1
|
Ahsanuddin S, Wu AY. Single-cell transcriptomics of the ocular anterior segment: a comprehensive review. Eye (Lond) 2023; 37:3334-3350. [PMID: 37138096 PMCID: PMC10156079 DOI: 10.1038/s41433-023-02539-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 03/07/2023] [Accepted: 04/11/2023] [Indexed: 05/05/2023] Open
Abstract
Elucidating the cellular and genetic composition of ocular tissues is essential for uncovering the pathophysiology of ocular diseases. Since the introduction of single-cell RNA sequencing (scRNA-seq) in 2009, vision researchers have performed extensive single-cell analyses to better understand transcriptome complexity and heterogeneity of ocular structures. This technology has revolutionized our ability to identify rare cell populations and to make cross-species comparisons of gene expression in both steady state and disease conditions. Importantly, single-cell transcriptomic analyses have enabled the identification of cell-type specific gene markers and signalling pathways between ocular cell populations. While most scRNA-seq studies have been conducted on retinal tissues, large-scale transcriptomic atlases pertaining to the ocular anterior segment have also been constructed in the past three years. This timely review provides vision researchers with an overview of scRNA-seq experimental design, technical limitations, and clinical applications in a variety of anterior segment-related ocular pathologies. We review open-access anterior segment-related scRNA-seq datasets and illustrate how scRNA-seq can be an indispensable tool for the development of targeted therapeutics.
Collapse
Affiliation(s)
- Sofia Ahsanuddin
- Department of Ophthalmology, Byers Eye Institute, Stanford University School of Medicine, Stanford, CA, USA
- Department of Ophthalmology, New York Eye and Ear Infirmary of Mount Sinai, New York City, NY, USA
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Albert Y Wu
- Department of Ophthalmology, Byers Eye Institute, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
2
|
Liu Y, Cao G, Xie Y, Chu M. Identification of differentially expressed genes associated with precocious puberty by suppression subtractive hybridization in goat pituitary tissues. Anim Biotechnol 2021:1-14. [PMID: 34747679 DOI: 10.1080/10495398.2021.1990940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The aim of this study was to identify genes related to precocious puberty expressed in the pituitary of goats at different growth stages by suppression subtractive hybridization (SSH). The pituitary glands from Jining Gray (JG) goats (early puberty) and Liaoning Cashmere (LC) goats (late puberty) at 30, 90, and 180 days were used in this study. To identify differentially expressed genes (DEGs) in the pituitary glands, mRNA was extracted from these tissues, and SSH libraries were constructed and divided into the following groups: juvenile group (30-JG vs. 30-LC, API), puberty group (90-JG vs. 180-LC, BPI), and control group (90-JG vs. 90-LC, EPI). A total of 60, 49, and 58 DEGs were annotated by 222 Gene Ontology (GO) terms and 75 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. Most of the DEGs were significantly enriched in GO terms related to 'structural constituent of ribosome', 'translation' and 'GTP binding', and numerous DEGs were also significantly enriched in KEGG terms related to the Jak-STAT signaling and oocyte meiosis pathways. Candidate genes associated with precocious puberty and sexual development were screened from the SSH libraries. These genes were analyzed to determine if they were expressed in the pituitary tissues of the goats at different growth stages and to identify genes that may influence the hypothalamic-pituitary-gonadal (HPG) axis. In this study, we found precocious puberty-related genes (such as PRLP0, EIF5A, and YWHAH) that may be interesting from an evolutionary perspective and that could be investigated for use in future goat breeding programs. Our results provide a valuable dataset that will facilitate further research into the reproductive biology of goats.
Collapse
Affiliation(s)
- Yufang Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China.,College of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, China
| | - Guiling Cao
- College of Agriculture, Liaocheng University, Liaocheng, China
| | - Yujing Xie
- College of Agriculture, Liaocheng University, Liaocheng, China
| | - Mingxing Chu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
3
|
Analysis of Reverse Transcribed mRNA Using PCR and Polyacrylamide Gel Electrophoresis. Methods Mol Biol 2018. [PMID: 29423848 DOI: 10.1007/978-1-4939-7546-4_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
The patterns of gene expression in the fission yeast Schizosaccharomyces pombe under various experimental conditions form the basis of any transcriptomic study. We describe a method involving reverse transcription of the mRNA, Polymerase Chain Reaction (PCR), and the subsequent separation of the products onto Urea-Polyacrylamide gel that can be used to study the gene expression patterns in the fission yeast. The method described is cost effective and reproducible with satisfactory resolution of expressed transcripts in the gel. The method has the following essential steps: total RNA isolation and purification, cDNA synthesis from mRNAs, PCR amplification of cDNAs, visualization of PCR products, re-amplification and cloning of the differentially expressed PCR products, sequencing the confirmed clones, and finally cDNA library screening to isolate the genes of interest. The technique is also popularly known as Differential Display Reverse Transcription (DDRT-PCR). After its invention in 1992, a number of modifications have been introduced to optimize the technique and specifically to reduce the major problem of "false positives." Since understanding of specific gene expression patterns that regulate developmental and stress responses is a major concern of biology, DDRT-PCR has become a very popular molecular technique during the past two decades.
Collapse
|
4
|
Applying Subtractive Hybridization Technique to Enrich and Amplify Tumor-Specific Transcripts of Esophageal Squamous Cell Carcinoma. Pathol Oncol Res 2016; 23:271-279. [DOI: 10.1007/s12253-016-0090-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 07/05/2016] [Indexed: 12/17/2022]
|
5
|
Lehnert K, Ronnenberg K, Weijs L, Covaci A, Das K, Hellwig V, Siebert U. Xenobiotic and Immune-Relevant Molecular Biomarkers in Harbor Seals as Proxies for Pollutant Burden and Effects. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2016; 70:106-120. [PMID: 26296438 DOI: 10.1007/s00244-015-0202-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2015] [Accepted: 07/27/2015] [Indexed: 06/04/2023]
Abstract
Harbor seals are exposed to increasing pressure caused by anthropogenic activities in their marine environment. Persistent organic pollutants (POPs) and trace elements are hazardous contaminants that accumulate in tissues of harbor seals. POPs and trace elements can negatively affect the immune-system and have been reported, e.g., to increase susceptibility to viral infections in seals. Biomarkers of the xenobiotic metabolism, cytokines, and heat-shock protein as cell mediators of the immune-system were established to evaluate the impact of environmental stressors on harbor seals. Harbor seals (n = 54) were captured on sandbanks in the North Sea during 2009-2012. Health assessments, including hematology, were performed, and RNAlater blood samples were taken and analyzed using quantitative polymerase chain reaction. Normalized transcript copy numbers were correlated to hematology and POP concentration in blood and trace metals in blood and fur. A significant correlation between xenobiotic markers and contaminant burden was found. Significant interrelationships between markers and POP compounds, as well as with season, weight, and hematology values, indicate that biomarkers reflect pollutant exposure and effects. A significant relationship between cortisol levels and heat-shock protein expression was observed indicating stress experienced during restraint of the seals. Interleukin-10 transcription showed significant correlations with trace elements in fur pointing toward immune regulatory effects of metal exposure. The molecular markers prove to be an important noninvasive tool that reflects contaminant exposure and the impact of anthropogenic stressors in seal species. The connection between interleukin-2, xenobiotic markers, and pollutants may indicate immune suppression in animals exposed to contaminants with subsequent susceptibility to inflammatory disease.
Collapse
Affiliation(s)
- Kristina Lehnert
- Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine Hannover, Foundation, 25761, Büsum, Germany.
- Institute for Coastal Research, Helmholtz-Zentrum Geesthacht Centre for Materials and Coastal Research, 21502, Geesthacht, Germany.
| | - Katrin Ronnenberg
- Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine Hannover, Foundation, 25761, Büsum, Germany
| | - Liesbeth Weijs
- Toxicological Center, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
- National Research Centre for Environmental Toxicology (ENTOX), The University of Queensland, 39 Kessels Road, Coopers Plains, QLD, 4108, Australia
| | - Adrian Covaci
- Toxicological Center, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
| | - Krishna Das
- Laboratory of Oceanology-MARE Centre, University of Liege, 4000, Liege, Belgium
| | - Veronika Hellwig
- Institute for Coastal Research, Helmholtz-Zentrum Geesthacht Centre for Materials and Coastal Research, 21502, Geesthacht, Germany
| | - Ursula Siebert
- Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine Hannover, Foundation, 25761, Büsum, Germany
| |
Collapse
|
6
|
Gene expression profile affected by volatiles of new plant growth promoting rhizobacteria, Bacillus subtilis strain JS, in tobacco. Genes Genomics 2015. [DOI: 10.1007/s13258-015-0267-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
7
|
Abstract
Microarray gene expression profiling has identified gene signatures or "Indicator" genes predictive of outcome in many cancer types including lymphoma, and more recently pancreatic cancer. This has identified novel and powerful diagnostic and prognostic and generically applicable markers, promising more specific diagnosis and treatment, together with improved understanding of pathobiology. There is now an urgent need to translate these signatures to clinical use. However, gene microarrays rely on relatively large amounts of fresh starting tissue obviating measurement of Indicator genes in routine practice, and there is a need for development of another, simple, robust, relatively inexpensive and sensitive method for their translation to clinical use. We have piloted the use of real-time PCR measurement of specific prognostic genes, so called "Indicator" genes, in globally amplified polyA cDNA for this purpose. Poly(A) PCR coordinately amplifies cDNA copies of all polyadenylated mRNAs, thereby generating a PCR product (polyA cDNA) whose composition reflects the relative abundance of all expressed genes in the starting sample. Poly(A) PCR enables global mRNA amplification from picogram amounts of RNA and has been routinely used to analyse expression in small samples including single cells. The poly(A) cDNA pool generated is also indefinitely renewable and as such represents a "molecular block". Real-time PCR measurement, using gene-specific primers and probes, of the expression levels of specific Indicator genes then allows gene signatures to be detected within the poly(A) cDNA, thereby enabling expression profiling of very small amounts of starting material. This chapter details this method as applied to fresh and paraffin embedded tissue and to pancreatic juice. In this chapter, we have concentrated on application of the method to pancreatic cancer, but the generic nature of the method renders it applicable to any cancer type, thereby representing a novel platform for cancer diagnosis across all tumour types.
Collapse
|
8
|
Poly(adenylic acid) complementary DNA real-time polymerase chain reaction in pancreatic ductal juice in patients undergoing pancreaticoduodenectomy. Pancreas 2010; 39:171-4. [PMID: 19940796 DOI: 10.1097/mpa.0b013e3181bd9225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVES There is a need to develop methods of early diagnosis for pancreatic cancer. Pancreatic juice is easily collected by endoscopic retrograde cholangiopancreatography and may facilitate diagnosis using molecular markers. The aim of this work was to explore the feasibility of measurement of gene expression in RNA isolated from ductal juice. METHODS Intraoperative sampling of pancreatic juice was undertaken in 27 patients undergoing pancreaticoduodenectomy for suspected tumor. Total RNA was extracted and used as template for poly(adenylic acid) (poly[A]) polymerase chain reaction (PCR) to generate a globally amplified complementary DNA pool representative of all expressed messenger RNAs. Real-time PCR was performed for trefoil factor 2 (TFF2), carboxypeptidase B1 (CPB1), and kallikrein-related peptidase 3 (KLK3) in a subset of samples; all samples were normalized for 3 reference genes (glyceraldehyde-3-phosphate dehydrogenase [GAPDH], PSMB6, and beta-2-microglobulin [B2M]). RESULTS The median volume of the pancreatic juice obtained was 1245 microL (range, 50-5000 microL). The RNA integrity number ranged from 1.9 to 10. Reverse transcriptase PCR was positive for pancreas-specific genes (TFF2 and CPB1) and negative for prostatic-specific antigen in all samples. CONCLUSIONS These results demonstrate that RNA analysis of pancreatic juice is feasible using a combination of poly(A) PCR and real-time PCR. In addition, the poly(A) complementary DNA generated can be probed for multiple genes and is indefinitely renewable, thereby representing a molecular block of importance for future research.
Collapse
|
9
|
Lehane MJ, Gibson W, Lehane SM. Differential expression of fat body genes in Glossina morsitans morsitans following infection with Trypanosoma brucei brucei. Int J Parasitol 2008; 38:93-101. [PMID: 17697681 DOI: 10.1016/j.ijpara.2007.06.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2007] [Revised: 05/16/2007] [Accepted: 06/18/2007] [Indexed: 10/23/2022]
Abstract
To determine which fat body genes were differentially expressed following infection of Glossina morsitans morsitans with Trypanosoma brucei brucei we generated four suppression subtractive hybridisation (SSH) libraries. We obtained 52 unique gene fragments (SSH clones) of which 30 had a known orthologue at E-05 or less. Overall the characteristics of the orthologues suggest: (i) that trypanosome infection has a considerable effect on metabolism in the tsetse fly; (ii) that self-cured flies are mounting an oxidative stress response; and (iii) that self-cured flies are displaying increased energy usage. The three most consistently differentially expressed genes were further analysed by gene knockdown (RNAi). Knockdown of Glossina transferrin transcripts, which are upregulated in self-cured flies compared with flies infected with trypanosomes, results in a significant increase in the number of trypanosome infections establishing in the fly midgut, suggesting transferrin plays a role in the protection of tsetse flies from trypanosome infection.
Collapse
Affiliation(s)
- M J Lehane
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK.
| | | | | |
Collapse
|
10
|
Shen Y, Wilder-Smith E, Yu E, Ng YK, Ling EA, Spence I, Wong MC. A novel methodology to probe endothelial differential gene expression profile reveals novel genes. ACTA ACUST UNITED AC 2007; 14:303-14. [PMID: 18080867 DOI: 10.1080/10623320701678425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Endothelial dysfunction is a major feature of vascular diseases. A practical, minimally invasive method to effectively "probe" gene transcription for an individual patient's endothelium has potential to "customize" assessment for an individual at risk of vascular disease as well as pathophysiologic insight in an in vivo human, clinical context. Published literature lacks a methodology to identify endothelial differential gene expression in individuals with vascular disease. We describe a methodology to do so. The aim of this study was to specifically utilize (a) cutaneous microvascular biopsy, (b) laser capture microdissection, (c) cDNA amplification, (d) suppression subtractive hybridization, (e) high-throughput sequencing techniques, (f) real-time polymerase chain reaction (PCR), and (g) in combination of these methods, to profile differential gene expression in the context of cardiovascular and cerebrovascular disease. Endothelial cells were obtained by laser capture microdissection from a patient and a healthy sibling's microvascular biopsy tissues. Endothelial RNA was extracted, reverse transcribed, and amplified to ds cDNA. Suppression subtractive hybridization was used to establish an endothelial differential gene expression library. Real-time PCR confirmed SERP1, caspase 8, IGFBP7, S100A4, F85, and F147 up-regulation between 1.4- and 3.47-fold. The authors have successfully established a methodology to profile endothelial differential gene expression and identified six differentially expressed genes. This minimally invasive novel method has potential wide application in the customized assessment of many patients suffering vascular diseases.
Collapse
Affiliation(s)
- Yi Shen
- Department of Neurology, National Neuroscience Institute (SGH Campus), Singapore
| | | | | | | | | | | | | |
Collapse
|
11
|
Huang Q, Baum L, Huang JF, You JP, Wang F, Wang J, Zheng J, Yan XC, Xia H, Zhao YH, Kuang H, Fu WL. Isolation and enrichment of human genomic CpG islands by methylation-sensitive mirror orientation selection. Anal Biochem 2007; 365:153-64. [PMID: 17481566 DOI: 10.1016/j.ab.2007.03.035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2006] [Revised: 03/09/2007] [Accepted: 03/27/2007] [Indexed: 10/23/2022]
Abstract
CpG islands (CGIs) in human genomic DNA are GC-rich fragments whose aberrant methylation is associated with human disease development. In the current study, methylation-sensitive mirror orientation selection (MS-MOS) was developed to efficiently isolate and enrich unmethylated CGIs from human genomic DNA. The unmethylated CGIs prepared by the MS-MOS procedure subsequently were used to construct a CGI library. Then the sequence characteristics of cloned inserts of the library were analyzed by bioinformatics tools, and the methylation status of CGI clones was analyzed by HpaII PCR. The results showed that the MS-MOS method could be used to isolate up to 0.001% of differentially existed unmethylated DNA fragments in two complex genomic DNA. In the CGI library, 34.1% of clones had insert sequences satisfying the minimal criteria for CGIs. Excluding duplicates, 22.0% of the 80,000 clones were unique CGI clones, representing 60% of all the predicted CGIs (about 29,000) in human genomic DNA, and most or all of the CGI clones were unmethylated in human normal cell DNA based on the HpaII PCR analysis results of randomly selected CGI clones. In conclusion, MS-MOS was an efficient way to isolate and enrich human genomic CGIs. The method has powerful potential application in the comprehensive identification of aberrantly methylated CGIs associated with human tumorigenesis to improve understanding of the epigenetic mechanisms involved.
Collapse
Affiliation(s)
- Qing Huang
- Department of Laboratory Medicine, Southwest Hospital, Third Military Medical University, Chongqing 400038, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Shackel NA, Seth D, Haber PS, Gorrell MD, McCaughan GW. The hepatic transcriptome in human liver disease. COMPARATIVE HEPATOLOGY 2006; 5:6. [PMID: 17090326 PMCID: PMC1665460 DOI: 10.1186/1476-5926-5-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/08/2005] [Accepted: 11/07/2006] [Indexed: 02/07/2023]
Abstract
The transcriptome is the mRNA transcript pool in a cell, organ or tissue with the liver transcriptome being amongst the most complex of any organ. Functional genomics methodologies are now being widely utilized to study transcriptomes including the hepatic transcriptome. This review outlines commonly used methods of transcriptome analysis, especially gene array analysis, focusing on publications utilizing these methods to understand human liver disease. Additionally, we have outlined the relationship between transcript and protein expressions as well as summarizing what is known about the variability of the transcriptome in non-diseased liver tissue. The approaches covered include gene array analysis, serial analysis of gene expression, subtractive hybridization and differential display. The discussion focuses on primate whole organ studies and in-vitro cell culture systems utilized. It is now clear that there are a vast number research opportunities for transcriptome analysis of human liver disease as we attempt to better understand both non-diseased and disease hepatic mRNA expression. We conclude that hepatic transcriptome analysis has already made significant contributions to the understanding of human liver pathobiology.
Collapse
Affiliation(s)
- Nicholas A Shackel
- AW Morrow Gastroenterology and Liver Centre, Centenary Institute of Cancer Medicine and Cell Biology, Royal Prince Alfred Hospital and The University of Sydney, Sydney, Australia
| | - Devanshi Seth
- AW Morrow Gastroenterology and Liver Centre, Centenary Institute of Cancer Medicine and Cell Biology, Royal Prince Alfred Hospital and The University of Sydney, Sydney, Australia
| | - Paul S Haber
- AW Morrow Gastroenterology and Liver Centre, Centenary Institute of Cancer Medicine and Cell Biology, Royal Prince Alfred Hospital and The University of Sydney, Sydney, Australia
| | - Mark D Gorrell
- AW Morrow Gastroenterology and Liver Centre, Centenary Institute of Cancer Medicine and Cell Biology, Royal Prince Alfred Hospital and The University of Sydney, Sydney, Australia
| | - Geoffrey W McCaughan
- AW Morrow Gastroenterology and Liver Centre, Centenary Institute of Cancer Medicine and Cell Biology, Royal Prince Alfred Hospital and The University of Sydney, Sydney, Australia
| |
Collapse
|
13
|
David DC, Hoerndli F, Götz J. Functional Genomics meets neurodegenerative disorders. Prog Neurobiol 2005; 76:153-68. [PMID: 16168556 DOI: 10.1016/j.pneurobio.2005.07.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2005] [Revised: 07/14/2005] [Accepted: 07/19/2005] [Indexed: 11/22/2022]
Abstract
Transcriptomics and proteomics are increasingly applied to gain a mechanistic insight into neurodegenerative disorders. These techniques not only identify distinct, differentially expressed mRNAs and proteins but are also employed to dissect signaling pathways and reveal networks by using an integrated approach. In part I of this back-to-back review, technical aspects are discussed: in the transcriptomics section, which includes enrichment by laser microcapture dissection, we comment on qRT-PCR, SAGE, subtractive hybridization, differential display and microarrays, including software packages. In the proteomics section we discuss two-dimensional (2D) gel electrophoresis, liquid chromatography, methods to label and enrich specific proteins or peptides, and different types of mass spectrometers. These tools have been applied to a range of neurodegenerative disorders and are discussed and integrated in part II (Functional Genomics meets neurodegenerative disorders. Part II: application and data integration).
Collapse
Affiliation(s)
- Della C David
- Brain and Mind Research Institute, University of Sydney, 100 Mallett St., Camperdown, NSW 2050, Australia
| | | | | |
Collapse
|
14
|
Abstract
With an information explosion on the molecular mechanism of oncogenesis, the completion of the human genome sequence project, and the advances in genomic and proteomic methods, many therapeutic targets for various cancers have been identified. It is timely that a number of new drug development techniques have been developed in this last decade. Candidate drug targets can now be efficiently validated with RNA interference and transgenic animals studies. Combinatorial chemistry provides large numbers of chemical compounds for drug lead discovery and optimization. High throughput assays and high content cell-based assays, in conjunction with sophisticated robotics, are now available for screening large numbers of compounds. Based on X-ray crystallographic structure data, drug leads can be discovered through in silico screening of virtual libraries. By applying these various drug discovery techniques, it is anticipated that more potent and specific anti-cancer agents will be discovered within the next decade.
Collapse
Affiliation(s)
- Ruiwu Liu
- Division of Hematology & Oncology, Department of Internal Medicine, UC Davis Cancer Center, University of California at Davis, 4501 X Street, Sacramento, CA 95817, USA
| | | | | |
Collapse
|
15
|
Rumpler G, Becker B, Hafner C, McClelland M, Stolz W, Landthaler M, Schmitt R, Bosserhoff A, Vogt T. Identification of differentially expressed genes in models of melanoma progression by cDNA array analysis: SPARC, MIF and a novel cathepsin protease characterize aggressive phenotypes. Exp Dermatol 2003; 12:761-71. [PMID: 14714555 DOI: 10.1111/j.0906-6705.2003.00082.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Currently, the scale and consistency of changes of gene expression profiles in models of melanoma progression are largely unknown. Therefore, we investigated siblings of cell lines or malignant melanomas (MM), which have been selected by nude mouse passages for (a). increased tumorigenicity (local ECM-independent growth), (b). metastatic potential, or (c). selected for increase invasiveness using the Boyden chamber. cDNA array analysis surveying more than 27.000 transcripts per cell line showed that 1.5-2.8% of all detectable transcripts were consistently differentially regulated during selection process in those models. Using array analysis, we identified 33 individual transcripts that exhibited significant differential hybridization paralleling the increased aggressiveness of the selected progeny. Because some of those genes could play a significant functional role in the progression of MM, we additionally proved their regulative pattern using Northern blotting. Among others, progressive overexpression of osteonectin/SPARC, a angiogenesis, was found in the selected offspring from all three experimental models and may therefore be considered as a potential marker for aggressive MM as well a promising therapeutic target. We further show that the selection of MM cells for increased ECM-independent local growth was accompanied by overexpresssion of macrophage migration inhibiting factor (MIF), an important modulator of both cell cycle progression and angiogenesis, and cathepsin Z, a novel member of the family of matrix degrading proteinases.
Collapse
Affiliation(s)
- G Rumpler
- Department of Dermatology, University of Regensburg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Chen X, Halberg RB, Ehrhardt WM, Torrealba J, Dove WF. Clusterin as a biomarker in murine and human intestinal neoplasia. Proc Natl Acad Sci U S A 2003; 100:9530-5. [PMID: 12886021 PMCID: PMC170952 DOI: 10.1073/pnas.1233633100] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Early detection of colorectal cancer is critical for the management of this disease. Biomarkers for early detection of several cancers have been developed and applied clinically in recent years. We have sought to discover candidate biomarkers without the restricted choice of markers placed on microarrays, and without the biological complications of genetic and environmental heterogeneity. We have compared by cDNA subtraction two genetically matched sets of mice, one developing multiple intestinal neoplasia (C57BL/6J-ApcMin) and the other tumor-free (C57BL/6J). One prominent candidate biomarker, clusterin, was then subjected to a series of validation steps. In situ hybridization and immunohistochemistry were used to analyze clusterin expression at a cellular level on a series of murine intestinal and human colonic neoplasms. Elevated clusterin expression was characterized within certain regions of murine and human tumors regardless of tumor stage, location, or mode of initiation. The cells showing high clusterin levels generally lacked differentiation markers and adenomatous polyposis coli antigen. Tumor cells undergoing apoptosis expressed low levels of clusterin. Its specific expression patterns and correlation with cellular events during tumorigenesis make it a useful diagnostic tool in the mouse and a potential contributor to the set of biomarkers for early detection of human colon cancer.
Collapse
Affiliation(s)
- Xiaodi Chen
- McArdle Laboratory for Cancer Research, University of Wisconsin, Madison, WI 53706, USA
| | | | | | | | | |
Collapse
|
17
|
Baekkevold ES, Roussigné M, Yamanaka T, Johansen FE, Jahnsen FL, Amalric F, Brandtzaeg P, Erard M, Haraldsen G, Girard JP. Molecular characterization of NF-HEV, a nuclear factor preferentially expressed in human high endothelial venules. THE AMERICAN JOURNAL OF PATHOLOGY 2003; 163:69-79. [PMID: 12819012 PMCID: PMC1868188 DOI: 10.1016/s0002-9440(10)63631-0] [Citation(s) in RCA: 363] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Lymphocyte homing to secondary lymphoid tissue and lesions of chronic inflammation is directed by multi-step interactions between the circulating cells and the specialized endothelium of high endothelial venules (HEVs). In this study, we used the PCR-based method of suppression subtractive hybridization (SSH) to identify novel HEV genes by comparing freshly purified HEV endothelial cells (HEVECs) with nasal polyp-derived microvascular endothelial cells (PMECs). By this approach, we cloned the first nuclear factor preferentially expressed in HEVECs, designated nuclear factor from HEVs (NF-HEV). Virtual Northern and Western blot analyses showed strong expression of NF-HEV in HEVECs, compared to human umbilical vein endothelial cells (HUVECs) and PMECs. In situ hybridization and immunohistochemistry revealed that NF-HEV mRNA and protein are expressed at high levels and rather selectively by HEVECs in human tonsils, Peyers's patches, and lymph nodes. The NF-HEV protein was found to contain a bipartite nuclear localization signal, and was targeted to the nucleus when ectopically expressed in HUVECs and HeLa cells. Furthermore, endogenous NF-HEV was found in situ to be confined to the nucleus of tonsillar HEVECs. Finally, threading and molecular modeling studies suggested that the amino-terminal part of NF-HEV (aa 1-60) corresponds to a novel homeodomain-like Helix-Turn-Helix (HTH) DNA-binding domain. Similarly to the atypical homeodomain transcription factor Prox-1, which plays a critical role in the induction of the lymphatic endothelium phenotype, NF-HEV may be one of the key nuclear factors that controls the specialized HEV phenotype.
Collapse
Affiliation(s)
- Espen S Baekkevold
- Laboratory for Immunohistochemistry and Immunopathology, University of Oslo, Rikshospitalet, Oslo, Norway
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Scheel J, Von Brevern MC, Hörlein A, Fischer A, Schneider A, Bach A. Yellow pages to the transcriptome. Pharmacogenomics 2002; 3:791-807. [PMID: 12437481 DOI: 10.1517/14622416.3.6.791] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Transcriptomics has become an important tool for the large-scale analysis of biological processes. This review aims to provide sufficient criteria to make an appropriate choice among the variety of 'closed' systems, represented by DNA microarrays, and 'open' systems like fragment display, tag sequencing and subtractive hybridization, depending on the biological system under investigation. The most important technologies currently available are presented, their strengths and weaknesses are discussed and companies active in the field are listed. The potential of transcriptomics in the pharmaceutical research and development process is highlighted by applications in oncology, research on neurological diseases, and predictive toxicology. Finally, a prognosis for future developments of the technologies is given.
Collapse
Affiliation(s)
- Julia Scheel
- Axaron Bioscience AG, Im Neuenheimer Feld 515, D-69120 Heidelberg, Germany.
| | | | | | | | | | | |
Collapse
|
19
|
Gerritsen ME, Peale FV, Wu T. Gene expression profiling in silico: relative expression of candidate angiogenesis associated genes in renal cell carcinomas. EXPERIMENTAL NEPHROLOGY 2002; 10:114-9. [PMID: 11937758 DOI: 10.1159/000049906] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Recent advances in gene expression profiling have led to the development of comprehensive databases which can be queried in various manners. In the present report, we have taken a list of genes previously associated with angiogenesis, either in in vivo or in in vitro models, and queried a commercial database established by GeneLogic to determine the relative expression of these candidate genes in normal kidneys and in renal cell carcinomas (RCC). We identified a number of genes, including CXCR4, matrix metalloproteinase 9, thrombospondin 2, and vascular endothelial growth factor, that were highly expressed in RCC versus normal tissue. One gene, hevin, appears to be selectively upregulated in RCC in contrast to downregulation of this gene in lung and colon tumors. This approach provides a powerful means to identify potential markers of tumor vascularization.
Collapse
Affiliation(s)
- Mary E Gerritsen
- Department of Cardiovascular Research, Genentech, South San Francisco, CA, USA.
| | | | | |
Collapse
|
20
|
Pillutla RC, Fisher PB, Blume AJ, Goldstein NI. Target validation and drug discovery using genomic and protein-protein interaction technologies. Expert Opin Ther Targets 2002; 6:517-31. [PMID: 12223066 DOI: 10.1517/14728222.6.4.517] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
After the successful completion of the human genome project, mapping of the human proteome has become the next important challenge facing the biotech and pharmaceutical industries. Identification of the 'right' target(s) is now a critical part of the process because of the cost of drug discovery. Compounding this situation is the fact that the pharmaceutical industry faces a further challenge of being able to sustain current and historical growth rates. Hence, the discovery of new drug targets is important for developing new drug leads that can become preclinical drug candidates. Proteomics is the next phase of the effort whereby the human genome can be understood. However, mapping the human proteome presents a daunting challenge. Proteomics involves several essential components with the most significant being the discovery and description of all protein-protein interactions. Once this compendium is available, a secondary and equally important initiative will be to decipher proteins that are differentially expressed in any given disease condition. At this point, the critical focus will be to select the most relevant proteins, understand their partner interactions and then further winnow them to the point where they are relevant pharmaceutical target candidates. This paradigm can be compared to finding the relevant 'needle in the proteome haystack'. This review describes the use of genomic and protein-protein interaction technologies to identify and validate these 'needles' as the first step in the drug discovery process.
Collapse
|
21
|
Koo TH, Lee JJ, Kim EM, Kim KW, Kim HD, Lee JH. Syntenin is overexpressed and promotes cell migration in metastatic human breast and gastric cancer cell lines. Oncogene 2002; 21:4080-8. [PMID: 12037664 DOI: 10.1038/sj.onc.1205514] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2001] [Revised: 03/18/2002] [Accepted: 03/22/2002] [Indexed: 11/08/2022]
Abstract
Two human breast cancer cell lines of differing invasive and metastatic potential, MDA-MB-435 and MCF7, were examined using subtractive suppression hybridization in a search for any genes associated with metastasis. Of the 17 cDNAs identified as being differentially expressed genes, it was determined that syntenin was overexpressed in metastatic MDA-MB-435 cells. Expression analysis showed that the expression level of syntenin was well correlated with invasive and metastatic potential in various human breast and gastric cancer cell lines. Moreover, gastric tumor tissues exhibited a much higher syntenin mRNA expression than their normal counterparts. Syntenin-transfected MCF7 cells migrated more actively, and showed an increased invasion rate relative to vector-transfectants or parental MCF7 in vitro, without evidencing any effect on the adhesion to fibronectin, type I collagen and laminin. Similarly, the forced expression of syntenin to human gastric cancer cell line Az521 increased its migratory and invasive potential in vitro. Syntenin-expressing MCF7 cells were associated with the appearance of numerous cell surface extensions and with pseudopodia formation on collagen I, suggesting that syntenin may be involved in the signaling cascade to actin-reorganization. Mutation study suggested that PDZ2 domain of syntenin could be an essential role in its stimulatory effect on the cell migration. This is the first demonstration that syntenin, a PDZ motif-containing protein, can be overexpressed during the metastatic progression of human breast and gastric cancer cells and that it can function as a metastasis-inducing gene.
Collapse
Affiliation(s)
- Tae Hyeon Koo
- Anti-Cancer Research Laboratory, Korea Research Institute of Bioscience and Biotechnology, P.O. Box 115, Yuseong, Daejeon 305-600, Korea
| | | | | | | | | | | |
Collapse
|