1
|
Mulligan JK, O’Connell BP, Pasquini W, Mulligan RM, Smith S, Soler ZM, Atkinson C, Schlosser RJ. Impact of tobacco smoke on upper airway dendritic cell accumulation and regulation by sinonasal epithelial cells. Int Forum Allergy Rhinol 2017; 7:777-785. [PMID: 28574651 PMCID: PMC5544557 DOI: 10.1002/alr.21955] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 04/10/2017] [Accepted: 04/18/2017] [Indexed: 12/11/2022]
Abstract
BACKGROUND In these studies we examined the impact of environmental tobacco smoke (ETS) and active smoking on sinonasal dendritic cell (DC) subsets in controls or patients with chronic rhinosinusitis with nasal polyps (CRSwNP). In subsequent in-vitro investigations, we examined the influence of cigarette smoke extract (CSE) on human sinonasal epithelial cells' (HSNECs) ability to regulate DC functions. METHODS Sinonasal tissue, blood, and hair were collected from patients undergoing sinus surgery. Smoking status and ETS exposure were determined by hair nicotine. DC subsets were examined by flow cytometric analysis. Monocyte-derived dendritic cells (moDCs) were treated with conditioned medium from non-smoked-exposed HSNECs (NS-HSNECs) or cigarette-smoke-extract-exposed HSNECs (CSE-HSNECs) to assess the impact of CSE exposure on HSNEC regulation of moDC functions. RESULTS Control subjects who were active smokers displayed increased sinonasal moDC and myeloid dendritic 1 (mDC1) cells and reduced mDC2 cells, whereas, in CRSwNP patients, only moDC and mDC2 cells were altered. ETS was found to increase only moDCs in the CRSwNP patients. In vitro, CSE stimulated HSNEC secretion of the moDC regulatory products chemokine (C-C motif) ligand 20, prostaglandin E2 , and granulocyte-macrophage colony-stimulating factor. CSE exposure also promoted HSNECs to stimulate monocyte and moDC migration. moDCs treated with CSE-HSNEC media stimulated an increase in antigen uptake and expression of CD80 and CD86. Last, CSE-HSNEC-treated moDCs secreted increased levels of interleukin-10, interferon-γ, and thymic stromal lymphopoietin. CONCLUSION Active smoking, and to a lesser degree ETS, alters the sinonasal composition of DCs. A potential mechanism to account for this is that cigarette smoke stimulates HSNECs to induce moDC migration, maturation, and activation.
Collapse
Affiliation(s)
- Jennifer K. Mulligan
- Department of Otolaryngology-Head & Neck Surgery, Medical University of South Carolina, Charleston, South Carolina
- Department of Pediatrics, Medical University of South Carolina, Charleston, South Carolina
| | - Brendan P. O’Connell
- Department of Otolaryngology-Head & Neck Surgery, Medical University of South Carolina, Charleston, South Carolina
| | - Whitney Pasquini
- Department of Otolaryngology-Head & Neck Surgery, Medical University of South Carolina, Charleston, South Carolina
| | - Ryan M. Mulligan
- Department of Otolaryngology-Head & Neck Surgery, Medical University of South Carolina, Charleston, South Carolina
| | - Sarah Smith
- Department of Otolaryngology-Head & Neck Surgery, Medical University of South Carolina, Charleston, South Carolina
| | - Zachary M. Soler
- Department of Otolaryngology-Head & Neck Surgery, Medical University of South Carolina, Charleston, South Carolina
| | - Carl Atkinson
- Department of Microbiology & Immunology, Medical University of South Carolina, Charleston, South Carolina
- Department of Surgery, Medical University of South Carolina, Charleston, South Carolina
| | - Rodney J. Schlosser
- Department of Otolaryngology-Head & Neck Surgery, Medical University of South Carolina, Charleston, South Carolina
- Ralph H. Johnson VA Medical Center, Charleston, South Carolina
| |
Collapse
|
2
|
Tang J, Tian D, Liu G. Immunosuppressive Effect of Cordyceps CS-4 on Human Monocyte-Derived Dendritic Cellsin Vitro. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2012; 38:961-72. [PMID: 20821826 DOI: 10.1142/s0192415x1000838x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Cordyceps CS-4 (C.CS-4), a vegetative form of Cordyceps that contains the same active compounds as the fruit body, is widely used as a substitute of Cordyceps in China. A number of studies have shown that Cordyceps can positively stimulate the activation of T lymphocytes, B lymphocytes, natural killer cells, and macrophages. In our previous study, we found that C.CS-4 could inhibit the proliferation of CD4+ T cells in autoimmune diseases and prevent the lymphocyte infiltration in tissues. However, it is still unclear how the lymphocytes are regulated by C.CS-4. In this study, we investigate the effect of C.CS-4 on human monocyte-derived dendritic cells ( Mo -DCs), which are generated from PBMCs by the treatment with GM-CSF and IL-4. It is observed that Mo -DCs pretreated with C.CS-4 show an immature phenotype. Moreover, C.CS-4 significantly inhibits proliferation of CD4+ T cells, attenuates the production of cytokines in Mo -DCs and balances the Th1 and Th2 response in immune system. Our findings indicate that C.CS-4 exerts the immunosuppressive effect through inhibiting the CD4+ T cells proliferation, regulating cytokine secretions of Th1 and Th2 response ( Mo -DCs) and inducing phenotypic immature of Mo -DCs which may be related to the antigen presenting dysfunction.
Collapse
Affiliation(s)
- Jing Tang
- Department of Pharmacy, Shanghai First People's Hospital, Shanghai Jiao Tong University, Shanghai 200080, China
| | - Dan Tian
- Department of Pathology, Shanghai First People's Hospital, Shanghai Jiao Tong University, Shanghai 200080, China
| | - Gaolin Liu
- Department of Pharmacy, Shanghai First People's Hospital, Shanghai Jiao Tong University, Shanghai 200080, China
| |
Collapse
|
3
|
Mortaz E, Lazar Z, Koenderman L, Kraneveld AD, Nijkamp FP, Folkerts G. Cigarette smoke attenuates the production of cytokines by human plasmacytoid dendritic cells and enhances the release of IL-8 in response to TLR-9 stimulation. Respir Res 2009; 10:47. [PMID: 19515231 PMCID: PMC2701931 DOI: 10.1186/1465-9921-10-47] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2008] [Accepted: 06/10/2009] [Indexed: 12/02/2022] Open
Abstract
Myeloid and plasmacytoid dendritic cells (mDCs, pDC) are crucial to the immune system, detecting microorganisms and linking the innate and adaptive immunity. pDC are present in small quantities in tissues that are in contact with the external environment; mainly the skin, the inner lining of the nose, lungs, stomach and intestines. They produce large amounts of IFN-α after stimulation and are pivotal for the induction of antiviral responses. Chronic obstructive pulmonary disease (COPD) patients are known to be more susceptible to viral infections. We have demonstrated that exposure of mDC to cigarette smoke extract (CSE) leads to the release of chemokines, however, not much is known about the role of pDC in COPD. In this study, we addressed several key questions with respect to the mechanism of action of CSE on human pDC in an in vitro model. Human pDCs were isolated from normal healthy volunteers and subjected to fresh CSE and the levels of IL-8, TNF-α, IP-10, IL-6, IL-1, IL-12 and IL-10 and IFN-α were studied by both ELISA and real time PCR methods. We observed that CSE augmented the production of IL-8 and suppressed the release of TNF-α, IL-6 and IFN-α. Moreover, CSE suppressed PI3K/Akt signalling in pDC. In conclusion, our data indicate that CSE has both the potential to diminish anti-viral immunity by downregulating the release of IFN-α and other pro-inflammatory cytokines while, at the same time, augmenting the pathogenesis of COPD via an IL-8 induced recruitment of neutrophils.
Collapse
Affiliation(s)
- Esmaeil Mortaz
- Division of Pharmacology and Pathophysiology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands.
| | | | | | | | | | | |
Collapse
|
4
|
Mortaz E, Kraneveld AD, Smit JJ, Kool M, Lambrecht BN, Kunkel SL, Lukacs NW, Nijkamp FP, Folkerts G. Effect of cigarette smoke extract on dendritic cells and their impact on T-cell proliferation. PLoS One 2009; 4:e4946. [PMID: 19293939 PMCID: PMC2655711 DOI: 10.1371/journal.pone.0004946] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2008] [Accepted: 01/20/2009] [Indexed: 12/13/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is characterized by chronic airway inflammation. Cigarette smoke has been considered a major player in the pathogenesis of COPD. The inflamed airways of COPD patients contain several inflammatory cells including neutrophils, macrophages,T lymphocytes, and dendritic cells (DCs). The relative contributions of these various inflammatory cells to airway injury and remodeling are not well documented. In particular, the potential role of DCs as mediators of inflammation in the smoker's airways and COPD patients is poorly understood. In the current study we analyzed the effects of cigarette smoke extract on mouse bone marrow derived DC and the production of chemokines and cytokines were studied. In addition, we assessed CSE-induced changes in cDC function in the mixed lymphocyte reaction (MLR) examining CD4+ and CD8+ T cell proliferation. Cigarette smoke extract induces the release of the chemokines CCL3 and CXCL2 (but not cytokines), via the generation of reactive oxygen species (ROS). In a mixed-leukocyte reaction assay, cigarette smoke-primed DCs potentiate CD8(+)T cell proliferation via CCL3. In contrast, proliferation of CD4(+)T cells is suppressed via an unknown mechanism. The cigarette smoke-induced release of CCL3 and CXCL2 by DCs may contribute to the influx of CD8(+)T cells and neutrophils into the airways, respectively.
Collapse
Affiliation(s)
- Esmaeil Mortaz
- Division of Pharmacology and Pathophysiology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Hoffmann HJ, Skjold T, Raithel M, Adolf K, Hilberg O, Dahl R. Response of Respiratory Flour Allergics in an Ingested Flour Challenge May Involve Plasmacytoid Dendritic Cells, CD25+ and CD152+ T Cells. Int Arch Allergy Immunol 2006; 140:252-60. [PMID: 16691032 DOI: 10.1159/000093251] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2005] [Accepted: 01/18/2006] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND A number of occupational respiratory allergens are food related, and little is known about the responses these allergens elicit in sensitized persons that ingest them. METHODS Nine respiratory flour-allergic volunteers were exposed in a double-blind placebo-controlled food challenge with flour. Responses were monitored by spirometry, acoustic rhinometry, determination of urinary methyl histamine and tryptase and flow cytometric evaluation of basophil, dendritic and T cell numbers and markers. RESULTS Significant increases in serum tryptase (compared with placebo post-exposure levels) and methyl histamine and a coordinated decrease in blood basophils and nasal volume after ingestion of allergen compared with placebo suggest an allergic response to ingested allergen. There was no change in forced expiratory volume in 1 s. The number of blood plasmacytoid dendritic cells (DC), but not of myeloid DC, decreased after exposure (p = 0.001). DC HLA DR was reduced after both exposures (p < 0.001). Expression of CXCR4 on DC was reduced after allergen (p = 0.033) but not after placebo exposure. CD4+ T cell expression of CD25 was elevated after placebo (p = 0.021) but reduced after allergen provocation. The reduction in CD25 expression after allergen compared with placebo was significant (p = 0.024). CD152 was downregulated on these cells after allergen (p = 0.039) but less so after placebo exposure. CONCLUSION Persons with respiratory allergy respond after ingestion of the relevant allergen. Response to this allergen challenge may selectively recruit plasmacytoid DC through CXCR4 and T cells expressing CD25 and CD152, which may be a regulatory phenotype.
Collapse
Affiliation(s)
- Hans Jurgen Hoffmann
- Department of Respiratory Diseases, Aarhus University Hospital, Aarhus, Denmark.
| | | | | | | | | | | |
Collapse
|
6
|
Abstract
Studies in mouse models of asthma have revealed a critical role for airway dendritic cells in the induction of Th2 sensitization to inhaled allergens. Under some conditions, subsets of dendritic cells can also induce tolerance or Th1 responses to the same allergens, depending on the context in which the antigen is seen. This article discusses various aspects of DC biology as it relates to allergic sensitization and also provides a summary of the recent evidence that dendritic cells function beyond sensitization.
Collapse
Affiliation(s)
- B N Lambrecht
- Department of Pulmonary Medicine, Erasmus MC Rotterdam, Dr Molewaterplein 50, Rotterdam, The Netherlands
| |
Collapse
|
7
|
de Heer HJ, Hammad H, Soullié T, Hijdra D, Vos N, Willart MAM, Hoogsteden HC, Lambrecht BN. Essential role of lung plasmacytoid dendritic cells in preventing asthmatic reactions to harmless inhaled antigen. ACTA ACUST UNITED AC 2004; 200:89-98. [PMID: 15238608 PMCID: PMC2213319 DOI: 10.1084/jem.20040035] [Citation(s) in RCA: 638] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Tolerance is the usual outcome of inhalation of harmless antigen, yet T helper (Th) type 2 cell sensitization to inhaled allergens induced by dendritic cells (DCs) is common in atopic asthma. Here, we show that both myeloid (m) and plasmacytoid (p) DCs take up inhaled antigen in the lung and present it in an immunogenic or tolerogenic form to draining node T cells. Strikingly, depletion of pDCs during inhalation of normally inert antigen led to immunoglobulin E sensitization, airway eosinophilia, goblet cell hyperplasia, and Th2 cell cytokine production, cardinal features of asthma. Furthermore, adoptive transfer of pDCs before sensitization prevented disease in a mouse asthma model. On a functional level, pDCs did not induce T cell division but suppressed the generation of effector T cells induced by mDCs. These studies show that pDCs provide intrinsic protection against inflammatory responses to harmless antigen. Therapies exploiting pDC function might be clinically effective in preventing the development of asthma.
Collapse
Affiliation(s)
- Hendrik Jan de Heer
- Department of Pulmonary Medicine, Erasmus Medical Center, Dr. Molewaterplein 50, 3015 GE Rotterdam, Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Novak N, Allam JP, Betten H, Haberstok J, Bieber T. The role of antigen presenting cells at distinct anatomic sites: they accelerate and they slow down allergies. Allergy 2004; 59:5-14. [PMID: 14674927 DOI: 10.1046/j.1398-9995.2003.00337.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
It has been repeatedly demonstrated that allergic reactions are driven by the continuous flow of antigen uptake and presentation processes, which are perpetuated mainly by dendritic cells (DC). The ability of allergens to cause allergic inflammation is contingent upon the presence of an immunological milieu and microenvironment that either privileges Th2 responses or prohibits these reactions by the induction of contraregulatory anti-inflammatory activities of the immune system. In the light of recent developments it appears that DC have to manage two opposing tasks: on the one hand they can favor pro-inflammatory reactions and actively induce a T-cell response, yet on the other hand they serve an important function as 'silencers' in the immune system by sending out anti-inflammatory, tolerance inducing signals. This unique capacity of DC has opened several exciting possibilities for a role of DC in both - accelerating and slowing down allergic reactions. It is therefore a challenge to understand in which way DC subtypes located at distinct anatomic sites with frequent allergen exposure, such as the skin, the nasal mucosa, the respiratory tree or the mucosa of the intestinal tract can have an impact on mechanisms involved in tolerance induction or effective immunity.
Collapse
Affiliation(s)
- N Novak
- Department of Dermatology, University of Bonn, Germany
| | | | | | | | | |
Collapse
|
9
|
Hagendorens MM, Ebo DG, Schuerwegh AJ, Huybrechs A, Van Bever HP, Bridts CH, De Clerck LS, Stevens WJ. Differences in circulating dendritic cell subtypes in cord blood and peripheral blood of healthy and allergic children. Clin Exp Allergy 2003; 33:633-9. [PMID: 12752592 DOI: 10.1046/j.1365-2222.2003.01649.x] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Different types of circulating dendritic cells have been described. Dendritic cells influence differentiation of naive T lymphocytes into T helper type 1 (Th1) and Th2 effector cells. OBJECTIVE The purpose of this study was to evaluate the number of circulating DC subtypes in peripheral blood of allergic and healthy children and in cord blood of neonates from allergic and non-allergic parents. METHODS Circulating dendritic cells were flow cytometrically identified in whole blood samples as lineage (CD3, CD14, CD16, CD19, CD20, CD56) negative, CD34 negative and HLA-DR-positive cells. According to the expression of CD123 and CD11c, different DC subtypes were identified. RESULTS Apart from DC1 (CD11c+ CD123dim+) and DC2 (CD11c- CD123high+), a third DC population was described with less differentiated phenotypic characteristics, namely CD11c- CD123dim+, and therefore defined here as less differentiated DC (ldDC). These ldDC represented the major DC population in cord blood and showed an age-depended decrease. The highest level of ldDC was detected in children with atopic dermatitis, whereas asthmatic children showed the lowest ldDC counts. Furthermore, high-dose inhaled corticosteroid treatment in asthmatic children was related to a decreased ldDC number. The number of circulating DC2 was significantly lower in allergic children, especially in asthmatics, compared to healthy children. In cord blood, no differences in DC subtypes were detectable between neonates at low and high risk for allergic disorders. CONCLUSION These results indicate that, apart from DC1 and DC2, a third population of dendritic cells, identified as CD11c- CD123dim+ cells and defined as less differentiated DC, must be considered in the evaluation of circulating DC. Furthermore, DC2 counts were decreased in allergic children, especially in asthmatics, which might be the consequence of an increased recruitment to the target organs.
Collapse
Affiliation(s)
- M M Hagendorens
- Department of Pediatrics, University of Antwerp, Antwerp, Belgium
| | | | | | | | | | | | | | | |
Collapse
|