1
|
Quintana L, Jalabert C, Fokidis HB, Soma KK, Zubizarreta L. Neuroendocrine Mechanisms Underlying Non-breeding Aggression: Common Strategies Between Birds and Fish. Front Neural Circuits 2021; 15:716605. [PMID: 34393727 PMCID: PMC8358322 DOI: 10.3389/fncir.2021.716605] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 07/06/2021] [Indexed: 11/13/2022] Open
Abstract
Aggression is an adaptive behavior that plays an important role in gaining access to limited resources. Aggression may occur uncoupled from reproduction, thus offering a valuable context to further understand its neural and hormonal regulation. This review focuses on the contributions from song sparrows (Melospiza melodia) and the weakly electric banded knifefish (Gymnotus omarorum). Together, these models offer clues about the underlying mechanisms of non-breeding aggression, especially the potential roles of neuropeptide Y (NPY) and brain-derived estrogens. The orexigenic NPY is well-conserved between birds and teleost fish, increases in response to low food intake, and influences sex steroid synthesis. In non-breeding M. melodia, NPY increases in the social behavior network, and NPY-Y1 receptor expression is upregulated in response to a territorial challenge. In G. omarorum, NPY is upregulated in the preoptic area of dominant, but not subordinate, individuals. We hypothesize that NPY may signal a seasonal decrease in food availability and promote non-breeding aggression. In both animal models, non-breeding aggression is estrogen-dependent but gonad-independent. In non-breeding M. melodia, neurosteroid synthesis rapidly increases in response to a territorial challenge. In G. omarorum, brain aromatase is upregulated in dominant but not subordinate fish. In both species, the dramatic decrease in food availability in the non-breeding season may promote non-breeding aggression, via changes in NPY and/or neurosteroid signaling.
Collapse
Affiliation(s)
- Laura Quintana
- Unidad Bases Neurales de la Conducta, Departamento de Neurofisiología Celular y Molecular, Instituto de Investigaciones Biológicas Clemente Estable, Ministerio de Educación y Cultura, Montevideo, Uruguay
| | - Cecilia Jalabert
- Department of Zoology, The University of British Columbia, Vancouver, BC, Canada
| | - H Bobby Fokidis
- Department of Biology, Rollins College, Winter Park, FL, United States
| | - Kiran K Soma
- Department of Zoology, The University of British Columbia, Vancouver, BC, Canada.,Department of Psychology, The University of British Columbia, Vancouver, BC, Canada
| | - Lucia Zubizarreta
- Unidad Bases Neurales de la Conducta, Departamento de Neurofisiología Celular y Molecular, Instituto de Investigaciones Biológicas Clemente Estable, Ministerio de Educación y Cultura, Montevideo, Uruguay.,Laboratorio de Neurofisiología Celular y Sináptica, Departamento de Fisiología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
2
|
Termignoni-Garcia F, Louder MIM, Balakrishnan CN, O’Connell L, Edwards SV. Prospects for sociogenomics in avian cooperative breeding and parental care. Curr Zool 2020; 66:293-306. [PMID: 32440290 PMCID: PMC7233861 DOI: 10.1093/cz/zoz057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 11/20/2019] [Indexed: 01/08/2023] Open
Abstract
For the last 40 years, the study of cooperative breeding (CB) in birds has proceeded primarily in the context of discovering the ecological, geographical, and behavioral drivers of helping. The advent of molecular tools in the early 1990s assisted in clarifying the relatedness of helpers to those helped, in some cases, confirming predictions of kin selection theory. Methods for genome-wide analysis of sequence variation, gene expression, and epigenetics promise to add new dimensions to our understanding of avian CB, primarily in the area of molecular and developmental correlates of delayed breeding and dispersal, as well as the ontogeny of achieving parental status in nature. Here, we outline key ways in which modern -omics approaches, in particular genome sequencing, transcriptomics, and epigenetic profiling such as ATAC-seq, can be used to add a new level of analysis of avian CB. Building on recent and ongoing studies of avian social behavior and sociogenomics, we review how high-throughput sequencing of a focal species or clade can provide a robust foundation for downstream, context-dependent destructive and non-destructive sampling of specific tissues or physiological states in the field for analysis of gene expression and epigenetics. -Omics approaches have the potential to inform not only studies of the diversification of CB over evolutionary time, but real-time analyses of behavioral interactions in the field or lab. Sociogenomics of birds represents a new branch in the network of methods used to study CB, and can help clarify ways in which the different levels of analysis of CB ultimately interact in novel and unexpected ways.
Collapse
Affiliation(s)
- Flavia Termignoni-Garcia
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
- Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138, USA
| | - Matthew I M Louder
- International Research Center for Neurointelligence, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | - Lauren O’Connell
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Scott V Edwards
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
- Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
3
|
Fischer EK, O'Connell LA. Modification of feeding circuits in the evolution of social behavior. ACTA ACUST UNITED AC 2017; 220:92-102. [PMID: 28057832 DOI: 10.1242/jeb.143859] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Adaptive trade-offs between foraging and social behavior intuitively explain many aspects of individual decision-making. Given the intimate connection between social behavior and feeding/foraging at the behavioral level, we propose that social behaviors are linked to foraging on a mechanistic level, and that modifications of feeding circuits are crucial in the evolution of complex social behaviors. In this Review, we first highlight the overlap between mechanisms underlying foraging and parental care and then expand this argument to consider the manipulation of feeding-related pathways in the evolution of other complex social behaviors. We include examples from diverse taxa to highlight that the independent evolution of complex social behaviors is a variation on the theme of feeding circuit modification.
Collapse
Affiliation(s)
- Eva K Fischer
- Center for Systems Biology, Harvard University, Cambridge, MA 02138, USA
| | - Lauren A O'Connell
- Center for Systems Biology, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
4
|
Boswell T, Dunn IC. Regulation of Agouti-Related Protein and Pro-Opiomelanocortin Gene Expression in the Avian Arcuate Nucleus. Front Endocrinol (Lausanne) 2017; 8:75. [PMID: 28450851 PMCID: PMC5389969 DOI: 10.3389/fendo.2017.00075] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 03/27/2017] [Indexed: 12/25/2022] Open
Abstract
The arcuate nucleus is generally conserved across vertebrate taxa in its neuroanatomy and neuropeptide expression. Gene expression of agouti-related protein (AGRP), neuropeptide Y (NPY), pro-opiomelanocortin (POMC), and cocaine- and amphetamine-regulated transcript (CART) has been established in the arcuate nucleus of several bird species and co-localization demonstrated for AGRP and NPY. The proteins encoded by these genes exert comparable effects on food intake in birds after central administration to those seen in other vertebrates, with AGRP and NPY being orexigenic and CART and α-melanocyte-stimulating hormone anorexigenic. We have focused on the measurement of arcuate nucleus AGRP and POMC expression in several avian models in relation to the regulation of energy balance, incubation, stress, and growth. AGRP mRNA and POMC mRNA are, respectively, up- and downregulated after energy deprivation and restriction. This suggests that coordinated changes in the activity of AGRP and POMC neurons help to drive the homeostatic response to replace depleted energy stores in birds as in other vertebrates. While AGRP and POMC expression are generally positively and negatively correlated with food intake, respectively, we review here situations in some avian models in which AGRP gene expression is dissociated from the level of food intake and may have an influence on growth independent of changes in appetite. This suggests the possibility that the central melanocortin system exerts more pleiotropic functions in birds. While the neuroanatomical arrangement of AGRP and POMC neurons and the sensitivity of their activity to nutritional state appear generally conserved with other vertebrates, detailed knowledge is lacking of the key nutritional feedback signals acting on the avian arcuate nucleus and there appear to be significant differences between birds and mammals. In particular, recently identified avian leptin genes show differences between bird species in their tissue expression patterns and appear less closely linked in their expression to nutritional state. It is presently uncertain how the regulation of the central melanocortin system in birds is brought about in the situation of the apparently reduced importance of leptin and ghrelin compared to mammals.
Collapse
Affiliation(s)
- Timothy Boswell
- School of Biology, Newcastle University, Newcastle upon Tyne, UK
- *Correspondence: Timothy Boswell,
| | - Ian C. Dunn
- Royal (Dick) School of Veterinary Studies, Roslin Institute, University of Edinburgh, Easter Bush, UK
| |
Collapse
|
5
|
Tachibana T, Tsutsui K. Neuropeptide Control of Feeding Behavior in Birds and Its Difference with Mammals. Front Neurosci 2016; 10:485. [PMID: 27853416 PMCID: PMC5089991 DOI: 10.3389/fnins.2016.00485] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 10/10/2016] [Indexed: 12/29/2022] Open
Abstract
Feeding is an essential behavior for animals to sustain their lives. Over the past several decades, many neuropeptides that regulate feeding behavior have been identified in vertebrates. These neuropeptides are called “feeding regulatory neuropeptides.” There have been numerous studies on the role of feeding regulatory neuropeptides in vertebrates including birds. Some feeding regulatory neuropeptides show different effects on feeding behavior between birds and other vertebrates, particularly mammals. The difference is marked with orexigenic neuropeptides. For example, melanin-concentrating hormone, orexin, and motilin, which are regarded as orexigenic neuropeptides in mammals, have no effect on feeding behavior in birds. Furthermore, ghrelin and growth hormone-releasing hormone, which are also known as orexigenic neuropeptides in mammals, suppress feeding behavior in birds. Thus, it is likely that the feeding regulatory mechanism has changed during the evolution of vertebrates. This review summarizes the recent knowledge of peptidergic feeding regulatory factors in birds and discusses the difference in their action between birds and other vertebrates.
Collapse
Affiliation(s)
- Tetsuya Tachibana
- Laboratory of Animal Production, Department of Agrobiological Science, Faculty of Agriculture, Ehime University Matsuyama, Japan
| | - Kazuyoshi Tsutsui
- Laboratory of Integrative Brain Sciences, Department of Biology and Center for Medical Life Science, Waseda University Tokyo, Japan
| |
Collapse
|
6
|
Singh O, Kumar S, Singh U, Kumar V, Lechan RM, Singru PS. Cocaine- and amphetamine-regulated transcript peptide (CART) in the brain of zebra finch,Taeniopygia guttata: Organization, interaction with neuropeptide Y, and response to changes in energy status. J Comp Neurol 2016; 524:3014-41. [DOI: 10.1002/cne.24004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 03/21/2016] [Accepted: 03/24/2016] [Indexed: 01/21/2023]
Affiliation(s)
- Omprakash Singh
- School of Biological Sciences; National Institute of Science Education and Research (NISER)-Bhubaneswar; Odisha India
| | - Santosh Kumar
- School of Biological Sciences; National Institute of Science Education and Research (NISER)-Bhubaneswar; Odisha India
| | - Uday Singh
- School of Biological Sciences; National Institute of Science Education and Research (NISER)-Bhubaneswar; Odisha India
| | - Vinod Kumar
- DST-IRHPA Centre for Excellence in Biological Rhythms Research and Indo-US Centre for Biological Timing, Department of Zoology; University of Delhi; Delhi India
| | - Ronald M. Lechan
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Tupper Research Institute; Tufts Medical Center; Boston Massachusetts USA
- Department of Neuroscience; Tufts University School of Medicine; Boston Massachusetts USA
| | - Praful S. Singru
- School of Biological Sciences; National Institute of Science Education and Research (NISER)-Bhubaneswar; Odisha India
| |
Collapse
|
7
|
The Stimulatory Effect of Cerebral Intraventricular Injection of cNPY on Precocial Feeding Behavior in Neonatal Chicks (Gallus domesticus). PLoS One 2016; 11:e0153342. [PMID: 27055273 PMCID: PMC4824459 DOI: 10.1371/journal.pone.0153342] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2015] [Accepted: 03/28/2016] [Indexed: 11/19/2022] Open
Abstract
Neuropeptide Y (NPY) is one of the most potent stimulants of food intake in many animals. Most of the supporting evidence for the effects of NPY has been gathered in mammalian species using porcine NPY. To investigate the effects of NPY on precocial feeding initiation in chicks, we firstly used chicken NPY (cNPY) to study its role in food intake and spontaneous activities in 3-day-old male chicks. Food intake was monitored at different times after intracerebroventricular (ICV) injection of cNPY (2.5, 5.0 or 10.0 μg/10 μL) and anti-cNPY antibody (anti-cNPY) (1:9000, 1:3000 or 1:1000 in dilution). cNPY given at different doses significantly increased food intake at 30 min, 60 min, 90 min and 120 min after injection. Chicks treated with 5.0 μg/10 μL of cNPY showed a maximal 4.48 fold increase in food intake comparing to the control at 30 min. There is still more than 2 fold increase in food intake at 120 min after injection of cNPY. Food intake was significantly inhibited by a single ICV injection of anti-cNPY diluted to 1:9000 (60% inhibition), 1:3000 (92% inhibition), and 1:1000 (95% inhibition) at 30 min with 1:1000 being the maximally effective concentration. The inhibitory effects of anti-cNPY (diluted to1:9000, 1:3000, 1:1000) at 120 min post ICV injection were 22%, 42% and 46%, respectively. But ICV of anti-cNPY (1:3000 in dilution) did not block the orexigenic effect of 2.5 μg/10 μL of cNPY. ICV injection of different concentrations of cNPY increases locomotor activity in a dose-dependent manner while ICV anti-cNPY greatly decreased the distance moved by each chick compared to control groups. Taken together, our results demonstrated that cNPY has a promoting effect on chick food intake and locomotor activity, and that endogenous cNPY might play a positive role in regulating precocial feeding behavior in newly hatched chicks.
Collapse
|
8
|
Dunn IC, Wilson PW, D'Eath RB, Boswell T. Hypothalamic Agouti-Related Peptide mRNA is Elevated During Natural and Stress-Induced Anorexia. J Neuroendocrinol 2015; 27:681-91. [PMID: 26017156 PMCID: PMC4973702 DOI: 10.1111/jne.12295] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 05/21/2015] [Accepted: 05/21/2015] [Indexed: 01/14/2023]
Abstract
As part of their natural lives, animals can undergo periods of voluntarily reduced food intake and body weight (i.e. animal anorexias) that are beneficial for survival or breeding, such as during territorial behaviour, hibernation, migration and incubation of eggs. For incubation, a change in the defended level of body weight or 'sliding set point' appears to be involved, although the neural mechanisms reponsible for this are unknown. We investigated how neuropeptide gene expression in the arcuate nucleus of the domestic chicken responded to a 60-70% voluntary reduction in food intake measured both after incubation and after an environmental stressor involving transfer to unfamiliar housing. We hypothesised that gene expression would not change in these circumstances because the reduced food intake and body weight represented a defended level in birds with free access to food. Unexpectedly, we observed increased gene expression of the orexigenic peptide agouti-related peptide (AgRP) in both incubating and transferred animals compared to controls. Also pro-opiomelanocortin (POMC) mRNA was higher in incubating hens and significantly increased 6 days after exposure to the stressor. Conversely expression of neuropeptide Y and cocaine- and amphetamine-regulated transcript gene was unchanged in both experimental situations. We conclude that AgRP expression remains sensitive to the level of energy stores during natural anorexias, which is of adaptive advantage, although its normal orexigenic effects are over-ridden by inhibitory signals. In the case of stress-induced anorexia, increased POMC may contribute to this inhibitory role, whereas, for incubation, reduced feeding may also be associated with increased expression in the hypothalamus of the anorexigenic peptide vasoactive intestinal peptide.
Collapse
Affiliation(s)
- I C Dunn
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK
| | - P W Wilson
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK
| | - R B D'Eath
- Animal Behaviour & Welfare, Veterinary Science Research Group, SRUC, West Mains Road, Edinburgh, EH9 3JG, UK
| | - T Boswell
- School of Biology, Centre for Behaviour and Evolution, Newcastle University, Newcastle-Upon-Tyne, UK
| |
Collapse
|
9
|
Davies S, Deviche P. Regulation of feeding behavior and plasma testosterone in response to central neuropeptide Y administration in a songbird. ACTA ACUST UNITED AC 2015; 323:478-86. [DOI: 10.1002/jez.1943] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 04/20/2015] [Accepted: 04/22/2015] [Indexed: 12/19/2022]
Affiliation(s)
- Scott Davies
- School of Life Sciences; Arizona State University; Tempe Arizona
| | - Pierre Deviche
- School of Life Sciences; Arizona State University; Tempe Arizona
| |
Collapse
|
10
|
Davies S, Cros T, Richard D, Meddle SL, Tsutsui K, Deviche P. Food availability, energetic constraints and reproductive development in a wild seasonally breeding songbird. Funct Ecol 2015; 29:1421-1434. [PMID: 27546946 PMCID: PMC4974902 DOI: 10.1111/1365-2435.12448] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 03/23/2015] [Indexed: 11/28/2022]
Abstract
In many organisms, food availability is a proximate cue that synchronizes seasonal development of the reproductive system with optimal environmental conditions. Growth of the gonads and secondary sexual characteristics is orchestrated by the hypothalamic–pituitary–gonadal (HPG) axis. However, our understanding of the physiological mechanisms by which food availability modulates activity of the HPG axis is limited. It is thought that many factors, including energetic status, modulate seasonal reproductive activation. We tested the hypothesis that food availability modulates the activity of the HPG axis in a songbird. Specifically, we food‐restricted captive adult male Abert's Towhees Melozone aberti for 2 or 4 weeks during photoinduced reproductive development. A third group (control) received ad libitum food throughout. We measured multiple aspects of the reproductive system including endocrine activity of all three levels of the HPG axis [i.e. hypothalamic gonadotropin‐releasing hormone‐I (GnRH‐I), plasma luteinizing hormone (LH) and testosterone (T)], and gonad morphology. Furthermore, because gonadotropin‐inhibitory hormone (GnIH) and neuropeptide Y (NPY; a potent orexigenic peptide) potentially integrate information on food availability into seasonal reproductive development, we also measured the brain levels of these peptides. At the hypothalamic level, we detected no effect of food restriction on immunoreactive (ir) GnRH‐I, but the duration of food restriction was inversely related to the size of ir‐GnIH perikarya. Furthermore, the number of ir‐NPY cells was higher in food‐restricted than control birds. Food restriction did not influence photoinduced testicular growth, but decreased plasma LH and T, and width of the cloacal protuberance, an androgen‐sensitive secondary sexual characteristic. Returning birds to ad libitum food availability had no effect on plasma LH or T, but caused the cloacal protuberance to rapidly increase in size to that of ad libitum‐fed birds. Our results support the tenet that food availability modulates photoinduced reproductive activation. However, they also suggest that this modulation is complex and depends upon the level of the HPG axis considered. At the hypothalamic level, our results are consistent with a role for the GnIH and NPY systems in integrating information on energetic status. There also appears to be a role for endocrine function at the anterior pituitary gland and testicular levels in modulating reproductive development in the light of energetic status and independently of testicular growth.
Collapse
Affiliation(s)
- Scott Davies
- School of Life Sciences Arizona State University Tempe Arizona 85287 USA; Present address: Department of Biological Sciences Virginia Tech Blacksburg Virginia 24061USA
| | - Thomas Cros
- Faculté des Sciences Fondamentales et Appliquées Université de Poitiers Poitiers 86022 France
| | - Damien Richard
- Faculté des Sciences Fondamentales et Appliquées Université de Poitiers Poitiers 86022 France
| | - Simone L Meddle
- The Roslin Institute The Royal (Dick) School of Veterinary Studies The University of Edinburgh Easter Bush Midlothian EH25 9RG UK
| | - Kazuyoshi Tsutsui
- Laboratory of Integrative Brain Sciences Department of Biology and Center for Medical Life Science Waseda University Tokyo 162-8480 Japan
| | - Pierre Deviche
- School of Life Sciences Arizona State University Tempe Arizona 85287 USA
| |
Collapse
|
11
|
Abstract
This article is part of a Special Issue "Energy Balance". Energy homeostasis is achieved through neuroendocrine and metabolic control of energy intake, storage, and expenditure. Traditionally, these controls have been studied in an unrealistic and narrow context. The appetite for food, for example, is most often assumed to be independent of other motivations, such as sexual desire, fearfulness, and competition. Furthermore, our understanding of all aspects of energy homeostasis is based on studying males of only a few species. The baseline control subjects are most often housed in enclosed spaces, with continuous, unlimited access to food. In the last century, this approach has generated useful information, but all the while, the global prevalence of obesity has increased and remains at unprecedented levels (Ogden et al., 2013, 2014). It is likely, however, that the mechanisms that control ingestive behavior were molded by evolutionary forces, and that few, if any vertebrate species evolved in the presence of a limitless food supply, in an enclosed 0.5 × 1 ft space, and exposed to a constant ambient temperature of 22+2 °C. This special issue of Hormones and Behavior therefore contains 9 review articles and 7 data articles that consider energy homeostasis within the context of other motivations and physiological processes, such as early development, sexual differentiation, sexual motivation, reproduction, seasonality, hibernation, and migration. Each article is focused on a different species or on a set of species, and most vertebrate classes are represented. Energy homeostasis is viewed in the context of the selection pressures that simultaneously molded multiple aspects of energy intake, storage, and expenditure. This approach yields surprising conclusions regarding the function of those traits and their underlying neuroendocrine mechanisms.
Collapse
Affiliation(s)
- Jill E Schneider
- Department of Biological Sciences, Lehigh University, Bethlehem, PA 18015, United States.
| |
Collapse
|
12
|
Buntin JD, Buntin L. Increased STAT5 signaling in the ring dove brain in response to prolactin administration and spontaneous elevations in prolactin during the breeding cycle. Gen Comp Endocrinol 2014; 200:1-9. [PMID: 24530808 PMCID: PMC3995851 DOI: 10.1016/j.ygcen.2014.02.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2013] [Revised: 01/27/2014] [Accepted: 02/05/2014] [Indexed: 01/15/2023]
Abstract
Prolactin acts on target cells in the central nervous system (CNS) to stimulate behavioral changes associated with parental care in birds, but the signaling mechanisms that mediate these actions have not been characterized. In mammals, the Janus Kinase 2-Signal Transducer and Activator of Transcription 5 (JAK2-STAT5) signaling pathway mediates many of the actions of prolactin. To assess the importance of this pathway in prolactin-sensitive target cells in the avian brain, we measured changes in activated (phosphorylated) STAT5 (pSTAT5) in the forebrain of female ring doves sampled as plasma prolactin levels change during the breeding cycle and in prolactin-treated, non-breeding females. The anatomical distribution of cells exhibiting pSTAT5 immunoreactivity in dove brain closely paralleled the distribution of prolactin receptors in this species. The density of pSTAT5 immunoreactive (pSTAT5-ir) cells was highest in the preoptic area, the suprachiasmatic, paraventricular, and ventromedial hypothalamic nuclei, the lateral and tuberal hypothalamic regions, the lateral bed nucleus of the stria terminalis, and the lateral septum. Mean pSTAT5-ir cell densities in these eight brain areas were several fold higher in breeding females during late incubation/early post-hatching when plasma prolactin levels have been observed to peak than in non-breeding females or breeding females sampled at earlier stages when prolactin titers have been reported to be lower. Similar differences were observed between prolactin-treated and vehicle-treated females in all three of the forebrain regions that were compared. We conclude that JAK2-STAT5 signaling is strongly activated in response to prolactin stimulation in the ring dove brain and could potentially mediate some of the centrally-mediated behavioral effects of this hormone.
Collapse
Affiliation(s)
- John D Buntin
- Department of Biological Sciences, University of Wisconsin-Milwaukee, P.O. Box 413, Milwaukee, WI 53217, United States.
| | - Linda Buntin
- Department of Biological Sciences, University of Wisconsin-Milwaukee, P.O. Box 413, Milwaukee, WI 53217, United States
| |
Collapse
|
13
|
Schneider JE, Wise JD, Benton NA, Brozek JM, Keen-Rhinehart E. When do we eat? Ingestive behavior, survival, and reproductive success. Horm Behav 2013; 64:702-28. [PMID: 23911282 DOI: 10.1016/j.yhbeh.2013.07.005] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 07/21/2013] [Accepted: 07/22/2013] [Indexed: 12/13/2022]
Abstract
The neuroendocrinology of ingestive behavior is a topic central to human health, particularly in light of the prevalence of obesity, eating disorders, and diabetes. The study of food intake in laboratory rats and mice has yielded some useful hypotheses, but there are still many gaps in our knowledge. Ingestive behavior is more complex than the consummatory act of eating, and decisions about when and how much to eat usually take place in the context of potential mating partners, competitors, predators, and environmental fluctuations that are not present in the laboratory. We emphasize appetitive behaviors, actions that bring animals in contact with a goal object, precede consummatory behaviors, and provide a window into motivation. Appetitive ingestive behaviors are under the control of neural circuits and neuropeptide systems that control appetitive sex behaviors and differ from those that control consummatory ingestive behaviors. Decreases in the availability of oxidizable metabolic fuels enhance the stimulatory effects of peripheral hormones on appetitive ingestive behavior and the inhibitory effects on appetitive sex behavior, putting a new twist on the notion of leptin, insulin, and ghrelin "resistance." The ratio of hormone concentrations to the availability of oxidizable metabolic fuels may generate a critical signal that schedules conflicting behaviors, e.g., mate searching vs. foraging, food hoarding vs. courtship, and fat accumulation vs. parental care. In species representing every vertebrate taxa and even in some invertebrates, many putative "satiety" or "hunger" hormones function to schedule ingestive behavior in order to optimize reproductive success in environments where energy availability fluctuates.
Collapse
Affiliation(s)
- Jill E Schneider
- Department of Biological Sciences, Lehigh University, 111 Research Drive, Bethlehem, PA 18015, USA
| | | | | | | | | |
Collapse
|
14
|
Buntin L, Berghman LR, Buntin JD. Patterns of fos-like immunoreactivity in the brains of parent ring doves (Streptopelia risoria) given tactile and nontactile exposure to their young. Behav Neurosci 2009; 120:651-64. [PMID: 16768617 DOI: 10.1037/0735-7044.120.3.651] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Neuronal activation was examined by fos immunohistochemistry in ring doves (Streptopelia risoria) reunited with their young after overnight separation. In an initial study, squab-exposed parents showed more fos immunoreactivity (ir) in the preoptic area (POA) and lateral hypothalamus (LH) than squab-deprived parents. In a 2nd study, parents allowed free access to young and those separated from young by a wire mesh partition showed more fos-ir in the POA, LH, and lateral septum than box-exposed controls. Contact with young also increased fos-ir in the medial preoptic nucleus and bed nucleus of the stria terminalis, but noncontact exposure did not. Conversely, nontactile squab exposure stimulated more fos-ir in the POA than did free access to young, which suggests POA involvement in appetitive aspects of parenting.
Collapse
Affiliation(s)
- Linda Buntin
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI 53201, USA
| | | | | |
Collapse
|
15
|
Ramakrishnan S, Strader AD, Wimpee B, Chen P, Smith MS, Buntin JD. Evidence for increased neuropeptide Y synthesis in mediobasal hypothalamus in relation to parental hyperphagia and gonadal activation in breeding ring doves. J Neuroendocrinol 2007; 19:163-71. [PMID: 17280589 DOI: 10.1111/j.1365-2826.2006.01520.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Like lactating mammals, male and female ring dove parents increase their food consumption to meet the energetic challenges of provisioning their young. To clarify the neurochemical mechanisms involved, the present study investigated the relationship between parental hyperphagia and changes in activity of the potent orexigen neuropeptide Y (NPY) in the hypothalamus of breeding doves. Changes in NPY-immunoreactive (NPY-ir) cell numbers in the tuberal hypothalamus of male and female doves were examined by immunocytochemistry at six stages of the breeding cycle. Parallel NPY mRNA measurements were recorded in mediobasal hypothalamus (which includes the tuberal hypothalamus) by semiquantitative reverse transcription-polymerase chain reaction using 18S rRNA as the internal standard. NPY mRNA changes were also measured in the mediobasal hypothalamus of nonbreeding doves following intracranial administration of prolactin, an orexigenic hormone that is elevated in the plasma of parent doves, and in response to food deprivation, which mimics the negative energy state that develops in parents as they provision their growing young. NPY-ir cell numbers in the tuberal hypothalamus and NPY mRNA levels in the mediobasal hypothalamus were significantly higher in breeding males and females during the period of parental hyperphagia after hatching than during the late incubation period when food intake remains unchanged. In nonbreeding doves, food deprivation and prolactin treatment increased NPY mRNA in this region by two- to three-fold, which suggests that NPY expression is sensitive to hormonal and metabolic signals associated with parenting. We conclude that NPY synthesis is increased in the mediobasal hypothalamus during the posthatching period, which presumably supports increased NPY release and resulting parental hyperphagia. NPY-ir and mRNA were also high in the mediobasal hypothalamus prior to egg laying when food intake remained unchanged. Several lines of evidence suggest that this elevation in NPY supports the increased gonadal activity that accompanies intense courtship and nest building interactions in breeding doves.
Collapse
Affiliation(s)
- S Ramakrishnan
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI 53201, USA
| | | | | | | | | | | |
Collapse
|
16
|
Holberton RL, Wilson CM, Hunter MJ, Cash WB, Sims CG. The Role of Corticosterone in Supporting Migratory Lipogenesis in the Dark‐Eyed Junco,Junco hyemalis: A Model for Central and Peripheral Regulation. Physiol Biochem Zool 2007; 80:125-37. [PMID: 17160885 DOI: 10.1086/508816] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/21/2006] [Indexed: 11/03/2022]
Abstract
The functional role of corticosterone (CORT) in regulating migratory hyperphagia and lipogenesis was investigated in an annual migrant, the dark-eyed junco (Junco hyemalis). Intraperitoneal injections of either dexamethasone (9 microg DXM/500 microL of 5% EtOH in saline, n=10) to inhibit an increase in baseline CORT or saline (5% EtOH, n=9) were given every 48 h for 15 d after transfer from short (10.5L:13.5D) to long (15.5L:8.5D) days. Food intake, body mass, furcular fat deposition scores, and nocturnal migratory activity were recorded for 29 d after photostimulation. Both groups showed the same increase in daily food intake over the study period (DXM=52%, control=41%). Controls began to increase baseline CORT and mass about 2 wk after photostimulation. DXM-treated birds maintained low CORT and did not increase mass or CORT until injections ceased, at which time they gained mass at the same rate shown earlier by controls. DXM-treated birds did not show greater levels of migratory activity despite experiencing an increase in energy intake during the CORT-inhibited period. Collectively, the results support the migration modulation hypothesis, illustrating how an increase in baseline CORT is needed to support the development of migratory condition. We address the apparent conflict with earlier studies on CORT and migratory food intake and propose a model in which migratory hyperphagia is supported by changes in centrally regulated responses to CORT that can occur even if CORT remains low and lipogenesis is regulated predominantly by peripheral mechanisms that require an increase in baseline CORT.
Collapse
Affiliation(s)
- R L Holberton
- Department of Biology, University of Mississippi, Mississippi 38677, USA.
| | | | | | | | | |
Collapse
|
17
|
Boswell T, Takeuchi S. Recent developments in our understanding of the avian melanocortin system: its involvement in the regulation of pigmentation and energy homeostasis. Peptides 2005; 26:1733-43. [PMID: 15978703 DOI: 10.1016/j.peptides.2004.11.039] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2004] [Accepted: 11/16/2004] [Indexed: 01/08/2023]
Abstract
The mammalian melanocortin system has been established as a crucial regulatory component in an extraordinarily diverse number of physiological functions. In contrast, comparatively little is known about the avian melanocortin system: interest in the physiological role of alpha-MSH in birds has been limited by the fact that birds lack the intermediate lobe of the pituitary, the main source of circulating alpha-MSH in most vertebrates. Recently, however, the main avian melanocortin system genes, including POMC, AGRP, and all the melanocortin receptors, have been cloned and their physiological roles are the beginning to be elucidated. This review outlines our improved understanding of the avian melanocortin system, particularly in relation to two of the most widely studied physiological functions of the melanocortin system in mammals, the regulation of pigmentation and energy homeostasis. The data reviewed here indicate that the melanocortin system has been strongly conserved during vertebrate evolution and that alpha-MSH is produced locally in birds to act as an autocrine/paracrine hormone.
Collapse
Affiliation(s)
- Timothy Boswell
- Roslin Institute (Edinburgh), Roslin, Midlothian EH25 9PS, UK
| | | |
Collapse
|
18
|
|
19
|
Mirabella N, Esposito V, Squillacioti C, De Luca A, Paino G. Expression of agouti-related protein (AgRP) in the hypothalamus and adrenal gland of the duck ( Anas platyrhynchos). ACTA ACUST UNITED AC 2004; 209:137-41. [PMID: 15597192 DOI: 10.1007/s00429-004-0431-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/14/2004] [Indexed: 01/08/2023]
Abstract
The presence and distribution of agouti-related protein (AgRP) immunoreactivity were investigated in the hypothalamus and adrenal gland of the duck using immunohistochemistry and Western blot analysis. Expression of AgRP mRNA was also studied using reverse transcriptase polymerase chain reaction (RT-PCR). A partial coding sequence (cds) of the duck AgRP gene was identified. Western blot analysis showed the presence of an AgRP-like peptide having a molecular weight consistent with the number of predicted amino acids of the avian AgRP. In the hypothalamus, AgRP immunoreactivity was found in neurons of the nucleus infundibularis and in fibers projecting to the median eminence. In the adrenals, AgRP immunoreactivity was observed in medullary cells. These findings suggest that in the duck, AgRP may play a role in regulating energy homeostasis and adrenal endocrine functions.
Collapse
Affiliation(s)
- Nicola Mirabella
- Department of Structure, Functions and Biological Technologies, University of Naples Federico II, Via Veterinaria 1, 80137, Naples, Italy.
| | | | | | | | | |
Collapse
|
20
|
Strader AD, Buntin JD. Changes in agouti-related peptide during the ring dove breeding cycle in relation to prolactin and parental hyperphagia. J Neuroendocrinol 2003; 15:1046-53. [PMID: 14622434 DOI: 10.1046/j.1365-2826.2003.01092.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Ring doves (Streptopelia risoria) exhibit marked increases in food consumption and decreases in body weight when they are provisioning their young. This study examined changes in hypothalamic immunostaining for agouti-related peptide (AGRP), an endogenous melanocortin receptor antagonist and appetite stimulant, during the ring dove breeding cycle. Because prolactin is orexigenic in doves, and is elevated in blood at the onset of parental hyperphagia, we also explored the possibility that prolactin-induced hyperphagia is associated with AGRP changes. The numbers of AGRP-immunoreactive (ir) cells within the tuberal hypothalamus were maximal during the prelaying period of the breeding cycle but decreased dramatically during early incubation. AGRP-ir cell numbers began to increase again during late incubation and reached a peak during the early and late posthatching stages. Because posthatching elevations in AGRP-ir were temporally associated with marked elevations in parental food intake, and because AGRP is orexigenic in doves, these findings suggest that increased AGRP activity in the dove tuberal hypothalamus may contribute to parental hyperphagia. Rising prolactin secretion during late incubation and early posthatching may initiate this increase in AGRP-ir, since intracerebroventricular administration of prolactin significantly elevated food intake and AGRP-ir cell numbers in the tuberal hypothalamus of nonbreeding doves. Prolactin-induced elevations in AGRP-ir cell numbers persisted when the confounding effects of weight gain that accompany prolactin-induced hyperphagia in nonbreeding doves were eliminated by a food restriction procedure, thereby suggesting that prolactin can directly influence AGRP activity under neutral energy state conditions.
Collapse
Affiliation(s)
- A D Strader
- University of Wisconsin-Milwaukee, Department of Biological Sciences, Milwaukee, WI, USA.
| | | |
Collapse
|
21
|
Strader AD, Schiöth HB, Buntin JD. The role of the melanocortin system and the melanocortin-4 receptor in ring dove (Streptopelia risoria) feeding behavior. Brain Res 2003; 960:112-21. [PMID: 12505663 DOI: 10.1016/s0006-8993(02)03799-x] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The melanocortin-4 receptor (MC4-R) is an important mediator of the effects of two melanocortin system ligands, alpha melanocyte stimulating hormone (alpha-MSH) and agouti-related peptide (AGRP), on feeding behavior and energy balance in mammals. Although an avian homologue of the mammalian MC4-R has recently been identified, there is little information on the role of this receptor and the melanocortin system in avian feeding and body weight regulation. In these studies, we measured changes in feeding behavior in ring doves (Streptopelia risoria) following intracerebroventricular (i.c.v.) injection of various melanocortin receptor agonists and antagonists. The selective MC4-R antagonist HS014 elevated food intake within 4 h at all three doses tested (0.02, 0.2, and 2 nmol). A 1 nmol dose of the endogenous antagonist AGRP also stimulated feeding but only after a post-injection interval of 10 h. Surprisingly, the MC3-R and MC4-R antagonist SHU9119 not only failed to stimulate food intake at the same doses as HS014, but actually inhibited food intake at 8 h after injection. Whether this was due to toxicity effects or differences in the pharmacology of avian and mammalian melanocortin receptors remains to be determined. Food-deprived doves showed a fourfold increase in the number of AGRP-immunoreactive cells in the tuberal region of the hypothalamus and 5 ng of the MC3-R and MC4-R agonist MTII significantly attenuated the amount of food consumed by food-deprived birds that were allowed to re-feed. These data support a role for the melanocortin system and the melanocortin-4 receptor in the ring dove feeding behavior.
Collapse
Affiliation(s)
- April D Strader
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA.
| | | | | |
Collapse
|
22
|
Vergoni AV, Watanobe H, Guidetti G, Savino G, Bertolini A, Schiöth HB. Effect of repeated administration of prolactin releasing peptide on feeding behavior in rats. Brain Res 2002; 955:207-13. [PMID: 12419538 DOI: 10.1016/s0006-8993(02)03462-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Prolactin releasing peptide (PrRP) has been reported to reduce food intake in rats. We tested the effect of i.c.v. administration of PrRP-31 on food intake in both food deprived and free-feeding rats. We did not find any effect of PrRP-31 on food intake after single injections of up to an 8-nmol dose, but observed a marked decrease in food intake and body weight in rats that received a repeated twice daily administration of 8 nmol of PrRP-31. This effect was associated with an adverse behavioral pattern, indicating that the repeated high doses of the peptide caused non-specific effects inducing anorexia. We also tested several other behavioral parameters like locomotion and exploratory time, grooming and resting time, using lower doses of PrRP that did not cause the adverse behavior. Moreover, we carried out locomotor and sensory motor activity tests at the doses that exerted the most pronounced effect on the food intake. None of these tests suggested any specific behavioral effect of PrRP. We conclude that the behavioral pattern induced by PrRP is likely to be different from those induced by many other neuropeptides affecting food intake in rats.
Collapse
|
23
|
Boswell T, Li Q, Takeuchi S. Neurons expressing neuropeptide Y mRNA in the infundibular hypothalamus of Japanese quail are activated by fasting and co-express agouti-related protein mRNA. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2002; 100:31-42. [PMID: 12008019 DOI: 10.1016/s0169-328x(02)00145-6] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The neural mechanisms involved in the compensatory hyperphagia exhibited by many vertebrate species after a fast are not fully understood but, in mammals, appear to involve nutritionally-sensitive neurons that co-express neuropeptide Y (NPY) and agouti-related protein (AGRP) in the infundibular hypothalamus. We investigated whether these neurons have been evolutionarily conserved in a non-mammalian vertebrate, the Japanese quail. Birds exhibited compensatory hyperphagia 1 h after return of food following a 24-h fast. We addressed a potential regulatory role for NPY, first, by using in situ hybridisation (ISH) to map NPY gene expression in the hypothalamus. This revealed a strong signal in the infundibular nucleus (IN). Secondly, we quantified NPY gene expression in 24-h fasted birds compared to ad libitum fed controls using two independent methods. In whole hypothalamus, measured by ribonuclease protection assay, NPY mRNA increased 1.5-fold in fasted birds. A similar, 1.7-fold, increase was observed specifically in the IN when analysed by ISH. No differences in NPY expression between fed and fasted birds were observed in other brain regions. To determine whether NPY neurons in the avian IN co-express AGRP, we cloned a fragment of the quail AGRP gene and used it to localise AGRP mRNA by ISH. The gene was expressed exclusively in the hypothalamus, specifically in the IN, where its distribution matched that of NPY. Double-label ISH revealed that the majority of NPY neurons in the IN co-express AGRP mRNA. Collectively, these data indicate that this cell type has been neuroanatomically and functionally conserved during vertebrate evolution.
Collapse
Affiliation(s)
- Timothy Boswell
- Division of Integrative Biology, Roslin Institute (Edinburgh), Roslin, Midlothian EH25 9PS, UK.
| | | | | |
Collapse
|