1
|
Myers AM, Wallin CM, Richardson LM, Duran J, Neole SR, Kulaglic N, Davidson C, Perrine SA, Bowen SE, Brummelte S. The effects of buprenorphine and morphine during pregnancy: Impact of exposure length on maternal brain, behavior, and offspring neurodevelopment. Neuropharmacology 2024; 257:110060. [PMID: 38960134 PMCID: PMC11285462 DOI: 10.1016/j.neuropharm.2024.110060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/21/2024] [Accepted: 06/30/2024] [Indexed: 07/05/2024]
Abstract
The escalating incidence of opioid-related issues among pregnant women in the United States underscores the critical necessity to understand the effects of opioid use and Medication for Opioid Use Disorders (MOUDs) during pregnancy. This research employed a translational rodent model to examine the impact of gestational exposure to buprenorphine (BUP) or morphine on maternal behaviors and offspring well-being. Female rats received BUP or morphine before conception, representing established use, with exposure continuing until postnatal day 2 or discontinued on gestational day 19 to mimic treatment cessation before birth. Maternal behaviors - including care, pup retrieval, and preference - as well as hunting behaviors and brain neurotransmitter levels were assessed. Offspring were evaluated for mortality, weight, length, milk bands, surface righting latency, withdrawal symptoms, and brain neurotransmitter levels. Our results reveal that regardless of exposure length (i.e., continued or discontinued), BUP resulted in reduced maternal care in contrast to morphine-exposed and control dams. Opioid exposure altered brain monoamine levels in the dams and offspring, and was associated with increased neonatal mortality, reduced offspring weight, and elevated withdrawal symptoms compared to controls. These findings underscore BUP's potential disruption of maternal care, contributing to increased pup mortality and altered neurodevelopmental outcomes in the offspring. This study calls for more comprehensive research into prenatal BUP exposure effects on the maternal brain and infant development with the aim to mitigate adverse outcomes in humans exposed to opioids during pregnancy.
Collapse
Affiliation(s)
- Abigail M Myers
- Department of Psychology, Wayne State University, Detroit, MI, 48202, USA
| | - Chela M Wallin
- Department of Psychology, Wayne State University, Detroit, MI, 48202, USA
| | | | - Jecenia Duran
- Department of Psychology, Wayne State University, Detroit, MI, 48202, USA
| | - Surbhi R Neole
- Department of Psychology, Wayne State University, Detroit, MI, 48202, USA
| | - Nejra Kulaglic
- Department of Psychology, Wayne State University, Detroit, MI, 48202, USA
| | - Cameron Davidson
- Dept of Behavioral Neuroscience and Psychiatry, Wayne State University, Detroit, MI, 48202, USA
| | - Shane A Perrine
- Dept of Behavioral Neuroscience and Psychiatry, Wayne State University, Detroit, MI, 48202, USA; Translational Neuroscience Program, Wayne State University, Detroit, MI, 48202, USA
| | - Scott E Bowen
- Department of Psychology, Wayne State University, Detroit, MI, 48202, USA
| | - Susanne Brummelte
- Department of Psychology, Wayne State University, Detroit, MI, 48202, USA; Translational Neuroscience Program, Wayne State University, Detroit, MI, 48202, USA.
| |
Collapse
|
2
|
Campideli-Santana AC, Gusmao DO, Almeida FRCL, Araujo-Lopes R, Szawka RE. Partial loss of arcuate kisspeptin neurons in female rats stimulates luteinizing hormone and decreases prolactin secretion induced by estradiol. J Neuroendocrinol 2022; 34:e13204. [PMID: 36319592 DOI: 10.1111/jne.13204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 08/25/2022] [Accepted: 09/30/2022] [Indexed: 11/28/2022]
Abstract
Kisspeptin, neurokinin, and dynorphin (KNDy) neurons in the arcuate nucleus (ARC) control luteinizing hormone (LH) and prolactin (PRL) release, although their role in conveying the effects of estradiol (E2 ) to these hormones is not well understood. We performed a longitudinal evaluation of female rats in which KNDy neurons were ablated using a neurokinin-3 receptor agonist conjugated with saporin (NK3-SAP) to investigate the impact of the reduction of KNDy neurons on the E2 regulation of gonadal and PRL axes. NK3-SAP rats, bearing a moderate loss of ARC kisspeptin-immunoreactive (-IR) neurons (50%-90%), displayed irregular estrous cycles but essentially unaltered follicular development and a normal number of corpora lutea. Rats were then ovariectomized (OVX) and treated with a positive-feedback dose of E2 (OVX + E2 ). LH and PRL were measured in the tail blood by an enzyme-linked immunosorbent assay. The E2 -induced LH surge was amplified, whereas the PRL rise was decreased in NK3-SAP rats compared to Blank-SAP control. After 10 days of no hormonal treatment, basal LH levels were equally elevated in NK3-SAP and controls. Tyrosine hydroxylase (TH) phosphorylation in the median eminence, in turn, was increased in NK3-SAP rats, with no change in the number of ARC TH-IR neurons. Thus, KNDy neurons exert concurrent and opposite roles in the E2 -induced surges of LH and PRL. The partial loss of KNDy neurons disrupts ovarian cyclicity but does not preclude ovulation, consistent with the disinhibition of the LH preovulatory surge. Conversely, KNDy neurons tonically inhibit the enzymatic activity of tuberoinfundibular dopaminergic neurons, which appears to facilitate PRL release in response to E2 .
Collapse
Affiliation(s)
- Ana C Campideli-Santana
- Departamento de Fisiologia e Biofisica, Instituto de Ciencias Biologicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Daniela O Gusmao
- Departamento de Fisiologia e Biofisica, Instituto de Ciencias Biologicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Departamento de Fisiologia e Biofisica, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Fernanda R C L Almeida
- Departamento de Morfologia, Instituto de Ciencias Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Roberta Araujo-Lopes
- Departamento de Fisiologia e Biofisica, Instituto de Ciencias Biologicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Raphael E Szawka
- Departamento de Fisiologia e Biofisica, Instituto de Ciencias Biologicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
3
|
Wallin CM, Bowen SE, Brummelte S. Opioid use during pregnancy can impair maternal behavior and the Maternal Brain Network: A literature review. Neurotoxicol Teratol 2021; 86:106976. [PMID: 33812002 DOI: 10.1016/j.ntt.2021.106976] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 02/26/2021] [Accepted: 03/25/2021] [Indexed: 10/21/2022]
Abstract
Opioid Use Disorder (OUD) is a global epidemic also affecting women of reproductive age. A standard form of pharmacological treatment for OUD is Opioid Maintenance Therapy (OMT) and buprenorphine has emerged as the preferred treatment for pregnant women with OUD relative to methadone. However, the consequences of BUP exposure on the developing Maternal Brain Network and mother-infant dyad are not well understood. The maternal-infant bond is dependent on the Maternal Brain Network, which is responsible for the dynamic transition from a "nulliparous brain" to a "maternal brain". The Maternal Brain Network consists of regions implicated in maternal care (e.g., medial preoptic area, nucleus accumbens, ventral pallidum, ventral tegmentum area) and maternal defense (e.g., periaqueductal gray). The endogenous opioid system modulates many of the neurochemical changes in these areas during the transition to motherhood. Thus, it is not surprising that exogenous opioid exposure during pregnancy can be disruptive to the Maternal Brain Network. Though less drastic than misused opioids, OMTs may not be without risk of disrupting the neural and molecular structures of the Maternal Brain Network. This review describes the Maternal Brain Network as a framework for understanding how pharmacological differences in exogenous opioid exposure can disrupt the onset and maintenance of the maternal brain and summarizes opioid and OMT (in particular buprenorphine) use in the context of pregnancy and maternal behavior. This review also highlights future directions for evaluating exogenous opioid effects on the Maternal Brain Network in the hopes of raising awareness for the impact of the opioid crisis not only on exposed infants, but also on mothers and subsequent mother-infant bonds.
Collapse
Affiliation(s)
- Chela M Wallin
- Department of Psychology, Wayne State University, Detroit, MI 48202, USA.
| | - Scott E Bowen
- Department of Psychology, Wayne State University, Detroit, MI 48202, USA.
| | - Susanne Brummelte
- Department of Psychology, Wayne State University, Detroit, MI 48202, USA.
| |
Collapse
|
4
|
Chomanic P, Karailievova L, Graban J, Jezova D. Delta-Opioid Receptors Play a Role in the Control of Selected Parameters Related to Stress and Brain Plasticity Under Non-stress and/or Stress Conditions. Cell Mol Neurobiol 2021; 42:137-146. [PMID: 33683529 DOI: 10.1007/s10571-021-01067-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 02/15/2021] [Indexed: 10/22/2022]
Abstract
There is some evidence that delta-opioid receptors may be involved in the brain processes related to neuroprotection. The aim of the present studies was to test the hypothesis that endogenous opioid peptides acting via delta-opioid receptors can protect against stress-induced changes in factors related to brain plasticity and stress hormone release. Forty male adult Wistar rats were used. Half of the animals were exposed to sustained partial restraint stress (hypokinesis) lasting 48 h. Rats were treated with vehicle (isotonic saline) or the delta-opioid receptor antagonist naltrindole (3 mg/kg/ml, s.c.) six times a day. The stressfulness of the model was confirmed by increased plasma concentrations of corticosterone and prolactin, the increase in anxiety behavior in the open field test, as well as the reduction of BrdU incorporation into newly formed DNA in the hippocampus. Treatment with naltrindole potentiated the stress-induced rise in aldosterone concentrations. The blockade of delta-opioid receptors resulted in a decrease in hippocampal BDNF gene expression independently of control or stress conditions. Treatment with naltrindole enhanced plasma concentrations of copeptin, a stable precursor of vasopressin. In conclusion, these results suggest that endogenous opioid peptides might play an inhibitory role in aldosterone release under stress conditions and in the control of vasopressin release independently of stress exposure. Endogenous opioids might stimulate hippocampal gene expression of the important neurotrophic factor BDNF via delta-opioid receptors.
Collapse
Affiliation(s)
- P Chomanic
- Laboratory of Pharmacological Neuroendocrinology, Department of Endocrine Regulations and Psychopharmacology, Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 845 05, Bratislava, Slovakia.,Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University, Bratislava, Slovakia
| | - L Karailievova
- Laboratory of Pharmacological Neuroendocrinology, Department of Endocrine Regulations and Psychopharmacology, Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 845 05, Bratislava, Slovakia
| | - J Graban
- Laboratory of Pharmacological Neuroendocrinology, Department of Endocrine Regulations and Psychopharmacology, Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 845 05, Bratislava, Slovakia
| | - D Jezova
- Laboratory of Pharmacological Neuroendocrinology, Department of Endocrine Regulations and Psychopharmacology, Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 845 05, Bratislava, Slovakia.
| |
Collapse
|
5
|
Yip SH, Araujo-Lopes R, Szawka RE, York J, Hyland B, Grattan DR, Bunn SJ. Morphological plasticity of the tuberoinfundibular dopaminergic neurones in the rat during the oestrous cycle and lactation. J Neuroendocrinol 2020; 32:e12884. [PMID: 32662600 DOI: 10.1111/jne.12884] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 05/04/2020] [Accepted: 06/11/2020] [Indexed: 01/10/2023]
Abstract
The hypothalamic tuberoinfundibular dopaminergic (TIDA) neurones are critical with respect to regulating prolactin secretion from the anterior pituitary. Under most physiological conditions, they are stimulated by prolactin to release dopamine into the median eminence which subsequently suppresses further prolactin secretion from the lactotrophs. During lactation, the TIDA neurones are known to undergo both electrophysiological and neurochemical changes that alleviate this negative-feedback, thus allowing circulating prolactin levels to rise. The present study aimed to determine whether TIDA neurone morphology, most notably spine density, is also modified during lactation. This was achieved by stereotaxically injecting the arcuate nucleus of female, tyrosine hydroxylase-promoter driven Cre-recombinase transgenic rats with Cre-dependent adeno-associated virus-expressing Brainbow. This resulted in the highly specifici transfection of between 10% and 30% of the TIDA neurones, thus allowing the morphologies on multiple individual neurones to be examined in a single hypothalamic slice. The transfected neurones exhibited a range of complex forms, including a diversity of soma and location of axonal origin. Neuronal spine counting showed that the density of somatic, but not dendritic, spines was significantly higher during lactation than at any other reproductive stage. There was also a significant fall in somatic spine density across the oestrous cycle from dioestrus to oestrus. Although the functional characteristics of the additional somatic spines have not been determined, if, as might be expected, they represent an increased excitatory input to the TIDA neurones, this could have important physiological implications by perhaps supporting altered neurotransmitter release at their neuroendocrine terminals. Enhanced excitatory input may, for example, favour the release of the opioid peptide enkephalin rather than dopamine, which is potentially significant because the expression of the peptide is known to increase in the TIDA neurones during lactation and, in contrast to dopamine, it stimulates rather than inhibits prolactin secretion from the pituitary.
Collapse
Affiliation(s)
- Siew Hoong Yip
- Centre for Neuroendocrinology and Department of Anatomy, University of Otago, Dunedin, New Zealand
| | - Roberta Araujo-Lopes
- Departamento de Fisiologia e Biofisica, Instituto de Ciencias Biologicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Raphael E Szawka
- Departamento de Fisiologia e Biofisica, Instituto de Ciencias Biologicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Jade York
- Centre for Neuroendocrinology and Department of Anatomy, University of Otago, Dunedin, New Zealand
| | - Brian Hyland
- Department of Physiology, University of Otago, Dunedin, New Zealand
| | - David R Grattan
- Centre for Neuroendocrinology and Department of Anatomy, University of Otago, Dunedin, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| | - Stephen J Bunn
- Centre for Neuroendocrinology and Department of Anatomy, University of Otago, Dunedin, New Zealand
| |
Collapse
|
6
|
Dobolyi A, Oláh S, Keller D, Kumari R, Fazekas EA, Csikós V, Renner É, Cservenák M. Secretion and Function of Pituitary Prolactin in Evolutionary Perspective. Front Neurosci 2020; 14:621. [PMID: 32612510 PMCID: PMC7308720 DOI: 10.3389/fnins.2020.00621] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Accepted: 05/19/2020] [Indexed: 12/16/2022] Open
Abstract
The hypothalamo-pituitary system developed in early vertebrates. Prolactin is an ancient vertebrate hormone released from the pituitary that exerts particularly diverse functions. The purpose of the review is to take a comparative approach in the description of prolactin, its secretion from pituitary lactotrophs, and hormonal functions. Since the reproductive and osmoregulatory roles of prolactin are best established in a variety of species, these functions are the primary subjects of discussion. Different types of prolactin and prolactin receptors developed during vertebrate evolution, which will be described in this review. The signal transduction of prolactin receptors is well conserved among vertebrates enabling us to describe the whole subphylum. Then, the review focuses on the regulation of prolactin release in mammals as we have the most knowledge on this class of vertebrates. Prolactin secretion in response to different reproductive stimuli, such as estrogen-induced release, mating, pregnancy and suckling is detailed. Reproduction in birds is different from that in mammals in several aspects. Prolactin is released during incubation in avian species whose regulation and functional significance are discussed. Little information is available on prolactin in reptiles and amphibians; therefore, they are mentioned only in specific cases to explain certain evolutionary aspects. In turn, the osmoregulatory function of prolactin is well established in fish. The different types of pituitary prolactin in fish play particularly important roles in the adaptation of eutherian species to fresh water environments. To achieve this function, prolactin is released from lactotrophs in hyposmolarity, as they are directly osmosensitive in fish. In turn, the released prolactin acts on branchial epithelia, especially ionocytes of the gill to retain salt and excrete water. This review will highlight the points where comparative data give new ideas or suggest new approaches for investigation in other taxa.
Collapse
Affiliation(s)
- Arpád Dobolyi
- MTA-ELTE Laboratory of Molecular and Systems Neurobiology, Department of Physiology and Neurobiology, Institute of Biology, Eötvös Loránd University, Budapest, Hungary
- Laboratory of Neuromorphology, Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Szilvia Oláh
- MTA-ELTE Laboratory of Molecular and Systems Neurobiology, Department of Physiology and Neurobiology, Institute of Biology, Eötvös Loránd University, Budapest, Hungary
| | - Dávid Keller
- Laboratory of Neuromorphology, Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Rashmi Kumari
- MTA-ELTE Laboratory of Molecular and Systems Neurobiology, Department of Physiology and Neurobiology, Institute of Biology, Eötvös Loránd University, Budapest, Hungary
| | - Emese A. Fazekas
- MTA-ELTE Laboratory of Molecular and Systems Neurobiology, Department of Physiology and Neurobiology, Institute of Biology, Eötvös Loránd University, Budapest, Hungary
| | - Vivien Csikós
- MTA-ELTE Laboratory of Molecular and Systems Neurobiology, Department of Physiology and Neurobiology, Institute of Biology, Eötvös Loránd University, Budapest, Hungary
| | - Éva Renner
- Human Brain Tissue Bank and Microdissection Laboratory, Semmelweis University, Budapest, Hungary
| | - Melinda Cservenák
- MTA-ELTE Laboratory of Molecular and Systems Neurobiology, Department of Physiology and Neurobiology, Institute of Biology, Eötvös Loránd University, Budapest, Hungary
| |
Collapse
|
7
|
|
8
|
Endogenous opioid signalling in the brain during pregnancy and lactation. Cell Tissue Res 2018; 375:69-83. [DOI: 10.1007/s00441-018-2948-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 10/10/2018] [Indexed: 12/24/2022]
|
9
|
Domi E, Barbier E, Augier E, Augier G, Gehlert D, Barchiesi R, Thorsell A, Holm L, Heilig M. Preclinical evaluation of the kappa-opioid receptor antagonist CERC-501 as a candidate therapeutic for alcohol use disorders. Neuropsychopharmacology 2018; 43:1805-1812. [PMID: 29463912 PMCID: PMC6046052 DOI: 10.1038/s41386-018-0015-y] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 12/22/2017] [Accepted: 01/09/2018] [Indexed: 12/12/2022]
Abstract
Prior work suggests a role of kappa-opioid signaling in the control of alcohol drinking, in particular when drinking is escalated due to alcohol-induced long-term neuroadaptations. Here, we examined the small molecule selective kappa antagonist CERC-501 in rat models of alcohol-related behaviors, with the objective to evaluate its potential as a candidate therapeutic for alcohol use disorders. We first tested the effect of CERC-501 on acute alcohol withdrawal-induced anxiety-like behavior. CERC-501 was then tested on basal as well as escalated alcohol self-administration induced by 20% alcohol intermittent access. Finally, we determined the effects of CERC-501 on relapse to alcohol seeking triggered by both stress and alcohol-associated cues. Control experiments were performed to confirm the specificity of CERC-501 effects on alcohol-related behaviors. CERC-501 reversed anxiety-like behavior induced by alcohol withdrawal. It did not affect basal alcohol self-administration but did dose-dependently suppress self-administration that had escalated following long-term intermittent access to alcohol. CERC-501 blocked relapse to alcohol seeking induced by stress, but not when relapse-like behavior was triggered by alcohol-associated cues. The effects of CERC-501 were observed in the absence of sedative side effects and were not due to effects on alcohol metabolism. Thus, in a broad battery of preclinical alcohol models, CERC-501 has an activity profile characteristic of anti-stress compounds. Combined with its demonstrated preclinical and clinical safety profile, these data support clinical development of CERC-501 for alcohol use disorders, in particular for patients with negatively reinforced, stress-driven alcohol seeking and use.
Collapse
Affiliation(s)
- E Domi
- 0000 0001 2162 9922grid.5640.7Department of Clinical and Experimental Medicine, Center for Social and Affective Neuroscience, Linköping University, Linköping, Sweden
| | - E Barbier
- 0000 0001 2162 9922grid.5640.7Department of Clinical and Experimental Medicine, Center for Social and Affective Neuroscience, Linköping University, Linköping, Sweden
| | - E Augier
- 0000 0001 2162 9922grid.5640.7Department of Clinical and Experimental Medicine, Center for Social and Affective Neuroscience, Linköping University, Linköping, Sweden
| | - G Augier
- 0000 0001 2162 9922grid.5640.7Department of Clinical and Experimental Medicine, Center for Social and Affective Neuroscience, Linköping University, Linköping, Sweden
| | - D Gehlert
- grid.504315.6Cerecor, Baltimore, MD (DG) and Matrix Pharmaceutical Consulting, Boulder, CO, United States
| | - R Barchiesi
- 0000 0001 2162 9922grid.5640.7Department of Clinical and Experimental Medicine, Center for Social and Affective Neuroscience, Linköping University, Linköping, Sweden
| | - A Thorsell
- 0000 0001 2162 9922grid.5640.7Department of Clinical and Experimental Medicine, Center for Social and Affective Neuroscience, Linköping University, Linköping, Sweden
| | - L Holm
- 0000 0001 2162 9922grid.5640.7Department of Clinical and Experimental Medicine, Center for Social and Affective Neuroscience, Linköping University, Linköping, Sweden
| | - M Heilig
- Department of Clinical and Experimental Medicine, Center for Social and Affective Neuroscience, Linköping University, Linköping, Sweden.
| |
Collapse
|
10
|
Andersson H, Mitchard T, Johnson N, Floettmann E. Naloxegol, an opioid antagonist with reduced CNS penetration: Mode-of-action and human relevance for rat testicular tumours. Toxicol Appl Pharmacol 2017; 329:85-95. [DOI: 10.1016/j.taap.2017.05.032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 05/11/2017] [Accepted: 05/26/2017] [Indexed: 10/19/2022]
|
11
|
Role of Estradiol in the Regulation of Prolactin Secretion During Late Pregnancy. Neurochem Res 2016; 41:3344-3355. [DOI: 10.1007/s11064-016-2067-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 09/06/2016] [Accepted: 09/15/2016] [Indexed: 12/18/2022]
|
12
|
Stathopoulos AM, Helena CV, Cristancho-Gordo R, Gonzalez-Iglesias AE, Bertram R. Influence of dynorphin on estradiol- and cervical stimulation-induced prolactin surges in ovariectomized rats. Endocrine 2016; 53:585-94. [PMID: 27038317 DOI: 10.1007/s12020-016-0938-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 03/21/2016] [Indexed: 11/28/2022]
Abstract
Prolactin is an anterior pituitary hormone necessary for fertility, pregnancy maintenance, lactation, and aspects of maternal behavior. In rodents, there is a surge of prolactin on the afternoon of proestrus, and a semi-circadian pattern of prolactin surges during early pregnancy, with a diurnal and nocturnal surge every day. Both of these patterns can be replicated in ovariectomized rats. A prior study demonstrated that central antagonism of κ-opioid receptors, the target of dynorphin, largely abolished the nocturnal prolactin surge in pregnant rats. We build on this to determine whether dynorphin, perhaps from the arcuate population that co-express kisspeptin, neurokinin B, and dynorphin (KNDy neurons), also contributes to the estradiol- or cervical stimulation-induced surges in ovariectomized rats. Ovariectomized rats were treated with either estradiol or cervical stimulation to induce prolactin surge(s). Blood samples were taken around the expected surge time to determine the effect of either acute κ-opioid receptor antagonism or previous chemical ablation of the KNDy population on prolactin levels. Dynorphin antagonism does significantly disrupt the nocturnal prolactin surge, but it does not contribute to the estradiol-induced surge. Chemical ablation of KNDy neurons had opposite effects; ablation of 40 % of the KNDy neurons had no impact on the nocturnal prolactin surge, while a somewhat larger ablation significantly reduced the size of the estradiol-induced surge. We conclude that dynorphin is likely a controlling factor for the nocturnal surge induced by cervical stimulation, and that other KNDy neuron products must play a role in the estradiol-induced surge.
Collapse
Affiliation(s)
- Andrea M Stathopoulos
- Program in Neuroscience and Departments of Biological Sciences, Florida State University, Tallahassee, FL, 32306, USA
| | - Cleyde V Helena
- Program in Neuroscience and Departments of Biological Sciences, Florida State University, Tallahassee, FL, 32306, USA
| | - Ruth Cristancho-Gordo
- Program in Neuroscience and Departments of Biological Sciences, Florida State University, Tallahassee, FL, 32306, USA
| | - Arturo E Gonzalez-Iglesias
- Program in Neuroscience and Departments of Biological Sciences, Florida State University, Tallahassee, FL, 32306, USA
| | - Richard Bertram
- Program in Neuroscience and Departments of Mathematics, Florida State University, Tallahassee, FL, 32306, USA.
| |
Collapse
|
13
|
Dopamine/Tyrosine Hydroxylase Neurons of the Hypothalamic Arcuate Nucleus Release GABA, Communicate with Dopaminergic and Other Arcuate Neurons, and Respond to Dynorphin, Met-Enkephalin, and Oxytocin. J Neurosci 2016; 35:14966-82. [PMID: 26558770 DOI: 10.1523/jneurosci.0293-15.2015] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
UNLABELLED We employ transgenic mice with selective expression of tdTomato or cre recombinase together with optogenetics to investigate whether hypothalamic arcuate (ARC) dopamine/tyrosine hydroxylase (TH) neurons interact with other ARC neurons, how they respond to hypothalamic neuropeptides, and to test whether these cells constitute a single homogeneous population. Immunostaining with dopamine and TH antisera was used to corroborate targeted transgene expression. Using whole-cell recording on a large number of neurons (n = 483), two types of neurons with different electrophysiological properties were identified in the dorsomedial ARC where 94% of TH neurons contained immunoreactive dopamine: bursting and nonbursting neurons. In contrast to rat, the regular oscillations of mouse bursting neurons depend on a mechanism involving both T-type calcium and A-type potassium channel activation, but are independent of gap junction coupling. Optogenetic stimulation using cre recombinase-dependent ChIEF-AAV-DJ expressed in ARC TH neurons evoked postsynaptic GABA currents in the majority of neighboring dopamine and nondopamine neurons, suggesting for the first time substantial synaptic projections from ARC TH cells to other ARC neurons. Numerous met-enkephalin (mENK) and dynorphin-immunoreactive boutons appeared to contact ARC TH neurons. mENK inhibited both types of TH neuron through G-protein coupled inwardly rectifying potassium currents mediated by δ and μ opioid receptors. Dynorphin-A inhibited both bursting and nonbursting TH neurons by activating κ receptors. Oxytocin excited both bursting and nonbursting neurons. These results reveal a complexity of TH neurons that communicate extensively with neurons within the ARC. SIGNIFICANCE STATEMENT Here, we show that the great majority of mouse hypothalamic arcuate nucleus (ARC) neurons that synthesize TH in the dorsomedial ARC also contain immunoreactive dopamine, and show either bursting or nonbursting electrical activity. Unlike rats, the mechanism underlying bursting was not dependent on gap junctions but required T-type calcium and A-type potassium channel activation. Neuropeptides dynorphin and met-enkephalin inhibited dopamine neurons, whereas oxytocin excited them. Most ventrolateral ARC TH cells did not contain dopamine and did not show bursting electrical activity. TH-containing neurons appeared to release synaptic GABA within the ARC onto dopamine neurons and unidentified neurons, suggesting that the cells not only control pituitary hormones but also may modulate nearby neurons.
Collapse
|
14
|
Abstract
Prolactin (PRL) released from lactotrophs of the anterior pituitary gland in response to the suckling by the offspring is the major hormonal signal responsible for stimulation of milk synthesis in the mammary glands. PRL secretion is under chronic inhibition exerted by dopamine (DA), which is released from neurons of the arcuate nucleus of the hypothalamus into the hypophyseal portal vasculature. Suckling by the young activates ascending systems that decrease the release of DA from this system, resulting in enhanced responsiveness to one or more PRL-releasing hormones, such as thyrotropin-releasing hormone. The neuropeptide oxytocin (OT), synthesized in magnocellular neurons of the hypothalamic supraoptic, paraventricular, and several accessory nuclei, is responsible for contracting the myoepithelial cells of the mammary gland to produce milk ejection. Electrophysiological recordings demonstrate that shortly before each milk ejection, the entire neurosecretory OT population fires a synchronized burst of action potentials (the milk ejection burst), resulting in release of OT from nerve terminals in the neurohypophysis. Both of these neuroendocrine systems undergo alterations in late gestation that prepare them for the secretory demands of lactation, and that reduce their responsiveness to stimuli other than suckling, especially physical stressors. The demands of milk synthesis and release produce a condition of negative energy balance in the suckled mother, and, in laboratory rodents, are accompanied by a dramatic hyperphagia. The reduction in secretion of the adipocyte hormone, leptin, a hallmark of negative energy balance, may be an important endocrine signal to hypothalamic systems that integrate lactation-associated food intake with neuroendocrine systems.
Collapse
Affiliation(s)
- William R Crowley
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah Health Sciences Center, Salt Lake City, Utah
| |
Collapse
|
15
|
Casey TM, Crodian J, Erickson E, Kuropatwinski KK, Gleiberman AS, Antoch MP. Tissue-specific changes in molecular clocks during the transition from pregnancy to lactation in mice. Biol Reprod 2014; 90:127. [PMID: 24759789 PMCID: PMC4094001 DOI: 10.1095/biolreprod.113.116137] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Revised: 01/02/2014] [Accepted: 04/16/2014] [Indexed: 12/20/2022] Open
Abstract
Circadian clocks regulate homeostasis and mediate responses to stressors. Lactation is one of the most energetically demanding periods of an adult female's life. Peripartum changes occur in almost every organ so the dam can support neonatal growth through milk production while homeostasis is maintained. How circadian clocks are involved in adaptation to lactation is currently unknown. The abundance and temporal pattern of core clock genes' expression were measured in suprachiasmatic nucleus, liver, and mammary from late pregnant and early lactation mice. Tissue-specific changes in molecular clocks occurred between physiological states. Amplitude and robustness of rhythms increased in suprachiasmatic nucleus and liver. Mammary rhythms of core molecular clock genes were suppressed. Attenuated rhythms appeared to be a physiological adaptation of mammary to lactation, because manipulation of timing of suckling resulting in significant differences in plasma prolactin and corticosterone had no effect on amplitude. Analysis of core clock proteins revealed that the stoichiometric relationship between positive (CLOCK) and negative (PER2) components remained 1:1 in liver but was increased to 4:1 in mammary during physiological transition. Induction of differentiation of mammary epithelial cell line HC11 with dexamethasone, insulin, and prolactin resulted in similar stoichiometric changes among positive and negative clock regulators, and prolactin induced phase shifts in HC11 Arntl expression rhythm. Data support that distinct mechanisms drive periparturient changes in mammary clock. Stoichiometric change in clock regulators occurs with gland differentiation. Suppression of mammary clock gene expression rhythms represents a physiological adaptation to suckling cues. Adaptations in mammary clock are likely needed in part to support suckling demands of neonates.
Collapse
Affiliation(s)
- Theresa M Casey
- Department of Animal Science, Purdue University, West Lafayette, Indiana
| | - Jennifer Crodian
- Department of Animal Science, Purdue University, West Lafayette, Indiana
| | - Emily Erickson
- Department of Animal Science, Purdue University, West Lafayette, Indiana
| | - Karen K Kuropatwinski
- Department of Molecular and Cellular Biology, Roswell Park Cancer Institute, Buffalo, New York
| | | | - Marina P Antoch
- Department of Molecular and Cellular Biology, Roswell Park Cancer Institute, Buffalo, New York
| |
Collapse
|
16
|
Romanò N, Yip SH, Hodson DJ, Guillou A, Parnaudeau S, Kirk S, Tronche F, Bonnefont X, Le Tissier P, Bunn SJ, Grattan DR, Mollard P, Martin AO. Plasticity of hypothalamic dopamine neurons during lactation results in dissociation of electrical activity and release. J Neurosci 2013; 33:4424-33. [PMID: 23467359 PMCID: PMC6704969 DOI: 10.1523/jneurosci.4415-12.2013] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Revised: 01/09/2013] [Accepted: 01/14/2013] [Indexed: 11/21/2022] Open
Abstract
Tuberoinfundibular dopamine (TIDA) neurons are the central regulators of prolactin (PRL) secretion. Their extensive functional plasticity allows a change from low PRL secretion in the non-pregnant state to the condition of hyperprolactinemia that characterizes lactation. To allow this rise in PRL, TIDA neurons are thought to become unresponsive to PRL at lactation and functionally silenced. Here we show that, contrary to expectations, the electrical properties of the system were not modified during lactation and that the neurons remained electrically responsive to a PRL stimulus, with PRL inducing an acute increase in their firing rate during lactation that was identical to that seen in non-pregnant mice. Furthermore, we show a long-term organization of TIDA neuron electrical activity with an harmonization of their firing rates, which remains intact during lactation. However, PRL-induced secretion of dopamine (DA) at the median eminence was strongly blunted during lactation, at least in part attributable to lack of phosphorylation of tyrosine hydroxylase, the key enzyme involved in DA synthesis. We therefore conclude that lactation, rather than involving electrical silencing of TIDA neurons, represents a condition of decoupling between electrical activity at the cell body and DA secretion at the median eminence.
Collapse
Affiliation(s)
- Nicola Romanò
- CNRS, UMR-5203, Institut de Génomique Fonctionnelle, F-34000 Montpellier, France
- INSERM, U661, F-34000 Montpellier, France
- Universités de Montpellier 1 & 2, UMR-5203, F-34000 Montpellier, France
| | - Siew H. Yip
- Department of Anatomy, University of Otago, Dunedin 9054, New Zealand
| | - David J. Hodson
- CNRS, UMR-5203, Institut de Génomique Fonctionnelle, F-34000 Montpellier, France
- INSERM, U661, F-34000 Montpellier, France
- Universités de Montpellier 1 & 2, UMR-5203, F-34000 Montpellier, France
- Department of Medicine, Section of Cell Biology, Division of Diabetes Endocrinology and Metabolism, Imperial College London, London SW7 2AZ, United Kingdom
| | - Anne Guillou
- CNRS, UMR-5203, Institut de Génomique Fonctionnelle, F-34000 Montpellier, France
- INSERM, U661, F-34000 Montpellier, France
- Universités de Montpellier 1 & 2, UMR-5203, F-34000 Montpellier, France
| | - Sébastien Parnaudeau
- National Center of Scientific Research, Coeducational Research Unit 7224, Molecular Genetics, Neurophysiology, and Behavior, F-75005 Paris, France
- National Institute of Health and Medical Research, Unit 952, F-75005 Paris, France, and
| | - Siobhan Kirk
- Department of Anatomy, University of Otago, Dunedin 9054, New Zealand
| | - François Tronche
- National Center of Scientific Research, Coeducational Research Unit 7224, Molecular Genetics, Neurophysiology, and Behavior, F-75005 Paris, France
- Pierre et Marie Curie University, F-75005, Paris, France
- National Institute of Health and Medical Research, Unit 952, F-75005 Paris, France, and
| | - Xavier Bonnefont
- CNRS, UMR-5203, Institut de Génomique Fonctionnelle, F-34000 Montpellier, France
- INSERM, U661, F-34000 Montpellier, France
- Universités de Montpellier 1 & 2, UMR-5203, F-34000 Montpellier, France
| | - Paul Le Tissier
- Neural Development Unit, Institute of Child Health, London WC1E 6BT, United Kingdom
| | - Stephen J. Bunn
- Department of Anatomy, University of Otago, Dunedin 9054, New Zealand
| | - Dave R. Grattan
- Department of Anatomy, University of Otago, Dunedin 9054, New Zealand
| | - Patrice Mollard
- CNRS, UMR-5203, Institut de Génomique Fonctionnelle, F-34000 Montpellier, France
- INSERM, U661, F-34000 Montpellier, France
- Universités de Montpellier 1 & 2, UMR-5203, F-34000 Montpellier, France
| | - Agnès O. Martin
- CNRS, UMR-5203, Institut de Génomique Fonctionnelle, F-34000 Montpellier, France
- INSERM, U661, F-34000 Montpellier, France
- Universités de Montpellier 1 & 2, UMR-5203, F-34000 Montpellier, France
| |
Collapse
|
17
|
Impact of Transitory Hyperprolactinemia on Clinical Outcome of In Vitro Fertilization and Embryo Transfer. J Med Biochem 2012. [DOI: 10.2478/v10011-011-0039-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Impact of Transitory Hyperprolactinemia on Clinical Outcome of In Vitro Fertilization and Embryo Transfer
This study aimed to evaluate the impact of serum prolactin concentration at the day of human chorionic gonadotropin (HCG) administration on the clinical outcome of in vitro fertilization and embryo transfer (IVF-ET). A total of 184 patients receiving the IVF-ET/ICSI-ET from October 2005 to March 2008 were retrospectively analyzed. Subjects were divided into four groups according to the serum prolactin concentration [<30 ng/mL (A), 30-60 ng/mL (B), 60-90 ng/mL (C), ≥90 ng/mL (D)] on the day of HCG administration during controlled ovarian stimulation (COS). In the Groups A, B, C and D, the implantation rate was 11.76%, 19.71%, 12.72% and 2.22%, respectively, and the pregnancy rate (PR) was 25.00%, 42.70%, 27.30% and 5.88%, respectively. The implantation rate and PR in the Group D were markedly lower than those in the remaining groups (P=0.011 and 0.009). During the COS, the serum prolactin concentration was dramatically elevated when compared with the baseline level leading to transient hyperprolactinemia. In addition, the implantation rate and pregnancy rate were significantly markedly decreased when the serum prolactin concentration was remarkably increased (≥90 ng/mL). To improve the clinical pregnancy rate of IVF-ET, close monitoring and appropriate intervention are needed for patients with an abnormal prolactin level during the COS.
Collapse
|
18
|
Parker VJ, Menzies JRW, Douglas AJ. Differential changes in the hypothalamic-pituitary-adrenal axis and prolactin responses to stress in early pregnant mice. J Neuroendocrinol 2011; 23:1066-78. [PMID: 21824206 DOI: 10.1111/j.1365-2826.2011.02204.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Stress can cause pregnancy failure but it is unclear how the mother's neuroendocrine system responds to stress to impair mechanisms establishing implantation. We analysed stress-evoked hypothalamic-pituitary-adrenal (HPA) axis responses in early pregnant mice. HPA axis secretory responses to immune stress in early-mid pregnancy were strong and similar to that in virgins, although activation of hypothalamic vasopressin neurones, rather than corticotrophin-releasing hormone neurones, may be more important in the stress response in pregnancy. The site and mode of detrimental glucocorticoid action in pregnancy is not established. Because circulating prolactin is important for progesterone secretion and pregnancy establishment, we also hypothesised that stress negatively impacts on prolactin and its neuroendocrine control systems in early pregnant mice. Basal prolactin secretion was profoundly inhibited by either immune or fasting stress in early pregnancy. Prolactin release is inhibited by tonic dopamine release from tuberoinfundibular (TIDA) neurones. However, immune stress did not increase TIDA neurone activity in the median eminence in pregnant mice [measured by 3,4-dihydroxyphenylacetic acid (DOPAC) content and the DOPAC:dopamine ratio]. By contrast, both immune stress and fasting caused weak induction of Fos in TIDA neurones. However, Fos induction does not always reflect dopamine secretion. Taken together, the data suggest that the stress-evoked profound reduction in prolactin secretion does not involve substantially increased dopamine activity as anticipated. In pregnancy, there was also attenuated recruitment of parvocellular paraventricular nucleus neurones and increased activation of brainstem noradrenergic nuclei after immune stress, indicating that other mechanisms may be involved in the suppression of prolactin secretion. In summary, low prolactin and increased circulating glucocorticoids together may partly explain how a mother's endocrine system mediates stress-induced pregnancy failure.
Collapse
Affiliation(s)
- V J Parker
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh, UK
| | | | | |
Collapse
|
19
|
Pappas SS, Kennedy T, Goudreau JL, Lookingland KJ. Opioid-mediated regulation of A11 diencephalospinal dopamine neurons: pharmacological evidence of activation by morphine. Neuropharmacology 2011; 61:614-21. [PMID: 21605572 DOI: 10.1016/j.neuropharm.2011.05.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2010] [Revised: 04/30/2011] [Accepted: 05/03/2011] [Indexed: 11/17/2022]
Abstract
Dopamine (DA) neurons of the A11 diencephalospinal system represent the sole source of DA innervation to the spinal cord in mice, serving neuromodulatory roles in the processing of nociceptive input and movement. These neurons originate in the dorso-caudal diencephalon and project axons unilaterally throughout the rostrocaudal extent of the spinal cord, terminating predominantly in the dorsal horn. The density of A11 DA axon terminals in the lumbar region is greater in males compared to females, while in both sexes the activity of neurons terminating in the thoracic spinal cord is greater than those terminating in the lumbar region. The present study was designed to test the hypothesis that A11 DA neurons are activated by opioids. To test this hypothesis, male and female mice were systemically treated with agonists or antagonists acting at the μ-opioid receptor, and spinal cord concentrations of DA and its metabolite DOPAC were determined in the thoracic and lumbar spinal cord using high performance liquid chromatography coupled with electrochemical detection. Systemic administration of the μ-opioid agonist morphine led to a dose- and time-dependent increase in spinal cord DOPAC/DA ratio (an estimate of DA neuronal activity) in both male and female mice, with greater changes occurring in the lumbar segment. Blockade of opioid receptors with the opioid antagonist naloxone reversed the stimulatory effects of morphine on A11 DA neurons in both male and female mice, but had little to no effect on the activity of these neurons when administered alone. Present findings are consistent with the conclusion that spinal cord-projecting axon terminals of A11 DA neurons are activated by opioids in both male and female mice, most likely through a dis-inhibitory mechanism.
Collapse
Affiliation(s)
- Samuel S Pappas
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA
| | | | | | | |
Collapse
|
20
|
Sjoeholm A, Bridges RS, Grattan DR, Anderson GM. Region-, neuron-, and signaling pathway-specific increases in prolactin responsiveness in reproductively experienced female rats. Endocrinology 2011; 152:1979-88. [PMID: 21363933 PMCID: PMC3075931 DOI: 10.1210/en.2010-1220] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Pregnancy and lactation cause long-lasting enhancements in maternal behavior and other physiological functions, along with increased hypothalamic prolactin receptor expression. To directly test whether reproductive experience increases prolactin responsiveness in the arcuate, paraventricular, and supraoptic nuclei and the medial preoptic area, female rats experienced a full pregnancy and lactation or remained as age-matched virgin controls. At 5 wk after weaning, rats received 2.5, 100, or 4000 ng ovine prolactin or vehicle intracerebroventricularly. The brains underwent immunohistochemistry for the phosphorylated forms of signal transducer and activator of transcription 5 (pSTAT5) or ERK1/2 (pERK1/2). There was a marked increase in pSTAT5 and pERK1/2 in response to prolactin in the regions examined in both virgin and primiparous rats. Primiparous rats exhibited approximately double the number of prolactin-induced pSTAT5-immunoreactive cells as virgins, this effect being most apparent at the higher prolactin doses in the medial preoptic area and paraventricular and supraoptic nuclei and at the lowest prolactin dose in the arcuate nucleus. Dual-label immunohistochemistry showed that arcuate kisspeptin (but not oxytocin or dopamine) neurons displayed increased sensitivity to prolactin in reproductively experienced animals; these neurons may contribute to the reduction in prolactin concentration observed after reproductive experience. There was no effect of reproductive experience on prolactin-induced pERK1/2, indicating a selective effect on the STAT5 pathway. These data show that STAT5 responsiveness to prolactin is enhanced by reproductive experience in multiple hypothalamic regions. The findings may have significant implications for understanding postpartum disorders affecting maternal care and other prolactin-associated pathologies.
Collapse
Affiliation(s)
- Annika Sjoeholm
- Centre for Neuroendocrinology and Department of Anatomy and Structural Biology, University of Otago School of Medical Sciences, Dunedin, New Zealand
| | | | | | | |
Collapse
|
21
|
Kokay IC, Petersen SL, Grattan DR. Identification of prolactin-sensitive GABA and kisspeptin neurons in regions of the rat hypothalamus involved in the control of fertility. Endocrinology 2011; 152:526-35. [PMID: 21177834 DOI: 10.1210/en.2010-0668] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
High levels of circulating prolactin are known to cause infertility, but the precise mechanisms by which prolactin influences the neuroendocrine axis are yet to be determined. We used dual-label in situ hybridization to investigate whether prolactin-receptor (PRLR) mRNA is expressed in GnRH neurons. In addition, because γ-aminobutyric acidergic and kisspeptin neurons in the rostral hypothalamus are known to regulate GnRH neurons and, hence, might mediate the actions of prolactin, we investigated whether these neurons coexpress PRLR mRNA. (35)S-labeled RNA probes to detect PRLR mRNA were hybridized together with digoxigenin-labeled probes to detect either GnRH, Gad1/Gad2, or Kiss1 mRNA in the rostral hypothalamus of ovariectomized (OVX), estradiol-treated rats. Additional sets of serial sections were cut through the arcuate nucleus of OVX rats, without estradiol replacement, to examine coexpression of PRLR mRNA in the arcuate population of kisspeptin neurons. PRLR mRNA was highly expressed throughout the rostral preoptic area, particularly in periventricular regions surrounding the third ventricle, and there was a high degree of colocalization of PRLR mRNA in both Gad1/Gad2 and Kiss1 mRNA-containing cells (86 and 85.5%, respectively). In contrast, only a small number of GnRH neurons (<5%) was found to coexpress PRLR mRNA. In the arcuate nucleus of OVX rats, the majority of Kiss1 mRNA-containing cells also coexpressed PRLR mRNA. These data are consistent with the hypothesis that, in addition to a direct action on a small subpopulation of GnRH neurons, prolactin actions on GnRH neurons are predominantly mediated indirectly, through known afferent pathways.
Collapse
Affiliation(s)
- Ilona C Kokay
- Centre for Neuroendocrinology and Department of Anatomy and Structural Biology, University of Otago, Dunedin 9016, New Zealand
| | | | | |
Collapse
|
22
|
Arbogast LA. Tuberoinfundibular peptide of 39 residues (TIP39): a new player in the translation of sensory input to prolactin release during lactation. Endocrinology 2010; 151:5568-9. [PMID: 21098127 DOI: 10.1210/en.2010-1107] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Lydia A Arbogast
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, Illinois 62901-6523, USA.
| |
Collapse
|
23
|
Opioid-salsolinol relationship in the control of prolactin release during lactation. Neuroscience 2010; 170:1165-71. [DOI: 10.1016/j.neuroscience.2010.08.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2010] [Revised: 07/21/2010] [Accepted: 08/05/2010] [Indexed: 11/16/2022]
|
24
|
Szawka RE, Ribeiro AB, Leite CM, Helena CVV, Franci CR, Anderson GM, Hoffman GE, Anselmo-Franci JA. Kisspeptin regulates prolactin release through hypothalamic dopaminergic neurons. Endocrinology 2010; 151:3247-57. [PMID: 20410200 DOI: 10.1210/en.2009-1414] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Prolactin (PRL) is tonically inhibited by dopamine (DA) released from neurons in the arcuate and periventricular nuclei. Kisspeptin plays a pivotal role in LH regulation. In rodents, kisspeptin neurons are found mostly in the anteroventral periventricular and arcuate nuclei, but the physiology of arcuate kisspeptin neurons is not completely understood. We investigated the role of kisspeptin in the control of hypothalamic DA and pituitary PRL secretion in adult rats. Intracerebroventricular kisspeptin-10 (Kp-10) elicited PRL release in a dose-dependent manner in estradiol (E2)-treated ovariectomized rats (OVX+E2), whereas no effect was found in oil-treated ovariectomized rats (OVX). Kp-10 increased PRL release in males and proestrous but not diestrous females. Associated with the increase in PRL release, intracerebroventricular Kp-10 reduced Fos-related antigen expression in tyrosine hydroxylase-immunoreactive (ir) neurons of arcuate and periventricular nuclei in OVX+E2 rats, with no effect in OVX rats. Kp-10 also decreased 3,4-dihydroxyphenylacetic acid concentration and 3,4-dihydroxyphenylacetic acid-DA ratio in the median eminence but not striatum in OVX+E2 rats. Double-label immunofluorescence combined with confocal microscopy revealed kisspeptin-ir fibers in close apposition to and in contact with tyrosine hydroxylase-ir perikarya in the arcuate. In addition, Kp-10 was not found to alter PRL release from anterior pituitary cell cultures regardless of E2 treatment. We provide herein evidence that kisspeptin regulates PRL release through inhibition of hypothalamic dopaminergic neurons, and that this mechanism is E2 dependent in females. These findings suggest a new role for central kisspeptin with possible implications for reproductive physiology.
Collapse
Affiliation(s)
- Raphael E Szawka
- Laboratório de Neuroendocrinologia, Departamento de Morfologia, Estomatologia e Fisiologia, Faculdade de Odontologia de Ribeirão Preto, 14040-904.
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Tavakoli-Nezhad M, Arbogast LA. Mu and kappa opioid receptor expression in the mediobasal hypothalamus and effectiveness of selective antagonists on prolactin release during lactation. Neuroscience 2010; 166:359-67. [PMID: 20045447 PMCID: PMC2824054 DOI: 10.1016/j.neuroscience.2009.12.066] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2009] [Revised: 12/27/2009] [Accepted: 12/28/2009] [Indexed: 12/31/2022]
Abstract
Endogenous opioid peptides are involved in prolactin release during lactation, in part by decreasing tuberoinfundibular dopaminergic (TIDA) neuronal activity. Both mu (mu) and kappa (kappa) opioid receptors have a role in the suckling-induced prolactin rise after 4-5 h up deprivation. The aim of this study was to investigate effects of mu opioid receptor antagonist, beta-funaltrexamine (beta-FNA), and kappa opioid receptor antagonist, nor-binaltorphimine (nor-BNI), on prolactin secretion and TIDA neuronal activity in lactating rats after 18 h pup deprivation. After 4 h separation from pups, the suckling-induced prolactin rise was abolished by 16 microg nor-BNI and 5 microg beta-FNA, coincident with increased dihydroxyphenylacetic acid (DOPAC):dopamine ratio in the stalk-median eminence (SME). However, after 18 h pups separation, these same doses of nor-BNI and beta-FNA did not alter the prolactin surge or DOPAC:dopamine ratios in the SME. Higher doses of nor-BNI (32 microg) and beta-FNA (10 microg) were required to inhibit suckling-induced prolactin secretion. beta-FNA (10 microg) increased the DOPAC:dopamine ratio in the SME, whereas nor-BNI (32 microg) treatment had no effect. The mu and kappa opioid receptor mRNA levels in the mediobasal hypothalamus were similar to suckled control rats after 4 h pup deprivation, but increased 1.4-fold after 18 h pup deprivation. These data support involvement of endogenous opioidergic systems in the suckling-induced prolactin rise after a prolonged (18 h) period of pup deprivation, as well as the shorter (4 h) pup deprivation period previously reported. Suppression of TIDA neuronal activity likely played a part in mu opioid receptor input to the suckling-induced prolactin rise after both 4 h and 18 h separation, whereas non-dopaminergic input was implicated with kappa opioid receptors after 18 h pup deprivation. Increased mu and kappa opioid receptors gene expression in the mediobasal hypothalamus may contribute to reduced effectiveness of opioid receptor antagonists to block suckling-induced prolactin release after 18 h pup deprivation.
Collapse
Affiliation(s)
- M Tavakoli-Nezhad
- Department of Physiology, Mail Code 6523, School of Medicine, Southern Illinois University, Carbondale, IL 62901, USA
| | | |
Collapse
|
26
|
Wu LY, Huang EYK, Tao PL. Coadministration of dextromethorphan during pregnancy and throughout lactation prevents morphine-induced hyperprolactinemia in female rats. Fertil Steril 2010; 93:1686-94. [DOI: 10.1016/j.fertnstert.2009.01.143] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2008] [Revised: 01/25/2009] [Accepted: 01/26/2009] [Indexed: 10/21/2022]
|
27
|
Abstract
The neuroendocrine control of prolactin secretion is unlike that of any other pituitary hormone. It is predominantly inhibited by the hypothalamus and, in the absence of a regulatory feedback hormone, it acts directly in the brain to suppress its own secretion. In addition to this short-loop feedback action in the brain, prolactin has been reported to influence a wide range of other brain functions. There have been few attempts to rationalise why a single hormone might exert such a range of distinct and seemingly unrelated neuroendocrine functions. In this review, we highlight some of the original studies that first characterised the unusual features of prolactin neuroendocrinology, and then attempt to identify areas of new progress and/or controversy. Finally, we discuss a hypothesis that provides a unifying explanation for the pleiotrophic actions of prolactin in the brain.
Collapse
Affiliation(s)
- D R Grattan
- Centre for Neuroendocrinology and Department of Anatomy and Structural Biology, University of Otago, Dunedin, New Zealand.
| | | |
Collapse
|
28
|
Grattan DR, Steyn FJ, Kokay IC, Anderson GM, Bunn SJ. Pregnancy-induced adaptation in the neuroendocrine control of prolactin secretion. J Neuroendocrinol 2008; 20:497-507. [PMID: 18266946 DOI: 10.1111/j.1365-2826.2008.01661.x] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
During pregnancy, neuroendocrine control of prolactin secretion is markedly altered to allow a state of hyperprolactinaemia to develop. Prolactin secretion is normally tightly regulated by a short-loop negative-feedback mechanism, whereby prolactin stimulates activity of tuberoinfundibular dopamine (TIDA) neurones to increase dopamine secretion into the pituitary portal blood. Dopamine inhibits prolactin secretion, thus reducing prolactin concentrations in the circulation back to the normal low level. Activation of this feedback secretion by placental lactogen during pregnancy maintains relatively low levels of prolactin secretion during early and mid-pregnancy. Despite the continued presence of placental lactogen, however, dopamine secretion from TIDA neurones is reduced during late pregnancy. Moreover, the neurones become completely unresponsive to endogenous or exogenous prolactin at this time, allowing a large nocturnal surge of prolactin to occur from the maternal pituitary gland during the night before parturition. In this review, we describe the changing patterns of prolactin secretion during pregnancy in the rat, and discuss the neuroendocrine mechanisms controlling these changes. The loss of response to prolactin is an important maternal adaptation to pregnancy, allowing the prolonged period of hyperprolactinaemia required for mammary gland development and function and for maternal behaviour immediately after parturition, and possibly also contributing to a range of other adaptive responses in the mother.
Collapse
Affiliation(s)
- David R Grattan
- Centre for Neuroendocrinology and Department of Anatomy and Structural Biology, University of Otago, Dunedin, New Zealand.
| | | | | | | | | |
Collapse
|
29
|
Abstract
Prolactin (PRL) is a 23-kDa protein hormone that binds to a single-span membrane receptor, a member of the cytokine receptor superfamily, and exerts its action via several interacting signaling pathways. PRL is a multifunctional hormone that affects multiple reproductive and metabolic functions and is also involved in tumorigenicity. In addition to being a classical pituitary hormone, PRL in humans is produced by many tissues throughout the body where it acts as a cytokine. The objective of this review is to compare and contrast multiple aspects of PRL, from structure to regulation, and from physiology to pathology in rats, mice, and humans. At each juncture, questions are raised whether, or to what extent, data from rodents are relevant to PRL homeostasis in humans. Most current knowledge on PRL has been obtained from studies with rats and, more recently, from the use of transgenic mice. Although this information is indispensable for understanding PRL in human health and disease, there is sufficient disparity in the control of the production, distribution, and physiological functions of PRL among these species to warrant careful and judicial extrapolation to humans.
Collapse
Affiliation(s)
- Nira Ben-Jonathan
- Department of Cell and Cancer Biology, University of Cincinnati, Cincinnati, Ohio 45255, USA.
| | | | | |
Collapse
|
30
|
Brunton PJ, Russell JA. The expectant brain: adapting for motherhood. Nat Rev Neurosci 2008; 9:11-25. [PMID: 18073776 DOI: 10.1038/nrn2280] [Citation(s) in RCA: 267] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A successful pregnancy requires multiple adaptations of the mother's physiology to optimize fetal growth and development, to protect the fetus from adverse programming, to provide impetus for timely parturition and to ensure that adequate maternal care is provided after parturition. Many of these adaptations are organized by the mother's brain, predominantly through changes in neuroendocrine systems, and these changes are primarily driven by the hormones of pregnancy. By contrast, adaptations in the mother's brain during lactation are maintained by external stimuli from the young. The changes in pregnancy are not necessarily innocuous: they may predispose the mother to post-partum mood disorders.
Collapse
Affiliation(s)
- Paula J Brunton
- Laboratory of Neuroendocrinology, Centre for Integrative Physiology, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, EH8 9XD, Scotland, UK
| | | |
Collapse
|
31
|
Byrnes EM. Chronic morphine exposure during puberty induces long-lasting changes in opioid-related mRNA expression in the mediobasal hypothalamus. Brain Res 2007; 1190:186-92. [PMID: 18083149 DOI: 10.1016/j.brainres.2007.11.018] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2007] [Revised: 10/26/2007] [Accepted: 11/09/2007] [Indexed: 12/31/2022]
Abstract
Substance abuse in developing females may have significant long-term effects on reproductive competency. Chronic morphine exposure during puberty has been shown to reduce prolactin secretion in lactating rats. Opioid activity within the mediobasal hypothalamus (MBH) regulates suckling-induced prolactin secretion. Thus, the current study was conducted to determine whether chronic pubertal morphine exposure alters the expression of mu- and/or kappa-opioid receptor mRNA or pro-opioimelanocortin (POMC) mRNA within the MBH. Using an increasing dose regimen, female Sprague-Dawley rats were injected twice daily for a total of 20 days with morphine sulfate or saline beginning at 30 days of age. Several weeks later, quantitative RT-PCR was used to determine mRNA expression within the MBH in diestrus, never pregnant (nulliparous) controls, postpartum day 5 (PPD5), PPD10, PPD18, and diestrus, reproductively experienced (primiparous) females. Pubertal morphine exposed females had increased mu- and kappa-receptor mRNA expression as well as decreased POMC mRNA expression on diestrus. During lactation, mu- and kappa-receptor mRNA expression in the MBH decreased while POMC mRNA expression increased in similarly treated females. No changes in mRNA expression were observed during lactation in pubertal saline-treated females; however, increased mu- and kappa-receptor mRNA expression as well as decreased POMC mRNA expression was observed in primiparous, pubertal saline-treated females when compared to nulliparous controls. Thus, chronic morphine exposure during puberty results in long-term alterations in mu- and kappa-receptor as well as POMC mRNA expression in the MBH which are similar to the changes observed following reproductive experience. These changes do not correlate with the decreased prolactin secretion observed during early lactation; however, they do demonstrate the enduring nature of the effects of chronic opiate exposure during puberty on hypothalamic opioid systems in adulthood.
Collapse
Affiliation(s)
- Elizabeth M Byrnes
- Department of Biomedical Sciences, Tufts University, Cummings School of Veterinary Medicine, North Grafton, MA 01536, USA.
| |
Collapse
|
32
|
Douglas AJ, Johnstone LE, Leng G. Neuroendocrine mechanisms of change in food intake during pregnancy: a potential role for brain oxytocin. Physiol Behav 2007; 91:352-65. [PMID: 17512024 DOI: 10.1016/j.physbeh.2007.04.012] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
During pregnancy body weight, and particularly adiposity, increase, due to hyperphagia rather than decreased energy metabolism. These physiological adaptations provide the growing fetus(es) with nutrition and prepare the mother for the metabolically-demanding lactation period following birth. Mechanisms underlying the hyperphagia are still poorly understood. Although the peripheral signals that drive appetite and satiety centers of the brain are increased in pregnancy, the brain may become insensitive to their effects. For example, leptin secretion increases but hypothalamic resistance to leptin actions develops. However, several adaptations in hypothalamic neuroendocrine systems may converge to increase ingestive behavior. Oxytocin is one of the anorectic hypothalamic neuropeptides. Oxytocin neurons, both centrally-projecting parvocellular oxytocin neurons and central dendritic release of oxytocin from magnocellular neurons, may play a key role in regulating energy intake. During feeding in non-pregnant rats, magnocellular oxytocin neurons, especially those in the supraoptic nucleus, become strongly activated indicating their imminent role in meal termination. However, in mid-pregnancy the excitability of these neurons is reduced, central dendritic oxytocin release is inhibited and patterns of oxytocin receptor binding in the brain alter. Our recent data suggest that lack of central oxytocin action may partly contribute to maternal hyperphagia. However, although opioid inhibition is a major factor in oxytocin neuron restraint during pregnancy and opioids enhance food intake, an increase in opioid orexigenic actions were not observed. While changes in several central input pathways to oxytocin neurons are likely to be involved, the high level of progesterone secretion during pregnancy is probably the ultimate trigger for the adaptations.
Collapse
Affiliation(s)
- Alison J Douglas
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh, UK.
| | | | | |
Collapse
|
33
|
Valdez SR, Penissi AB, Deis RP, Jahn GA. Hormonal profile and reproductive performance in lactation deficient (OFA hr/hr) and normal (Sprague–Dawley) female rats. Reproduction 2007; 133:827-40. [PMID: 17504926 DOI: 10.1530/rep-06-0032] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Lactation deficiency may have important consequences on infant health, particularly in populations of low socioeconomic status. The OFAhr/hr(OFA) strain of rats, derived from Sprague–Dawley (SD) rats, has deficient lactation and is a good model of lactation failure. We examined the reproductive performance and hormonal profiles in OFA and SD strains to determine the cause(s) of the lactation failure of the OFA strain. We measured hormonal (PRL, GH, gonadotropins, oxytocin, and progesterone) levels by RIA in cycling, pregnant, and lactating rats and in response to suckling. Dopaminergic metabolism was assessed by determination of mediobasal hypothalamic dopamine and dihydroxyphenylacetic acid (DOPAC) concentrations by HPLC and tyrosine hydroxylase expression by immunocytochemistry and western blot. OFA rats have normal fertility but 50% of the litters die of malnutrition on early lactation; only 6% of the mothers show normal lactation. The OFA rats showed lower circulating PRL during lactation, increased hypothalamic dopamine and DOPAC, and impaired milk ejection with decreased PRL and oxytocin response to suckling. Before parturition, PRL release and lactogenesis were normal, but dopaminergic metabolism was altered, suggesting activation of the dopaminergic system in OFA but not in SD rats. The number of arcuate and periventricular neurons expressing tyrosine hydroxylase was higher in SD rats, but hypothalamic expression of TH was higher in OFA rats at the end of pregnancy and early lactation. These results suggest that the OFA rats have impaired PRL release linked with an augmented dopaminergic tone which could be partially responsible for the lactational failure.
Collapse
MESH Headings
- 3,4-Dihydroxyphenylacetic Acid/analysis
- Animals
- Blotting, Western
- Caseins/analysis
- Chromatography, High Pressure Liquid
- Desmogleins/genetics
- Dopamine/analysis
- Female
- Hypothalamus, Middle/chemistry
- Lactation/physiology
- Lactose/analysis
- Mammary Glands, Animal/chemistry
- Mammary Glands, Animal/pathology
- Models, Animal
- Pregnancy
- Pregnancy, Animal/metabolism
- Proestrus/metabolism
- Prolactin/blood
- Rats
- Rats, Mutant Strains
- Rats, Sprague-Dawley
- Tyrosine 3-Monooxygenase/analysis
Collapse
Affiliation(s)
- Susana R Valdez
- Laboratorio de Reproducción y Lactancia, IMBECU, CRICYT-CONICET, Casilla de Correos 855, 5500 Mendoza, Argentina
| | | | | | | |
Collapse
|
34
|
Anderson GM, Beijer P, Bang AS, Fenwick MA, Bunn SJ, Grattan DR. Suppression of prolactin-induced signal transducer and activator of transcription 5b signaling and induction of suppressors of cytokine signaling messenger ribonucleic acid in the hypothalamic arcuate nucleus of the rat during late pregnancy and lactation. Endocrinology 2006; 147:4996-5005. [PMID: 16857756 DOI: 10.1210/en.2005-0755] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
During late pregnancy and lactation, the tuberoinfundibular dopamine (TIDA) neurons that regulate prolactin secretion by negative feedback become less able to produce dopamine in response to prolactin, leading to hyperprolactinemia. Because prolactin-induced activation of dopamine synthesis in these neurons requires the Janus kinase/signal transducer and activator of transcription 5b (STAT5b) signaling pathway, we investigated whether prolactin-induced STAT5b signaling is reduced during lactation and whether induction of suppressors of cytokine signaling (SOCS) mRNAs occur at this time and in late pregnancy. During lactation, the ability of exogenous prolactin to induce STAT5 phosphorylation and STAT5b nuclear translocation was markedly reduced when compared with diestrous rats. In nonpregnant female rats, acute treatment with ovine prolactin markedly increased levels of SOCS-1 and -3 and cytokine-inducible SH2-containing protein mRNA in arcuate nucleus micropunches. On gestation d 22, SOCS-1 and SOCS-3 mRNA levels were 10-fold that on G20. SOCS-1 and -3 and cytokine-inducible SH2-containing protein mRNA levels were also elevated on lactation d 7. At these times, dopaminergic activity was decreased and the rats were hyperprolactinemic. The high levels of SOCS mRNA were prevented by bromocriptine pretreatment (gestation d 22) or pup removal (lactation d 7), which suppressed circulating prolactin to basal levels. These results demonstrate that around the end of pregnancy, prolactin loses the ability to activate STAT5b, associated with an increase in SOCS mRNAs. The loss of this stimulating pathway may underlie the reduced tuberoinfundibular dopamine neuron dopamine output and hyperprolactinemia that characterizes late pregnancy and lactation. The high maternal levels of SOCS mRNAs appear to be dependent on prolactin, presumably acting through an alternative signaling pathway to STAT5b.
Collapse
Affiliation(s)
- Greg M Anderson
- Centre for Neuroendocrinology and Department of Anatomy and Structural Biology, University of Otago School of Medical Sciences, Dunedin 9054, New Zealand.
| | | | | | | | | | | |
Collapse
|
35
|
Bridges RS, Byrnes EM. Reproductive experience reduces circulating 17beta-estradiol and prolactin levels during proestrus and alters estrogen sensitivity in female rats. Endocrinology 2006; 147:2575-82. [PMID: 16484327 DOI: 10.1210/en.2005-0917] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The reproductive experiences of pregnancy, parturition, and lactation affect a range of neural and endocrine processes after the end of lactation. In women, previous parity results in reduced circulating prolactin (PRL) and androgen levels years after giving birth. Reductions in PRL secretion also occur in reproductively experienced, female rats. In the present study we examined the status and regulation of estradiol (E(2)) and PRL during the reproductive cycle after reproductive experience. These hormones regulate one another and have been implicated in a number of disease and aging processes. Using a rat model, the patterns of E(2) and PRL secretion, pituitary PRL content, and estrogen receptor alpha expression were characterized from 1200-1800 h on proestrus in age-matched, primiparous and nulliparous animals. The possible effect of parity on estrogen sensitivity was then examined by challenging nonlactating, ovariectomized, age-matched, multiparous and nulliparous rats with estradiol benzoate (EB; 0, 1, 5, 25, and 125 microg/kg) and measuring PRL responses 24 and 48 h later. Previous parity resulted in modest, yet significant, reductions in E(2) and PRL levels on proestrus, a limited increase in pituitary estrogen receptor alpha expression, and a significant shift in estrogen sensitivity, as measured by EB-induced PRL secretion. Nulliparous animals were more sensitive than multiparous rats to the two lower doses of EB, whereas multiparous animals were more responsive to the highest EB dose. These unique parity-induced alterations in the female's endocrine state that persist beyond lactation may impact a multitude of estrogen-mediated processes over the female's adult life span.
Collapse
Affiliation(s)
- Robert S Bridges
- Department of Biomedical Sciences, Tufts University School of Veterinary Medicine, North Grafton, Massachusetts 01536, USA.
| | | |
Collapse
|
36
|
Soaje M, Valdez S, Bregonzio C, Penissi A, Deis RP. Dopaminergic mechanisms involved in prolactin release after mifepristone and naloxone treatment during late pregnancy in the rat. Neuroendocrinology 2006; 84:58-67. [PMID: 17090971 DOI: 10.1159/000096825] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2006] [Accepted: 09/08/2006] [Indexed: 02/03/2023]
Abstract
BACKGROUND/AIMS During late pregnancy, the antiprogesterone mifepristone facilitates prolactin release. This effect is enhanced by administration of the opioid antagonist naloxone, suggesting an inhibitory-neuromodulatory role of the opioid system. Since hypothalamic dopamine (DA) is the main regulator of prolactin release, in this study we explored the role of DA on prolactin release induced by mifepristone and naloxone treatment. METHODS/RESULTS Rats on day 19 of pregnancy were used. Naloxone treatment did not modify the 3,4-dihydroxyphenylacetic acid/DA (DOPAC/DA) ratio or serum prolactin concentration in control rats. After mifepristone treatment, DA activity diminished significantly without modifying serum prolactin levels. Naloxone administration to antiprogesterone-treated rats did not change the DOPAC/DA ratio but increased serum prolactin. Tyrosine hydroxylase (TH) expression in medial basal hypothalamus (MBH) protein extracts was lowered by pretreatment with mifepristone, with no additional effect of naloxone. While mifepristone decreased the intensity of TH immunoreactivity in the arcuate and periventricular nuclei and in fibers of the median eminence, naloxone treatment had no further effect. CONCLUSIONS (1) A reduction of tuberoinfundibular dopaminergic (TIDA) neuron activity is suggested by the fall of the DOPAC/DA ratio and the low expression of MBH TH; (2) this reduction facilitates prolactin secretion by naloxone, indicating that progesterone stimulates DA neurons to maintain low serum prolactin; (3) naloxone action seems to depend on a previous decrease of DA tone induced by mifepristone, without involve a direct effect on neuronal DA activity, and (4) endogenous opioids may inhibit prolactin secretion through a non-dopaminergic neuronal system that regulates prolactin secretion in which as yet undetermined prolactin-releasing factors may participate.
Collapse
Affiliation(s)
- Marta Soaje
- Laboratorio de Reproducción y Lactancia, IMBECU-CONICET, Mendoza, Argentina.
| | | | | | | | | |
Collapse
|
37
|
Byrnes EM. Chronic morphine exposure during puberty decreases postpartum prolactin secretion in adult female rats. Pharmacol Biochem Behav 2005; 80:445-51. [PMID: 15740787 DOI: 10.1016/j.pbb.2004.12.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2004] [Revised: 12/10/2004] [Accepted: 12/30/2004] [Indexed: 11/30/2022]
Abstract
Opiate use in teenage populations has been increasing in recent years. The potential impact of exposure to high levels of opiates at a time when reproductive systems are maturing has not been well studied, especially in females. The present study used an animal model of adolescent opiate abuse in females to examine the potential impact of high levels of opiates during puberty on several reproductive parameters, including suckling-induced prolactin secretion. Two groups of juvenile female rats were administered increasing doses of morphine sulfate or saline (s.c.) from age 30-50 days, beginning with a dose of 2.5 mg/kg and achieving a maximal dose of 50 mg/kg. As adults, these females were mated and reared either their own or foster pups. On either postpartum day 5 or 10, following a 4 h separation, suckling-induced prolactin secretion was measured. In addition, on postpartum day 5 maternal behavior latencies were determined. The results demonstrate reduced suckling-induced prolactin secretion on postpartum day 5 in females previously exposed to morphine during pubertal development. These effects were observed in females rearing either their own or fostered pups. These effects were not due to any differences in maternal behavior latencies, as retrieval or crouching latencies were unaffected. In summary, chronic morphine exposure during puberty results in changes in the regulation of prolactin secretion during early lactation, which are observed several weeks after cessation of drug treatment. These data suggest that prior opiate use during puberty can continue to affect the regulation of prolactin secretion into adulthood.
Collapse
Affiliation(s)
- Elizabeth M Byrnes
- Department of Biomedical Sciences, Tufts University School of Veterinary Medicine, 200 Westboro Rd, North Grafton, MA 01536, USA.
| |
Collapse
|
38
|
Andrews ZB. Neuroendocrine regulation of prolactin secretion during late pregnancy: easing the transition into lactation. J Neuroendocrinol 2005; 17:466-73. [PMID: 15946165 DOI: 10.1111/j.1365-2826.2005.01327.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Prolactin is an anterior pituitary hormone critical for maintaining pregnancy and lactation. Under normal conditions, prolactin secretion is tightly regulated by inhibitory dopaminergic neuronal systems within the mediobasal hypothalamus in a process known as short-loop negative feedback. This review focuses on neuroendocrine adaptations to prolactin negative feedback during late pregnancy. It is suggested that, in terms of prolactin regulation, late pregnancy is a transition period into lactation because many of the neuroendocrine adaptations promoting hyperprolactinemia in lactation develop during late pregnancy. As a consequence, the maternal brain is geared to provide unrestrained prolactin release critical for milk production, maternal care and thus survival of the offspring before parturition. The mechanisms responsible for these changes are discussed.
Collapse
Affiliation(s)
- Z B Andrews
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
39
|
Takser L, Mergler D, Lafond J. Very low level environmental exposure to lead and prolactin levels during pregnancy. Neurotoxicol Teratol 2005; 27:505-8. [PMID: 15939210 DOI: 10.1016/j.ntt.2005.03.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2004] [Revised: 02/28/2005] [Accepted: 03/01/2005] [Indexed: 10/25/2022]
Abstract
Lead (Pb) is a well-known poison interfering with calcium homeostasis and dopaminergic pathway. We hypothesized that environmental Pb exposure can interact with prolactin (PRL) secretion, regulated by calcium and dopamine, during pregnancy and in fetus. The objective of this longitudinal study was to determine the relationships between blood Pb concentration and serum PRL levels in 101 pregnant women recruited during pregnancy and their fetuses exposed to low environmental levels of Pb. We observed a significant negative relationship between maternal blood Pb concentrations and maternal serum PRL levels. Cord blood PRL was weakly correlated with blood Pb levels. Our results suggest that maternal physiological parameters in pregnancy can be modulated by low level of Pb exposure and indicate a particular susceptibility of pregnant women to its toxic effects.
Collapse
Affiliation(s)
- L Takser
- Laboratoire de Physiologie Materno-foetale, Université de Quebec à Montreal, C.P. 8888, Succ.Centre Ville, Montreal, Quebec, Canada H3C 3P8
| | | | | |
Collapse
|
40
|
Erskine MS, Lehmann ML, Cameron NM, Polston EK. Co-regulation of female sexual behavior and pregnancy induction: an exploratory synthesis. Behav Brain Res 2004; 153:295-315. [PMID: 15265625 DOI: 10.1016/j.bbr.2004.01.026] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2003] [Revised: 12/20/2003] [Accepted: 01/11/2004] [Indexed: 11/20/2022]
Abstract
This paper will review both new and old data that address the question of whether brain mechanisms involved in reproductive function act in a coordinated way to control female sexual behavior and the induction of pregnancy/pseudopregnancy (P/PSP) by vaginocervical stimulation. Although it is clear that female sexual behavior, including pacing behavior, is important for induction of P/PSP, there has been no concerted effort to examine whether or how common mechanisms may control both functions. Because initiation of P/PSP requires that the female receive vaginocervical stimulation, central mechanisms controlling P/PSP may be modulated by or interactive with those that control female sexual behavior. This paper presents a synthesis of the literature and recent data from our lab for the purpose of examining whether there are interactions between behavioral and neuroendocrine mechanisms which reciprocally influence both reproductive functions.
Collapse
Affiliation(s)
- Mary S Erskine
- Department of Biology, Boston University, 5 Cummington Street, Boston, MA 02215, USA.
| | | | | | | |
Collapse
|
41
|
Emiliano ABF, Fudge JL. From galactorrhea to osteopenia: rethinking serotonin-prolactin interactions. Neuropsychopharmacology 2004; 29:833-46. [PMID: 14997175 DOI: 10.1038/sj.npp.1300412] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The widespread use of the selective serotonin reuptake inhibitors (SSRIs) has been accompanied by numerous reports describing a potential association with hyperprolactinemia. Antipsychotics are commonly known to elevate serum prolactin (PRL) through blockade of dopamine receptors in the pituitary. However, there is little awareness of the mechanisms by which SSRIs stimulate PRL release. Hyperprolactinemia may result in overt symptoms such as galactorrhea, which may be accompanied by impaired fertility. Long-term clinical sequelae include decreased bone density and the possibility of an increased risk of breast cancer. Through literature review, we explore the possible pathways involved in serotonin-induced PRL release. While the classic mechanism of antipsychotic-induced hyperprolactinemia directly involves dopamine cells in the tuberoinfundibular pathway, SSRIs may act on this system indirectly through GABAergic neurons. Alternate pathways involve serotonin stimulation of vasoactive intestinal peptide (VIP) and oxytocin (OT) release. We conclude with a comprehensive review of clinical sequelae associated with hyperprolactinemia, and the potential role of SSRIs in this phenomenon.
Collapse
Affiliation(s)
- Ana B F Emiliano
- Department of Psychiatry, University of Rochester Medical Center, Rochester, NY, USA.
| | | |
Collapse
|
42
|
Soaje M, Bregonzio C, Carón RW, Deis RP. Neurotransmitters involved in the opioid regulation of prolactin secretion at the end of pregnancy in rats. Neuroendocrinology 2004; 80:11-20. [PMID: 15340248 DOI: 10.1159/000080520] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2003] [Accepted: 06/15/2004] [Indexed: 12/22/2022]
Abstract
Using a pharmacological approach, we explored potential mechanisms for the regulation of prolactin secretion by opioid peptides at the end of pregnancy in rats. On day 19 of pregnancy, intracereboventricular administration of the mu-opioid receptor agonist (D-Ala2, NMe-Phe4, Gly-ol5)-enkephalin (DAMGO) or beta-endorphin (beta-END) induced a dose-related increase in serum prolactin levels 30 min later. Pretreatment with the opioid antagonist naloxone abolished the increase induced by DAMGO injection. At lower doses, DAMGO and beta-END did not modify the 3,4-dihydroxyphenylacetic acid/dopamine ratio, but at higher doses, the mu-agonists evoked a significant increase of the dopaminergic activity as compared with saline control. The time course of the effects of beta-END (2.5 microg/rat) showed a higher increase in serum prolactin levels at 15 min than at 30 min after treatment. The 3,4-dihydroxyphenylacetic acid/dopamine ratio increased 15 min after beta-END administration and was even higher 30 min later. Neither the selective kappa-agonist U50,488H nor the selective delta-agonist (D-Pen2, D-Pen5)- enkephalin were able to modify the serum prolactin levels at the doses studied. To evaluate potential neurotransmitters involved in the regulation of prolactin secretion at the end of pregnancy, we combined the administration of serotoninergic or GABAergic antagonists with the opioid agonist DAMGO. The serotonin 5-HT2 receptor antagonist ketanserin increased the serum prolactin levels and potentiated the effect of DAMGO. The intracerebroventricular administration of SR-95531 did not modify the serum prolactin concentration under basal conditions, but partially prevented the increase induced by DAMGO injection. The intracerebroventricular administration of the GABA(B) receptor antagonist phaclofen had no effect on the serum prolactin levels either in naive or DAMGO-treated rats. The present results support the proposal that activation of mu-opioid receptors stimulates prolactin secretion at the end of pregnancy. Although the exact mechanisms by which the opioid system modulates prolactin secretion at the end of pregnancy are unclear, these results suggest an interaction of the opioidergic system with serotoninergic and GABAergic systems, without ruling out a direct or indirect action on dopaminergic neurons. In conclusion, the opioid system may regulate prolactin secretion at the end of pregnancy through either stimulatory (present results) or inhibitory actions previously described.
Collapse
Affiliation(s)
- Marta Soaje
- Laboratorio de Reproducción y Lactancia, IMBECU-CONICET, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina.
| | | | | | | |
Collapse
|