1
|
Kirchner MK, Althammer F, Donaldson KJ, Cox DN, Stern JE. Changes in neuropeptide large dense core vesicle trafficking dynamics contribute to adaptive responses to a systemic homeostatic challenge. iScience 2023; 26:108243. [PMID: 38026155 PMCID: PMC10654599 DOI: 10.1016/j.isci.2023.108243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/28/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
Neuropeptides are packed into large dense core vesicles (LDCVs) that are transported from the soma out into their processes. Limited information exists regarding mechanisms regulating LDCV trafficking, particularly during challenges to bodily homeostasis. Addressing this gap, we used 2-photon imaging in an ex vivo preparation to study LDCVs trafficking dynamics in vasopressin (VP) neurons, which traffic and release neuropeptide from their dendrites and axons. We report a dynamic bidirectional trafficking of VP-LDCVs with important differences in speed and directionality between axons and dendrites. Acute, short-lasting stimuli known to alter VP firing activity and axonal/dendritic release caused modest changes in VP-LDCVs trafficking dynamics. Conversely, chronic/sustained systemic osmotic challenges upregulated VP-LDCVs trafficking dynamic, with a larger effect in dendrites. These results support differential regulation of dendritic and axonal LDCV trafficking, and that changes in trafficking dynamics constitute a novel mechanism by which peptidergic neurons can efficiently adapt to conditions of increased hormonal demand.
Collapse
Affiliation(s)
- Matthew K. Kirchner
- Center for Neuroinflammation and Cardiometabolic Diseases, Georgia State University, Atlanta, GA 30303, USA
- Neuroscience Institute, Georgia State University, Atlanta, GA 30303, USA
| | - Ferdinand Althammer
- Center for Neuroinflammation and Cardiometabolic Diseases, Georgia State University, Atlanta, GA 30303, USA
- Institute of Human Genetics, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Kevin J. Donaldson
- Neuroscience Institute, Georgia State University, Atlanta, GA 30303, USA
- Center for Neuromics, Georgia State University, Atlanta, GA 30303, USA
| | - Daniel N. Cox
- Neuroscience Institute, Georgia State University, Atlanta, GA 30303, USA
- Center for Neuromics, Georgia State University, Atlanta, GA 30303, USA
| | - Javier E. Stern
- Center for Neuroinflammation and Cardiometabolic Diseases, Georgia State University, Atlanta, GA 30303, USA
- Neuroscience Institute, Georgia State University, Atlanta, GA 30303, USA
| |
Collapse
|
2
|
Jiang YH, Li T, Liu Y, Liu X, Jia S, Hou C, Chen G, Wang H, Ling S, Gao Q, Wang XR, Wang YF. Contribution of inwardly rectifying K + channel 4.1 of supraoptic astrocytes to the regulation of vasopressin neuronal activity by hypotonicity. Glia 2023; 71:704-719. [PMID: 36408843 DOI: 10.1002/glia.24306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 11/06/2022] [Accepted: 11/12/2022] [Indexed: 11/22/2022]
Abstract
Astrocytic morphological plasticity and its modulation of adjacent neuronal activity are largely determined by astrocytic volume regulation, in which glial fibrillary acidic protein (GFAP), aquaporin 4 (AQP4), and potassium channels including inwardly rectifying K+ channel 4.1 (Kir4.1) are essential. However, associations of astrocyte-dominant Kir4.1 with other molecules in astrocytic volume regulation and the subsequent influence on neuronal activity remain unclear. Here, we report our study on these issues using primary cultures of rat pups' hypothalamic astrocytes and male adult rat brain slices. In astrocyte culture, hyposmotic challenge (HOC) significantly decreased GFAP monomer expression and astrocytic volume at 1.5 min and increased Kir4.1 expression and inwardly rectifying currents (IRCs) at 10 min. BaCl2 (100 μmol/l) suppressed the HOC-increased IRCs, which was simulated by VU0134992 (2 μmol/l), a Kir4.1 blocker. Preincubation of the astrocyte culture with TGN-020 (10 μmol/l, a specific AQP4 blocker) made the HOC-increased Kir4.1 currents insignificant. In hypothalamic brain slices, HOC initially decreased and then increased the firing rate of vasopressin (VP) neurons in the supraoptic nucleus. In the presence of BaCl2 or VU0134992, HOC-elicited rebound increase in VP neuronal activity was blocked. GFAP was molecularly associated with Kir4.1, which was increased by HOC at 20 min; this increase was blocked by BaCl2 . These results suggest that HOC-evoked astrocytic retraction or decrease in the volume and length of its processes is associated with increased Kir4.1 activity. Kir4.1 involvement in HOC-elicited astrocytic retraction is associated with AQP4 activity and GFAP plasticity, which together determines the rebound excitation of VP neurons.
Collapse
Affiliation(s)
- Yun-Hao Jiang
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Tong Li
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China.,Neuroelectrophysiology Laboratory, School of Mental Health, Qiqihar Medical University, Qiqihar, China
| | - Yang Liu
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Xiaoyu Liu
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Shuwei Jia
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Chunmei Hou
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Guichuan Chen
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Hongyang Wang
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Shuo Ling
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Qiang Gao
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Xiao-Ran Wang
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Yu-Feng Wang
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| |
Collapse
|
3
|
Zhou L, Zhang Y, Lian H, Li Y, Wang Z. Colocalization of dopamine receptors in BDNF-expressing peptidergic neurons in the paraventricular nucleus of rats. J Chem Neuroanat 2020; 106:101794. [PMID: 32315740 DOI: 10.1016/j.jchemneu.2020.101794] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 04/09/2020] [Accepted: 04/10/2020] [Indexed: 01/06/2023]
Abstract
Brain-derived neurotrophic factor (BDNF) in the paraventricular nucleus of the hypothalamus (PVN) can regulate food intake and energy expenditure. However, the regulatory mediator of BDNF-positive neurons in the PVN remains unclear. Recently, widespread expression of the dopamine D1 receptor (DRD1) and D2 receptor (DRD2) has been observed in PVN neurons. We hypothesized that dopamine receptors (DRs) are also expressed in BDNF-positive neurons and mediate the function of BDNF in the PVN. Using multiple immunofluorescence assays combined with confocal microscopy, we found that BDNF-immunoreactive (IR) neurons were widely distributed throughout the PVN in both the magnocellular and parvocellular regions. The BDNF protein was mainly expressed in the somas of neurons. The distribution of DR-IR neurons exhibited a pattern similar to that of BDNF. Nearly all DRD1 and DRD2 expression occurred within BDNF-IR neurons. A large number of tyrosine hydroxylase (TH)-IR fibers innervated the entire PVN. The BDNF-IR neurons were surrounded by TH-IR nerve fibers that were punctiform or shaped like short bars. Additionally, BDNF colocalized with vasopressin-, oxytocin- and corticotrophin releasing hormone-positive neurons in the PVN. The present study suggests that DRs have a potential role in mediating the function of the PVN BDNF neurons. This finding is important for elucidating the central circuitry involved in energy balance.
Collapse
Affiliation(s)
- Li Zhou
- Department of Human Anatomy, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, China
| | - Yang Zhang
- Department of Human Anatomy, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, China
| | - Hui Lian
- Department of Human Anatomy, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, China
| | - Yong Li
- Department of Human Anatomy, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, China
| | - Zhiyong Wang
- Department of Human Anatomy, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, China; Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang 453003, China; Xinxiang Key Laboratory of Molecular Neurology, Xinxiang Medical University, Xinxiang 453003, China.
| |
Collapse
|
4
|
Maynard KR, Hobbs JW, Phan BN, Gupta A, Rajpurohit S, Williams C, Rajpurohit A, Shin JH, Jaffe AE, Martinowich K. BDNF-TrkB signaling in oxytocin neurons contributes to maternal behavior. eLife 2018; 7:33676. [PMID: 30192229 PMCID: PMC6135608 DOI: 10.7554/elife.33676] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Accepted: 09/02/2018] [Indexed: 12/18/2022] Open
Abstract
Brain-derived neurotrophic factor (Bdnf) transcription is controlled by several promoters, which drive expression of multiple transcripts encoding an identical protein. We previously reported that BDNF derived from promoters I and II is highly expressed in hypothalamus and is critical for regulating aggression in male mice. Here we report that BDNF loss from these promoters causes reduced sexual receptivity and impaired maternal care in female mice, which is concomitant with decreased oxytocin (Oxt) expression during development. We identify a novel link between BDNF signaling, oxytocin, and maternal behavior by demonstrating that ablation of TrkB selectively in OXT neurons partially recapitulates maternal care impairments observed in BDNF-deficient females. Using translating ribosome affinity purification and RNA-sequencing we define a molecular profile for OXT neurons and delineate how BDNF signaling impacts gene pathways critical for structural and functional plasticity. Our findings highlight BDNF as a modulator of sexually-dimorphic hypothalamic circuits that govern female-typical behaviors.
Collapse
Affiliation(s)
- Kristen R Maynard
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, United States
| | - John W Hobbs
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, United States
| | - BaDoi N Phan
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, United States
| | - Amolika Gupta
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, United States
| | - Sumita Rajpurohit
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, United States
| | - Courtney Williams
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, United States
| | - Anandita Rajpurohit
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, United States
| | - Joo Heon Shin
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, United States
| | - Andrew E Jaffe
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, United States.,Department of Mental Health, Johns Hopkins University, Baltimore, United States.,Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, United States.,Department of Psychiatry & Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Keri Martinowich
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, United States.,Department of Psychiatry & Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, United States.,Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, United States
| |
Collapse
|
5
|
Jiao R, Cui D, Wang SC, Li D, Wang YF. Interactions of the Mechanosensitive Channels with Extracellular Matrix, Integrins, and Cytoskeletal Network in Osmosensation. Front Mol Neurosci 2017; 10:96. [PMID: 28424587 PMCID: PMC5380722 DOI: 10.3389/fnmol.2017.00096] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 03/21/2017] [Indexed: 01/14/2023] Open
Abstract
Life is maintained in a sea water-like internal environment. The homeostasis of this environment is dependent on osmosensory system translation of hydromineral information into osmotic regulatory machinery at system, tissue and cell levels. In the osmosensation, hydromineral information can be converted into cellular reactions through osmoreceptors, which changes thirst and drinking, secretion of antidiuretic vasopressin (VP), reabsorption of water and salt in the kidneys at systemic level as well as cellular metabolic activity and survival status at tissue level. The key feature of osmosensation is the activation of mechanoreceptors or mechanosensors, particularly transient receptor potential vallinoid (TRPV) and canonical (TRPC) family channels, which increases cytosolic Ca2+ levels, activates osmosensory cells including VP neurons and triggers a series of secondary reactions. TRPV channels are sensitive to both hyperosmotic and hyposmotic stimuli while TRPC channels are more sensitive to hyposmotic challenge in neurons. The activation of TRP channels relies on changes in cell volume, membrane stretch and cytoskeletal reorganization as well as hydration status of extracellular matrix (ECM) and activity of integrins. Different families of TRP channels could be activated differently in response to hyperosmotic and hyposmotic stimuli in different spatiotemporal orders, leading to differential reactions of osmosensory cells. Together, they constitute the osmosensory machinery. The activation of this osmoreceptor complex is also associated with the activity of other osmolarity-regulating organelles, such as water channel protein aquaporins, Na-K-2Cl cotransporters, volume-sensitive anion channels, sodium pump and purinergic receptors in addition to intercellular interactions, typically astrocytic neuronal interactions. In this article, we review our current understandings of the composition of osmoreceptors and the processes of osmosensation.
Collapse
Affiliation(s)
- Runsheng Jiao
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical UniversityHarbin, China
| | - Dan Cui
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical UniversityHarbin, China
| | - Stephani C Wang
- Department of Internal Medicine, Albany Medical CollegeAlbany, NY, USA
| | - Dongyang Li
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical UniversityHarbin, China
| | - Yu-Feng Wang
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical UniversityHarbin, China
| |
Collapse
|
6
|
Effects of High Glucose on Cell Viability and Differentiation in Primary Cultured Schwann Cells: Potential Role of ERK Signaling Pathway. Neurochem Res 2016; 41:1281-90. [PMID: 26915107 DOI: 10.1007/s11064-015-1824-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 12/08/2015] [Accepted: 12/30/2015] [Indexed: 12/13/2022]
Abstract
Diabetic peripheral neuropathy (DPN) is one of the most common complications of diabetes mellitus and hyperglycemia is considered to be the major factor in the development and progression of DPN. Because of the contribution of Schwann cells (SCs) to the pathology of DPN, we investigated the effects of high glucose on cell proliferation, apoptosis and differentiation in primary cultured SCs. Cell Counting Kit-8 (CCK-8) assay and Hoechst staining showed that high glucose inhibited SCs proliferation and increased apoptosis ratio in time and concentration dependent manner. Western blot and real-time quantitative PCR analysis revealed that the major myelin proteins and genes expressions including P0, MAG and Krox-20, were downregulated time dependently in SCs exposed to high glucose from 48 to 96 h. To further elucidate the underlying pathogenic mechanisms, we also explored the role of ERK signaling pathway in high glucose induced SC injury, which has been proved to drive demyelination of peripheral nerves. The western blot analysis showed that compared with control group phosphorylation level of ERK was increased by 14.3 % in SCs exposed to high glucose for 72 h (P < 0.01). Using immunocytochemistry analysis, we observed that the ERK specific inhibitor U0126 blocked the ERK activation induced by high glucose and reversed the inhibitory effect of high glucose on P0 expression. Taken together, these results suggest that high glucose can cause damage in primary cultured SCs and may exert the inhibitory effect on SC differentiation and myelination through ERK signaling activation.
Collapse
|
7
|
Abstract
Complex interactions between the brain and peripheral tissues mediate the effective control of energy balance and body weight. Hypothalamic and hindbrain neural circuits integrate peripheral signals informing the nutritional status of the animal and in response regulate nutrient intake and energy utilization. Obesity and its many medical complications emerge from the dysregulation of energy homeostasis. Excessive weight gain might also arise from alterations in reward systems of the brain that drive consumption of calorie dense, palatable foods in the absence of an energy requirement. Several neurotrophins, most notably brain-derived neurotrophic factor, have been implicated in the molecular and cellular processes underlying body weight regulation. Here, we review investigations interrogating their roles in energy balance and reward centers of the brain impacting feeding behavior and energy expenditure.
Collapse
Affiliation(s)
- M Rios
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, 02111, USA,
| |
Collapse
|
8
|
Wang YF, Sun MY, Hou Q, Hamilton KA. GABAergic inhibition through synergistic astrocytic neuronal interaction transiently decreases vasopressin neuronal activity during hypoosmotic challenge. Eur J Neurosci 2013; 37:1260-9. [PMID: 23406012 DOI: 10.1111/ejn.12137] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Revised: 12/05/2012] [Accepted: 12/19/2012] [Indexed: 11/30/2022]
Abstract
The neuropeptide vasopressin is crucial to mammalian osmotic regulation. Local hypoosmotic challenge transiently decreases and then increases vasopressin secretion. To investigate mechanisms underlying this transient response, we examined the effects of hypoosmotic challenge on the electrical activity of rat hypothalamic supraoptic nucleus (SON) vasopressin neurons using patch-clamp recordings. We found that 5 min exposure of hypothalamic slices to hypoosmotic solution transiently increased inhibitory postsynaptic current (IPSC) frequency and reduced the firing rate of vasopressin neurons. Recovery occurred by 10 min of exposure, even though the osmolality remained low. The γ-aminobutyric acid (GABA)A receptor blocker, gabazine, blocked the IPSCs and the hypoosmotic suppression of firing. The gliotoxin l-aminoadipic acid blocked the increase in IPSC frequency at 5 min and the recovery of firing at 10 min, indicating astrocytic involvement in hypoosmotic modulation of vasopressin neuronal activity. Moreover, β-alanine, an osmolyte of astrocytes and GABA transporter (GAT) inhibitor, blocked the increase in IPSC frequency at 5 min of hypoosmotic challenge. Confocal microscopy of immunostained SON sections revealed that astrocytes and magnocellular neurons both showed positive staining of vesicular GATs (VGAT). Hypoosmotic stimulation in vivo reduced the number of VGAT-expressing neurons, and increased co-localisation and molecular association of VGAT with glial fibrillary acidic protein that increased significantly by 10 min. By 30 min, neuronal VGAT labelling was partially restored, and astrocytic VGAT was relocated to the ventral portion while it decreased in the somatic zone of the SON. Thus, synergistic astrocytic and neuronal GABAergic inhibition could ensure that vasopressin neuron firing is only transiently suppressed under hypoosmotic conditions.
Collapse
Affiliation(s)
- Yu-Feng Wang
- Department of Cellular Biology & Anatomy, Louisiana State University Health Sciences Center, Shreveport, LA, USA.
| | | | | | | |
Collapse
|
9
|
Wang YF, Sun MY, Hou Q, Parpura V. Hyposmolality differentially and spatiotemporally modulates levels of glutamine synthetase and serine racemase in rat supraoptic nucleus. Glia 2013; 61:529-38. [PMID: 23361961 DOI: 10.1002/glia.22453] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Accepted: 11/09/2012] [Indexed: 01/22/2023]
Abstract
Prolonged hyposmotic challenge (HOC) has a dual effect on vasopressin (VP) secretion [Yagil and Sladek (1990) Am J Physiol 258(2 Pt 2):R492-R500]. We describe an electrophysiological correlate of this phenomenon, whereby in vitro HOC transiently reduced the firing activity of VP neurons within the supraoptic nucleus of brain slices, which was followed by a rebound increase of their activity; this was paralleled by changes in the level of proteins relevant to astroglia-neuronal interactions. Hence, in vitro HOC transiently (at 5 min) increased the level of astrocyte-specific glial fibrillary acidic protein (GFAP), which then declined to control or base level (at 20 min); this was blocked by the gliotoxin L-aminoadipic acid, but not by tetanus toxin, which was used to inhibit neurotransmission. Similarly, in vivo HOC led to changes in GFAP level, which after an early increase (10 min) returned to normal (30 min). Immunoassays revealed that neuronal, but not astrocytic, expression of serine racemase (SR) was increased at the late stage of HOC in vivo, whereas at an early stage there was a transient increase in level of the astrocyte-specific glutamine synthetase (GS). Furthermore, there was an increased molecular association between GFAP and GS at 10 min, whereas SR increased its association with the neuronal nuclear antigen NeuN at 30 min. These results suggest that the dual effect of HOC on VP neuronal secretion/activity could be related to metabolic/signaling changes in astrocytes (glutamate-glutamine conversion) and neurons (D-serine synthesis/ammonia production), which may account for the rebound in VP neuronal activity, presumably by promoting the activation of neuronal glutamate receptors.
Collapse
Affiliation(s)
- Yu-Feng Wang
- Department of Cell Biology and Neuroscience, University of California, Riverside, California, USA.
| | | | | | | |
Collapse
|
10
|
Askvig JM, Lo DY, Sudbeck AW, Behm KE, Leiphon LJ, Watt JA. Inhibition of the Jak-STAT pathway prevents CNTF-mediated survival of axotomized oxytocinergic magnocellular neurons in organotypic cultures of the rat supraoptic nucleus. Exp Neurol 2012; 240:75-87. [PMID: 23123407 DOI: 10.1016/j.expneurol.2012.10.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Revised: 10/15/2012] [Accepted: 10/24/2012] [Indexed: 11/19/2022]
Abstract
Previous studies have demonstrated that ciliary neurotrophic factor (CNTF) enhances survival and process outgrowth from magnocellular neurons in the paraventricular (PVN) and the supraoptic (SON) nuclei. However, the mechanisms by which CNTF facilitates these processes remain to be determined. Therefore, the aim of this study was to identify the immediate signal transduction events that occur within the rat SON following administration of exogenous rat recombinant CNTF (rrCNTF) and to determine the contribution of those intracellular signaling pathway(s) to neuronal survival and process outgrowth, respectively. Immunohistochemical and Western blot analyses demonstrated that axonal injury and acute unilateral pressure injection of 100 ng/μl of rrCNTF directly over the rat SON resulted in a rapid and transient increase in phosphorylated-STAT3 (pSTAT3) in astrocytes but not neurons in the SON in vivo. Utilizing rat hypothalamic organotypic explant cultures, we then demonstrated that administration of 25 ng/ml rrCNTF for 14days significantly increased the survival and process outgrowth of OT magnocellular neurons. In addition, pharmacological inhibition of the Jak-STAT pathway via AG490 and cucurbitacin I significantly reduced the survival of OT magnocellular neurons in the SON and PVN; however, the contribution of the Jak-STAT pathway to CNTF-mediated process outgrowth remains to be determined. Together, these data indicate that CNTF-induced survival of OT magnocellular neurons is mediated indirectly through astrocytes via the Jak-STAT signaling pathway.
Collapse
Affiliation(s)
- Jason M Askvig
- Department of Anatomy & Cell Biology, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58203, USA.
| | | | | | | | | | | |
Collapse
|
11
|
Moreno G, Piermaria J, Gaillard RC, Spinedi E. In vitro functionality of isolated embryonic hypothalamic vasopressinergic and oxytocinergic neurons: modulatory effects of brain-derived neurotrophic factor and angiotensin II. Endocrine 2011; 39:83-8. [PMID: 21080106 DOI: 10.1007/s12020-010-9415-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2010] [Accepted: 10/04/2010] [Indexed: 11/26/2022]
Abstract
There are only a few studies on the ontogeny and differentiation process of the hypothalamic supraoptic-paraventriculo-neurohypophysial neurosecretory system. In vitro neuron survival improves if cells are of embryonic origin; however, surviving hypothalamic neurons in culture were found to express small and minimal amounts of arginine-vasopressin (AVP) and oxytocin (OT), respectively. The aim of this study was to develop a primary neuronal culture design applicable to the study of magnocellular hypothalamic system functionality. For this purpose, a primary neuronal culture was set up after mechanical dissociation of sterile hypothalamic blocks from 17-day-old Sprague-Dawley rat embryos (E17) of both sexes. Isolated hypothalamic cells were cultured with supplemented (B27)-NeuroBasal medium containing an agent inhibiting non-neuron cell proliferation. The neurosecretory process was characterized by detecting AVP and OT secreted into the medium on different days of culture. Data indicate that spontaneous AVP and OT release occurred in a culture day-dependent fashion, being maximal on day 13 for AVP, and on day 10 for OT. Interestingly, brain-derived neurotrophic factor (BDNF) and Angiotensin II (A II) were able to positively modulate neuropeptide output. Furthermore, on day 17 of culture, non-specific (high-KCl) and specific (Angiotensin II) stimuli were able to significantly (P < 0.05) enhance the secretion of both neuropeptides over respective baselines. This study suggests that our experimental design is useful for the study of AVP- and OT-ergic neuron functionality and that BDNF and A II are positive modulators of embryonic hypothalamic cell development.
Collapse
Affiliation(s)
- Griselda Moreno
- Neuorendocrine Unit, IMBICE (CONICET-CICPBA), La Plata, Argentina
| | | | | | | |
Collapse
|
12
|
Millet LJ, Bora A, Sweedler JV, Gillette MU. Direct cellular peptidomics of supraoptic magnocellular and hippocampal neurons in low-density co-cultures. ACS Chem Neurosci 2010; 1:36-48. [PMID: 20401326 DOI: 10.1021/cn9000022] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Genomic and proteomic studies of brain regions of specialized function provide evidence that communication among neurons is mediated by systems of diverse chemical messengers. These analyses are largely tissue- or population-based, whereas the actual communication is from cell-to-cell. To understand the complement of intercellular signals produced by individual neurons, new methods are required. We have developed a novel neuron-to-neuron, serum-free, co-culture approach that was used to determine the higher-level cellular peptidome of individual primary mammalian neurons. We isolated magnocellular neurons from the supraoptic nucleus of early postnatal rat and maintained them in serum-free low density cultures without glial support layers; under these conditions they required low-density co-cultured neurons. Co-culturing magnocellular neurons with hippocampal neurons permitted local access to individual neurons within the culture for mass spectrometry. Using direct sampling, peptide profiles were obtained for spatially distinct, identifiable neurons within the co-culture. We repeatedly detected 10 peaks that we assign to previously characterized peptides and 17 peaks that remain unassigned. Peptides from the vasopressin prohormone and secretogranin-2 are attributed to magnocellular neurons, whereas neurokinin A, peptide J, and neurokinin B are attributed to cultured hippocampal neurons. This approach enables the elucidation of cell-specific prohormone processing and the discovery of cell-cell signaling peptides.
Collapse
Affiliation(s)
- Larry J. Millet
- Department of Cell and Developmental Biology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801
| | - Adriana Bora
- Neuroscience Program, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801
| | - Jonathan V. Sweedler
- Department of Chemistry, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801
- Neuroscience Program, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801
| | - Martha U. Gillette
- Department of Cell and Developmental Biology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801
- Neuroscience Program, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801
| |
Collapse
|
13
|
Kawasaki M, Ponzio TA, Yue C, Fields RL, Gainer H. Neurotransmitter regulation of c-fos and vasopressin gene expression in the rat supraoptic nucleus. Exp Neurol 2009; 219:212-22. [PMID: 19463813 DOI: 10.1016/j.expneurol.2009.05.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2009] [Revised: 05/04/2009] [Accepted: 05/13/2009] [Indexed: 10/20/2022]
Abstract
Acute increases in plasma osmotic pressure produced by intraperitoneal injection of hypertonic NaCl are sensed by osmoreceptors in the brain, which excite the magnocellular neurons (MCNs) in the supraoptic nucleus (SON) and the paraventricular nucleus (PVN) in the hypothalamus inducing the secretion of vasopressin (VP) into the general circulation. Such systemic osmotic stimulation also causes rapid and transient increases in the gene expression of c-fos and VP in the MCNs. In this study we evaluated potential signals that might be responsible for initiating these gene expression changes during acute hyperosmotic stimulation. We use an in vivo paradigm in which we stereotaxically deliver putative agonists and antagonists over the SON unilaterally, and use the contralateral SON in the same rat, exposed only to vehicle solutions, as the control SON. Quantitative real time-PCR was used to compare the levels of c-fos mRNA, and VP mRNA and VP heteronuclear (hn)RNA in the SON. We found that the ionotropic glutamate agonists (NMDA plus AMPA) caused an approximately 6-fold increase of c-fos gene expression in the SON, and some, but not all, G-coupled protein receptor agonists (e.g., phenylephrine, senktide, a NK-3-receptor agonist, and alpha-MSH) increased the c-fos gene expression in the SON from between 1.5 to 2-fold of the control SONs. However, none of these agonists were effective in increasing VP hnRNA as is seen with acute salt-loading. This indicates that the stimulus-transcription coupling mechanisms that underlie the c-fos and VP transcription increases during acute osmotic stimulation differ significantly from one another.
Collapse
Affiliation(s)
- Makoto Kawasaki
- Laboratory of Neurochemistry, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
14
|
Cho ES, Lee SY, Park JY, Hong SG, Ryu PD. Organotypic slice culture of the hypothalamic paraventricular nucleus of rat. J Vet Sci 2007; 8:15-20. [PMID: 17322769 PMCID: PMC2872692 DOI: 10.4142/jvs.2007.8.1.15] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Organotypic slice cultures have been developed as an alternative to acute brain slices because the neuronal viability and synaptic connectivity in these cultures can be preserved well for a prolonged period of time. This study evaluated a stationary organotypic slice culture developed for the hypothalamic paraventricular nucleus (PVN) of rat. The results showed that the slice cultures maintain the typical shape of the nucleus, the immunocytochemical signals for oxytocin, vasopressin, and corticotropin-releasing hormone, and the electrophysiological properties of PVN neurons for up to 3 weeks in vitro. The PVN neurons in the culture expressed the green fluorescent protein gene that had been delivered by the adenoviral vectors. The results indicate that the cultured slices preserve the properties of the PVN neurons, and can be used in longterm studies on these neurons in vitro.
Collapse
Affiliation(s)
- Eun Seong Cho
- Laboratory of Veterinary Pharmacology, BK21 Program for Veterinary Science and College of Veterinary Medicine, Seoul National University, Seoul 151-742, Korea
| | | | | | | | | |
Collapse
|
15
|
Bhumbra GS, Inyushkin AN, Syrimi M, Dyball REJ. Spike coding during osmotic stimulation of the rat supraoptic nucleus. J Physiol 2005; 569:257-74. [PMID: 16166154 PMCID: PMC1464216 DOI: 10.1113/jphysiol.2005.097014] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Novel measures of coding based on interspike intervals were used to characterize the responses of supraoptic cells to osmotic stimulation. Infusion of hypertonic NaCl in vivo increased the firing rate of continuous (putative oxytocin) cells (Wilcoxon z= 3.84, P= 0.001) and phasic (putative vasopressin) cells (z= 2.14, P= 0.032). The irregularity of activity, quantified by the log interval entropy, was decreased for continuous (Student's t= 3.06, P= 0.003) but not phasic cells (t= 1.34, P= 0.181). For continuous cells, the increase in frequency and decrease in entropy was significantly greater (t= 2.61, P= 0.036 and t= 3.06, P= 0.007, respectively) than for phasic cells. Spike patterning, quantified using the mutual information between intervals, was decreased for phasic (z=-2.64, P= 0.008) but not continuous cells (z=-1.14, P= 0.256). Although continuous cells showed similar osmotic responses to mannitol infusion, phasic cells showed differences: spike frequency decreased (z=-3.70, P < 0.001) and entropy increased (t=-3.41, P < 0.001). Considering both cell types together, osmotic stimulation in vitro using 40 mm NaCl had little effect on firing rate (z=-0.319, P= 0.750), but increased both entropy (t= 2.75, P= 0.010) and mutual information (z=-2.73, P= 0.006) in contrast to the decreases (t= 2.92, P= 0.004 and z=-2.40, P= 0.017) seen in vivo. Responses to less severe osmotic stimulation with NaCl or mannitol were not significant. Potassium-induced depolarization in vitro increased firing rate (r= 0.195, P= 0.034), but the correlation with decreased entropy was not significant (r=-0.097, P= 0.412). Intracellular recordings showed a small depolarization and decrease in input resistance during osmotic stimulation with NaCl or mannitol, and membrane depolarization following addition of potassium. Differences in responses of oxytocin and vasopressin cells in vivo, suggest differences in the balance between the synaptic and membrane properties involved in coding their osmotic responses. The osmotic responses in vivo constrasted with those seen in vitro, which suggests that, in vivo, they depend on extrinsic circuitry. Differences in responses to osmolality and direct depolarization in vitro indicate that the mechanism of osmoresponsiveness within a physiological range is unlikely to be fully explained by depolarization.
Collapse
Affiliation(s)
- G S Bhumbra
- Department of Anatomy, University of Cambridge, UK
| | | | | | | |
Collapse
|
16
|
Saito J, Ozaki Y, Ohnishi H, Nakamura T, Ueta Y. Osmotic stimuli increase brain-derived neurotrophic factor mRNA level in the rat subfornical organ. Neurosci Lett 2003; 347:65-8. [PMID: 12873729 DOI: 10.1016/s0304-3940(03)00614-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The effects of water deprivation and chronic salt loading on the expression of the brain-derived neurotrophic factor (BDNF) gene were examined in the rat subfornical organ (SFO), using immunohistochemistry for BDNF and in situ hybridization histochemistry. Increased BDNF-like immunoreactivity was observed in the SFO after water deprivation for 4 days. Water deprivation for 24 h and 2 and 4 days and salt loading for 7 days caused a significant increase in the BDNF gene transcripts in the SFO, compared with euhydrated rats. These results suggest that BDNF in the SFO may be involved in the regulatory mechanisms of body fluid balance.
Collapse
Affiliation(s)
- Jun Saito
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, 807-8555 Kitakyushu, Japan
| | | | | | | | | |
Collapse
|
17
|
Vutskits L, Gascon E, Kiss JZ. Removal of PSA from NCAM affects the survival of magnocellular vasopressin- and oxytocin-producing neurons in organotypic cultures of the paraventricular nucleus. Eur J Neurosci 2003; 17:2119-26. [PMID: 12786978 DOI: 10.1046/j.1460-9568.2003.02660.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The expression of the polysialic acid neural cell adhesion molecule (PSA-NCAM) in the hypothalamo-neurohypophyseal system has been correlated with morphofunctional plasticity. In this study, we investigated the role of PSA-NCAM in the survival of oxytocin (OT)- and vasopressin (VP)-producing magnocellular cells of this system. We used a recently developed organotypic slice culture model of the rat hypothalamic paraventricular nucleus (PVN) in which ciliary neurotrophic factor (CNTF) and leukemia inhibitory factor (LIF) are potent survival factors for magnocellular neurons. We demonstrate by means of confocal microscopy that cultured magnocellular VP and OT neurons express strong immunoreactivity for PSA-NCAM. Removal of PSA from NCAM by the enzyme Endo N leads to a significant loss of both VP and OT neurons in the presence of low concentrations of CNTF. Endo N treatment did not change cell survival in the presence of LIF. These results suggest that, in addition to its role in neuro-glial plasticity, PSA-NCAM might also influence the trophic factor responsiveness of hypothalamic VP and OT neurosecretory cells.
Collapse
Affiliation(s)
- L Vutskits
- Department of Anesthesiology, Pharmacology and Surgical Intensive Care, University Hospital of Geneva, Geneva, Switzerland
| | | | | |
Collapse
|
18
|
Zhang BJ, Kusano K, Zerfas P, Iacangelo A, Young WS, Gainer H. Targeting of green fluorescent protein to secretory granules in oxytocin magnocellular neurons and its secretion from neurohypophysial nerve terminals in transgenic mice. Endocrinology 2002; 143:1036-46. [PMID: 11861530 DOI: 10.1210/endo.143.3.8700] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Oxytocin (OT) is a hypothalamic nonapeptide that is synthesized as part of a larger precursor protein that also contains an approximately 10-kDa protein called neurophysin at its C-terminus. This precursor protein is trafficked through the regulated secretory pathway into secretory granules and then axonally transported to and secreted from nerve terminals in the neural lobe of the pituitary. In this paper, we show that the AI-03 transgene that contains enhanced green fluorescent protein (EGFP) fused to the end of the neurophysin at the C-terminus of the OT pre-prohormone, is expressed selectively in OT-magnocellular neurons and is trafficked to secretory granules in transgenic mice. The EGFP-containing secretory granules are then transported to OT-neurosecretory terminals in the neurohypophysis, where the EGFP fluorescence undergoes depolarization-induced calcium-dependent secretion. The endogenous fluorescence in the neural lobes is sufficiently intense to image secretory events in individual OT nerve terminals (neurosecretosomes) isolated from the posterior pituitaries in these transgenic mice.
Collapse
Affiliation(s)
- B-J Zhang
- Laboratory of Neurochemistry, National Institute of Neurological Diseases and Stroke, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | |
Collapse
|
19
|
Guerra-Crespo M, Ubieta R, Joseph-Bravo P, Charli JL, Pérez-Martínez L. BDNF increases the early expression of TRH mRNA in fetal TrkB+ hypothalamic neurons in primary culture. Eur J Neurosci 2001; 14:483-94. [PMID: 11553298 DOI: 10.1046/j.0953-816x.2001.01657.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Known effects of neurotrophins in the developing central nervous system include induction or regulation of peptide expression. Hypothalamic postmitotic thyrotropin-releasing hormone (TRH)-producing neurons may require neurotrophins for survival and/or differentiation. This issue was investigated using primary cell cultures derived from 17-day-old fetal rat hypothalamus seeded in serum-free medium and analysed up to 4 days in vitro culture. Neurotrophin receptor (TrkB and TrkC) mRNA expression was detected by RT-PCR in fetal hypothalamus and throughout the culture period. Western blots confirmed the expression of the full-length proteins in vitro. Semi-quantitative RT-PCR showed that the addition of brain-derived neurotrophic factor (BDNF) increases TRH mRNA levels while the addition of neurotrophin-3 does not. TRH cell content was not modified. Studies on the effect of cell density or homologous conditioned medium demonstrated that endogenous factors probably contribute to determine TRH mRNA levels. One of these factors was BDNF because basal TRH mRNA levels were reduced by the addition of a Trk inhibitor or anti-BDNF. TrkB mRNA was expressed in 27% of cells and TRH mRNA in 2% of cells. The number of TRH+ cells was not affected by BDNF treatment. Forty-eight per cent of TRH neurons contained TrkB mRNA; these neurons had higher amounts of TRH mRNA than TrkB- neurons. Only TrkB+ cells responded to BDNF by increasing their TRH mRNA levels suggesting that BDNF may directly affect TRH biosynthesis. In conclusion, fetal hypothalamic TRH neurons are probably heterogeneous in regard to the neurotrophic factors enhancing peptide and mRNA levels. BDNF enhances TRH mRNA levels in a population of TrkB+ fetal hypothalamic TRHergic neurons in primary culture. However, additional influences may be necessary for the establishment of peptide phenotype in the TrkB+ neurons.
Collapse
Affiliation(s)
- M Guerra-Crespo
- Departamento de Genética y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, A.P. 510-3, Cuernavaca, Mor., 62271, México
| | | | | | | | | |
Collapse
|
20
|
Burbach JP, Luckman SM, Murphy D, Gainer H. Gene regulation in the magnocellular hypothalamo-neurohypophysial system. Physiol Rev 2001; 81:1197-267. [PMID: 11427695 DOI: 10.1152/physrev.2001.81.3.1197] [Citation(s) in RCA: 240] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The hypothalamo-neurohypophysial system (HNS) is the major peptidergic neurosecretory system through which the brain controls peripheral physiology. The hormones vasopressin and oxytocin released from the HNS at the neurohypophysis serve homeostatic functions of water balance and reproduction. From a physiological viewpoint, the core question on the HNS has always been, "How is the rate of hormone production controlled?" Despite a clear description of the physiology, anatomy, cell biology, and biochemistry of the HNS gained over the last 100 years, this question has remained largely unanswered. However, recently, significant progress has been made through studies of gene identity and gene expression in the magnocellular neurons (MCNs) that constitute the HNS. These are keys to mechanisms and events that exist in the HNS. This review is an inventory of what we know about genes expressed in the HNS, about the regulation of their expression in response to physiological stimuli, and about their function. Genes relevant to the central question include receptors and signal transduction components that receive and process the message that the organism is in demand of a neurohypophysial hormone. The key players in gene regulatory events, the transcription factors, deserve special attention. They do not only control rates of hormone production at the level of the gene, but also determine the molecular make-up of the cell essential for appropriate development and physiological functioning. Finally, the HNS neurons are equipped with a machinery to produce and secrete hormones in a regulated manner. With the availability of several gene transfer approaches applicable to the HNS, it is anticipated that new insights will be obtained on how the HNS is able to respond to the physiological demands for its hormones.
Collapse
Affiliation(s)
- J P Burbach
- Rudolf Magnus Institute for Neurosciences, Section of Molecular Neuroscience, Department of Medical Pharmacology, University Medical Center Utrecht, Utrecht, The Netherlands.
| | | | | | | |
Collapse
|
21
|
Transgenic Models for Studies of Oxytocin and Vasopressin. TRANSGENIC MODELS IN ENDOCRINOLOGY 2001. [DOI: 10.1007/978-1-4615-1633-0_2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
22
|
Viant MR, Millam JR, Delany ME, Fry DM. Regulation of brain-derived neurotrophic factor messenger RNA levels in avian hypothalamic slice cultures. Neuroscience 2000; 99:373-80. [PMID: 10938443 DOI: 10.1016/s0306-4522(00)00167-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Mechanisms regulating the expression of brain-derived neurotrophic factor, a member of the neurotrophin family, have been extensively studied in the rat cerebral cortex, hippocampus and cerebellum. In contrast, little is known regarding the regulation of this growth factor in the hypothalamus. Here we present an analysis of the regulation of brain-derived neurotrophic factor messenger RNA levels in chick embryo hypothalamic slice cultures following exposure to potassium chloride, glutamate agonists and sex steroids. Following a week in chemically-defined media the tissue was depolarized by exposure to 50 mM potassium chloride for 6h, resulting in a significant 4.2-fold increase in the level of brain-derived neurotrophic factor messenger RNA. This result is consistent with studies of other brain regions. Similar 6-h acute exposures of the hypothalamic cultures to 25 microM N-methyl-D-aspartic acid, 25 microM kainic acid and 25 microM alpha-amino-3-hydroxy-5-methyl-isoxazole-4-propionic acid also significantly increased messenger RNA levels 2.5-, 2.1- and 1.4-fold, respectively. It was previously reported that brain-derived neurotrophic factor levels within the rat cerebral cortex, olfactory bulb and hippocampus are altered by exposure to 17beta-estradiol. Here we show that in hypothalamic slice cultures neither acute nor chronic treatments with 10 and 100 nM 17beta-estradiol and 10nM testosterone significantly altered the steady-state level of this growth factor. These findings show that neuronal activity, induced by glutamate agonists and potassium chloride, can regulate brain-derived neurotrophic factor messenger RNA levels within embryonic hypothalamic slice cultures. This regulation could play a critical role in the modulation of programmed cell death and synaptic maturation during development of the hypothalamus.
Collapse
Affiliation(s)
- M R Viant
- Department of Animal Science, University of California, Davis, CA 95616, USA
| | | | | | | |
Collapse
|
23
|
Li BS, Kramer PR, Zhao W, Ma W, Stenger DA, Zhang L. Molecular cloning, expression, and characterization of rat homolog of human AP-2alpha that stimulates neuropeptide Y transcription activity in response to nerve growth factor. Mol Endocrinol 2000; 14:837-47. [PMID: 10847586 DOI: 10.1210/mend.14.6.0468] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Neuropeptide Y (NPY) plays an important role in the central regulation of neuronal activity, endocrine and sexual behavior, and food intake. Although transcription activity of the NPY gene in PC12 cells is regulated by a number of agents such as nerve growth factor (NGF), the mechanism responsible for the NGF-elicited increase in the transcription of the NPY gene remains to be explored. In this study, we isolated and characterized a nuclear protein that is bound to NGF-response elements (NGFRE) that lie between nucleotide -87 and -33 of the rat NPY promoter gene. This nuclear protein is identical to the rat homolog of human transcription factor AP-2alpha. We further demonstrated that rat AP-2a promotes efficient NPY transcription activity in response to NGF. Finally, we provide direct evidence that the mice lacking transcription factor AP-2alpha exhibit reduced expression of NPY mRNA compared with wild-type mice, further supporting the hypothesis that AP-2alpha is an important transcription factor in regulating NPY transcription activity.
Collapse
Affiliation(s)
- B S Li
- Laboratory of Neurochemistry, NINDS, National Institutes of Health Bethesda, Maryland 20892-4130, USA
| | | | | | | | | | | |
Collapse
|