergroup A, with the mid-Atlantic region as the convergence area. Based on haplotype distribution of plum curculio mitochondrial cytochrome oxidase I, there was a closer relation of the mid-southern plum curculio clade to the far-southern clade than to the northern clade. However, Wolbachia symbionts in mid-southern plum curculio are more closely related to those in northern plum curculio than to those in far-southern plum curculio. The relationship of Wolbachia infection with reproductive incompatibility between plum curculio populations was also discussed.
Collapse
Affiliation(s)
- Xing Zhang
- Department of Entomology, Virginia Tech, 205C Price Hall, Blacksburg, VA 24061, USA.
| | | | | | | |
Collapse
|
38
|
ARTHOFER WOLFGANG, RIEGLER MARKUS, SCHNEIDER DANIELA, KRAMMER MARTIN, MILLER WOLFGANGJ, STAUFFER CHRISTIAN. HiddenWolbachiadiversity in field populations of the European cherry fruit fly,Rhagoletis cerasi(Diptera, Tephritidae). Mol Ecol 2009; 18:3816-30. [DOI: 10.1111/j.1365-294x.2009.04321.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
39
|
Wolbachia in Anastrepha fruit flies (Diptera: Tephritidae). Curr Microbiol 2009; 59:295-301. [PMID: 19536597 DOI: 10.1007/s00284-009-9433-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2009] [Revised: 04/02/2009] [Accepted: 05/19/2009] [Indexed: 10/20/2022]
Abstract
Endosymbiotic bacteria of the genus Wolbachia are widespread among arthropods and cause a variety of reproductive abnormalities, such as cytoplasmic incompatibility, thelytokous parthenogenesis, male-killing, and host feminization. In this study, we used three sets of Wolbachia-specific primers (16S rDNA, ftsZ, and wsp) in conjunction with the polymerase chain reaction (PCR), cloning and sequencing to study the infection of fruit flies (Anastrepha spp. and Ceratitis capitata) by Wolbachia. The flies were collected at several localities in Brazil and at Guayaquil, Ecuador. All of the fruit flies studied were infected with Wolbachia supergroup A, in agreement with the high prevalence of this group in South America. Phylogenetic analysis showed that the wsp gene was the most sensitive gene for studying the relationships among Wolbachia strains. The Wolbachia sequences detected in these fruit flies were similar to those such as wMel reported for other fruit flies. These results show that the infection of Anastrepha fruit flies by Wolbachia is much more widespread than previously thought.
Collapse
|
40
|
Almost there: transmission routes of bacterial symbionts between trophic levels. PLoS One 2009; 4:e4767. [PMID: 19274091 PMCID: PMC2651630 DOI: 10.1371/journal.pone.0004767] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2008] [Accepted: 02/10/2009] [Indexed: 11/19/2022] Open
Abstract
Many intracellular microbial symbionts of arthropods are strictly vertically transmitted and manipulate their host's reproduction in ways that enhance their own transmission. Rare horizontal transmission events are nonetheless necessary for symbiont spread to novel host lineages. Horizontal transmission has been mostly inferred from phylogenetic studies but the mechanisms of spread are still largely a mystery. Here, we investigated transmission of two distantly related bacterial symbionts – Rickettsia and Hamiltonella – from their host, the sweet potato whitefly, Bemisia tabaci, to three species of whitefly parasitoids: Eretmocerus emiratus, Eretmocerus eremicus and Encarsia pergandiella. We also examined the potential for vertical transmission of these whitefly symbionts between parasitoid generations. Using florescence in situ hybridization (FISH) and transmission electron microscopy we found that Rickettsia invades Eretmocerus larvae during development in a Rickettsia-infected host, persists in adults and in females, reaches the ovaries. However, Rickettsia does not appear to penetrate the oocytes, but instead is localized in the follicular epithelial cells only. Consequently, Rickettsia is not vertically transmitted in Eretmocerus wasps, a result supported by diagnostic polymerase chain reaction (PCR). In contrast, Rickettsia proved to be merely transient in the digestive tract of Encarsia and was excreted with the meconia before wasp pupation. Adults of all three parasitoid species frequently acquired Rickettsia via contact with infected whiteflies, most likely by feeding on the host hemolymph (host feeding), but the rate of infection declined sharply within a few days of wasps being removed from infected whiteflies. In contrast with Rickettsia, Hamiltonella did not establish in any of the parasitoids tested, and none of the parasitoids acquired Hamiltonella by host feeding. This study demonstrates potential routes and barriers to horizontal transmission of symbionts across trophic levels. The possible mechanisms that lead to the differences in transmission of species of symbionts among species of hosts are discussed.
Collapse
|
41
|
Giorgini M, Monti MM, Caprio E, Stouthamer R, Hunter MS. Feminization and the collapse of haplodiploidy in an asexual parasitoid wasp harboring the bacterial symbiont Cardinium. Heredity (Edinb) 2009; 102:365-71. [DOI: 10.1038/hdy.2008.135] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
42
|
Detection of Wolbachia bacteria in multiple organs and feces of the triatomine insect Rhodnius pallescens (Hemiptera, Reduviidae). Appl Environ Microbiol 2008; 75:547-50. [PMID: 19028913 DOI: 10.1128/aem.01665-08] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
At least two types of Wolbachia bacteria were detected in wild and insectarium-raised Rhodnius pallescens, a natural vector of Trypanosoma cruzi and Trypanosoma rangeli. Wolbachia was detected in all the organs and tissues studied and in the feces, and this provided a methodological advantage for determining the presence of this endosymbiont in this host, obviating the need to kill the specimens. The occurrence of trypanosomatids in wild individuals was also studied.
Collapse
|
43
|
Russell JA, Goldman-Huertas B, Moreau CS, Baldo L, Stahlhut JK, Werren JH, Pierce NE. Specialization and geographic isolation among Wolbachia symbionts from ants and lycaenid butterflies. Evolution 2008; 63:624-40. [PMID: 19054050 DOI: 10.1111/j.1558-5646.2008.00579.x] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Wolbachia are the most prevalent and influential bacteria described among the insects to date. But despite their significance, we lack an understanding of their evolutionary histories. To describe the evolution of symbioses between Wolbachia and their hosts, we surveyed global collections of two diverse families of insects, the ants and lycaenid butterflies. In total, 54 Wolbachia isolates were typed using a Multi Locus Sequence Typing (MLST) approach, in which five unlinked loci were sequenced and analyzed to decipher evolutionary patterns. AMOVA and phylogenetic analyses demonstrated that related Wolbachia commonly infect related hosts, revealing a pattern of host association that was strongest among strains from the ants. A review of the literature indicated that horizontal transfer is most successful when Wolbachia move between related hosts, suggesting that patterns of host association are driven by specialization on a common physiological background. Aside from providing the broadest and strongest evidence to date for Wolbachia specialization, our findings also reveal that strains from New World ants differ markedly from those in ants from other locations. We, therefore, conclude that both geographic and phylogenetic barriers have promoted evolutionary divergence among these influential symbionts.
Collapse
Affiliation(s)
- Jacob A Russell
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts 02138, USA.
| | | | | | | | | | | | | |
Collapse
|
44
|
Hurst GDD, Jiggins FM, Pomiankowski A. Which way to manipulate host reproduction? Wolbachia that cause cytoplasmic incompatibility are easily invaded by sex ratio-distorting mutants. Am Nat 2008; 160:360-73. [PMID: 18707445 DOI: 10.1086/341524] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
The bacterium Wolbachia manipulates its hosts by inducing cytoplasmic incompatibility (CI), where zygotes formed from crosses between uninfected mothers and infected fathers die. In addition, it distorts the host's sex ratio via male killing, parthenogenesis induction, or feminization. Here, we model transitions between these states, examining the evolution of mutants of CI strains that retain both the ability to induce and resist CI but, in addition, cause sex ratio distortion. The model shows that CI strains are highly susceptible to invasion and subsequent elimination by these mutants. For all three types of sex ratio distortion, there is some parameter space in which the strain showing sex ratio distortion becomes extinct following exclusion of the progenitor CI strain, leaving the population uninfected. Extinction of the new Wolbachia strain is common for the case of male killing but rarer for parthenogenesis induction and feminization. Our models predict that CI strains of Wolbachia will occur most commonly in hosts that are male heterogametic, where there is little interaction between siblings because these hosts are unlikely to favor the spread of male killing, feminization, or parthenogenesis induction. The models raise the question of why CI strains apparently predominate in nature, and it is suggested that this is a result of either fewer restrictions on CI strains spreading through novel host populations or restrictions to the mutability of Wolbachia strains.
Collapse
Affiliation(s)
- Gregory D D Hurst
- Department of Biology, University College London, 4 Stephenson Way, London NW1 2HE, United Kingdom
| | | | | |
Collapse
|
45
|
Sorfová P, Skeríková A, Hypsa V. An effect of 16S rRNA intercistronic variability on coevolutionary analysis in symbiotic bacteria: molecular phylogeny of Arsenophonus triatominarum. Syst Appl Microbiol 2008; 31:88-100. [PMID: 18485654 DOI: 10.1016/j.syapm.2008.02.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2007] [Revised: 02/28/2008] [Accepted: 02/29/2008] [Indexed: 10/22/2022]
Abstract
The genes of ribosomal RNA are the most popular and frequently used markers for bacterial phylogeny and reconstruction of insect-symbiont coevolution. In primary symbionts, such as Buchnera and Wigglesworthia, genome economization leads to the establishment of a single copy of these sequences. In phylogenetic studies, they provide sufficient information and yield phylogenetic trees congruent with host evolution. In contrast, other symbiotic lineages (e.g., the genus Arsenophonus) carry a higher number of rRNA copies in their genomes, which may have serious consequences for phylogenetic inference. In this study, we show that in Arsenophonus triatominarum the degree of heterogeneity can affect reconstruction of phylogenetic relationships and mask possible coevolution between the symbiont and its host. Phylogenetic arrangement of individual rRNA copies was used, together with a calculation of their divergence time, to demonstrate that the incongruent 16S rDNA trees and low nucleotide diversity in the secondary symbiont could be reconciled with the coevolutionary scenario.
Collapse
Affiliation(s)
- Pavlína Sorfová
- Faculty of Science, University of South Bohemia, Branisovská 31, 370 05 Ceské Budejovice, Czech Republic
| | | | | |
Collapse
|
46
|
Pankewitz F, Zöllmer A, Hilker M, Gräser Y. Presence of Wolbachia in insect eggs containing antimicrobially active anthraquinones. MICROBIAL ECOLOGY 2007; 54:713-21. [PMID: 17364245 DOI: 10.1007/s00248-007-9230-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2007] [Revised: 02/07/2007] [Accepted: 02/11/2007] [Indexed: 05/14/2023]
Abstract
Wolbachia are obligatory, cytoplasmatically inherited alpha-proteobacteria, which are common endosymbionts in arthropods where they may cause reproductive abnormalities. Many insects are well known to protect themselves from deleterious microorganisms by antibiotic components. In this study, we addressed the question whether Wolbachia are able to infect insects containing antimicrobial anthraquinones and anthrones, and if so, whether these genotypes of Wolbachia comprise a monophyletic cluster within one of the known supergroups. Leaf beetles of the taxon Galerucini (Galerucinae) are known to contain 1,8-dihydroxylated anthraquinones and anthrones. Also, the scale insect Dactylopius contains an anthraquinone glycoside, carminic acid. Our analyses revealed that a representative of the Galerucini, Galeruca tanaceti and Dactylopius, are indeed infected by endosymbiotic Wolbachia bacteria. Phylogenetic analysis of the wsp and ftsZ genes of these bacteria revealed that strains in G. tanaceti cluster in supergroup A, whereas those present in Dactylopius are distinctive from each other and from those of G. tanaceti. They are clustering in supergroups A and B. Wolbachia strains present in close, but anthraquinone-free relatives of G. tanaceti were shown to belong also to supergroup A. From these results, we can conclude (1) a double infection in Dactylopius, (2) that the presence of antimicrobial compounds such as anthraquinones does not necessarily protect insects from infection by Wolbachia, and (3) that genotypes of Wolbachia-infecting anthraquinone-containing insects most likely do not comprise a unique genotype. These results show that Wolbachia bacteria might be adapted to cope even with conditions usually detrimental to other bacteria and that these adaptations are widespread among Wolbachia supergroups.
Collapse
Affiliation(s)
- Florian Pankewitz
- Freie Universität Berlin, Institute of Biology, Haderslebener Str. 9, Berlin, 12163, Germany
| | | | | | | |
Collapse
|
47
|
Li ZX, Lin HZ, Guo XP. Prevalence of Wolbachia infection in Bemisia tabaci. Curr Microbiol 2007; 54:467-71. [PMID: 17487529 DOI: 10.1007/s00284-007-0011-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2007] [Accepted: 02/15/2007] [Indexed: 11/25/2022]
Abstract
Wolbachia are obligate intracellular bacteria present in reproductive tissues of many arthropod species. It has been reported that few silverleafing populations of Bemisia tabaci were positive for Wolbachia, whereas non-silverleafing populations were more likely infected with Wolbachia and all that infect B. tabaci are Wolbachia belonging to supergroup B. However, current detection methods were shown to be not sensitive enough to uncover all infections. Herein, a protocol based on polymerase chain reaction-restriction fragment length polymorphism analysis of Wolbachia 16S ribosomal DNA is presented. A systematic survey for the prevalence of Wolbachia infection in natural populations of B. tabaci using this method revealed that (1) all populations of B. tabaci tested positive for Wolbachia and the overall infection rate reached 80.5% (293 positives in 364 tests); (2) both single infection and superinfection existed within individual whiteflies tested; and (3) silverleafing populations of B. tabaci most likely harbored A Wolbachia as single infection, whereas non-silverleafing populations tend to carry B Wolbachia as superinfection. It is clear that the Wolbachia infection pattern is closely related to the genetic races of B. tabaci, and the infection frequencies are apparently much higher than those described previously. This study shows that detection methods can significantly influence estimation of Wolbachia infection. It is supposed that Wolbachia may be acting as a biotic agent promoting rapid differentiation and speciation of B. tabaci. This is the most systematic survey of Wolbachia infection within B. tabaci.
Collapse
Affiliation(s)
- Zheng-Xi Li
- Department of Entomology, China Agricultural University, 2 Yuanmingyuan West Road, Beijing, 100094, China.
| | | | | |
Collapse
|
48
|
Matalon Y, Katzir N, Gottlieb Y, Portnoy V, Zchori-Fein E. Cardinium in Plagiomerus diaspidis (Hymenoptera: Encyrtidae). J Invertebr Pathol 2007; 96:106-8. [PMID: 17467732 DOI: 10.1016/j.jip.2007.02.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2006] [Revised: 01/03/2007] [Accepted: 02/06/2007] [Indexed: 11/23/2022]
Abstract
The bacterial symbiont Cardinium (Bacteroidetes) was previously implicated in the thelytokous reproduction of the parasitoid Plagiomerus diaspidis Crawford (Hymenoptera: Encyrtidae). Horizontal transmission of the symbiont among the cactus scale Diaspis echinocacti Bouché (Homoptera: Diaspididae) and its hymenopteran parasitoids has been suggested. In this study, the bacteria associated with D. echinocacti, its parasitoids P. diaspidis and Aphytis sp. (Hymenoptera: Aphelinidae), and the hyperparasitoid Marietta leopardina Motschulsky (Hymenoptera: Aphelinidae) were characterized using molecular fingerprinting techniques, and the localization of Cardinium in P. diaspidis was studied using fluorescence in situ hybridizations (FISH). Cardinium was the only bacterium found in P. diaspidis, but it could not be detected in any of the other insects tested. The symbiont was specifically located in the reproductive tissues of its P. diaspidis host.
Collapse
Affiliation(s)
- Yiftach Matalon
- The Agricultural Research Organization (ARO), Department of Vegetable Crops, Newe Ya'ar Research Center, Ramat Yishay 30095, Israel
| | | | | | | | | |
Collapse
|
49
|
STOLL SASCHA, GADAU JÜRGEN, GROSS ROY, FELDHAAR HEIKE. Bacterial microbiota associated with ants of the genus Tetraponera. Biol J Linn Soc Lond 2007. [DOI: 10.1111/j.1095-8312.2006.00730.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
50
|
Takiya DM, Tran PL, Dietrich CH, Moran NA. Co-cladogenesis spanning three phyla: leafhoppers (Insecta: Hemiptera: Cicadellidae) and their dual bacterial symbionts. Mol Ecol 2006; 15:4175-91. [PMID: 17054511 DOI: 10.1111/j.1365-294x.2006.03071.x] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Endosymbioses are a major form of biological complexity affecting the ecological and evolutionary diversification of many eukaryotic groups. These associations are exemplified by nutritional symbioses of insects for which phylogenetic studies have demonstrated numerous cases of long-term codiversification between a bacterial and a host lineage. Some insects, including most leafhoppers (Insecta: Hemiptera: Cicadellidae), have more than one bacterial symbiont within specialized host cells, raising questions regarding the patterns of codiversification of these multiple partners and the evolutionary persistence of complex symbiotic systems. Previous studies reported the presence of two dominant symbiont types in a member of the leafhopper subfamily Cicadellinae (sharpshooters). In this study, 16S rRNA sequences were obtained and used to examine the occurrence and evolutionary relationships of the two dominant symbiont types across 29 leafhopper species. Candidatus Sulcia muelleri (Bacteroidetes) was detected in all leafhopper species examined, a finding that is consistent with a previous report of its ancient association with the Auchenorrhyncha (a grouping that includes leafhoppers, treehoppers, cicadas, planthoppers, and spittlebugs). Baumannia cicadellinicola (Proteobacteria), previously known from only five sharpshooter species, was found only in the sharpshooter tribes Cicadellini and Proconiini, as well as in the subfamily Phereurhininae. Mitochondrial and nuclear gene sequences were obtained and used to reconstruct host phylogenies. Analyses of host and symbiont data sets support a congruent evolutionary history between sharpshooters, Sulcia and Baumannia and thus provide the first strong evidence for long-term co-inheritance of multiple symbionts during the diversification of a eukaryotic host. Sulcia shows a fivefold lower rate of 16S rDNA sequence divergence than does Baumannia for the same host pairs. The term 'coprimary' symbiont is proposed for such cases.
Collapse
Affiliation(s)
- Daniela M Takiya
- Center for Biodiversity, Illinois Natural History Survey, 1816 S. Oak Street, Champaign, IL 61820, USA.
| | | | | | | |
Collapse
|