1
|
Strnadová V, Pačesová A, Charvát V, Šmotková Z, Železná B, Kuneš J, Maletínská L. Anorexigenic neuropeptides as anti-obesity and neuroprotective agents: exploring the neuroprotective effects of anorexigenic neuropeptides. Biosci Rep 2024; 44:BSR20231385. [PMID: 38577975 PMCID: PMC11043025 DOI: 10.1042/bsr20231385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/26/2024] [Accepted: 04/05/2024] [Indexed: 04/06/2024] Open
Abstract
Since 1975, the incidence of obesity has increased to epidemic proportions, and the number of patients with obesity has quadrupled. Obesity is a major risk factor for developing other serious diseases, such as type 2 diabetes mellitus, hypertension, and cardiovascular diseases. Recent epidemiologic studies have defined obesity as a risk factor for the development of neurodegenerative diseases, such as Alzheimer's disease (AD) and other types of dementia. Despite all these serious comorbidities associated with obesity, there is still a lack of effective antiobesity treatment. Promising candidates for the treatment of obesity are anorexigenic neuropeptides, which are peptides produced by neurons in brain areas implicated in food intake regulation, such as the hypothalamus or the brainstem. These peptides efficiently reduce food intake and body weight. Moreover, because of the proven interconnection between obesity and the risk of developing AD, the potential neuroprotective effects of these two agents in animal models of neurodegeneration have been examined. The objective of this review was to explore anorexigenic neuropeptides produced and acting within the brain, emphasizing their potential not only for the treatment of obesity but also for the treatment of neurodegenerative disorders.
Collapse
Affiliation(s)
- Veronika Strnadová
- Department of Biochemistry and Molecular Biology, Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Andrea Pačesová
- Department of Biochemistry and Molecular Biology, Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Vilém Charvát
- Department of Biochemistry and Molecular Biology, Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Zuzana Šmotková
- Department of Biochemistry and Molecular Biology, Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Blanka Železná
- Department of Biochemistry and Molecular Biology, Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Jaroslav Kuneš
- Department of Biochemistry and Molecular Biology, Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
- Department of Biochemistry and Molecular Biology, Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Lenka Maletínská
- Department of Biochemistry and Molecular Biology, Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
2
|
Bedenbaugh MN, Brener SC, Maldonado J, Lippert RN, Sweeney P, Cone RD, Simerly RB. Organization of neural systems expressing melanocortin-3 receptors in the mouse brain: Evidence for sexual dimorphism. J Comp Neurol 2022; 530:2835-2851. [PMID: 35770983 PMCID: PMC9724692 DOI: 10.1002/cne.25379] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 05/24/2022] [Accepted: 05/27/2022] [Indexed: 01/13/2023]
Abstract
The central melanocortin system is fundamentally important for controlling food intake and energy homeostasis. Melanocortin-3 receptor (MC3R) is one of two major receptors of the melanocortin system found in the brain. In contrast to the well-characterized melanocortin-4 receptor (MC4R), little is known regarding the organization of MC3R-expressing neural circuits. To increase our understanding of the intrinsic organization of MC3R neural circuits, identify specific differences between males and females, and gain a neural systems level perspective of this circuitry, we conducted a brain-wide mapping of neurons labeled for MC3R and characterized the distribution of their projections. Analysis revealed MC3R neuronal and terminal labeling in multiple brain regions that control a diverse range of physiological functions and behavioral processes. Notably, dense labeling was observed in the hypothalamus, as well as areas that share considerable connections with the hypothalamus, including the cortex, amygdala, thalamus, and brainstem. Additionally, MC3R neuronal labeling was sexually dimorphic in several areas, including the anteroventral periventricular area, arcuate nucleus, principal nucleus of the bed nucleus of the stria terminalis, and ventral premammillary region. Altogether, anatomical evidence reported here suggests that MC3R has the potential to influence several different classes of motivated behavior that are essential for survival, including ingestive, reproductive, defensive, and arousal behaviors, and is likely to modulate these behaviors differently in males and females.
Collapse
Affiliation(s)
- Michelle N. Bedenbaugh
- Department of Molecular Physiology and Biophysics, School of Medicine, Vanderbilt University, Nashville, Tennessee, USA
| | - Samantha C. Brener
- Department of Molecular Physiology and Biophysics, School of Medicine, Vanderbilt University, Nashville, Tennessee, USA
| | - Jose Maldonado
- Department of Molecular Physiology and Biophysics, School of Medicine, Vanderbilt University, Nashville, Tennessee, USA
| | - Rachel N. Lippert
- Department of Neurocircuit Development and Function, German Institute of Human Nutrition Potsdam-Rehbruecke, Potsdam, Germany
| | - Patrick Sweeney
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, USA
- Department of Molecular and Integrative Physiology, School of Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Roger D. Cone
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, USA
- Department of Molecular and Integrative Physiology, School of Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Richard B. Simerly
- Department of Molecular Physiology and Biophysics, School of Medicine, Vanderbilt University, Nashville, Tennessee, USA
| |
Collapse
|
3
|
Mutations in Melanocortin-3 Receptor Gene and Human Obesity. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2016; 140:97-129. [DOI: 10.1016/bs.pmbts.2016.01.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
4
|
Ericson MD, Wilczynski A, Sorensen NB, Xiang Z, Haskell-Luevano C. Discovery of a β-Hairpin Octapeptide, c[Pro-Arg-Phe-Phe-Dap-Ala-Phe-DPro], Mimetic of Agouti-Related Protein(87-132) [AGRP(87-132)] with Equipotent Mouse Melanocortin-4 Receptor (mMC4R) Antagonist Pharmacology. J Med Chem 2015; 58:4638-47. [PMID: 25898270 DOI: 10.1021/acs.jmedchem.5b00184] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Agouti-related protein (AGRP) is a potent orexigenic peptide that antagonizes the melanocortin-3 and -4 receptors (MC3R and MC4R). While the C-terminal domain of AGRP, AGRP(87-132), is equipotent to the full-length peptide, further truncation decreases potency at the MC3R and MC4R. Herein, we report AGRP-derived peptides designed to mimic the active β-hairpin secondary structure that contains the hypothesized Arg-Phe-Phe pharmacophore. The most potent scaffold, c[Pro-Arg-Phe-Phe-Asn-Ala-Phe-DPro], comprised the hexa-peptide β-hairpin loop from AGRP cyclized through a DPro-Pro motif. A 20 compound library was synthesized from this scaffold for further structure-activity relationship studies. The most potent peptide from this library was an asparagine to diaminopropionic acid substitution that possessed sub-nanomolar antagonist activity at the mMC4R and was greater than 160-fold selective for the mMC4R versus the mMC3R. The reported ligands may serve as probes to characterize the melanocortin receptors in vivo and leads in the development of novel therapeutics.
Collapse
Affiliation(s)
- Mark D Ericson
- †Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Andrzej Wilczynski
- ‡Department of Medicinal Chemistry, University of Florida, Gainesville, Florida 32610, United States
| | - Nicholas B Sorensen
- ‡Department of Medicinal Chemistry, University of Florida, Gainesville, Florida 32610, United States
| | - Zhimin Xiang
- ‡Department of Medicinal Chemistry, University of Florida, Gainesville, Florida 32610, United States
| | - Carrie Haskell-Luevano
- †Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States.,‡Department of Medicinal Chemistry, University of Florida, Gainesville, Florida 32610, United States
| |
Collapse
|
5
|
Preston E, Cooney GJ, Wilks D, Baran K, Zhang L, Kraegen EW, Sainsbury A. Central neuropeptide Y infusion and melanocortin 4 receptor antagonism inhibit thyrotropic function by divergent pathways. Neuropeptides 2011; 45:407-15. [PMID: 21862125 DOI: 10.1016/j.npep.2011.07.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Revised: 06/24/2011] [Accepted: 07/25/2011] [Indexed: 11/24/2022]
Abstract
Weight loss inhibits thyrotropic function and reduces metabolic rate, thereby contributing to weight regain. Under negative energy balance there is an increase in the hypothalamic expression of both neuropeptide Y (NPY) and agouti related peptide (AgRP), the endogenous antagonist of melanocortin 4 (MC4) receptors. Both NPY and MC4 receptor antagonism reduce thyrotropic function centrally, but it is not known whether these pathways operate by similar or distinct mechanisms. We compared the time-course of effects of acute or chronic intracerebroventricular (ICV) administration of NPY (1.2 nmol acute bolus, or 3.5 nmol/day for 6 days) or the MC4 receptor antagonist HS014 (1.5 nmol bolus, or 4.8 nmol/day) on plasma concentrations of thyroid stimulating hormone (TSH) or free thyroxine (T4) in male rats pair-fed with vehicle-infused controls. These doses equipotently induced hyperphagia in acute studies, reduced latency to feed, and increased white adipose tissue mass after 6 days of infusion. Acute central NPY but not HS014 administration significantly reduced plasma TSH concentrations within 30-60 min and plasma free T4 levels within 90-120 min. These inhibitory effects were sustained for up to 5-6 days of continuous NPY infusion. HS014 induced a transient decrease in plasma free T4 levels that was observed only after 1-2 days of continuous ICV infusion. While both NPY and HS014 significantly increased corticosteronemia within an hour after ICV injection, the effect of NPY was significantly more pronounced and was sustained for up to 4 days of administration. Both NPY and HS014 significantly decreased the brown adipose tissue protein levels of uncoupling protein-3. We conclude that central NPY and MC4 antagonism decrease thyrotropic function via partially distinct mechanisms with different time courses, possibly involving glucocorticoid effects of NPY. MC4 receptor antagonism increases adiposity via pathways independent of increased food intake or changes in circulating concentrations of TSH, free T4 or corticosterone.
Collapse
Affiliation(s)
- Elaine Preston
- Diabetes and Obesity Program, Garvan Institute of Medical Research, Australia
| | | | | | | | | | | | | |
Collapse
|
6
|
Pandit R, de Jong JW, Vanderschuren LJMJ, Adan RAH. Neurobiology of overeating and obesity: the role of melanocortins and beyond. Eur J Pharmacol 2011; 660:28-42. [PMID: 21295024 DOI: 10.1016/j.ejphar.2011.01.034] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Revised: 01/10/2011] [Accepted: 01/13/2011] [Indexed: 01/07/2023]
Abstract
The alarming increase in the incidence of obesity and obesity-associated disorders makes the etiology of obesity a widely studied topic today. As opposed to 'homeostatic feeding', where food intake is restricted to satisfy one's biological needs, the term 'non-homeostatic' feeding refers to eating for pleasure or the trend to over-consume (palatable) food. Overconsumption is considered a crucial factor in the development of obesity. Exaggerated consumption of (palatable) food, coupled to a loss of control over food intake despite awareness of its negative consequences, suggests that overeating may be a form of addiction. At a molecular level, insulin and leptin resistance are hallmarks of obesity. In this review, we specifically address the question how leptin resistance contributes to enhanced craving for (palatable) food. Since dopamine is a key player in the motivation for food, the interconnection between dopamine, leptin and neuropeptides related to feeding will be discussed. Understanding the mechanisms by which these neuropeptidergic systems hijack the homeostatic feeding mechanisms, thus leading to overeating and obesity is the primary aim of this review. The melanocortin system, one of the crucial neuropeptidergic systems modulating feeding behavior will be extensively discussed. The inter-relationship between neuronal populations in the arcuate nucleus and other areas regulating energy homeostasis (lateral hypothalamus, paraventricular nucleus, ventromedial hypothalamus etc.) and reward circuitry (the ventral tegmental area and nucleus accumbens) will be evaluated and scrutinized.
Collapse
Affiliation(s)
- Rahul Pandit
- Rudolf Magnus Institute of Neuroscience, Department of Neuroscience and Pharmacology, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG, Utrecht, The Netherlands.
| | | | | | | |
Collapse
|
7
|
Gardiner JV, Bataveljic A, Patel NA, Bewick GA, Roy D, Campbell D, Greenwood HC, Murphy KG, Hameed S, Jethwa PH, Ebling FJ, Vickers SP, Cheetham S, Ghatei MA, Bloom SR, Dhillo WS. Prokineticin 2 is a hypothalamic neuropeptide that potently inhibits food intake. Diabetes 2010; 59:397-406. [PMID: 19933997 PMCID: PMC2809973 DOI: 10.2337/db09-1198] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
OBJECTIVE Prokineticin 2 (PK2) is a hypothalamic neuropeptide expressed in central nervous system areas known to be involved in food intake. We therefore hypothesized that PK2 plays a role in energy homeostasis. RESEARCH DESIGN AND METHODS We investigated the effect of nutritional status on hypothalamic PK2 expression and effects of PK2 on the regulation of food intake by intracerebroventricular (ICV) injection of PK2 and anti-PK2 antibody. Subsequently, we investigated the potential mechanism of action by determining sites of neuronal activation after ICV injection of PK2, the hypothalamic site of action of PK2, and interaction between PK2 and other hypothalamic neuropeptides regulating energy homeostasis. To investigate PK2's potential as a therapeutic target, we investigated the effect of chronic administration in lean and obese mice. RESULTS Hypothalamic PK2 expression was reduced by fasting. ICV administration of PK2 to rats potently inhibited food intake, whereas anti-PK2 antibody increased food intake, suggesting that PK2 is an anorectic neuropeptide. ICV administration of PK2 increased c-fos expression in proopiomelanocortin neurons of the arcuate nucleus (ARC) of the hypothalamus. In keeping with this, PK2 administration into the ARC reduced food intake and PK2 increased the release of alpha-melanocyte-stimulating hormone (alpha-MSH) from ex vivo hypothalamic explants. In addition, ICV coadministration of the alpha-MSH antagonist agouti-related peptide blocked the anorexigenic effects of PK2. Chronic peripheral administration of PK2 reduced food and body weight in lean and obese mice. CONCLUSIONS This is the first report showing that PK2 has a role in appetite regulation and its anorectic effect is mediated partly via the melanocortin system.
Collapse
Affiliation(s)
- James V. Gardiner
- Department of Investigative Medicine, Imperial College London, London, U.K
| | - Attia Bataveljic
- Department of Investigative Medicine, Imperial College London, London, U.K
| | - Neekhil A. Patel
- Department of Investigative Medicine, Imperial College London, London, U.K
| | - Gavin A. Bewick
- Department of Investigative Medicine, Imperial College London, London, U.K
| | - Debabrata Roy
- Department of Investigative Medicine, Imperial College London, London, U.K
| | - Daniel Campbell
- Department of Investigative Medicine, Imperial College London, London, U.K
| | | | - Kevin G. Murphy
- Department of Investigative Medicine, Imperial College London, London, U.K
| | - Saira Hameed
- Department of Investigative Medicine, Imperial College London, London, U.K
| | - Preeti H. Jethwa
- School of Biomedical Sciences, University of Nottingham, Nottingham, U.K
| | | | | | | | - Mohammad A. Ghatei
- Department of Investigative Medicine, Imperial College London, London, U.K
| | - Stephen R. Bloom
- Department of Investigative Medicine, Imperial College London, London, U.K
- Corresponding author: Stephen R. Bloom,
| | - Waljit S. Dhillo
- Department of Investigative Medicine, Imperial College London, London, U.K
| |
Collapse
|
8
|
Millington GW. The role of proopiomelanocortin (POMC) neurones in feeding behaviour. Nutr Metab (Lond) 2007; 4:18. [PMID: 17764572 PMCID: PMC2018708 DOI: 10.1186/1743-7075-4-18] [Citation(s) in RCA: 213] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2007] [Accepted: 09/01/2007] [Indexed: 12/15/2022] Open
Abstract
The precursor protein, proopiomelanocortin (POMC), produces many biologically active peptides via a series of enzymatic steps in a tissue-specific manner, yielding the melanocyte-stimulating hormones (MSHs), corticotrophin (ACTH) and β-endorphin. The MSHs and ACTH bind to the extracellular G-protein coupled melanocortin receptors (MCRs) of which there are five subtypes. The MC3R and MC4R show widespread expression in the central nervous system (CNS), whilst there is low level expression of MC1R and MC5R. In the CNS, cell bodies for POMC are mainly located in the arcuate nucleus of the hypothalamus and the nucleus tractus solitarius of the brainstem. Both of these areas have well defined functions relating to appetite and food intake. Mouse knockouts (ko) for pomc, mc4r and mc3r all show an obese phenotype, as do humans expressing mutations of POMC and MC4R. Recently, human subjects with specific mutations in β-MSH have been found to be obese too, as have mice with engineered β-endorphin deficiency. The CNS POMC system has other functions, including regulation of sexual behaviour, lactation, the reproductive cycle and possibly central cardiovascular control. However, this review will focus on feeding behaviour and link it in with the neuroanatomy of the POMC neurones in the hypothalamus and brainstem.
Collapse
Affiliation(s)
- George Wm Millington
- Division of Medicine, Norfolk and Norwich University Hospital, Colney Lane, Norwich, NR4 7UZ, UK.
| |
Collapse
|
9
|
Tanabe K, Gamo K, Aoki S, Wada K, Kiyama H. Melanocortin receptor 4 is induced in nerve‐injured motor and sensory neurons of mouse. J Neurochem 2007; 101:1145-52. [PMID: 17286587 DOI: 10.1111/j.1471-4159.2006.04432.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We previously identified melanocortin receptor 4 (MC4R) in a search for genes associated with hypoglossal nerve regeneration. As melanocortins promote nerve regeneration after axonal injury, we investigated whether MC4R functions as a key receptor for peripheral nerve regeneration. In situ hybridization revealed that MC4R mRNA is induced in mouse hypoglossal motor neurons after axonal injury, whereas mRNAs for MC1R, MC2R, MC3R, and MC5R are not expressed either before or after nerve injury. This result was confirmed by RT-PCR. The level of MC4R mRNA expression increased significantly from day 3 after axotomy, reached a peak on day 5, and decreased to the control level on day 14. Similar induction of MC4R was observed in axotomized mouse dorsal root ganglia (DRGs). MC4R mRNA expression was induced exclusively among the MCR family in the L4-6 DRG after sciatic nerve injury. We further examined whether alpha-melanocortin stimulating hormone (alpha-MSH) promotes neurite elongation via MC4R. In mouse DRG neuron culture, alpha-MSH significantly promoted neurite outgrowth at a concentration of 10(-8) mol/L. This neurite-elongation effect was entirely inhibited by the addition of a selective MC4R blocker, JKC-363. Therefore, it is concluded that alpha-MSH could stimulate neurite elongation via MC4R in DRG neurons. The present results suggest that induction of MC4R is crucial for motor and sensory neurons to regenerate after axonal injury.
Collapse
MESH Headings
- Animals
- Cells, Cultured
- Dose-Response Relationship, Drug
- Ganglia, Spinal/pathology
- Gene Expression Regulation/drug effects
- Gene Expression Regulation/physiology
- Hypoglossal Nerve Diseases/metabolism
- Hypoglossal Nerve Diseases/pathology
- In Situ Hybridization/methods
- Male
- Melanocyte-Stimulating Hormones/pharmacology
- Mice
- Mice, Inbred C57BL
- Motor Neurons/cytology
- Motor Neurons/drug effects
- Motor Neurons/metabolism
- Nerve Growth Factor/pharmacology
- Neurites/drug effects
- Neurites/physiology
- Neurons, Afferent/cytology
- Neurons, Afferent/drug effects
- Neurons, Afferent/metabolism
- Peptides, Cyclic/pharmacology
- RNA, Messenger/metabolism
- Receptor, Melanocortin, Type 4/antagonists & inhibitors
- Receptor, Melanocortin, Type 4/genetics
- Receptor, Melanocortin, Type 4/metabolism
- Reverse Transcriptase Polymerase Chain Reaction/methods
- Time Factors
- beta-MSH/pharmacology
Collapse
Affiliation(s)
- Katsuhisa Tanabe
- Department of Anatomy and Neurobiology, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | | | | | | | | |
Collapse
|
10
|
Hruby VJ, Cai M, Cain JP, Mayorov AV, Dedek MM, Trivedi D. Design, synthesis and biological evaluation of ligands selective for the melanocortin-3 receptor. Curr Top Med Chem 2007; 7:1107-19. [PMID: 17584128 PMCID: PMC2274922 DOI: 10.2174/156802607780906645] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The processed products of the proopiomelanocortin gene (ACTH, alpha-MSH, beta-MSH, gamma-MSH, etc.) interact with five melanocortin receptors, the MC1R, MC2R, MC3R, MC4R, and MC5R to modulate and control many important biological functions crucial for good health both peripherally (as hormones) and centrally (as neurotransmitters). Pivotal biological functions include pigmentation, adrenal function, response to stress, fear/flight, energy homeostasis, feeding behavior, sexual function and motivation, pain, immune response, and many others, and are believed to be involved in many disease states including pigmentary disorders, adrenal disorders, obesity, anorexia, prolonged and neuropathic pain, inflammatory response, etc. The melanocortin-3 receptor (MC3R) is found primarily in the brain and spinal cord and also in the periphery, and its biological functions are still not well understood. Here we review some of the biological functions attributed to the MC3R, and then examine in more detail efforts to design and synthesize ligands that are potent and selective for the MC3R, which might help resolve the many questions still remaining about its function. Though some progress has been made, there is still much to be done in this critical area.
Collapse
Affiliation(s)
- Victor J Hruby
- Department of Chemistry, University of Arizona, Tucson, Arizona 85721, USA.
| | | | | | | | | | | |
Collapse
|
11
|
Lechan RM, Fekete C. The TRH neuron: a hypothalamic integrator of energy metabolism. PROGRESS IN BRAIN RESEARCH 2006; 153:209-35. [PMID: 16876577 DOI: 10.1016/s0079-6123(06)53012-2] [Citation(s) in RCA: 230] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Thyrotropin-releasing hormone (TRH) has an important role in the regulation of energy homeostasis not only through effects on thyroid function orchestrated through hypophysiotropic neurons in the hypothalamic paraventricular nucleus (PVN), but also through central effects on feeding behavior, thermogenesis, locomotor activation and autonomic regulation. Hypophysiotropic TRH neurons are located in the medial and periventricular parvocellular subdivisions of the PVN and receive direct monosynaptic projections from two, separate, populations of leptin-responsive neurons in the hypothalamic arcuate nucleus containing either alpha-melanocyte-stimulating hormone (alpha-MSH) and cocaine- and amphetamine-regulated transcript (CART), peptides that promote weight loss and increase energy expenditure, or neuropeptide Y (NPY) and agouti-related protein (AGRP), peptides that promote weight gain and reduce energy expenditure. During fasting, the reduction in TRH mRNA in hypophysiotropic neurons mediated by suppression of alpha-MSH/CART simultaneously with an increase in NPY/AGRP gene expression in arcuate nucleus neurons contributes to the fall in circulating thyroid hormone levels, presumably by increasing the sensitivity of the TRH gene to negative feedback inhibition by thyroid hormone. Endotoxin administration, however, has the paradoxical effect of increasing circulating levels of leptin and melanocortin signaling and CART gene expression in arcuate nucleus neurons, but inhibiting TRH gene expression in hypophysiotropic neurons. This may be explained by an overriding inhibitory effect of endotoxin to increase type 2 iodothyroine deiodinase (D2) in a population of specialized glial cells, tanycytes, located in the base and infralateral walls of the third ventricle. By increasing the conversion of T4 into T3, tanycytes may increase local tissue concenetrations of thyroid hormone, and thereby induce a state of local tissue hyperthyroidism in the region of hypophysisotrophic TRH neurons. Other regions of the brain may also serve as metabolic sensors for hypophysiostropic TRH neurons including the ventrolateral medulla and dorsomedial nucleus of the hypothalamus that have direct monosynaptic projections to the PVN. TRH also exerts a number of effects within the central nervous system that may contribute to the regulation of energy homeostasis. Included are an increase in core body temperature mediated through neurons in the anterior hypothalamic-preoptic area that coordinate a variety of autonomic responses; arousal and locomotor activation through cholinergic and dopaminergic mechanisms on the septum and nucleus accumbens, respectively; and regulation of the cephalic phase of digestion. While the latter responses are largely mediated through cholinergic mechanisms via TRH neurons in the brainstem medullary raphe and dorsal motor nucleus of the vagus, effects of TRH on autonomic loci in the hypothalamic PVN may also be important. Contrary to the actions of T3 to increase appetite, TRH has central effects to reduce food intake in normal, fasting and stressed animals. The precise locus where TRH mediates this response is unknown. However, evidence that an anatomically separate population of nonhypophysiotropic TRH neurons in the anterior parvocellular subdivision of the PVN is integrated into the leptin regulatory control system by the same arcuate nucleus neuronal populations that innervate hypophysiotropic TRH neurons, raises the possibility that anterior parvocellular TRH neurons may be involved, possibly through interactions with the limbic nervous system.
Collapse
Affiliation(s)
- Ronald M Lechan
- Tupper Research Institute and Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Tufts-New England Medical Center, Boston, MA 02111, USA.
| | | |
Collapse
|
12
|
Murray JF, Hahn JD, Kennedy AR, Small CJ, Bloom SR, Haskell-Luevano C, Coen CW, Wilson CA. Evidence for a stimulatory action of melanin-concentrating hormone on luteinising hormone release involving MCH1 and melanocortin-5 receptors. J Neuroendocrinol 2006; 18:157-67. [PMID: 16454799 DOI: 10.1111/j.1365-2826.2005.01397.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The present series of studies aimed to further our understanding of the role of melanin-concentrating hormone (MCH) neurones in the central regulation of luteinising hormone (LH) release in the female rat. LH release was stimulated when MCH was injected bilaterally into the rostral preoptic area (rPOA) or medial preoptic area (mPOA), but not when injected into the zona incerta (ZI), of oestrogen-primed ovariectomised rats. In rats that were steroid-primed to generate a surge-like release of LH, MCH administration into the ZI blocked this rise in LH release: no such effect occurred when MCH was injected into the rPOA or mPOA. In vitro, MCH stimulated gonadotrophin-releasing hormone (GnRH) release from hypothalamic explants. Double-label immunohistochemistry showed GnRH-immunoreactive neurones in the vicinity of and intermingled with immunoreactive MCH processes. MCH is the endogenous ligand of the MCH type 1 receptor (MCH1-R). Previously, we have shown a role for melanocortin-5 receptors (MC5-R) in the stimulatory action of MCH, so we next investigated the involvement of both MCH1-R and/or MC5-R in mediating the actions of MCH on GnRH and hence LH release. The stimulatory action of MCH in the rPOA was inhibited by administration of antagonists for either MCH1-R or MC5-R. However, in the mPOA, the action of MCH was blocked only by the MC5-R antagonist. LH release was stimulated by an agonist for MC5-R injected into the rPOA or mPOA; this was blocked by the MC5-R antagonist but not the MCH1-R antagonist. These results indicate that both MCH1-R and MC5-R are involved in the central control of LH release by MCH.
Collapse
Affiliation(s)
- J F Murray
- Department of Basic Medical Sciences, Physiology and Clinical Developmental Sciences; O&G, St George's University of London, London, UK
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Lechan RM, Fekete C. Role of melanocortin signaling in the regulation of the hypothalamic-pituitary-thyroid (HPT) axis. Peptides 2006; 27:310-25. [PMID: 16310285 DOI: 10.1016/j.peptides.2005.01.033] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2004] [Accepted: 01/23/2005] [Indexed: 10/25/2022]
Abstract
The melanocortin signaling system is orchestrated by two, independent groups of neurons in the hypothalamic arcuate nucleus with opposing functions that synthesize either alpha-melanocyte stimulating hormone (alpha-MSH) or agouti-related protein (AGRP). These neurons exert regulatory control over hypophysiotropic TRH neurons in the hypothalamic paraventricular nucleus (PVN) at least in part through direct, overlapping, monosynaptic projections to the PVN. Alpha-MSH has an activating effect on hypophysiotropic TRH neurons via the phosphorylation of CREB, and when administered exogenously, can completely reverse fasting-induced suppression of TRH mRNA in the PVN. AGRP has a potent inhibitory effect on the hypothalamic-pituitary-thyroid axis in normally fed animals, mediated through actions at melanocortin 4 receptors. Inhibition of the HPT axis by fasting may be explained by inhibition of melanocortin signaling as a result of a reduction in alpha-MSH and increase in AGRP. Neuropeptide Y may also modulate the effects of the melanocortin signaling system during fasting by potentiating the inhibitory actions of AGRP on hypophysiotropic TRH neurons to prevent the phosphorylation of CREB and through direct inhibitory effects on alpha-MSH-producing neurons in the arcuate nucleus.
Collapse
Affiliation(s)
- Ronald M Lechan
- Tupper Research Institute and Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Tufts-New England Medical Center, Boston, MA 02111, USA. rlechan@tufts-nemc
| | | |
Collapse
|
14
|
Martin NM, Smith KL, Bloom SR, Small CJ. Interactions between the melanocortin system and the hypothalamo-pituitary-thyroid axis. Peptides 2006; 27:333-9. [PMID: 16388877 DOI: 10.1016/j.peptides.2005.01.028] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2004] [Accepted: 01/27/2005] [Indexed: 12/31/2022]
Abstract
Recent studies of transgenic mice and humans have provided compelling evidence for the importance of the hypothalamic melanocortin system in the regulation of energy balance. Energy homeostasis is a balance between food intake (energy input) and energy expenditure. The melanocortin system regulates feeding via effects of the endogenous agonist, alpha-melanocyte stimulating hormone (alpha-MSH) and the endogenous antagonist agouti-related protein (AGRP) on melanocortin 3 and 4 receptors (MC3-Rs and MC4-Rs). It has been demonstrated that the melanocortin system interacts with the hypothalamo-pituitary-thyroid (HPT) axis. Thyroid hormones influence metabolism and hence energy expenditure. Therefore, an interaction between the HPT axis and the melanocortin system would allow control of both sides of the energy balance equation, by the regulation of both energy input and energy expenditure. Here we will discuss the evidence demonstrating interactions between the melanocortin system and the HPT axis.
Collapse
Affiliation(s)
- Niamh M Martin
- Department of Metabolic Medicine, Imperial College Faculty of Medicine at Hammersmith Campus, Du Cane Road, London W12 0NN, UK
| | | | | | | |
Collapse
|
15
|
Huo L, Münzberg H, Nillni EA, Bjørbaek C. Role of signal transducer and activator of transcription 3 in regulation of hypothalamic trh gene expression by leptin. Endocrinology 2004; 145:2516-23. [PMID: 14764629 DOI: 10.1210/en.2003-1242] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
During starvation in rodents, the hypothalamic-pituitary-thyroid axis is down-regulated, resulting in low circulating thyroid hormone levels. This involves a reduction in hypothalamic TRH mRNA that is caused in part by a fall in serum leptin levels, which is sensed by neurons within the hypothalamus. The mechanism by which this regulation occurs is not fully understood. Here we show transfection data and in vivo evidence, suggesting that leptin can regulate trh gene expression via activation of intracellular signal transducer and activator of transcription 3 (STAT3) proteins in TRH neurons. In trh promoter assays using transfected cells, functional STAT3 proteins are required for maximal activation of the trh promoter by leptin. Consistent with this, the STAT3-binding site on the leptin receptor is also required for this regulation. Using double immunohistochemistry, we show that peripherally administered leptin rapidly stimulates STAT3 phosphorylation in approximately 40% of TRH neurons in the paraventricular nucleus of the hypothalamus (PVN) in rats. Detailed anatomical analyses reveal that the leptin-responsive TRH neurons are concentrated in the caudal region of the medial and periventricular parvocellular subnucleus of the PVN. Combined, our data show that only a subpopulation of TRH neurons in the PVN is leptin responsive and suggest that stimulation of hypothalamic trh gene expression by leptin involves activation of STAT3 and that this signaling pathway is important for regulation of the hypothalamic-pituitary-thyroid axis by leptin.
Collapse
Affiliation(s)
- Lihong Huo
- Division of Endocrinology, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, Massachusetts 02215, USA
| | | | | | | |
Collapse
|
16
|
Watanobe H, Yoneda M. Evaluation of the role of melanocortin 3 and 4 receptors in leptin-stimulated and spontaneous growth hormone secretion in rats. Neuroendocrinology 2003; 78:331-8. [PMID: 14688446 DOI: 10.1159/000074886] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2003] [Accepted: 10/13/2003] [Indexed: 11/19/2022]
Abstract
It has been reported that the melanocortin 4-receptor (MC4-R) may act downstream of leptin to mediate its effects on food intake and several neuroendocrine functions (the reproductive system, the hypothalamo-pituitary-thyroid axis, and prolactin secretion). However, no previous study examined whether MC4-R mediates leptin stimulatory actions on growth hormone (GH) secretion, or whether MC4-R signaling is involved in spontaneous pulsatile GH release in fed rats. Therefore in this study we examined the involvement of both MC3-R and MC4-R (the predominant MC-R subtypes expressed in the brain) in these two aspects of GH secretion in freely-moving male rats. In both fed and 3-day fasted rats, plasma GH levels were determined every 15 min over 5 h after single intracerebroventricular injections of the following substances or vehicle. Fasting diminished and leptin (0.3 nmol) reinstated the GH pulse amplitude without affecting the pulse frequency. Neither HS014 (1.0 nmol, a selective MC4-R antagonist) nor agouti-related peptide (1.0 nmol, a non-selective MC3/4-R antagonist) was effective in altering leptin-stimulated or spontaneous GH secretion. In addition, neither melanotan-II (1.0 nmol, a non-selective MC3/4-R agonist) nor gamma(1)-melanocyte-stimulating hormone (10 nmol, a selective MC3-R agonist) affected significantly GH release in fasted rats. We have previously demonstrated that stimulation or blockade of MC4-R, achieved by the same drug dosage as in this study, significantly affect luteinizing hormone and prolactin secretion in rats. The present results thus suggest that neither MC4-R nor MC3-R is involved in leptin-stimulated or spontaneous GH secretion, or at least that the level of MC4-R involvement in GH secretion is much lower than that in luteinizing hormone and prolactin release regulation.
Collapse
Affiliation(s)
- Hajime Watanobe
- Division of Internal Medicine, Clinical Research Center, International University of Health and Welfare, Otawara, Tochigi, Japan.
| | | |
Collapse
|
17
|
Williams DL, Bowers RR, Bartness TJ, Kaplan JM, Grill HJ. Brainstem melanocortin 3/4 receptor stimulation increases uncoupling protein gene expression in brown fat. Endocrinology 2003; 144:4692-7. [PMID: 12960080 DOI: 10.1210/en.2003-0440] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Central administration of melanocortin 3 and 4 receptor (MC3/4-R) agonists increases energy expenditure, with the hypothalamus commonly held as the primary site of action. It is also clear, however, that MC4-R are expressed in caudal brainstem structures of relevance to the control of energy expenditure. Three experiments investigated whether hindbrain MC-R contribute to the energy expenditure effects of central MC3/4-R agonist treatments; in each, we examined the effect of fourth intracerebroventricular (i.c.v.) administration of a MC3/4-R agonist, MTII (three injections, each separated by 12 h), on uncoupling protein 1 (UCP-1) gene expression in brown adipose tissue (BAT). First, we compared the effects of fourth and third i.c.v. administration of MTII and found that the hindbrain and forebrain treatments were equally effective at elevating UCP-1 mRNA expression in BAT compared with the respective vehicle-treated group results. A second experiment demonstrated that the fourth i.c.v. MTII-induced rise in UCP-1 expression was mediated by sympathetic outflow to BAT by showing that this response was abolished by surgical denervation of BAT. In the third experiment, we showed that chronic decerebrate rats, like their neurologically intact controls, elevated UCP-1 mRNA expression in response to fourth i.c.v. MTII administration. Taken together, the results indicate that: 1) there is an independent caudal brainstem MC3/4-R trigger for a sympathetically stimulated elevation in BAT UCP-1 gene expression, and 2) the MTII-induced rise in UCP-1 expression can be mediated by circuitry intrinsic to the caudal brainstem and spinal cord.
Collapse
MESH Headings
- Adipose Tissue, Brown/innervation
- Adipose Tissue, Brown/physiology
- Animals
- Brain Stem/metabolism
- Carrier Proteins/genetics
- Decerebrate State/metabolism
- Energy Metabolism/drug effects
- Energy Metabolism/physiology
- Gene Expression/physiology
- Injections, Intraventricular
- Ion Channels
- Male
- Membrane Proteins/genetics
- Mitochondrial Proteins
- Peptides, Cyclic/administration & dosage
- Prosencephalon/metabolism
- RNA, Messenger/metabolism
- Rats
- Rats, Sprague-Dawley
- Receptor, Melanocortin, Type 3/drug effects
- Receptor, Melanocortin, Type 3/physiology
- Receptor, Melanocortin, Type 4/drug effects
- Receptor, Melanocortin, Type 4/physiology
- Rhombencephalon/metabolism
- Sympathetic Nervous System/physiology
- Uncoupling Protein 1
- alpha-MSH/administration & dosage
- alpha-MSH/analogs & derivatives
Collapse
Affiliation(s)
- D L Williams
- Department of Psychology, University of Pennsylvania, Philadelphia, USA.
| | | | | | | | | |
Collapse
|
18
|
Affiliation(s)
- Kazuhiro Takahashi
- Department of Molecular Biology and Applied Physiology, Tohoku University School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan.
| |
Collapse
|
19
|
Matsumura K, Tsuchihashi T, Abe I, Iida M. Central alpha-melanocyte-stimulating hormone acts at melanocortin-4 receptor to activate sympathetic nervous system in conscious rabbits. Brain Res 2002; 948:145-8. [PMID: 12383966 DOI: 10.1016/s0006-8993(02)03045-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Intracerebroventricular injection of alpha-melanocyte-stimulating hormone (alpha-MSH) elicited increases in arterial pressure and renal sympathetic nerve activity in conscious rabbits. Pretreatment with intracerebroventricular injection of agouti-related protein, an endogenous melanocortin-3 and 4 receptor antagonist, prevented cardiovascular and sympathetic responses to alpha-MSH. Pretreatment with intracerebroventricular injection of JKC-363, a synthetic specific melanocortin-4 receptor antagonist, also prevented cardiovascular and sympathetic responses to alpha-MSH. In contrast, intravenous alpha-MSH (1 nmol) failed to cause any cardiovascular responses. These results suggest that intracerebroventricularly administered alpha-MSH acts at the melanocortin-4 receptor in the brain and activates sympathetic outflow, resulting in an increase in arterial pressure.
Collapse
Affiliation(s)
- Kiyoshi Matsumura
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka 12-8582, Japan.
| | | | | | | |
Collapse
|