1
|
Magnuson JT, Sy ND, Tanabe P, Ji C, Gan J, Schlenk D. Dopaminergic and anti-estrogenic responses in juvenile steelhead (Oncorhynchus mykiss) exposed to bifenthrin. Comp Biochem Physiol C Toxicol Pharmacol 2024; 285:109995. [PMID: 39111515 DOI: 10.1016/j.cbpc.2024.109995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/18/2024] [Accepted: 08/01/2024] [Indexed: 08/11/2024]
Abstract
The frequency of detection and concentrations of bifenthrin, a pyrethroid insecticide, in the waterways inhabited by the endangered species, steelhead trout (Oncorhynchus mykiss), has become a significant concern for regulatory agencies. Endocrine disruption has been observed with estrogenic and anti-estrogenic responses in fish species at different life stages. Since several studies have indicated alterations in dopaminergic signaling associated with endocrine responses, juvenile steelhead were exposed to environmentally relevant concentrations of 60 or 120 ng/L bifenthrin for two weeks. Fish brains were assessed for dopamine levels and the expression of genes involved in dopaminergic and estrogenic processes, such as catechol-o-methyltransferase (comt) and monoamine oxidase (mao). Vitellogenin (vtg) and estrogenic receptors (ERα1, ERβ1, and ERβ2) were also evaluated in livers of the animals. Dopamine concentrations were significantly higher in fish brains following bifenthrin exposure. Consistent with a reduction in dopamine clearance, there was a significant decrease in the mRNA expression of comt with increased bifenthrin concentration. Hepatic expression of ERα1 and ERβ2 mRNA was significantly decreased with increased bifenthrin concentration. These data support the possible mechanism of bifenthrin altering the dopaminergic pathway at low ng/L concentrations, in juvenile steelhead, which could interfere with endocrine feedback loops. These findings support the need for and importance of identifying species and life stage differences in pesticide modes of action to reduce uncertainties in risk assessments.
Collapse
Affiliation(s)
- Jason T Magnuson
- U.S. Geological Survey, Columbia Environmental Research Center, Columbia, MO, USA; Department of Environmental Sciences, University of California, Riverside, Riverside, CA, USA.
| | - Nathan D Sy
- Department of Environmental Sciences, University of California, Riverside, Riverside, CA, USA
| | - Philip Tanabe
- Department of Environmental Sciences, University of California, Riverside, Riverside, CA, USA; National Oceanic and Atmospheric Administration, National Ocean Service, National Centers for Coastal Ocean Science, Charleston, SC, USA
| | - Chenyang Ji
- Department of Environmental Sciences, University of California, Riverside, Riverside, CA, USA
| | - Jay Gan
- Department of Environmental Sciences, University of California, Riverside, Riverside, CA, USA
| | - Daniel Schlenk
- Department of Environmental Sciences, University of California, Riverside, Riverside, CA, USA
| |
Collapse
|
2
|
Wu T, Wu Y, Li Y, Du Y, Feng S, Wang D, Zhou L. Genome-wide analysis of two different regions of brain reveals the molecular changes of fertility related genes in rln3a -/- mutants in male Nile tilapia (Oreochromis niloticus). Gen Comp Endocrinol 2024; 354:114543. [PMID: 38692521 DOI: 10.1016/j.ygcen.2024.114543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 04/26/2024] [Accepted: 04/28/2024] [Indexed: 05/03/2024]
Abstract
Relaxin3 (rln3) has been associated with various emotional and cognitive processes, including stress, anxiety, learning, memory, motivational behavior, and circadian rhythm. Notably, previous report revealed that Rln3a played an indispensable role in testicular development and male fertility in Nile tilapia (Oreochromis niloticus). However, the underlying molecular mechanisms remain largely unknown. We found that Rln3a is expressed exclusively in the diencephalon* (Di*) of the brain. Deficiency of Rln3a resulted in a significant increase in serum dopamine level and an upregulation of gene expression of gnrh1 and kisspeptin2. To further elucidate the role of Rln3a in fish fertility, we collected two different regions of Di* and hypothalamus (Hyp) tissues for subsequent RNA-seq analysis of both wild-type (rln3a+/+) and rln3a-/- male tilapia. Upon the transcriptomic data, 1136 and 755 differentially expressed genes (DEGs) were identified in the Di* and Hyp tissues, respectively. In Di*, the up-regulated genes were enriched in circadian rhythm, chemical carcinogenesis, while the down-regulated genes were enriched in type II diabetes mellitus, dopaminergic synapse, and other pathways. In Hyp, the up-regulated genes were enriched in circadian rhythm, pyrimidine metabolism, while the down-regulated genes were enriched in type I diabetes mellitus, autoimmune thyroid disease, and other pathways. Subsequently, the results of both qRT-PCR and FISH assays highlighted a pronounced up-regulation of core circadian rhythm genes, cry1b and per3, whereas genes such as clocka, clockb, and arntl exhibited down-regulation. Furthermore, the genes associated with dopamine biosynthesis were significantly increased in the Hyp. In summary, the mutation of rln3a in male tilapia resulted in notable changes in circadian rhythm and disease-linked signaling pathways in the Di* and Hyp. These changes might account for the fertility defects observed in rln3a-/- male mutants in tilapia.
Collapse
Affiliation(s)
- Tengfei Wu
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Science, Southwest University, Chongqing 400715, China
| | - You Wu
- Fisheries Engineering Institute, Chinese Academy of Fishery Sciences, Beijing, China; Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Science, Southwest University, Chongqing 400715, China
| | - Yanlong Li
- Fisheries Engineering Institute, Chinese Academy of Fishery Sciences, Beijing, China; Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Science, Southwest University, Chongqing 400715, China
| | - Yiyun Du
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Science, Southwest University, Chongqing 400715, China
| | - Saining Feng
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Science, Southwest University, Chongqing 400715, China
| | - Deshou Wang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Science, Southwest University, Chongqing 400715, China.
| | - Linyan Zhou
- Fisheries Engineering Institute, Chinese Academy of Fishery Sciences, Beijing, China.
| |
Collapse
|
3
|
Porceddu R, Porcu C, Mulas G, Spiga S, Follesa MC. Ontogenetic changes in the tyrosine hydroxylase immunoreactive preoptic area in the small-spotted catshark Scyliorhinus canicula (L., 1758) females: catecholaminergic involvement in sexual maturation. Front Neuroanat 2024; 17:1301651. [PMID: 38239387 PMCID: PMC10794776 DOI: 10.3389/fnana.2023.1301651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 11/29/2023] [Indexed: 01/22/2024] Open
Abstract
Introduction The catecholaminergic component of the brain-pituitary-gonadal axis, which mediates the influence of external and internal stimuli on the central nervous system and gonad development in vertebrates, is largely unexplored in Chondrichthyes. We considered Scyliorhinus canicula (L., 1758) females as a model for this vertebrate's class, to assess the involvement of the catecholaminergic system of the brain in its reproduction. Along the S. canicula reproductive cycle, we characterized and evaluated differences in somata morphometry and the number of putative catecholaminergic neurons in two brain nuclei: the periventricular preoptic nucleus, hypothesized to be a positive control for ovarian development, and the suprachiasmatic nucleus, examined as a negative control. Materials and methods 16 S. canicula wild females were sampled and grouped in maturity stages (immature, maturing, mature, and mature egg-laying). The ovary was histologically processed for the qualitative description of maturity stages. Anti-tyrosine hydroxylase immunofluorescence was performed on the diencephalic brain sections. The immunoreactive somata were investigated for morphometry and counted using the optical fractionator method, throughout the confocal microscopy. Results and discussions Qualitative and quantitative research confirmed two separate populations of immunoreactive neurons. The modifications detected in the preoptic nucleus revealed that somata were more numerous, significantly smaller in size, and more excitable during the maturing phase but decreased, becoming slightly bigger and less excitable in the egg-laying stage. This may indicate that the catecholaminergic preoptic nucleus is involved in the control of reproduction, regulating both the onset of puberty and the imminent spawning. In contrast, somata in the suprachiasmatic nucleus grew in size and underwent turnover in morphometry, increasing the total number from the immature-virgin to maturing stage, with similar values in the more advanced maturity stages. These changes were not linked to a reproductive role. These findings provide new valuable information on Chondrichthyes, suggesting the existence of an additional brain system implicated in the integration of internal and environmental cues for reproduction.
Collapse
Affiliation(s)
- Riccardo Porceddu
- Sezione di Biologia Animale ed Ecologia, Dipartimento di Scienze della Vita e dell'Ambiente, Università degli Studi di Cagliari, Cagliari, Italy
- CoNISMa Consorzio Nazionale Interuniversitario per le Scienze Mare, Rome, Italy
| | - Cristina Porcu
- Sezione di Biologia Animale ed Ecologia, Dipartimento di Scienze della Vita e dell'Ambiente, Università degli Studi di Cagliari, Cagliari, Italy
- CoNISMa Consorzio Nazionale Interuniversitario per le Scienze Mare, Rome, Italy
| | - Giovanna Mulas
- Sezione di Biologia Animale ed Ecologia, Dipartimento di Scienze della Vita e dell'Ambiente, Università degli Studi di Cagliari, Cagliari, Italy
| | - Saturnino Spiga
- Sezione di Biologia Animale ed Ecologia, Dipartimento di Scienze della Vita e dell'Ambiente, Università degli Studi di Cagliari, Cagliari, Italy
| | - Maria Cristina Follesa
- Sezione di Biologia Animale ed Ecologia, Dipartimento di Scienze della Vita e dell'Ambiente, Università degli Studi di Cagliari, Cagliari, Italy
- CoNISMa Consorzio Nazionale Interuniversitario per le Scienze Mare, Rome, Italy
| |
Collapse
|
4
|
Sancho Santos ME, Horký P, Grabicová K, Steinbach C, Hubená P, Šálková E, Slavík O, Grabic R, Randák T. From metabolism to behaviour - Multilevel effects of environmental methamphetamine concentrations on fish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 878:163167. [PMID: 37003339 DOI: 10.1016/j.scitotenv.2023.163167] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 03/18/2023] [Accepted: 03/26/2023] [Indexed: 05/13/2023]
Abstract
Methamphetamine (METH) is a concerning drug of abuse that produces strong psychostimulant effects. The use of this substance, along with the insufficient removal in the sewage treatment plants, leads to its occurrence in the environment at low concentrations. In this study, brown trout (Salmo trutta fario) were exposed to 1 μg/L of METH as environmental relevant concentration for 28 days in order to elucidate the complex effects resulting from the drug, including behaviour, energetics, brain and gonad histology, brain metabolomics, and their relations. Trout exposed to METH displayed lowered activity as well as metabolic rate (MR), an altered morphology of brain and gonads as well as changes in brain metabolome when compared to controls. Increased activity and MR were correlated to an increased incidence of histopathology in gonads (females - vascular fluid and gonad staging; males - apoptotic spermatozoa and peritubular cells) in exposed trout compared to controls. Higher amounts of melatonin in brain were detected in exposed fish compared to controls. Tyrosine hydroxylase expression in locus coeruleus was related to the MR in exposed fish, but not in the control. Brain metabolomics indicated significant differences in 115 brain signals between control and METH exposed individuals, described by the coordinates within the principal component analyses (PCA) axes. These coordinates were subsequently used as indicators of a direct link between brain metabolomics, physiology, and behaviour - as activity and MR varied according to their values. Exposed fish showed an increased MR correlated with the metabolite position in PC1 axes, whereas the control had proportionately lower MR and PC1 coordinates. Our findings emphasize the possible complex disturbances in aquatic fauna on multiple interconnected levels (metabolism, physiology, behaviour) as a result of the presence of METH in aquatic environments. Thus, these outcomes can be useful in the development of AOP's (Adverse Outcome Pathways).
Collapse
Affiliation(s)
- Maria Eugenia Sancho Santos
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25 Vodňany, Czech Republic.
| | - Pavel Horký
- Department of Zoology and Fisheries, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague 6, Czech Republic
| | - Kateřina Grabicová
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25 Vodňany, Czech Republic
| | - Christoph Steinbach
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25 Vodňany, Czech Republic
| | - Pavla Hubená
- Behavioural Neuroendocrinology, Department of Medical Cell Biology, Uppsala University, 751 23 Uppsala, Sweden
| | - Eva Šálková
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25 Vodňany, Czech Republic
| | - Ondřej Slavík
- Department of Zoology and Fisheries, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague 6, Czech Republic
| | - Roman Grabic
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25 Vodňany, Czech Republic
| | - Tomáš Randák
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25 Vodňany, Czech Republic
| |
Collapse
|
5
|
Ke T, Santamaria A, Junior FB, Rocha JBT, Bowman AB, Aschner M. Methylmercury exposure-induced reproductive effects are mediated by dopamine in Caenorhabditis elegans. Neurotoxicol Teratol 2022; 93:107120. [PMID: 35987454 DOI: 10.1016/j.ntt.2022.107120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 08/09/2022] [Accepted: 08/11/2022] [Indexed: 11/28/2022]
Abstract
Methylmercury (MeHg) is a neurotoxicant that exists in the natural environment, which level can be greatly increased because of human activity. MeHg exposures have the risk of being detrimental to the development of the nervous system. Studies on MeHg toxicity have largely focused on the mechanisms of its neurotoxicity following developmental exposures. Additionally, reproductive toxicity of developmental MeHg exposures has been noted in rodent models. The model organism Caenorhabditis elegans (C. elegans) is a self-fertilizing animal which has a short lifespan around 20 days. Most C. elegans are hermaphrodites that can generate both sperm and oocytes. To investigate the effects of developmental MeHg exposures on the reproduction in C. elegans, larvae stage 1 worms were exposed to MeHg (0, 0.01 or 0.05 μM) for 24 h. The laid eggs and oocytes were compared during each day at adult stages for 6 days. We showed that MeHg exposure significantly induced an increased number of eggs in day 1 adults without an effect on the timing of egg laying or the total number of eggs or oocytes over the 6-day period. The expression of dat-1 and cat-2 and dopamine levels were increased in worms exposed to MeHg. Supplementation with 100 μM dopamine recapitulated the effect of MeHg on the number of eggs present in day 1 adults. Furthermore, the effect of MeHg on the number of eggs was abrogated in the cat-2 mutant worms CB1112. The number of oocytes in the 6-day adult stages was decreased by MeHg in the dat-1 mutant RM2702. MeHg exposures did not change the mating rate or the number of offspring from mating. Combined, these novel findings show that developmental exposure to low levels of MeHg has limited effects on the reproduction in C. elegans. Furthermore, our data support a modulatory role of dopamine in MeHg-induced effects on reproduction in this model system.
Collapse
Affiliation(s)
- Tao Ke
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, United States
| | - Abel Santamaria
- Laboratorio de Aminoácidos Excitadores/Laboratorio de Neurofarmacología Molecular y Nanotecnología, Instituto Nacional de Neurología y Neurocirugía, 14269 Mexico City, Mexico
| | - Fernando Barbosa Junior
- Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP 14040-900, Brazil
| | - João B T Rocha
- Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, 97105900 Santa Maria, RS, Brazil
| | - Aaron B Bowman
- School of Health Sciences, Purdue University, West Lafayette, IN 47907-2051, United States
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, United States.
| |
Collapse
|
6
|
Liu H, Wang J, Zhang L, Zhang Y, Wu L, Wang L, Dong C, Nie G, Li X. Transcriptome analysis of common carp (Cyprinus carpio) provides insights into the ovarian maturation related genes and pathways in response to LHRH-A and dopamine inhibitors induction. Gen Comp Endocrinol 2021; 301:113668. [PMID: 33221312 DOI: 10.1016/j.ygcen.2020.113668] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 08/15/2020] [Accepted: 11/13/2020] [Indexed: 11/20/2022]
Abstract
Luteinizing hormone-releasing hormone analog (LHRH-A) and dopamine inhibitors have been widely used to induce oocyte maturation and ovulation in domesticated fishes. Although this approach represents a reliable method for regulating fish reproduction, the underlying molecular mechanisms mediating LH action are largely unexplored. The objective of this study was to determine the transcriptional profile of gene programming in hormone-treated common carp. In the present study, female common carp were intraperitoneally injected with LHRH-A together with dopamine inhibitors, and control fish were injected with saline. Ovarian morphological changes were analysed by both light microscopy and scanning electron microscopy. Furthermore, gene expression profiling of the brain and ovarian tissues was performed by Illumina sequencing. Compared to the control carp, hormone treatment resulted in morphological changes including disappearance of nuclear membrane, breakdown of germinal vesicle (GVBD), and fusion of yolk globules, reflecting that hormones significantly promoted oocyte maturation. In comparison to control, we have identified 867 and 9,053 differentially expressed genes in the hormone-treated female brain and ovary, respectively. In the brain, most of the identified genes were significantly enriched in 18 KEGG pathways. In the ovarian tissue, the identified genes were significantly involved in 9 pathways. In the hormone-treated carp, genes were involved in calcium signalling pathway, cAMP signalling pathway, insulin secretion, and oxidative phosphorylation pathway, which showed obvious associations with ovarian maturation. The present study provides transcriptomic information for hormone-treated carp, which might be useful for studying the endocrine regulation and mechanisms of ovarian maturation in domesticated fishes.
Collapse
Affiliation(s)
- Huifen Liu
- College of Fisheries, Henan Normal University, Xinxiang 453007, PR China; College of Fisheries, Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang 453007, PR China
| | - Jing Wang
- College of Fisheries, Henan Normal University, Xinxiang 453007, PR China; College of Fisheries, Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang 453007, PR China
| | - Limin Zhang
- College of Fisheries, Henan Normal University, Xinxiang 453007, PR China; College of Fisheries, Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang 453007, PR China
| | - Yuru Zhang
- College of Fisheries, Henan Normal University, Xinxiang 453007, PR China; College of Fisheries, Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang 453007, PR China
| | - Limin Wu
- College of Fisheries, Henan Normal University, Xinxiang 453007, PR China; College of Fisheries, Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang 453007, PR China
| | - Lei Wang
- College of Fisheries, Henan Normal University, Xinxiang 453007, PR China; College of Fisheries, Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang 453007, PR China
| | - Chuanju Dong
- College of Fisheries, Henan Normal University, Xinxiang 453007, PR China; College of Fisheries, Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang 453007, PR China
| | - Guoxing Nie
- College of Fisheries, Henan Normal University, Xinxiang 453007, PR China; College of Fisheries, Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang 453007, PR China
| | - Xuejun Li
- College of Fisheries, Henan Normal University, Xinxiang 453007, PR China; College of Fisheries, Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang 453007, PR China.
| |
Collapse
|
7
|
Fontaine R, Royan MR, von Krogh K, Weltzien FA, Baker DM. Direct and Indirect Effects of Sex Steroids on Gonadotrope Cell Plasticity in the Teleost Fish Pituitary. Front Endocrinol (Lausanne) 2020; 11:605068. [PMID: 33365013 PMCID: PMC7750530 DOI: 10.3389/fendo.2020.605068] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 10/12/2020] [Indexed: 12/26/2022] Open
Abstract
The pituitary gland controls many important physiological processes in vertebrates, including growth, homeostasis, and reproduction. As in mammals, the teleost pituitary exhibits a high degree of plasticity. This plasticity permits changes in hormone production and secretion necessary to meet the fluctuating demands over the life of an animal. Pituitary plasticity is achieved at both cellular and population levels. At the cellular level, hormone synthesis and release can be regulated via changes in cell composition to modulate both sensitivity and response to different signals. At the cell population level, the number of cells producing a given hormone can change due to proliferation, differentiation of progenitor cells, or transdifferentiation of specific cell types. Gonadotropes, which play an important role in the control of reproduction, have been intensively investigated during the last decades and found to display plasticity. To ensure appropriate endocrine function, gonadotropes rely on external and internal signals integrated at the brain level or by the gonadotropes themselves. One important group of internal signals is the sex steroids, produced mainly by the gonadal steroidogenic cells. Sex steroids have been shown to exert complex effects on the teleost pituitary, with differential effects depending on the species investigated, physiological status or sex of the animal, and dose or method of administration. This review summarizes current knowledge of the effects of sex steroids (androgens and estrogens) on gonadotrope cell plasticity in teleost anterior pituitary, discriminating direct from indirect effects.
Collapse
Affiliation(s)
- Romain Fontaine
- Physiology Unit, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | - Muhammad Rahmad Royan
- Physiology Unit, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | - Kristine von Krogh
- Physiology Unit, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | - Finn-Arne Weltzien
- Physiology Unit, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | - Dianne M. Baker
- Department of Biological Sciences, University of Mary Washington, Fredericksburg, VA, United States
| |
Collapse
|
8
|
The stress - Reproductive axis in fish: The involvement of functional neuroanatomical systems in the brain. J Chem Neuroanat 2020; 112:101904. [PMID: 33278567 DOI: 10.1016/j.jchemneu.2020.101904] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 10/23/2020] [Accepted: 11/30/2020] [Indexed: 01/26/2023]
Abstract
The neuroendocrine-stress axis of nonmammalian species is evolutionarily conserved, which makes them useful to serve as important model systems for elucidating the function of the vertebrate stress response. The involvement of hypothalamo-pituitary-adrenal (HPA) axis hormones in regulation of stress and reproduction is well described in different vertebrates. However, the stress response is a complex process, which appears to be controlled by a number of neurochemicals in association with hypothalamo-pituitary-interrenal (HPI) axis or independent of HPI axis in fish. In recent years, the participation of neurohormones other than HPI axis in regulation of stress and reproduction is gaining more attention. This review mainly focuses on the involvement of functional neuroanatomical systems such as the catecholaminergic neurotransmitter dopamine (DA) and opioid peptides in regulation of the stress-reproductive axis in fish. Occurrences of DA and opioid peptides like β-endorphin, enkephalins, dynorphin, and endomorphins have been demonstrated in fish brain, and diverse roles such as pain modulation, social behaviour and reproduction are implicated for these hormones. Neuroanatomical studies using retrograde tracing, immunohistochemical staining and lesion methods have demonstrated that the neurons originating in the preoptic region and the nucleus lateralis tuberis directly innervate the pituitary gland and, therefore, the hypophysiotrophic role of these hormones. In addition, heightened synthetic and secretory activity of the opioidergic and the dopaminergic neurons in hypothalamic areas of the brain during stress exposure suggest potentially intricate relationship with the stress-reproductive axis in fish. Current evidence in early vertebrates like fish provides a novel insight into the underlying neuroendocrine mechanisms as additional pathways along the stress-reproductive axis that seem to be conserved during the course of evolution.
Collapse
|
9
|
Oliveira CCV, Fatsini E, Fernández I, Anjos C, Chauvigné F, Cerdà J, Mjelle R, Fernandes JMO, Cabrita E. Kisspeptin Influences the Reproductive Axis and Circulating Levels of microRNAs in Senegalese Sole. Int J Mol Sci 2020; 21:E9051. [PMID: 33260781 PMCID: PMC7730343 DOI: 10.3390/ijms21239051] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 11/25/2020] [Accepted: 11/26/2020] [Indexed: 12/11/2022] Open
Abstract
Kisspeptin regulates puberty and reproduction onset, acting upstream of the brain-pituitary-gonad (HPG) axis. This study aimed to test a kisspeptin-based hormonal therapy on cultured Senegalese sole (G1) breeders, known to have reproductive dysfunctions. A single intramuscular injection of KISS2-10 decapeptide (250 µg/kg) was tested in females and males during the reproductive season, and gonad maturation, sperm motility, plasma levels of gonadotropins (Fsh and Lh) and sex steroids (11-ketotestosterone, testosterone and estradiol), as well as changes in small non-coding RNAs (sncRNAs) in plasma, were investigated. Fsh, Lh, and testosterone levels increased after kisspeptin injection in both sexes, while sperm analysis did not show differences between groups. Let7e, miR-199a-3p and miR-100-5p were differentially expressed in females, while miR-1-3p miRNA was up-regulated in kisspeptin-treated males. In silico prediction of mRNAs targeted by miRNAs revealed that kisspeptin treatment might affect paracellular transporters, regulate structural and functional polarity of cells, neural networks and intracellular trafficking in Senegalese sole females; also, DNA methylation and sphingolipid metabolism might be altered in kisspeptin-treated males. Results demonstrated that kisspeptin stimulated gonadotropin and testosterone secretion in both sexes and induced an unanticipated alteration of plasma miRNAs, opening new research venues to understand how this neuropeptide impacts in fish HPG axis.
Collapse
Affiliation(s)
- Catarina C. V. Oliveira
- Center of Marine Sciences-CCMAR, University of Algarve, 8005-139 Faro, Portugal; (E.F.); (C.A.)
| | - Elvira Fatsini
- Center of Marine Sciences-CCMAR, University of Algarve, 8005-139 Faro, Portugal; (E.F.); (C.A.)
| | - Ignacio Fernández
- Aquaculture Research Center, Agrarian Technological Institute of Castile and Leon, Ctra. Arévalo, s/n, 40196 Segovia, Spain;
| | - Catarina Anjos
- Center of Marine Sciences-CCMAR, University of Algarve, 8005-139 Faro, Portugal; (E.F.); (C.A.)
| | - François Chauvigné
- IRTA-Institute of Biotechnology and Biomedicine (IBB), Universitat Autònoma de Barcelona, 08193 Barcelona, Spain; (F.C.); (J.C.)
| | - Joan Cerdà
- IRTA-Institute of Biotechnology and Biomedicine (IBB), Universitat Autònoma de Barcelona, 08193 Barcelona, Spain; (F.C.); (J.C.)
| | - Robin Mjelle
- Faculty of Bioscience and Aquaculture, Nord University, 8049 Bodø, Norway; (R.M.); (J.M.O.F.)
| | - Jorge M. O. Fernandes
- Faculty of Bioscience and Aquaculture, Nord University, 8049 Bodø, Norway; (R.M.); (J.M.O.F.)
| | - Elsa Cabrita
- Center of Marine Sciences-CCMAR, University of Algarve, 8005-139 Faro, Portugal; (E.F.); (C.A.)
| |
Collapse
|
10
|
Riesco MF, Valcarce DG, Martínez-Vázquez JM, Martín I, Calderón-García AÁ, Gonzalez-Nunez V, Robles V. Male reproductive dysfunction in Solea senegalensis: new insights into an unsolved question. Reprod Fertil Dev 2020; 31:1104-1115. [PMID: 30944063 DOI: 10.1071/rd18453] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 01/25/2019] [Indexed: 12/19/2022] Open
Abstract
Senegalese sole (Solea senegalensis) is a species with a high commercial value that exhibits a reproductive dysfunction in males born and raised in captivity (F1) that hinders their sustainable culture. The present study evaluates the sperm quality and dopaminergic pathway of males born in the wild environment and of F1 males. Traditional sperm analyses were performed, finding only significant differences in curvilinear velocity (VCL) and no significant differences in viability and total motility. No differences in global sperm methylation were observed either in spermatozoa or brain between the two groups (F1 and wild-born males). However, our results point to a different sperm molecular signature between wild fish and fish born in captivity, specifically the differential expression in miR-let7-d and miR-200a-5p between these two groups. miR-let7-d has been correlated with spermatogenesis and sex preferences, whereas the miR-200 family is implied in target innervation of dopaminergic neurons in zebrafish. When we analysed the dopaminergic pathway, no differences were found in terms of different mRNA expression of dopaminergic markers. However, some differences were detected in terms of tyrosine hydroxylase protein expression by western blot analysis, thus suggesting an altered post-transcriptional regulation in F1 males. The results of this study suggest that an altered sperm miRNA signature in F1 males could be one possible mode of transmission of reproductive dysfunction to the progeny.
Collapse
Affiliation(s)
- Marta F Riesco
- Spanish Institute of Oceanography (IEO), Planta de Cultivos el Bocal, Barrio Corbanera, Monte, 39012 Santander, Spain
| | - David G Valcarce
- Spanish Institute of Oceanography (IEO), Planta de Cultivos el Bocal, Barrio Corbanera, Monte, 39012 Santander, Spain
| | - Juan Manuel Martínez-Vázquez
- Spanish Institute of Oceanography (IEO), Planta de Cultivos el Bocal, Barrio Corbanera, Monte, 39012 Santander, Spain
| | - Ignacio Martín
- Spanish Institute of Oceanography (IEO), Planta de Cultivos el Bocal, Barrio Corbanera, Monte, 39012 Santander, Spain
| | - Andrés Ángel Calderón-García
- Instituto de Neurociencias de Castilla y León (INCyL), Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Salamanca, Institute of Biomedical Research of Salamanca (IBSAL), E-37007 Salamanca, Spain
| | - Verónica Gonzalez-Nunez
- Instituto de Neurociencias de Castilla y León (INCyL), Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Salamanca, Institute of Biomedical Research of Salamanca (IBSAL), E-37007 Salamanca, Spain
| | - Vanesa Robles
- Spanish Institute of Oceanography (IEO), Planta de Cultivos el Bocal, Barrio Corbanera, Monte, 39012 Santander, Spain; and Corresponding author.
| |
Collapse
|
11
|
Fontaine R, Ager-Wick E, Hodne K, Weltzien FA. Plasticity in medaka gonadotropes via cell proliferation and phenotypic conversion. J Endocrinol 2020; 245:21-37. [PMID: 31977313 PMCID: PMC7040568 DOI: 10.1530/joe-19-0405] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 01/23/2020] [Indexed: 01/30/2023]
Abstract
Follicle-stimulating hormone (Fsh) and luteinizing hormone (Lh) produced by the gonadotropes play a major role in control of reproduction. Contrary to mammals and birds, Lh and Fsh are mostly produced by two separate cell types in teleost. Here, we investigated gonadotrope plasticity, using transgenic lines of medaka (Oryzias latipes) where DsRed2 and hrGfpII are under the control of the fshb and lhb promotors respectively. We found that Fsh cells appear in the pituitary at 8 dpf, while Lh cells were previously shown to appear at 14 dpf. Similar to Lh cells, Fsh cells show hyperplasia from juvenile to adult stages. Hyperplasia is stimulated by estradiol. Both Fsh and Lh cells show hypertrophy during puberty with similar morphology. They also share similar behavior, using their cellular extensions to make networks. We observed bi-hormonal gonadotropes in juveniles and adults but not in larvae where only mono-hormonal cells are observed, suggesting the existence of phenotypic conversion between Fsh and Lh in later stages. This is demonstrated in cell culture, where some Fsh cells start to produce Lhβ, a phenomenon enhanced by gonadotropin-releasing hormone (Gnrh) stimulation. We have previously shown that medaka Fsh cells lack Gnrh receptors, but here we show that with time in culture, some Fsh cells start responding to Gnrh, while fshb mRNA levels are significantly reduced, both suggestive of phenotypic change. All together, these results reveal high plasticity of gonadotropes due to both estradiol-sensitive proliferation and Gnrh promoted phenotypic conversion, and moreover, show that gonadotropes lose part of their identity when kept in cell culture.
Collapse
Affiliation(s)
- Romain Fontaine
- Department of Preclinical Sciences and Pathology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | - Eirill Ager-Wick
- Department of Preclinical Sciences and Pathology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | - Kjetil Hodne
- Department of Preclinical Sciences and Pathology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | - Finn-Arne Weltzien
- Department of Preclinical Sciences and Pathology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
- Correspondence should be addressed to F-A Weltzien:
| |
Collapse
|
12
|
Paullada-Salmerón JA, Cowan ME, Loentgen GH, Aliaga-Guerrero M, Zanuy S, Mañanós EL, Muñoz-Cueto JA. The gonadotropin-inhibitory hormone system of fish: The case of sea bass (Dicentrarchus labrax). Gen Comp Endocrinol 2019; 279:184-195. [PMID: 30923006 DOI: 10.1016/j.ygcen.2019.03.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 03/12/2019] [Accepted: 03/23/2019] [Indexed: 11/21/2022]
Abstract
Gonadotropin-inhibitory hormone (GnIH) is a hypothalamic neuropeptide belonging to the RFamide peptide family that was first discovered in quail by Tsutsui and co-workers in the year 2000. Since then, different GnIH orthologues have been identified in all vertebrate groups, from agnathans to mammals. These GnIH genes synthesize peptide precursors that encompass two to four C-terminal LPXRFamide peptides. Functional and behavioral studies carried out in birds and mammals have demonstrated a clear inhibitory role of GnIH on GnRH and gonadotropin synthesis and secretion as well as on aggressive and sexual behavior. However, the effects of Gnih orthologues in reproduction remain controversial in fish with both stimulatory and inhibitory actions being reported. In this paper, we will review the main findings obtained in our laboratory on the Gnih system of the European sea bass, Dicentrarchus labrax. The sea bass gnih gene encodes two putative Gnih peptides (sbGnih1 and sbGnih2), and is expressed in the olfactory bulbs/telencephalon, diencephalon, midbrain tegmentum, rostral rhombencephalon, retina and testis. The immunohistochemical study performed using specific antibodies developed in our laboratory revealed Gnih-immunoreactive (ir) perikarya in the same central areas and Gnih-ir fibers that profusely innervated the brain and pituitary of sea bass. Moreover, in vivo studies revealed the inhibitory role of centrally- and peripherally-administered Gnih in the reproductive axis of male sea bass, by acting at the brain (on gnrh and kisspeptin expression), pituitary (on gnrh receptors and gonadotropin synthesis and release) and gonadal (on androgen secretion and gametogenesis) levels. Our results have revealed the existence of a functional Gnih system in sea bass, and have provided evidence of the differential actions of the two Gnih peptides on the reproductive axis of this species, the main inhibitory role in the brain and pituitary being exerted by the sbGnih2 peptide. Recent studies developed in our laboratory also suggest that Gnih might be involved in the transduction of photoperiod and temperature information to the reproductive axis, as well as in the modulation of daily and seasonal rhythmic processes in sea bass.
Collapse
Affiliation(s)
- José Antonio Paullada-Salmerón
- Department of Biology, Faculty of Marine and Environmental Sciences and INMAR, University of Cádiz, CEIMAR, Puerto Real (Cádiz), Spain.
| | - Mairi E Cowan
- Department of Biology, Faculty of Marine and Environmental Sciences and INMAR, University of Cádiz, CEIMAR, Puerto Real (Cádiz), Spain
| | - Guillaume H Loentgen
- Department of Biology, Faculty of Marine and Environmental Sciences and INMAR, University of Cádiz, CEIMAR, Puerto Real (Cádiz), Spain
| | - María Aliaga-Guerrero
- Department of Biology, Faculty of Marine and Environmental Sciences and INMAR, University of Cádiz, CEIMAR, Puerto Real (Cádiz), Spain
| | - Silvia Zanuy
- Institute of Aquaculture of Torre de la Sal, CSIC, Castellón, Spain
| | | | - José Antonio Muñoz-Cueto
- Department of Biology, Faculty of Marine and Environmental Sciences and INMAR, University of Cádiz, CEIMAR, Puerto Real (Cádiz), Spain.
| |
Collapse
|
13
|
Geraudie P, Gerbron M, Lockyer AE, Jobling S, Minier C. Molecular isolation and characterization of the kisspeptin system, KISS and GPR54 genes in roach Rutilus rutilus. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:36759-36764. [PMID: 30293106 DOI: 10.1007/s11356-018-3299-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 09/20/2018] [Indexed: 06/08/2023]
Abstract
The reproduction of vertebrates is regulated by endocrine and neuro-endocrine signaling molecules acting along the brain-pituitary-gonad (BPG) axis. The understanding of the neuroendocrine role played in reproductive function has been recently revolutionized since the KiSS1/GPR54 (KiSS1r) system was discovered in 2003 in human and mice. Kisspeptins, neuropeptides that are encoded by the KiSS genes, have been recognized as essential in the regulation of the gonadotropic axis. They have been shown to play key roles in puberty onset and reproduction by regulating the gonadotropin secretion in mammals while physiological roles in vertebrates are still poorly known. In order to provide new knowledge on basic reproductive physiology in fish as well as new tools to assess impacts of endocrine disrupting compounds (EDCs), the neurotransmitter system, i.e., gene/receptor, KISS/GPR54 might constitute an appropriate biomarker. This study provides new understandings on the neuroendocrine regulation of roach reproduction as well as new molecular tools to be used as biomarkers of endocrine disruption. This work completes the set of biomarkers already validated in this species.
Collapse
Affiliation(s)
- Perrine Geraudie
- Akvaplan-Niva, Environmental and Petroleum Research Department, Framsenteret, Tromsø, Norway.
| | - Marie Gerbron
- Laboratory of Ecotoxicology, UMR-I 02 SEBIO-Normandie University, Le Havre, France
| | - Anne E Lockyer
- Institute of Environment, Health and Societies, Brunel University London, Uxbridge, UB8 3PH, UK
| | - Susan Jobling
- Institute of Environment, Health and Societies, Brunel University London, Uxbridge, UB8 3PH, UK
| | - Christophe Minier
- Laboratory of Ecotoxicology, UMR-I 02 SEBIO-Normandie University, Le Havre, France
| |
Collapse
|
14
|
Lu W, Guo W, Hou K, Zhao H, Shi L, Dong K, Qiu J. Grey matter differences associated with age and sex hormone levels between premenopausal and perimenopausal women: A voxel-based morphometry study. J Neuroendocrinol 2018; 30:e12655. [PMID: 30372794 DOI: 10.1111/jne.12655] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 09/22/2018] [Accepted: 10/24/2018] [Indexed: 11/30/2022]
Abstract
The present study aimed to explore brain morphological alterations associated with age and sex hormone levels between premenopausal and perimenopausal women using magnetic resonance imaging (MRI) T1 -weighted structural images. Thirty-two premenopausal women aged (mean ± SD) 47.75 ± 1.55 years and twenty-five recently perimenopausal women aged 51.60 ± 1.63 years were evaluated for sex hormone levels, including prolactin, follicle-stimulating hormone, luteinising hormone, oestradiol, free testosterone and progesterone. A 3.0-Tesla MRI scanner was utilised to acquire T1 images. Voxel-based morphometry (VBM) was used to evaluate changes in grey matter volume between the two groups. The general linear model was applied with false discovery rate correction for between group voxel-wise statistics. Spearman partial correlation analyses were conducted between age, sex hormone levels and regions of grey matter volume showing significant differences between the two groups. The VBM analysis revealed that age and menopause per se lead to grey matter volume reduction in certain brain structures. These structural changes might be potential causes of sexual dysfunction, nervous system degeneration and depression, which need to be examined in future studies. Our findings might provide evidence and guide future research in understanding the menopausal transition.
Collapse
Affiliation(s)
- Weizhao Lu
- Medical Engineering and Technical Center, Taishan Medcial University, Taian, China
- Department of Radiology, Taishan Medical University, Taian, China
| | - Wei Guo
- Affiliated Hospital of Taishan Medical University, Taian, China
| | - Kun Hou
- Medical Engineering and Technical Center, Taishan Medcial University, Taian, China
- Department of Radiology, Taishan Medical University, Taian, China
| | - Huihui Zhao
- Medical Engineering and Technical Center, Taishan Medcial University, Taian, China
- Department of Radiology, Taishan Medical University, Taian, China
| | - Liting Shi
- Medical Engineering and Technical Center, Taishan Medcial University, Taian, China
- Department of Radiology, Taishan Medical University, Taian, China
| | - Kejiang Dong
- Department of Radiology, Taishan Medical University, Taian, China
| | - Jianfeng Qiu
- Medical Engineering and Technical Center, Taishan Medcial University, Taian, China
- Department of Radiology, Taishan Medical University, Taian, China
| |
Collapse
|
15
|
Anderson K, Pankhurst N, King H, Elizur A. Effects of GnRHa treatment during vitellogenesis on the reproductive physiology of thermally challenged female Atlantic salmon ( Salmo salar). PeerJ 2017; 5:e3898. [PMID: 29062601 PMCID: PMC5652270 DOI: 10.7717/peerj.3898] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 09/16/2017] [Indexed: 11/20/2022] Open
Abstract
Tasmanian Atlantic salmon (S. salar) broodstock can experience temperatures above 20 °C, which impairs reproductive development and inhibits ovulation. The present study investigated the prolonged use of gonadotropin releasing hormone analogue (GnRHa) during vitellogenesis as a means of maintaining endocrine function and promoting egg quality at elevated temperature in maiden and repeat spawning S. salar. GnRHa-treatment during vitellogenesis did not compensate for the negative effects of thermal challenge on the timing of ovulation, egg size, egg fertility or embryo survival in any fish maintained at 22 °C relative to 14 °C. The lack of effectiveness was reflected by the endocrine data, as plasma follicle stimulating hormone and luteinising hormone levels were not different between treated and untreated groups at 22 °C. Furthermore, plasma testosterone and E2 levels were unchanged in GnRHa-treated fish at 22 °C, and plasma levels were generally lower in both groups maintained at 22 °C relative to 14 °C. Transcription of vitellogenin, and zona pellucida B and C was not enhanced in GnRHa-treated fish relative to untreated fish at 22 °C, presumably due to observed suppression of plasma E2. These results indicate that thermal impairment of reproduction is likely to occur on multiple levels, and is difficult to overcome via hormonal manipulation.
Collapse
Affiliation(s)
- Kelli Anderson
- Genecology Research Centre, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Sippy Downs, Queensland, Australia.,Australian Seafood Cooperative Research Centre, Bedford Park, South Australia, Australia
| | - Ned Pankhurst
- Australian Rivers Institute, Griffith University, Gold Coast, Queensland, Australia
| | - Harry King
- Salmon Enterprises of Tasmania, Wayatinah, Tasmania, Australia
| | - Abigail Elizur
- Genecology Research Centre, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
| |
Collapse
|
16
|
Hou ZS, Wen HS, Li JF, He F, Li Y, Tao YX. Hypothalamus-pituitary-gonad axis of rainbow trout (Oncorhynchus mykiss) during early ovarian development and under dense rearing condition. Gen Comp Endocrinol 2016; 236:131-138. [PMID: 27401261 DOI: 10.1016/j.ygcen.2016.07.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 06/30/2016] [Accepted: 07/07/2016] [Indexed: 12/23/2022]
Abstract
The objective of this study was to determine the hypothalamus-pituitary-gonad (HPG) axis of female rainbow trout (Oncorhynchus mykiss) during early ovarian development and under high rearing density. Trouts were sampled from 240 (ovarian stage II) to 540 (ovarian stage IV) days following hatching (DFH) as control group (Ctrl, 4.6-31.1kg/m(3)) to determine HPG axis during early ovarian development. Trouts from the same batch of fertilized eggs were reared in two higher densities during 240-540 DFH as stocking density 1 and 2 (SD1, 6.6-40.6kg/m(3); SD2, 8.6-49.3kg/m(3)) to elucidate effects of high density on reproductive parameters. Dopamine, E2 (estradiol), 17α,20β-P (17α,20β-dihydroxy4-pregnen-3-one) and P4 (progesterone) were evaluated by radioimmunoassay or ELISA. mRNA expression of hypothalamic gnrh-1, -2 (gonadotropin-releasing hormone-1, -2), pituitary gonadotropins (fsh/lh, follicle-stimulating hormone/luteinizing hormone) and their cognate receptors (fshr/lhr) in ovaries were examined by qRT-PCR. Our findings demonstrated mRNA expression of hypothalamic sgnrh-1, pituitary fsh and ovarian fshr increased in early ovarian development (360 DFH). Serum 17α,20β-P and pituitary lh mRNA expression first increased when trouts were in ovarian stage III (420 DFH). Ovaries were at different stages when reared in different densities. Long-term high density treatment (over 31.7kg/m(3)) resulted in decreased hypothalamic sgnrh-1, pituitary fsh, ovarian fshr, serum E2, and increased hypothalamus gnrh-2 and serum dopamine during vitellogenin synthesis, suggesting HPG of rainbow trout might be retarded under dense rearing condition.
Collapse
Affiliation(s)
- Zhi-Shuai Hou
- Fisheries College, Ocean University of China, Qingdao 266003, China
| | - Hai-Shen Wen
- Fisheries College, Ocean University of China, Qingdao 266003, China.
| | - Ji-Fang Li
- Fisheries College, Ocean University of China, Qingdao 266003, China
| | - Feng He
- Fisheries College, Ocean University of China, Qingdao 266003, China
| | - Yun Li
- Fisheries College, Ocean University of China, Qingdao 266003, China
| | - Ya-Xiong Tao
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, United States
| |
Collapse
|
17
|
Jolly C, Rousseau K, Prézeau L, Vol C, Tomkiewicz J, Dufour S, Pasqualini C. Functional Characterisation of Eel Dopamine D2 Receptors and Involvement in the Direct Inhibition of Pituitary Gonadotrophins. J Neuroendocrinol 2016; 28. [PMID: 27453551 DOI: 10.1111/jne.12411] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 06/21/2016] [Accepted: 07/20/2016] [Indexed: 01/11/2023]
Abstract
In various vertebrate species, dopamine (DA) exerts an inhibitory action on reproduction. In the European eel, DA plays a pivotal role in the inhibitory control of gonadotroph function and the blockade of puberty. In vivo studies have suggested that this effect is mediated by receptors pharmacologically related to the D2 family. In the European eel, two distinct D2 receptor (D2-R) paralogous genes have been identified (D2A-R and D2B-R) and both were shown to be expressed in the pituitary. We investigated the potential role of each paralogue in the control of gonadotroph function in this species. Eel recombinant D2A-R or D2B-R were expressed in HEK 293 cells, with a universal Gα subunit, and receptor activation was followed by inositol phosphate production. Recombinant D2-Rs exhibited a comparable affinity for DA, although they had differential affinities for mammalian D2-R agonists and antagonists, supporting subtle structure/activity differences. Furthermore, using eel pituitary cell primary cultures, the expression by gonadotroph cells of both native eel D2-R paralogues was examined by in situ hybridisation of D2A-R or D2B-R transcripts, coupled with immunofluorescence of luteinising hormone (LH)β or follicle-stimulating (FSH)β. LH and to a lesser extent, FSH cells expressed both D2-R transcripts but with a clear predominance of D2B-R. Notably, D2B-R transcripts were detected for the majority of LH cells. Accordingly, using these cultures, we showed that DA potently inhibited basal and testosterone-stimulated LHβ expression and less potently basal and activin-stimulated FSHβ expression. We also tested some D2-R antagonists, aiming to select the most adequate one to be used in innovative protocols for induction of eel sexual maturation. We identified eticlopride as the most potent inhibitor of DA action on basal and stimulated LH expression in vitro. Our data suggest a differential functionalisation of the duplicated receptor genes and demonstrate that mainly D2B-R is involved in the dopaminergic inhibitory control of eel gonadotroph function.
Collapse
Affiliation(s)
- C Jolly
- Muséum National d'Histoire Naturelle, Sorbonne Universités, Research Unit BOREA, Biologie des Organismes et Ecosystèmes Aquatiques, CNRS 7208, IRD207, UPMC, UCN, UA, Paris, France
| | - K Rousseau
- Muséum National d'Histoire Naturelle, Sorbonne Universités, Research Unit BOREA, Biologie des Organismes et Ecosystèmes Aquatiques, CNRS 7208, IRD207, UPMC, UCN, UA, Paris, France
| | - L Prézeau
- CNRS UMR5203, Institut de Génomique Fonctionnelle, Montpellier, France
- INSERM U661, Montpellier, France
- Université de Montpellier 1 & 2, Montpellier, France
| | - C Vol
- CNRS UMR5203, Institut de Génomique Fonctionnelle, Montpellier, France
- INSERM U661, Montpellier, France
- Université de Montpellier 1 & 2, Montpellier, France
| | - J Tomkiewicz
- National Institute of Aquatic Resources, Technical University of Denmark, Charlottenlund, Denmark
| | - S Dufour
- Muséum National d'Histoire Naturelle, Sorbonne Universités, Research Unit BOREA, Biologie des Organismes et Ecosystèmes Aquatiques, CNRS 7208, IRD207, UPMC, UCN, UA, Paris, France.
| | - C Pasqualini
- Institut des Neurosciences Paris-Saclay, Développement et Evolution de la Neurotransmission, Département Dev-Evo, Université Paris Sud, CNRS UMR 9197, Gif-Sur-Yvette, France.
| |
Collapse
|
18
|
Chabbi A, Ganesh CB. Evidence for the involvement of dopamine in stress-induced suppression of reproduction in the cichlid fish Oreochromis mossambicus. J Neuroendocrinol 2015; 27:343-56. [PMID: 25712855 DOI: 10.1111/jne.12269] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 02/02/2015] [Accepted: 02/19/2015] [Indexed: 01/23/2023]
Abstract
In the present study, we examined whether stress-induced suppression of reproduction is mediated through the catecholaminergic neurotransmitter dopamine (DA) in the female cichlid fish Oreochromis mossambicus. In the first experiment, application of antibody against tyrosine hydroxylase (TH; a marker for DA) in brain sections revealed the presence of intensely stained TH immunoreactive cells in the preoptic area (POA) and nucleus preopticus (NPO) during the previtellogenic phase. These cells showed weak immunoreactivity during the vitellogenic and prespawning phases concomitant with darkly stained luteinising hormone (LH) immunoreactive content in the proximal pars distalis (PPD) of the pituitary gland and fully ripened follicles (stage V) in the ovary of control fish. However, in fish exposed to aquacultural stressors, TH secreting cells remained intensely stained in POA and NPO regions during the prespawning phase, indicating increased synthetic and secretory activity, which was reflected by a significantly higher DA content compared to controls. Increased DA activity as a result of stress was associated with a decrease in the LH immunoreactive content in the PPD and an absence of stage V follicles in the ovary. In the second experiment, administration of DA caused effects similar to those in stressed fish, whereas DA receptor antagonist domperidone (DOM) treatment significantly increased the LH content in the PPD and the number of stage V follicles in unstressed fish. On the other hand, treatment of stressed fish with DOM resulted in dark accumulations of LH immunoreactive content in the PPD accompanied by the presence of stage V follicles in the ovary. Taken together, these results suggest an additional pathway for the inhibitory effects of stress through dopaminergic neurones along the reproductive axis.
Collapse
Affiliation(s)
- A Chabbi
- Neuroendocrinology Research Lab, Department of Studies in Zoology, Karnatak University, Dharwad, Karnataka, India
| | | |
Collapse
|
19
|
Pham HQ, Arukwe A. Effects of dopamine 2 receptor antagonist on sex steroid levels, oocyte maturation and spawning performances in Waigieu seaperch (Psammoperca waigiensis). FISH PHYSIOLOGY AND BIOCHEMISTRY 2013; 39:403-411. [PMID: 22911104 DOI: 10.1007/s10695-012-9708-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Accepted: 08/11/2012] [Indexed: 06/01/2023]
Abstract
The present study has investigated the effects of domperidone (DOM), a dopamine 2 receptor antagonist, on plasma steroid hormone levels and reproductive performances of a female tropical marine finfish, Waigieu seaperch (Psammoperca waigiensis), with potential for cultivation in Vietnam. We showed that oral treatment of DOM during early stage of the reproductive cycle had no significant effects on the maturation and reproductive performances of the female fish, while plasma steroid hormone (testosterone (T), 11-ketotestosterone (11-KT), 17β-estradiol (E2) and progesterone (P)) levels were modulated based on month, DOM dose and the individual hormones measured. Overall, these findings suggest that DOM may not be needed for the induction of maturation and spawning of this species under aquaculture conditions. The data in the present study are significant in highlighting practical efforts for reducing drug use, production costs and for a sustainable aquaculture in a developing country such as Vietnam.
Collapse
Affiliation(s)
- Hung Quoc Pham
- Faculty of Aquaculture, Nha Trang University, Nha Trang City, Vietnam
| | | |
Collapse
|
20
|
Blazer VS, Pinkney AE, Jenkins JA, Iwanowicz LR, Minkkinen S, Draugelis-Dale RO, Uphoff JH. Reproductive health of yellow perch Perca flavescens in selected tributaries of the Chesapeake Bay. THE SCIENCE OF THE TOTAL ENVIRONMENT 2013; 447:198-209. [PMID: 23384644 DOI: 10.1016/j.scitotenv.2012.12.088] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Revised: 12/21/2012] [Accepted: 12/21/2012] [Indexed: 06/01/2023]
Abstract
Reduced recruitment of yellow perch has been noted for a number of years in certain urbanized watersheds (South and Severn Rivers) of the Chesapeake Bay. Other rapidly developing watersheds such as Mattawoman Creek are more recently showing evidence of reduced recruitment of anadromous fishes. In this study, we used a battery of biomarkers to better document the reproductive health of adult yellow perch collected during spring spawning in 2007-2009. Perch were collected in the South and Severn Rivers, Mattawoman Creek and the less developed Choptank and Allen's Fresh watersheds for comparison. Gonadosomatic indices, plasma reproductive hormone concentrations, plasma vitellogenin concentrations and gonad histology were evaluated in mature perch of both sexes. In addition, sperm quantity (cell counts) and quality (total and progressive motility, spermatogenic stage and DNA integrity), were measured in male perch. Many of these biomarkers varied annually and spatially, with some interesting statistical results and trends. Male perch from the Choptank and Allen's Fresh had generally higher sperm counts. In 2008 counts were significantly lower in the perch from the Severn when compared to other sites. The major microscopic gonadal abnormality in males was the proliferation of putative Leydig cells, observed in testes from Severn and less commonly, Mattawoman Creek perch. Observations that could significantly impact egg viability were an apparent lack of final maturation, abnormal yolk and thin, irregular zona pellucida. These were observed primarily in ovaries from Severn, South and less commonly Mattawoman Creek perch. The potential association of these observations with urbanization, impervious surface and chemical contaminants is discussed.
Collapse
Affiliation(s)
- Vicki S Blazer
- U.S. Geological Survey, National Fish Health Research Laboratory, Leetown Science Center, 11649 Leetown Road, Kearneysville, WV 25430, USA.
| | | | | | | | | | | | | |
Collapse
|
21
|
Popesku JT, Mennigen JA, Chang JP, Trudeau VL. Dopamine D1 receptor blockage potentiates AMPA-stimulated luteinising hormone release in the goldfish. J Neuroendocrinol 2011; 23:302-9. [PMID: 21276102 DOI: 10.1111/j.1365-2826.2011.02114.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Previous microarray analyses of the goldfish hypothalamus led us to hypothesise that dopamine could potentially inhibit the excitatory effects of glutamate on luteinising hormone (LH). Post-spawning female goldfish were pre-treated (-4.5 h) with either saline (C; control), SCH 23390 (S; D(1) -receptor antagonist) or sulpiride (L; D(2) -receptor antagonist), followed by an i.p. injection, at -0.5 h, of saline or the glutamate agonist AMPA (A, SA or LA). Blood, hypothalamus and telencephalon tissues were collected. Serum LH was not affected in the S, L, A, or LA groups relative to control as determined by radioimmunoassay. The SA group, however, showed a 289% (P<0.0005) increase in serum LH compared to either treatment alone or control. Real-time reverse transcriptase-polymerase chain reaction identified the mRNAs for ionotropic (Gria2a, Gria4) glutamate receptor subunits, activin βa, isotocin, and cGnRH-II as being significantly affected by some of the treatments. The same experiment conducted with sexually-regressed female fish showed a very different LH profile, indicating that this mechanism is seasonally-dependent. We also show that i.p. injection of 1 μg/g isotocin was able to increase LH levels by 167% in sexually regressed female fish relative to controls. Taken together, these results demonstrate that blockage of the D(1) receptor primes post-spawning goldfish for AMPA-stimulated LH release, and provides further insights into the central regulation of reproduction.
Collapse
Affiliation(s)
- J T Popesku
- Centre for Advanced Research in Environmental Genomics (CAREG), Department of Biology, University of Ottawa, Ottawa, Canada
| | | | | | | |
Collapse
|
22
|
Guzmán JM, Cal R, García-López Á, Chereguini O, Kight K, Olmedo M, Sarasquete C, Mylonas CC, Peleteiro JB, Zohar Y, Mañanós EL. Effects of in vivo treatment with the dopamine antagonist pimozide and gonadotropin-releasing hormone agonist (GnRHa) on the reproductive axis of Senegalese sole (Solea senegalensis). Comp Biochem Physiol A Mol Integr Physiol 2011; 158:235-45. [DOI: 10.1016/j.cbpa.2010.11.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2010] [Revised: 11/18/2010] [Accepted: 11/19/2010] [Indexed: 01/04/2023]
|
23
|
Villeneuve DL, Garcia-Reyero N, Martinović D, Mueller ND, Cavallin JE, Durhan EJ, Makynen EA, Jensen KM, Kahl MD, Blake LS, Perkins EJ, Ankley GT. I. Effects of a dopamine receptor antagonist on fathead minnow, Pimephales promelas, reproduction. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2010; 73:472-477. [PMID: 19783049 DOI: 10.1016/j.ecoenv.2009.09.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2009] [Revised: 09/03/2009] [Accepted: 09/04/2009] [Indexed: 05/28/2023]
Abstract
Neurotransmitters such as dopamine play an important role in regulating fish reproduction. However, the potential for neuroendocrine active chemicals to disrupt fish reproduction has not been well studied, despite emerging evidence of their discharge into aquatic environments. This study is the first to apply the fathead minnow 21 d reproduction assay developed for the US Endocrine Disruptor Screening Program to evaluate the reproductive toxicity of a model neuroendocrine active chemical, the dopamine 2 receptor antagonist, haloperidol. Continuous exposure to up to 20 imcrog haloperidol/L had no significant effects on fathead minnow fecundity, secondary sex characteristics, gonad histology, or plasma steroid and vitellogenin concentrations. The only significant effect observed was an increase in gonadotropin-releasing hormone (cGnRH) transcripts in the male brain. Results suggest that non-lethal concentrations of haloperidol do not directly impair fish reproduction. Potential effects of haloperidol on reproductive behaviors and gene expression were examined in a companion study.
Collapse
Affiliation(s)
- Daniel L Villeneuve
- US Environmental Protection Agency, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Mid-Continent Ecology Division, 6201 Congdon Boulevard, Duluth, MN 55804, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Levavi-Sivan B, Bogerd J, Mañanós EL, Gómez A, Lareyre JJ. Perspectives on fish gonadotropins and their receptors. Gen Comp Endocrinol 2010; 165:412-37. [PMID: 19686749 DOI: 10.1016/j.ygcen.2009.07.019] [Citation(s) in RCA: 335] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2009] [Revised: 07/10/2009] [Accepted: 07/16/2009] [Indexed: 12/19/2022]
Abstract
Teleosts lack a hypophyseal portal system and hence neurohormones are carried by nerve fibers from the preoptic region to the pituitary. The various cell types in the teleost pituitary are organized in discrete domains. Fish possess two gonadotropins (GtH) similar to FSH and LH in other vertebrates; they are heterodimeric hormones that consist of a common alpha subunit non-covalently associated with a hormone-specific beta subunit. In recent years the availability of molecular cloning techniques allowed the isolation of the genes coding for the GtH subunits in 56 fish species representing at least 14 teleost orders. Advanced molecular engineering provides the technology to produce recombinant GtHs from isolated cDNAs. Various expression systems have been used for the production of recombinant proteins. Recombinant fish GtHs were produced for carp, seabream, channel and African catfish, goldfish, eel, tilapia, zebrafish, Manchurian trout and Orange-spotted grouper. The hypothalamus in fishes exerts its regulation on the release of the GtHs via several neurohormones such as GnRH, dopamine, GABA, PACAP, IGF-I, norepinephrine, NPY, kisspeptin, leptin and ghrelin. In addition, gonadal steroids and peptides exert their effects on the gonadotropins either directly or via the hypothalamus. All these are discussed in detail in this review. In mammals, the biological activities of FSH and LH are directed to different gonadal target cells through the cell-specific expression of the FSH receptor (FSHR) and LH receptor (LHR), respectively, and the interaction between each gonadotropin-receptor couple is highly selective. In contrast, the bioactivity of fish gonadotropins seems to be less specific as a result of promiscuous hormone-receptor interactions, while FSHR expression in Leydig cells explains the strong steroidogenic activity of FSH in certain fish species.
Collapse
Affiliation(s)
- B Levavi-Sivan
- The Robert H. Smith Faculty of Agriculture, Food and Environment, Department of Animal Sciences, The Hebrew University of Jerusalem, Rehovot 76100, Israel.
| | | | | | | | | |
Collapse
|
25
|
Zohar Y, Muñoz-Cueto JA, Elizur A, Kah O. Neuroendocrinology of reproduction in teleost fish. Gen Comp Endocrinol 2010; 165:438-55. [PMID: 19393655 DOI: 10.1016/j.ygcen.2009.04.017] [Citation(s) in RCA: 506] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2008] [Revised: 04/08/2009] [Accepted: 04/17/2009] [Indexed: 11/28/2022]
Abstract
This review aims at synthesizing the most relevant information regarding the neuroendocrine circuits controlling reproduction, mainly gonadotropin release, in teleost fish. In teleosts, the pituitary receives a more or less direct innervation by neurons sending projections to the vicinity of the pituitary gonadotrophs. Among the neurotransmitters and neuropeptides released by these nerve endings are gonadotrophin-releasing hormones (GnRH) and dopamine, acting as stimulatory and inhibitory factors (in many but not all fish) on the liberation of LH and to a lesser extent that of FSH. The activity of the corresponding neurons depends on a complex interplay between external and internal factors that will ultimately influence the triggering of puberty and sexual maturation. Among these factors are sex steroids and other peripheral hormones and growth factors, but little is known regarding their targets. However, very recently a new actor has entered the field of reproductive physiology. KiSS1, first known as a tumor suppressor called metastin, and its receptor GPR54, are now central to the regulation of GnRH, and consequently LH and FSH secretion in mammals. The KiSS system is notably viewed as instrumental in integrating both environmental cues and metabolic signals and passing this information onto the reproductive axis. In fish, there are two KiSS genes, KiSS1 and KiSS2, expressed in neurons of the preoptic area and mediobasal hypothalamus. Pionneer studies indicate that KiSS and GPR54 expression seem to be activated at puberty. Although precise information as to the physiological effects of KiSS1 in fish, notably on GnRH neurons and gonadotropin release, is still limited, KiSS neurons may emerge as the "gatekeeper" of puberty and reproduction in fish as in mammals.
Collapse
Affiliation(s)
- Yonathan Zohar
- Center of Marine Biotechnology, University of Maryland Biotechnology Institute, Baltimore, MD, USA
| | | | | | | |
Collapse
|
26
|
Basu N, Ta CA, Waye A, Mao J, Hewitt M, Arnason JT, Trudeau VL. Pulp and paper mill effluents contain neuroactive substances that potentially disrupt neuroendocrine control of fish reproduction. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2009; 43:1635-41. [PMID: 19350947 DOI: 10.1021/es802552m] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Here we show for the first time that components of pulp and paper mill effluents contain neuroactive substances that may impair fish reproduction. Grab samples of primary and secondary effluent were obtained from a representative pulp and paper mill in Eastern Canada. Effluents were fractionated using classic polarity and polyphenolic extraction methods into solvents of selected polarities (water, ethanol, ethyl acetate, and hexane). By means of in vitro, competitive assays on goldfish (Carassius auratus) brain tissues, the extracts were screened for their ability to interact with enzymes and receptors involved in gamma-aminobutyric acid (GABA), dopamine, glutamate, and acetylcholine-dependent neurotransmission. These neurotransmission pathways have essential regulatory roles in fish reproduction. Radioligand binding to the following neurotransmitter receptors were significantly impacted following in vitro incubations with extracts (percentage change from controls indicated in brackets): dopamine-2 (D2; 21-48% increase), GABA(A) receptor binding (65-67% decrease and 189% increase), N-methyl-o-aspartic acid (NMDA; 26-75% decrease), and muscarinic cholinergic (mACh; 42% increase). Activities of the following neurotransmitter-related enzymeswere significantly impacted: monoamine oxidase (MAO; 14-48% decrease), GABA-transaminase activity (33% decrease and 21-69% increase), and acetylcholinesterase (AChE; 21-50% decrease). No changes in glutamic acid decarboxylase (GAD) activity were detected. These findings provide a novel and plausible mechanism by which pulp and paper mills effluents impair fish reproduction by interacting with neurotransmitter systems. Furtherwork is required to identify the active compounds and explore whether these changes occur in vivo.
Collapse
Affiliation(s)
- Niladri Basu
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, Michigan 48109, USA
| | | | | | | | | | | | | |
Collapse
|
27
|
Chang JP, Johnson JD, Sawisky GR, Grey CL, Mitchell G, Booth M, Volk MM, Parks SK, Thompson E, Goss GG, Klausen C, Habibi HR. Signal transduction in multifactorial neuroendocrine control of gonadotropin secretion and synthesis in teleosts-studies on the goldfish model. Gen Comp Endocrinol 2009; 161:42-52. [PMID: 18838074 DOI: 10.1016/j.ygcen.2008.09.005] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2008] [Revised: 08/29/2008] [Accepted: 09/08/2008] [Indexed: 11/25/2022]
Abstract
In teleosts, gonadotropin (GTH) secretion and synthesis is controlled by multiple neuroendocrine factors from the hypothalamus, pituitary and peripheral sources. Pituitary gonadotropes must be able to differentiate and integrate information from these regulators at the cellular and intracellular level. In this article, the intracellular signal transduction mechanisms mediating the actions of some of these regulators, including GTH-releasing hormones, pituitary adenylate cyclase-activating polypeptide, dopamine, ghrelin, sex steroids, activin, and follistatin from experiments with goldfish are reviewed and discussed in relation with recent findings. Information from other teleost models is briefly compared. Goldfish gonadotropes possess multiple pharmacologically distinct intracellular Ca2+ stores that together with voltage-sensitive Ca2+ channels, Na+/H+ exchangers, protein kinase C, arachidonic acid, NO, protein kinase A, ERK/MAPK, and Smads allows for integrated control by different neuroendocrine factors.
Collapse
Affiliation(s)
- John P Chang
- Department of Biological Sciences, University of Alberta, CW405 Biological Sciences Building, Edmonton, Alberta, Canada T6G 2E9.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
van der Kraak G. Chapter 3 The GnRH System and the Neuroendocrine Regulation of Reproduction. FISH PHYSIOLOGY 2009. [DOI: 10.1016/s1546-5098(09)28003-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
29
|
Mutiara S, Kanasaki H, Harada T, Miyazaki K. Dopamine D(2) receptor expression and regulation of gonadotropin alpha-subunit gene in clonal gonadotroph LbetaT2 cells. Mol Cell Endocrinol 2006; 259:22-9. [PMID: 16959402 DOI: 10.1016/j.mce.2006.07.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2006] [Revised: 07/21/2006] [Accepted: 07/26/2006] [Indexed: 11/28/2022]
Abstract
This study investigated the role of dopamine on the regulation of gonadotropin secretion at the gonadotroph cell line. We examined the function of the dopamine D(2) receptor in the regulation of pituitary gonadotropin gene expression using LbetaT2 cells, a mature, well differentiated clonal gonadotroph cell line. The presence of the dopamine D(2) receptor in the LbetaT2 cells was confirmed by both RT-PCR and Western blot. Gonadotropin releasing hormone (GnRH) stimulation resulted in gonadotropin LHbeta, FSHbeta and alpha-subunit promoter activation, and none were inhibited by quinpirol, a specific dopamine D(2) receptor agonist. Pituitary adenylate cyclase-activating polypeptide (PACAP) increased gonadotropin alpha-subunit promoter activity, but not LHbeta and FSHbeta promoter activity. The activity of PACAP was significantly inhibited in the presence of quinpirol. The protein kinase A inhibitor, H89, also inhibited PACAP-induced alpha-subunit gene expression. PACAP increased intracellular cAMP more than GnRH did in LbetaT2 cells, and the elevation of cAMP was strongly inhibited in the presence of various dopamine D(2) agonists. These results suggest that in pituitary gonadotrophs, the dopamine D(2) receptor is a negative regulator of gonadotropin alpha-subunit gene expression which is induced by cAMP-elevating factors in a cAMP-dependent pathway.
Collapse
Affiliation(s)
- Sandra Mutiara
- Department of Obstetrics and Gynecology, Shimane University, School of Medicine, Enya Cho 89-1, Izumo 693-8501, Shimane Prefecture, Japan
| | | | | | | |
Collapse
|
30
|
Dufour S, Weltzien FA, Sebert ME, Le Belle N, Vidal B, Vernier P, Pasqualini C. Dopaminergic Inhibition of Reproduction in Teleost Fishes: Ecophysiological and Evolutionary Implications. Ann N Y Acad Sci 2006; 1040:9-21. [PMID: 15891002 DOI: 10.1196/annals.1327.002] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
In many teleosts, dopamine (DA) exerts direct inhibitory control on gonadotropes, counteracting the stimulatory effect of gonadotropin-releasing hormone (GnRH) on gonadotropin release. This dual control by GnRH and DA has been demonstrated in various adult teleosts and has major implications for aquaculture. Because of its unique life cycle, the European eel has provided a powerful model for demonstrating the key role of DA in the control of puberty. Data from tetrapods suggest that the inhibitory role of DA on reproduction is not restricted to the teleosts. Thus, DA inhibitory control could represent an ancient evolutionary component in the neuroendocrine regulation of reproduction that may have been differentially maintained throughout vertebrate evolution. The intensity of DA inhibition, its main site of action, and its involvement in the control of puberty, seasonal reproduction, ovulation, spermiation, or even sex change may differ among classes of vertebrates, as well as within smaller phylogenetic units such as teleosts or mammals. An inhibitory role for DA has been reported also in some invertebrates, indicating that neuronal DA pathways may have been recruited in various groups of metazoa to participate in the control of reproduction. In addition to the incontestable GnRH neurons, the recruitment of DA neurons for the neuroendocrine control of reproduction provides an additional brain pathway for the integration of various species-specific, internal, and environmental cues. In teleosts, the plasticity of the DA neuroendocrine role may have contributed to their large diversity of biological cycles and to their successful adaptation to various environments.
Collapse
Affiliation(s)
- S Dufour
- USM 0401, UMR CNRS/MNHN/UPMC 5178, Biologie des Organismes Marins et Ecosystèmes, DMPA, Muséum National d'Histoire Naturelle, Paris, France.
| | | | | | | | | | | | | |
Collapse
|
31
|
Levavi-Sivan B, Aizen J, Avitan A. Cloning, characterization and expression of the D2 dopamine receptor from the tilapia pituitary. Mol Cell Endocrinol 2005; 236:17-30. [PMID: 15876479 DOI: 10.1016/j.mce.2005.03.010] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2004] [Revised: 03/16/2005] [Accepted: 03/18/2005] [Indexed: 11/19/2022]
Abstract
A full-length cDNA encoding a dopamine receptor (DA-R) was obtained from the pituitary of tilapia (ta). This cDNA encodes a protein of 469 amino acids that exhibits the typical arrangement of GPCR. The taDA-R shows high similarity to the DA-Rs of mullet and fugu, and over 70% similarity to Xenopus, mouse and turkey D2 DA-Rs. Northern blot analysis revealed transcript for a single transcript in the pituitary, of approximately 3 kb. In a Southern analysis, the tilapia probe recognized specific bands in the genomic DNA of both mullet and catfish, suggesting high similarity between the corresponding genes. Phylogenetic analysis clearly aligned the taDA-D2-R with all vertebrate D2-like receptor sequences cloned to date, and it was therefore designated taDA-D2-R. taDA-D2-R was transiently expressed in COS-7 cells together with the reporter construct CRE-luciferase. Addition of the specific D2 dopamine agonists quinpirole or bromocriptine, in the presence of forskolin, led to a dose-dependent decrease in forskolin-induced cAMP levels. Both agonists yielded the same maximal inhibition (around 40%). However, the potency of taDA-D2-R for bromocriptine was higher than for quinpirole. As established for mammalian D2-like receptors, stimulation of the taDA-D2-R with quinpirole triggers pertussis-toxin-sensitive Gi/o-mediated, but not Gs-mediated signaling. In contrast to mammals, PCR analysis gave no evidence of alternative splicing in taDA-D2-R. Pharmacological and genetic manipulation of the taDA-D2-R should enable us to better define its physiological role and to further explore the usefulness of fish as a model system for understanding dopaminergic function in higher organisms.
Collapse
Affiliation(s)
- Berta Levavi-Sivan
- Department of Animal Sciences, Faculty of Agricultural, Food and Environmental Quality Sciences, The Hebrew University, P.O. Box 12, Rehovot 76100, Israel.
| | | | | |
Collapse
|
32
|
Weltzien FA, Andersson E, Andersen Ø, Shalchian-Tabrizi K, Norberg B. The brain–pituitary–gonad axis in male teleosts, with special emphasis on flatfish (Pleuronectiformes). Comp Biochem Physiol A Mol Integr Physiol 2004; 137:447-77. [PMID: 15123185 DOI: 10.1016/j.cbpb.2003.11.007] [Citation(s) in RCA: 209] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2003] [Revised: 11/05/2003] [Accepted: 11/06/2003] [Indexed: 02/03/2023]
Abstract
The key component regulating vertebrate puberty and sexual maturation is the endocrine system primarily effectuated along the brain-pituitary-gonad (BPG) axis. By far most investigations on the teleost BPG axis have been performed on salmonids, carps, catfish and eels. Accordingly, earlier reviews on the BPG axis in teleosts have focused on these species, and mainly on females (e.g. 'Fish Physiology, vol. IXA. Reproduction (1983) pp. 97'; 'Proceedings of the Fourth International Symposium on the Reproductive Physiology of Fish. FishSymp91, Sheffield, UK, 1991, pp. 2'; 'Curr. Top. Dev. Biol. 30 (1995) pp. 103'; 'Rev. Fish Biol. Fish. 7 (1997) pp. 173'; 'Proceedings of the Sixth International Symposium on the Reproductive Physiology of Fish. John Grieg A/S, Bergen, Norway, 2000, pp. 211'). However, in recent years new data have emerged on the BPG axis in flatfish, especially at the level of the brain and pituitary. The evolutionarily advanced flatfishes are important model species both from an evolutionary point of view and also because many are candidates for aquaculture. The scope of this paper is to review the present status on the male teleost BPG axis, with an emphasis on flatfish. In doing so, we will first discuss the present understanding of the individual constituents of the axis in the best studied teleost models, and thereafter discuss available data on flatfish. Of the three constituents of the BPG axis, we will focus especially on the pituitary and gonadotropins. In addition to reviewing recent information on flatfish, we present some entirely new information on the phylogeny and molecular structure of teleost gonadotropins.
Collapse
Affiliation(s)
- Finn-Arne Weltzien
- Institute of Marine Research, Austevoll Aquaculture Research Station, 5392 Storebø, Norway.
| | | | | | | | | |
Collapse
|
33
|
Vacher C, Pellegrini E, Anglade I, Ferriére F, Saligaut C, Kah O. Distribution of dopamine D2 receptor mRNAs in the brain and the pituitary of female rainbow trout: an in situ hybridization study. J Comp Neurol 2003; 458:32-45. [PMID: 12577321 DOI: 10.1002/cne.10545] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The distribution of D(2)R (dopamine D(2) receptor) mRNAs was studied in the forebrain of maturing female rainbow trout by means of in situ hybridization using a (35)S-labeled riboprobe (810 bp) spanning the third intracytoplasmic loop. A hybridization signal was consistently obtained in the olfactory epithelium, the internal cell layer of the olfactory bulbs, the ventral and dorsal subdivisions of the ventral telencephalon, and most preoptic subdivisions, with the notable exception of the magnocellular preoptic nucleus, and the periventricular regions of the mediobasal hypothalamus, including the posterior tuberculum. In the pituitary, the signal was higher in the pars intermedia than in the proximal and the rostral pars distalis, but no obvious correspondence with a given cell type could be assigned. Labeled cells were also located in the thalamic region, some pretectal nuclei, the optic tectum, and the torus semicircularis. These results provide a morphologic basis for a better understanding on the functions and evolution of the dopaminergic systems in lower vertebrates.
Collapse
Affiliation(s)
- Coralie Vacher
- Endocrinologie Moléculaire de la Reproduction, UMR CNRS 6026, Campus de Beaulieu, 35042 Rennes cedex, France
| | | | | | | | | | | |
Collapse
|
34
|
Vetillard A, Atteke C, Saligaut C, Jego P, Bailhache T. Differential regulation of tyrosine hydroxylase and estradiol receptor expression in the rainbow trout brain. Mol Cell Endocrinol 2003; 199:37-47. [PMID: 12581878 DOI: 10.1016/s0303-7207(02)00305-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In numerous fish species, dopamine has been found to strongly inhibit gonadotropin release. Among the enzymes that regulate dopamine turnover, tyrosine hydroxylase (TH), the rate-limiting anabolic enzyme, could be a target for endocrine feedback regulation. Since dopamine turnover is stimulated by estradiol in rainbow trout, we have investigated the effect of estradiol on TH and estradiol receptor expression. In situ hybridization was used to quantify mRNA levels in the brain of ovariectomized female rainbow trout implanted or not with estradiol pellets. We demonstrated that preoptic TH and estradiol receptor mRNA levels are greatly decreased by gonadectomy during vitellogenesis. For TH expression, this effect was reversed in part by estradiol supplementation. We have also confirmed the existence of an inhibitory gonadal feedback on FSH secretion, mediated by estradiol. The stimulating effect of estradiol on TH expression found in this study could be a pathway involved in gonadal feedback on gonadotropin release.
Collapse
Affiliation(s)
- A Vetillard
- UMR-CNRS 6026, Endocrinologie Moleculaire de la Reproduction, Universite de Rennes 1, Campus de Beaulieu, France.
| | | | | | | | | |
Collapse
|
35
|
Mateos J, Mañanos E, Carrillo M, Zanuy S. Regulation of follicle-stimulating hormone (FSH) and luteinizing hormone (LH) gene expression by gonadotropin-releasing hormone (GnRH) and sexual steroids in the Mediterranean Sea bass. Comp Biochem Physiol B Biochem Mol Biol 2002; 132:75-86. [PMID: 11997211 DOI: 10.1016/s1096-4959(01)00535-8] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The secretion of gonadotropins, the key reproductive hormones in vertebrates, is controlled from the brain by the gonadotropin-releasing hormone (GnRH), but also by complex steroid feedback mechanisms. In this study, after the recent cloning of the three gonadotropin subunits of sea bass (Dicentrarchus labrax), we aimed at investigating the effects of GnRH and sexual steroids on pituitary gonadotropin mRNA levels, in this valuable aquaculture fish species. Implantation of sea bass, in the period of sexual resting, for 12 days with estradiol (E2), testosterone (T) or the non-aromatizable androgen dihydrotestosterone (DHT), almost suppressed basal expression of FSHbeta (four to 15-fold inhibition from control levels), while slightly increasing that of alpha (1.5-fold) and LHbeta (approx. twofold) subunits. Further injection with a GnRH analogue (15 microg/kg BW; [D-Ala6, Pro9-Net]-mGnRH), had no effect on FSHbeta mRNA levels, but stimulated (twofold) pituitary alpha and LHbeta mRNA levels in sham- and T-implanted fish, and slightly in E2- and DHT-implanted fish (approx. 1.5-fold). The GnRHa injection, as expected, elevated plasma LH levels with a parallel decrease on LH pituitary content, with no differences between implanted fish. In conclusion, high circulating steroid levels seems to exert different action on gonadotropin secretion, inhibiting FSH while stimulating LH synthesis. In these experimental conditions, the GnRHa stimulate LH synthesis and release, but have no effect on FSH synthesis.
Collapse
Affiliation(s)
- Jorge Mateos
- Instituto de Acuicultura de Torre la Sal (C.S.I.C.), Ribera de Cabanes s/n, 12595-Torre la Sal, Castellón, Spain
| | | | | | | |
Collapse
|