1
|
Effect of Omega-3 or Omega-6 Dietary Supplementation on Testicular Steroidogenesis, Adipokine Network, Cytokines, and Oxidative Stress in Adult Male Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5570331. [PMID: 34257810 PMCID: PMC8260291 DOI: 10.1155/2021/5570331] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/15/2021] [Accepted: 06/09/2021] [Indexed: 11/17/2022]
Abstract
This study was undertaken to elucidate the effect of omega-3 and omega-6 supplementation on the levels of different adipokines and cytokines, as well as the antioxidant system, in relation to male reproductive hormones and testicular functions. Adult male Sprague-Dawley rats were daily gavaged with either physiological saline (control group), sunflower oil (omega 6 group; 1 mL/kg body weight), or fish oil (omega-3 group; 1000 mg/kg body weight) for 12 weeks. The administration of omega-3 or omega-6 resulted in decreased serum concentrations of kisspeptin 1, gonadotropin-releasing hormone, luteinizing hormone, follicle-stimulating hormone, and testosterone. In addition, it downregulated the mRNA expression levels of steroidogenic genes. The intratesticular levels of apelin, adiponectin, and irisin were elevated while chemerin, leptin, resistin, vaspin, and visfatin were declined following the administration of either omega-3 or omega-6. The testicular concentration of interleukin 10 was increased while interleukin 1 beta, interleukin 6, tumor necrosis factor α, and nuclear factor kappa B were decreased after consumption of omega-3 or omega-6. In the testes, the levels of superoxide dismutase, catalase, glutathione peroxidase 1, and the total antioxidant capacity were improved. In conclusion, the administration of omega-3 or omega-6 adversely affects the process of steroidogenesis but improves the antioxidant and anti-inflammatory status of the reproductive system via modulating the levels of testicular adipokines.
Collapse
|
2
|
Ribeiro AB, Leite CM, Kalil B, Franci CR, Anselmo-Franci JA, Szawka RE. Kisspeptin regulates tuberoinfundibular dopaminergic neurones and prolactin secretion in an oestradiol-dependent manner in male and female rats. J Neuroendocrinol 2015; 27:88-99. [PMID: 25453900 DOI: 10.1111/jne.12242] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Revised: 10/20/2014] [Accepted: 11/26/2014] [Indexed: 12/11/2022]
Abstract
Prolactin (PRL) secretion is inhibited by hypothalamic dopamine. Kisspeptin controls luteinising hormone (LH) secretion and is also involved in PRL regulation. We further investigated the effect of kisspeptin-10 (Kp-10) on the activity of tuberoinfundibular dopaminergic (TIDA) neurones and the role of oestradiol (E2 ) in this mechanism. Female and male rats were injected with i.c.v. Kp-10 and evaluated for PRL release and the activity of dopamine terminals in the median eminence (ME) and neurointermediate lobe of the pituitary (NIL). Kp-10 at the doses of 0.6 and 3 nmol increased plasma PRL and decreased 4-dihydroxyphenylacetic acid (DOPAC) levels in the ME and NIL of ovariectomised (OVX), E2 -treated rats but had no effect in OVX. In gonad-intact males, 3 nmol Kp-10 increased PRL secretion and decreased DOPAC levels in the ME but not in the NIL. Castrated males treated with either testosterone or E2 also displayed increased PRL secretion and reduced ME DOPAC in response to Kp-10, whereas castrated rats receiving oil or dihydrotestosterone were unresponsive. By contrast, the LH response to Kp-10 was not E2 -dependent in either females or males. Additionally, immunohistochemical double-labelling demonstrated that TIDA neurones of male rats contain oestrogen receptor (ER)-α, with a higher proportion of neurones expressing ERα than in dioestrous females. The dopaminergic neurones of periventricular hypothalamic nucleus displayed much lower ERα expression. Thus, TIDA neurones express ERα in male and female rats, and kisspeptin increases PRL secretion through inhibition of TIDA neurones in an E2 -dependent manner in both sexes. These findings provide new evidence about the role of kisspeptin in the regulation of dopamine and PRL.
Collapse
Affiliation(s)
- A B Ribeiro
- Departamento de Fisiologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | | | | | | | | | | |
Collapse
|
3
|
Local transformations of androgens into estradiol by aromatase P450 is involved in the regulation of prolactin and the proliferation of pituitary prolactin-positive cells. PLoS One 2014; 9:e101403. [PMID: 24978194 PMCID: PMC4076335 DOI: 10.1371/journal.pone.0101403] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 06/05/2014] [Indexed: 01/24/2023] Open
Abstract
In previous studies we demonstrated the immunohistochemical expression of aromatase in pituitary cells. In order to determine whether pituitary aromatase is involved in the paracrine regulation of prolactin-producing pituitary cells and the physiological relevance of pituitary aromatase in the control of these cells, an in vivo and in vitro immunocytochemical and morphometric study of prolactin-positive pituitary cells was carried out on the pituitary glands of adult male rats treated with the aromatase antagonist fadrozole. Moreover, we analyzed the expression of mRNA for the enzyme in pituitary cells of male adult rats by in situ hybridization. The aromatase-mRNA was seen to be located in the cytoplasm of 41% of pituitary cells and was well correlated with the immunocytochemical staining. After in vivo treatment with fadrozole, the size (cellular and nuclear areas) of prolactin cells, as well as the percentage of prolactin-positive cells and the percentage of proliferating-prolactin cells, was significantly decreased. Moreover, fadrozole decreased serum prolactin levels. In vitro, treatment with fadrozole plus testosterone induced similar effects on prolactin-positive cells, inhibiting their cellular proliferation. Our results suggest that under physiological conditions aromatase P450 exerts a relevant control over male pituitary prolactin-cells, probably transforming testosterone to estradiol in the pituitary gland.
Collapse
|
4
|
Hikake T, Hayashi S, Chambon P, Watanabe H, Iguchi T, Sato T. Differential involvement of insulin-like growth factor-I and estrogen on prolactin cells in the mouse anterior pituitary. Exp Biol Med (Maywood) 2010; 235:974-80. [PMID: 20576740 DOI: 10.1258/ebm.2010.009396] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Estrogen and insulin-like growth factor-I (IGF-I) stimulate prolactin (PRL) production, release and proliferation of PRL-producing cells (PRL cells) in the anterior pituitary. PRL cells in adult estrogen receptor alpha (ERalpha) knockout (alphaERKO) mice and IGF-I knockout (IGF-IKO) mice are decreased considerably in number. To investigate a correlation between 17beta-estradiol (E2) and IGF-I on PRL production, IGF-I wild-type (WT) or IGF-IKO mice were ovariectomized at day 8 and the number of PRL cells was examined at days 20 and 60. Although PRL cell number at day 20 and WT or IGF-IKO mice ovariectomized at day 8 was similar to that in intact WT or IGF-IKO mice, PRL cells in adult WT or IGF-IKO mice ovariectomized at day 8 were significantly decreased as compared with those in intact WT or IGF-IKO mice. Therefore, estrogen is essential for PRL cell differentiation between days 20 and 60, regardless of IGF-I. While PRL cells in WT ovariectomized mice increased from days 20 to 60, those in IGF-IKO ovariectomized mice did not increase, suggesting that IGF-I modified PRL cell differentiation after day 20. ICI 182,780 (anti-estrogen) treatment canceled an increase of PRL cells in 30-day-old ovariectomized WT mice, indicating that the presence of ERalpha is important. The number of PRL cells in alphaERKO mice was similar to that in WT mice at day 20; however, PRL cells in alphaERKO mice at day 60 were not increased in number from day 20, supporting the idea that estrogen is essential for PRL cell differentiation after day 20. Finally, the percentage of PRL cells in IGF-IKO mice was decreased as compared with that in WT mice at day 20; therefore, IGF-I affects PRL cells before day 20. In conclusion, PRL cell differentiation is differently regulated by E2 and IGF-I depending on the age.
Collapse
|
5
|
Chiu YW, Huang CT, Chuang HY, Chang YT, Wu MT, Liu HW. Sex Differences in Metabolic Morbidities: Influenced by Diet or Exercise Habits? Kaohsiung J Med Sci 2009; 25:647-55. [DOI: 10.1016/s1607-551x(09)70570-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
6
|
Console GM, Herenu CB, Camihort GA, Luna GC, Bracamonte MI, Morel GR, Goya RG. Insulin-like growth factor-I gene therapy reverses morphologic changes and reduces hyperprolactinemia in experimental rat prolactinomas. Mol Cancer 2008; 7:13. [PMID: 18218140 PMCID: PMC2263076 DOI: 10.1186/1476-4598-7-13] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2007] [Accepted: 01/25/2008] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND The implementation of gene therapy for the treatment of pituitary tumors emerges as a promising complement to surgery and may have distinct advantages over radiotherapy for this type of tumors. Up to now, suicide gene therapy has been the main experimental approach explored to treat experimental pituitary tumors. In the present study we assessed the effectiveness of insulin-like growth factor I (IGF-I) gene therapy for the treatment of estrogen-induced prolactinomas in rats. RESULTS Female Sprague Dawley rats were subcutaneously implanted with silastic capsules filled with 17-beta estradiol (E2) in order to induce pituitary prolactinomas. Blood samples were taken at regular intervals in order to measure serum prolactin (PRL). As expected, serum PRL increased progressively and 23 days after implanting the E2 capsules (Experimental day 0), circulating PRL had undergone a 3-4 fold increase. On Experimental day 0 part of the E2-implanted animals received a bilateral intrapituitary injection of either an adenoviral vector expressing the gene for rat IGF-I (RAd-IGFI), or a vector (RAd-GFP) expressing the gene for green fluorescent protein (GFP). Seven days post vector injection all animals were sacrificed and their pituitaries morphometrically analyzed to evaluate changes in the lactotroph population. RAd-IGFI but not RAd-GFP, induced a significant fall in serum PRL. Furthermore, RAd-IGFI but not RAd-GFP significantly reversed the increase in lactotroph size (CS) and volume density (VD) induced by E2 treatment. CONCLUSION We conclude that IGF-I gene therapy constitutes a potentially useful intervention for the treatment of prolactinomas and that bioactive peptide gene delivery may open novel therapeutic avenues for the treatment of pituitary tumors.
Collapse
Affiliation(s)
- Gloria M Console
- Department of Cytology, Histology & Embryology B-CICBA, National University of La Plata, CC455; (1900) La Plata, Argentina
| | - Claudia B Herenu
- INIBIOLP, Faculty of Medicine, National University of La Plata, CC455; (1900) La Plata, Argentina
| | - Gisela A Camihort
- Department of Cytology, Histology & Embryology B-CICBA, National University of La Plata, CC455; (1900) La Plata, Argentina
| | - Georgina C Luna
- Department of Cytology, Histology & Embryology B-CICBA, National University of La Plata, CC455; (1900) La Plata, Argentina
| | - Maria I Bracamonte
- Department of Cytology, Histology & Embryology B-CICBA, National University of La Plata, CC455; (1900) La Plata, Argentina
| | - Gustavo R Morel
- INIBIOLP, Faculty of Medicine, National University of La Plata, CC455; (1900) La Plata, Argentina
| | - Rodolfo G Goya
- INIBIOLP, Faculty of Medicine, National University of La Plata, CC455; (1900) La Plata, Argentina
| |
Collapse
|
7
|
Côté G, Perry G, Blier P, Bernatchez L. The influence of gene-environment interactions on GHR and IGF-1 expression and their association with growth in brook charr, Salvelinus fontinalis (Mitchill). BMC Genet 2007; 8:87. [PMID: 18154679 PMCID: PMC2257973 DOI: 10.1186/1471-2156-8-87] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2007] [Accepted: 12/21/2007] [Indexed: 12/04/2022] Open
Abstract
Background Quantitative reaction norm theory proposes that genotype-by-environment interaction (GxE) results from inter-individual differences of expression in adaptive suites of genes in distinct environments. However, environmental norms for actual gene suites are poorly documented. In this study, we investigated the effects of GxE interactions on levels of gene transcription and growth by documenting the impact of rearing environment (freshwater vs. saltwater), sex and genotypic (low vs. high estimated breeding value EBV) effects on the transcription level of insulin-like growth factor (IGF-1) and growth hormone receptor (GHR) in brook charr (Salvelinus fontinalis). Results Males grew faster than females (μ♀ = 1.20 ± 0.07 g·d-1, μ♂ = 1.46 ± 0.06 g·d-1) and high-EBV fish faster than low-EBV fish (μLOW = 0.97 ± 0.05 g·d-1, μHIGH = 1.58 ± 0.07 g·d-1; p < 0.05). However, growth was markedly lower in saltwater-reared fish than freshwater sibs (μFW = 1.52 ± 0.07 g·d-1, μSW = 1.15 ± 0.06 g·d-1), yet GHR mRNA transcription level was significantly higher in saltwater than in freshwater (μSW = 0.85 ± 0.05, μFW = 0.61 ± 0.05). The ratio of actual growth to units in assayed mRNA ('individual transcript efficiency', iTE; g·d-1·u-1) also differed among EBV groups (μLOW = 2.0 ± 0.24 g·d-1·u-1; μHIGH = 3.7 ± 0.24 g·d-1·u-1) and environments (μSW = 2.0 ± 0.25 g·d-1·u-1; μFW = 3.7 ± 0.25 g·d-1·u-1) for GHR. Males had a lower iTE for GHR than females (μ♂ = 2.4 ± 0.29 g·d-1·u-1; μ♀ = 3.1 ± 0.23 g·d-1·u-1). There was no difference in IGF-1 transcription level between environments (p > 0.7) or EBV groups (p > 0.15) but the level of IGF-1 was four times higher in males than females (μ♂ = 2.4 ± 0.11, μ♀ = 0.58 ± 0.09; p < 0.0001). We detected significant sexual differences in iTE (μ♂ = 1.3 ± 0.59 g·d-1·u-1; μ♀ = 3.9 ± 0.47 g·d-1·u-1), salinities (μSW = 2.3 ± 0.52 g·d-1·u-1; μFW = 3.7 ± 0.53 g·d-1·u-1) and EBV-groups (μLOW = 2.4 ± 0.49 g·d-1·u-1; μHIGH = 3.8 ± 0.49 g·d-1·u-1). Interaction between EBV-group and environment was detected for both GHR (p = 0.027) and IGF-1 (p = 0.019), and for iTE in the two genes (p < 0.0001; p < 0.05, respectively), where increased divergence in levels of GHR and IGF-1 transcription occurred among EBV-groups in the saltwater environment. Conclusion Our results show that both environment and sex have major impacts on the expression of mRNA for two key genes involved in the physiological pathway for growth. We also demonstrate for the first time, at least in fish, genotype-by-environment interaction at the level of individual gene transcription. This work contributes significantly to ongoing efforts towards documenting environmentally and sexually induced variance of gene activity and understanding the resulting phenotypes.
Collapse
Affiliation(s)
- Guillaume Côté
- Département de biologie, Université Laval, Québec, Québec, Canada.
| | | | | | | |
Collapse
|
8
|
Weiss JM, Stojilkovic SS, Diedrich K, Ortmann O. Effects of testosterone on hormonal content and calcium-dependent basal secretion in female rat pituitary cells. J Steroid Biochem Mol Biol 2007; 103:149-57. [PMID: 17084076 DOI: 10.1016/j.jsbmb.2006.09.038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2006] [Accepted: 09/14/2006] [Indexed: 10/24/2022]
Abstract
In vivo and in vitro effects of elevated androgens on agonist-induced gonadotropin secretion have been addressed previously. Here we investigated the effects of testosterone on hormonal content and basal (in the absence of agonists) hormone release in pituitary lactotrophs, somatotrophs and gonadotrophs from female rats. Furthermore we tested the hypothesis that testosterone action is dependent on the pattern of spontaneous and Bay K 8644 (a L-type calcium channel agonist) -induced calcium signalling. Mixed anterior pituitary cells were cultured in steroid containing or depleted media, and testosterone (1pM to 10nM) was added for 48h. Cells were studied for their spontaneous and Bay K 8644-induced calcium signalling pattern and total hormone levels (release and hormonal content). In lactotrophs, somatotrophs and gonadotrophs testosterone did not affect the pattern of spontaneous calcium signalling. Bay K 8644-induced calcium signalling and hormone release were not affected by testosterone. In both steroid-depleted and -containing medium, testosterone inhibited prolactin (PRL), luteinizing hormone (LH) and growth hormone (GH) cellular content and release in a dose-dependent manner, with IC(50)s in a sub-nanomolar concentration range. These results indicate that testosterone inhibits basal hormone release from lactotrophs, somatotrophs and gonadotrophs without affecting intracellular calcium signalling. This action of testosterone is not dependent on the presence of other steroid hormones.
Collapse
Affiliation(s)
- Juergen M Weiss
- Department of Obstetrics and Gynecology, Medical University Luebeck, Ratzeburger Allee 160, 23538 Luebeck, Germany.
| | | | | | | |
Collapse
|
9
|
McArthur S, Siddique ZL, Christian HC, Capone G, Theogaraj E, John CD, Smith SF, Morris JF, Buckingham JC, Gillies GE. Perinatal glucocorticoid treatment disrupts the hypothalamo-lactotroph axis in adult female, but not male, rats. Endocrinology 2006; 147:1904-15. [PMID: 16439449 DOI: 10.1210/en.2005-1496] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
This study aimed to test the hypothesis that the tuberoinfundibular dopaminergic neurons of the arcuate nucleus and/or the lactotroph cells of the anterior pituitary gland are key targets for the programming effects of perinatal glucocorticoids (GCs). Dexamethasone was administered noninvasively to fetal or neonatal rats via the mothers' drinking water (1 mug/ml) on embryonic d 16-19 or neonatal d 1-7, and control animals received normal drinking water. At 68 d of age, the numbers of tyrosine hydroxylase-positive (TH+) cells in the arcuate nucleus and morphometric parameters of pituitary lactotrophs were analyzed. In control animals, striking sex differences in TH+ cell numbers, lactotroph cell size, and pituitary prolactin content were observed. Both pre- and neonatal GC treatment regimens were without effect in adult male rats, but in females, the overriding effect was to abolish the sex differences by reducing arcuate TH+ cell numbers (pre- and neonatal treatments) and reducing lactotroph cell size and pituitary prolactin content (prenatal treatment only) without changing lactotroph cell numbers. Changes in circulating prolactin levels represented a net effect of hypothalamic and pituitary alterations that exhibited independent critical windows of susceptibility to perinatal GC treatments. The dopaminergic neurons of the hypothalamic periventricular nucleus and the pituitary somatotroph populations were not significantly affected by either treatment regimen in either sex. These data show that the adult female hypothalamo-lactotroph axis is profoundly affected by perinatal exposure to GCs, which disrupts the tonic inhibitory tuberoinfundibular dopaminergic pathway and changes lactotroph morphology and prolactin levels in the pituitary and circulation. These findings provide new evidence for a long-term disruption in prolactin-dependent homeostasis in females, but not males, after inappropriate GC exposure in perinatal life.
Collapse
Affiliation(s)
- S McArthur
- Department of Cellular and Molecular Neuroscience, Division of Neuroscience and Mental Health, Imperial College London, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Arroba AI, Frago LM, Argente J, Chowen JA. Oestrogen requires the insulin-like growth factor-I receptor for stimulation of prolactin synthesis via mitogen-activated protein kinase. J Neuroendocrinol 2005; 17:97-104. [PMID: 15796760 DOI: 10.1111/j.1365-2826.2005.01283.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Sex steroids and growth factors interact at the intracellular level in a variety of tissues to control numerous physiological functions. Oestrogen is known to stimulate prolactin synthesis and secretion, but the effect of insulin-like growth factor (IGF)-I is less clear. We used GH3 cells, a somatolactotroph cell line, to study the interaction of 17beta-oestradiol (E(2)) and IGF-I on prolactin protein levels and the intracellular mechanisms involved. Cell cultures were treated with E(2) (10 nM) and/or IGF-I (10 ng/ml) for 8 h. The real-time reverse transcriptase-polymerase chain reaction, Western blot and enzyme-immunoassay were used to determine changes in prolactin mRNA and protein levels. At this time-point, there were no significant changes in cell number, prolactin mRNA expression, or the amount of secreted prolactin. However, E(2) increased intracellular prolactin concentrations. IGF-I alone had no effect, but blocked the stimulatory effect of E(2). MAPK (ERK1/2) activation, as determined by Western blot analysis, increased with both E(2) and IGF-I, but not with the combination of these factors. The MAPK inhibitor PD98059 blocked the ability of E(2) to increase intracellular prolactin concentrations. Similarly, the IGF-I receptor antagonist, JB1, blocked the effect of E(2) on prolactin synthesis and MAPK activation, as did the oestrogen receptor antagonist ICI182 780. These results suggest that, to stimulate prolactin synthesis, E(2) activates the MAPK cascade and that this requires the presence of both oestrogen and IGF-I receptors.
Collapse
Affiliation(s)
- A I Arroba
- Laboratory of Investigation, Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Universidad Autónoma, Madrid, Spain
| | | | | | | |
Collapse
|
11
|
Cardona-Gómez GP, Mendez P, DonCarlos LL, Azcoitia I, Garcia-Segura LM. Interactions of estrogens and insulin-like growth factor-I in the brain: implications for neuroprotection. BRAIN RESEARCH. BRAIN RESEARCH REVIEWS 2001; 37:320-34. [PMID: 11744097 DOI: 10.1016/s0165-0173(01)00137-0] [Citation(s) in RCA: 127] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Data from epidemiological studies suggest that the decline in estrogen following menopause could increase the risk of neurodegenerative diseases. Furthermore, experimental studies on different animal models have shown that estrogen is neuroprotective. The mechanisms involved in the neuroprotective effects of estrogen are still unclear. Anti-oxidant effects, activation of different membrane-associated intracellular signaling pathways, and activation of classical nuclear estrogen receptors (ERs) could contribute to neuroprotection. Interactions with neurotrophins and other growth factors may also be important for the neuroprotective effects of estradiol. In this review we focus on the interaction between insulin-like growth factor-I (IGF-I) and estrogen signaling in the brain and on the implications of this interaction for neuroprotection. During the development of the nervous system, IGF-I promotes the differentiation and survival of specific neuronal populations. In the adult brain, IGF-I is a neuromodulator, regulates synaptic plasticity, is involved in the response of neural tissue to injury and protects neurons against different neurodegenerative stimuli. As an endocrine signal, IGF-I represents a link between the growth and reproductive axes and the interaction between estradiol and IGF-I is of particular physiological relevance for the regulation of growth, sexual maturation and adult neuroendocrine function. There are several potential points of convergence between estradiol and IGF-I receptor (IGF-IR) signaling in the brain. Estrogen activates the mitogen-activated protein kinase (MAPK) pathway and has a synergistic effect with IGF-I on the activation of Akt, a kinase downstream of phosphoinositol-3 kinase. In addition, IGF-IR is necessary for the estradiol induced expression of the anti-apoptotic molecule Bcl-2 in hypothalamic neurons. The interaction of ERs and IGF-IR in the brain may depend on interactions between neural cells expressing ERs with neural cells expressing IGF-IR, or on direct interactions of the signaling pathways of alpha and beta ERs and IGF-IR in the same cell, since most neurons expressing IGF-IR also express at least one of the ER subtypes. In addition, studies on adult ovariectomized rats given intracerebroventricular (i.c.v.) infusions with antagonists for ERs or IGF-IR or with IGF-I have shown that there is a cross-regulation of the expression of ERs and IGF-IR in the brain. The interaction of estradiol and IGF-I and their receptors may be involved in different neural events. In the developing brain, ERs and IGF-IR are interdependent in the promotion of neuronal differentiation. In the adult, ERs and IGF-IR interact in the induction of synaptic plasticity. Furthermore, both in vitro and in vivo studies have shown that there is an interaction between ERs and IGF-IR in the promotion of neuronal survival and in the response of neural tissue to injury, suggesting that a parallel activation or co-activation of ERs and IGF-IR mediates neuroprotection.
Collapse
Affiliation(s)
- G P Cardona-Gómez
- Instituto Cajal, C.S.I.C., Avenida Doctor Arce 37, E-28002, Madrid, Spain
| | | | | | | | | |
Collapse
|