1
|
Dähn O, Werner D, Mathieu B, Kampen H. Large-Scale Cytochrome C Oxidase Subunit I Gene Data Analysis for the Development of a Multiplex Polymerase Chain Reaction Test Capable of Identifying Biting Midge Vector Species and Haplotypes (Diptera: Ceratopogonidae) of the Culicoides Subgenus Avaritia Fox, 1955. Genes (Basel) 2024; 15:323. [PMID: 38540382 PMCID: PMC10969821 DOI: 10.3390/genes15030323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/22/2024] [Accepted: 02/28/2024] [Indexed: 06/14/2024] Open
Abstract
The emergence of culicoid-transmitted bluetongue and Schmallenberg viruses in several European countries demonstrated the ability of indigenous biting midge species to transmit pathogens. Entomologic research programs identified members of the Obsoletus Group (Culicoides subgenus Avaritia) as keyplayers in disease epidemiology in Europe. However, morphological identification of potential vectors is challenging due to the recent discovery of new genetic variants (haplotypes) of C. obsoletus sensu stricto (s.s.), forming distinct clades. In this study, 4422 GenBank entries of the mitochondrial cytochrome c oxidase subunit I (COI) gene of subgenus Avaritia members of the genus Culicoides were analyzed to develop a conventional multiplex PCR, capable of detecting all vector species and clades of the Western Palearctic in this subgenus. Numerous GenBank entries incorrectly assigned to a species were identified, analyzed and reassigned. The results suggest that the three C. obsoletus clades represent independent species, whereas C. montanus should rather be regarded as a genetic variant of C. obsoletus s.s. Based on these findings, specific primers were designed and validated with DNA material from field-caught biting midges which achieved very high diagnostic sensitivity (100%) when compared to an established reference PCR (82.6%).
Collapse
Affiliation(s)
- Oliver Dähn
- Friedrich-Loeffler-Institut (FLI), Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald, Germany
| | - Doreen Werner
- Leibniz Centre for Agricultural Landscape Research (ZALF), Eberswalder Str. 84, 15374 Müncheberg, Germany
| | - Bruno Mathieu
- Institutes of Bacteriology and Parasitology, Medical Faculty, University of Strasbourg, UR 3073 PHAVI, 67000 Strasbourg, France
| | - Helge Kampen
- Friedrich-Loeffler-Institut (FLI), Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald, Germany
| |
Collapse
|
2
|
Dos Santos AT, Souza JPA, Jorge IR, Andrade SMM, Rosa BB, Moura MO, Zarbin PHG. Can Pheromones Contribute to Phylogenetic Hypotheses? A Case Study of Chrysomelidae. J Chem Ecol 2023; 49:611-641. [PMID: 37856061 DOI: 10.1007/s10886-023-01450-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/15/2023] [Accepted: 08/21/2023] [Indexed: 10/20/2023]
Abstract
Pheromones mediate species-level communication in the search for mates, nesting, and feeding sites. Although the role of pheromones has long been discussed by various authors, their existence was not proven until the mid-twentieth century when the first sex pheromone was identified. From this finding, much has been speculated about whether this communication mechanism has acted as a regulatory agent in the process of speciation, competition, and sexual selection since it acts as an intraspecific barrier. Chrysomelidae is one of the major Phytophaga lineages, with approximately 40,000 species. Due to this immense diversity the internal relationships remain unstable when analyzed only with morphological data, consequently recent efforts have been directed to molecular analyses to establish clarity for the relationships and found their respective monophyly. Therefore, our goals are twofold 1) to synthesize the current literature on Chrysomelidae sex pheromones and 2) to test whether Chrysomelidae sex pheromones and their chemical structures could be used in phylogenetic analysis for the group. The results show that, although this is the first analysis in Chrysomelidae to use pheromones as a phylogenetic character, much can be observed in agreement with previous analyses, thus confirming that pheromones, when known in their entirety within lineages, can be used as characters in phylogenetic analyses, bringing elucidation to the relationships and evolution of organisms.
Collapse
Affiliation(s)
- Aluska T Dos Santos
- Setor de Ciências Exatas, Departamento de Química, Universidade Federal do Paraná, Curitiba, Paraná, CEP 81531-980, Brazil
- Setor de Ciências Biológicas, Departamento de Zoologia, Universidade Federal do Paraná, Curitiba, Paraná, CEP 81531-980, Brazil
| | - João P A Souza
- Setor de Ciências Exatas, Departamento de Química, Universidade Federal do Paraná, Curitiba, Paraná, CEP 81531-980, Brazil
| | - Isaac R Jorge
- Setor de Ciências Biológicas, Departamento de Zoologia, Universidade Federal do Paraná, Curitiba, Paraná, CEP 81531-980, Brazil
| | - Samara M M Andrade
- Natural Resources Canada - Great Lakes Forestry Centre, Sault Ste Marie, Ontario, P6A 2E5, Canada
- Graduate Department of Forestry, John H. Daniels Faculty of Architecture, Landscape and Design, University of Toronto, Toronto, Ontario, M5S 3B3, Canada
| | - Brunno B Rosa
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, 14040-901, Brazil
- Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Center for Integrative Biodiversity Discovery, Invalidenstraße 43, 10115, Berlin, Germany
| | - Maurício O Moura
- Setor de Ciências Biológicas, Departamento de Zoologia, Universidade Federal do Paraná, Curitiba, Paraná, CEP 81531-980, Brazil
| | - Paulo H G Zarbin
- Setor de Ciências Exatas, Departamento de Química, Universidade Federal do Paraná, Curitiba, Paraná, CEP 81531-980, Brazil.
| |
Collapse
|
3
|
Sánchez-Carrión SA, Dimov I, Márquez Jiménez FJ, de Rojas Álvarez M. Morphometrical Identification and Phylogenetic Analysis of Rhinonyssidae (Acari: Mesostigmata) Parasitizing Avian Hosts: New Molecular Data. Microorganisms 2023; 11:1783. [PMID: 37512955 PMCID: PMC10384005 DOI: 10.3390/microorganisms11071783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/05/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
Members of the family Rhinonyssidae are tiny hematophagous endoparasitic mites that inhabit the nasal cavities of birds and can cause trauma to their hosts. Traditionally, identifying species in this group has relied on observing their morphometrical characteristics. Nevertheless, determining species within this particular group has become more challenging due to the rising number of newly discovered species. Moreover, the morphometrical traits vary depending on the specific genus or group of species being studied. In this study, the complete internal transcribed spacer ITS1, 5.8S rDNA, and ITS2 regions of the ribosomal DNA from eighteen species of rhinonyssid mites belonging to four genera were sequenced to assess the utility of this genomic region in resolving taxonomic questions in this group and to estimate the phylogenetic relationships among the species. Mites were collected by dissecting the nasal cavities of birds under a stereomicroscope. Specimens used for morphometrical analyses were cleared in 85% lactic acid for 1-48 h and mounted in Hoyer's medium. Other specimens were preserved at -20 °C for molecular studies. From the data obtained in this study, it can be concluded that a thorough review and an accurate morphometrical identification and determination of the discriminatory traits are needed in this group of mites. Moreover, although the ITS1-5.8S-ITS2 fragment solves different taxonomic and phylogenetic problems at the species level, it would be necessary to test new molecular markers, or even a combination of nuclear and mitochondrial markers or different domains of the nuclear 28S rDNA, to discover a reliable taxonomic situation for rhinonyssids.
Collapse
Affiliation(s)
- Susana A Sánchez-Carrión
- Departament of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, Profesor García González 2, 41012 Sevilla, Spain
| | - Ivan Dimov
- Department of Clinical Anatomy and Operative Surgery Named after Professor M.G. Prives, Pavlov First Saint Petersburg State Medical University, L'va Tolstogo Str. 6-8, Saint Petersburg 197022, Russia
| | - Francisco J Márquez Jiménez
- Department of Animal Biology, Vegetal Biology and Ecology, Faculty of Experimental Sciences, Universidad de Jaén, 23071 Jaén, Spain
| | - Manuel de Rojas Álvarez
- Departament of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, Profesor García González 2, 41012 Sevilla, Spain
| |
Collapse
|
4
|
Szép E, Sachdeva H, Barton NH. Polygenic local adaptation in metapopulations: A stochastic eco-evolutionary model. Evolution 2021; 75:1030-1045. [PMID: 33742441 PMCID: PMC8251656 DOI: 10.1111/evo.14210] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 02/13/2021] [Indexed: 11/30/2022]
Abstract
This article analyzes the conditions for local adaptation in a metapopulation with infinitely many islands under a model of hard selection, where population size depends on local fitness. Each island belongs to one of two distinct ecological niches or habitats. Fitness is influenced by an additive trait which is under habitat-dependent directional selection. Our analysis is based on the diffusion approximation and accounts for both genetic drift and demographic stochasticity. By neglecting linkage disequilibria, it yields the joint distribution of allele frequencies and population size on each island. We find that under hard selection, the conditions for local adaptation in a rare habitat are more restrictive for more polygenic traits: even moderate migration load per locus at very many loci is sufficient for population sizes to decline. This further reduces the efficacy of selection at individual loci due to increased drift and because smaller populations are more prone to swamping due to migration, causing a positive feedback between increasing maladaptation and declining population sizes. Our analysis also highlights the importance of demographic stochasticity, which exacerbates the decline in numbers of maladapted populations, leading to population collapse in the rare habitat at significantly lower migration than predicted by deterministic arguments.
Collapse
Affiliation(s)
- Enikő Szép
- Institute of Science and Technology AustriaAm Campus 1Klosterneuburg3400Austria
| | - Himani Sachdeva
- Institute of Science and Technology AustriaAm Campus 1Klosterneuburg3400Austria
- Department of MathematicsUniversity of ViennaVienna1090Austria
| | - Nicholas H. Barton
- Institute of Science and Technology AustriaAm Campus 1Klosterneuburg3400Austria
| |
Collapse
|
5
|
Kowalski P, Baum M, Körten M, Donath A, Dobler S. ABCB transporters in a leaf beetle respond to sequestered plant toxins. Proc Biol Sci 2020; 287:20201311. [PMID: 32873204 PMCID: PMC7542790 DOI: 10.1098/rspb.2020.1311] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 08/10/2020] [Indexed: 12/17/2022] Open
Abstract
Phytophagous insects can tolerate and detoxify toxic compounds present in their host plants and have evolved intricate adaptations to this end. Some insects even sequester the toxins for their defence. This necessitates specific mechanisms, especially carrier proteins that regulate uptake and transport to specific storage sites or protect sensitive tissues from noxious compounds. We identified three ATP-binding cassette subfamily B (ABCB) transporters from the transcriptome of the cardenolide-sequestering leaf beetle Chrysochus auratus and analysed their functional role in the sequestration process. These were heterologously expressed and tested for their ability to interact with various potential substrates: verapamil (standard ABCB substrate), the cardenolides digoxin (commonly used), cymarin (present in the species's host plant) and calotropin (present in the ancestral host plants). Verapamil stimulated all three ABCBs and each was activated by at least one cardenolide, however, they differed as to which they were activated by. While the expression of the most versatile transporter fits with a protective role in the blood-brain barrier, the one specific for cymarin shows an extreme abundance in the elytra, coinciding with the location of the defensive glands. Our data thus suggest a key role of ABCBs in the transport network needed for cardenolide sequestration.
Collapse
Affiliation(s)
- Paulina Kowalski
- Molecular Evolutionary Biology, Institute of Zoology, Universität Hamburg, Martin-Luther-King Platz 3, 20146 Hamburg, Germany
| | - Michael Baum
- Molecular Evolutionary Biology, Institute of Zoology, Universität Hamburg, Martin-Luther-King Platz 3, 20146 Hamburg, Germany
| | - Marcel Körten
- Molecular Evolutionary Biology, Institute of Zoology, Universität Hamburg, Martin-Luther-King Platz 3, 20146 Hamburg, Germany
| | - Alexander Donath
- ZFMK, Zoologisches Forschungsmuseum Alexander Koenig, Leibniz-Institut für Biodiversität der Tiere, Adenauerallee 160, 53113 Bonn, Germany
| | - Susanne Dobler
- Molecular Evolutionary Biology, Institute of Zoology, Universität Hamburg, Martin-Luther-King Platz 3, 20146 Hamburg, Germany
| |
Collapse
|
6
|
Predicting the outcome of potential novel associations: interactions between the invasive Vincetoxicum rossicum and native western Chrysochus beetles. Biol Invasions 2019. [DOI: 10.1007/s10530-019-02043-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
7
|
Larson EL, Brassil MM, Maslan J, Juárez D, Lilagan F, Tipton H, Schweitzer A, Skillman J, Monsen-Collar KJ, Peterson MA. The effects of heterospecific mating frequency on the strength of cryptic reproductive barriers. J Evol Biol 2019; 32:900-912. [PMID: 31162735 DOI: 10.1111/jeb.13495] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 05/22/2019] [Accepted: 05/28/2019] [Indexed: 01/02/2023]
Abstract
Heterospecific mating frequency is critical to hybrid zone dynamics and can directly impact the strength of reproductive barriers and patterns of introgression. The effectiveness of post-mating prezygotic (PMPZ) reproductive barriers, which include reduced fecundity via heterospecific matings and conspecific sperm precedence, may depend on the number, identity and order of mates. Studies of PMPZ barriers suggest that they may be important in many systems, but whether these barriers are effective at realistic heterospecific mating frequencies has not been tested. Here, we evaluate the strength of cryptic reproductive isolation in two leaf beetles (Chrysochus auratus and C. cobaltinus) in the context of a range of heterospecific mating frequencies observed in natural populations. We found both species benefited from multiple matings, but the benefits were greater in C. cobaltinus and extended to heterospecific matings. We found that PMPZ barriers greatly limited hybrid production by C. auratus females with moderate heterospecific mating frequencies, but that their effectiveness diminished at higher heterospecific mating frequencies. In contrast, there was no evidence for PMPZ barriers in C. cobaltinus females at any heterospecific mating frequency. We show that integrating realistic estimates of cryptic isolation with information on relative abundance and heterospecific mating frequency in the field substantially improves our understanding of the strong directional bias in F1 production previously documented in the Chrysochus hybrid zone. Our results demonstrate that heterospecific mating frequency is critical to understanding the impact of cryptic post-copulatory barriers on hybrid zone structure and dynamics, and that future studies of such barriers should incorporate field-relevant heterospecific mating frequencies.
Collapse
Affiliation(s)
- Erica L Larson
- Department of Biological Sciences, University of Denver, Denver, Colorado, USA.,Biology Department, Western Washington University, Bellingham, Washington, USA
| | - Margaret M Brassil
- Biology Department, Western Washington University, Bellingham, Washington, USA
| | - Jonathan Maslan
- Biology Department, Western Washington University, Bellingham, Washington, USA
| | - Danielle Juárez
- Biology Department, Western Washington University, Bellingham, Washington, USA
| | - Flordeliza Lilagan
- Biology Department, Western Washington University, Bellingham, Washington, USA
| | - Hallie Tipton
- Biology Department, Western Washington University, Bellingham, Washington, USA
| | - Andrew Schweitzer
- Biology Department, Western Washington University, Bellingham, Washington, USA
| | - Joe Skillman
- Biology Department, Western Washington University, Bellingham, Washington, USA
| | | | - Merrill A Peterson
- Biology Department, Western Washington University, Bellingham, Washington, USA
| |
Collapse
|
8
|
Kirmse S, Chaboo CS. Polyphagy and florivory prevail in a leaf-beetle community (Coleoptera: Chrysomelidae) inhabiting the canopy of a tropical lowland rainforest in southern Venezuela. J NAT HIST 2018. [DOI: 10.1080/00222933.2018.1548666] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Susan Kirmse
- Florida State Collection of Arthropods, Museum of Entomology, Gainesville, FL, USA
- Institute of Botany, University of Leipzig, Leipzig, Germany
| | - Caroline S. Chaboo
- State Museum, Systematics Research Collections, University of Nebraska, Lincoln, NE, USA
| |
Collapse
|
9
|
deJonge RB, Bourchier RS, Smith SM. Initial Response by a Native Beetle, Chrysochus auratus (Coleoptera: Chrysomelidae), to a Novel Introduced Host-Plant, Vincetoxicum rossicum (Gentianales: Apocynaceae). ENVIRONMENTAL ENTOMOLOGY 2017; 46:617-625. [PMID: 28398528 DOI: 10.1093/ee/nvx072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Indexed: 06/07/2023]
Abstract
Native insects can form novel associations with introduced invasive plants and use them as a food source. The recent introduction into eastern North America of a nonnative European vine, Vincetoxicum rossicum (Kleopow) Barbar., allows us to examine the initial response of a native chrysomelid beetle, Chrysochus auratus F., that feeds on native plants in the same family as V. rossicum (Apocynaceae). We tested C. auratus on V. rossicum and closely related or co-occurring native plants (Apocynum spp., Asclepias spp., and Solidago canadensis L.) using all life stages of the beetle in lab, garden, and field experiments. Experiments measured feeding (presence or absence and amount), survival, oviposition, and whether previous exposure to V. rossicum in the lab or field affected adult beetle feeding. Beetles fed significantly less on V. rossicum than on native Apocynum hosts. Adult beetles engaged in exploratory feeding on leaves of V. rossicum and survived up to 10 d. Females oviposited on V. rossicum, eggs hatched, and larvae fed initially on the roots; however, no larvae survived beyond second instar. Beetles collected from Apocynum cannabinum L. field sites intermixed with V. rossicum were less likely to feed on this novel nonnative host than those collected from colonies further from and less likely to be exposed to V. rossicum (>5 km). Our experimental work indicates that V. rossicum may act as an oviposition sink for C. auratus and that this native beetle has not adapted to survive on this recently introduced novel host plant.
Collapse
Affiliation(s)
- R B deJonge
- Faculty of Forestry, University of Toronto, 33 Willcocks St. Toronto, ON M5S 3B3, Canada (; )
| | - R S Bourchier
- Agriculture and AgriFood Canada-Lethbridge Research Centre, 5403-1st Avenue S. Lethbridge, AB T1J 4B1, Canada
| | - S M Smith
- Faculty of Forestry, University of Toronto, 33 Willcocks St. Toronto, ON M5S 3B3, Canada (; )
| |
Collapse
|
10
|
Li S, Jovelin R, Yoshiga T, Tanaka R, Cutter AD. Specialist versus generalist life histories and nucleotide diversity in Caenorhabditis nematodes. Proc Biol Sci 2014; 281:20132858. [PMID: 24403340 DOI: 10.1098/rspb.2013.2858] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Species with broad ecological amplitudes with respect to a key focal resource, niche generalists, should maintain larger and more connected populations than niche specialists, leading to the prediction that nucleotide diversity will be lower and more subdivided in specialists relative to their generalist relatives. This logic describes the specialist-generalist variation hypothesis (SGVH). Some outbreeding species of Caenorhabditis nematodes use a variety of invertebrate dispersal vectors and have high molecular diversity. By contrast, Caenorhabditis japonica lives in a strict association and synchronized life cycle with its dispersal host, the shield bug Parastrachia japonensis, itself a diet specialist. Here, we characterize sequence variation for 20 nuclear loci to investigate how C. japonica's life history shapes nucleotide diversity. We find that C. japonica has more than threefold lower polymorphism than other outbreeding Caenorhabditis species, but that local populations are not genetically disconnected. Coupled with its restricted range, we propose that its specialist host association contributes to a smaller effective population size and lower genetic variation than host generalist Caenorhabditis species with outbreeding reproductive modes. A literature survey of diverse organisms provides broader support for the SGVH. These findings encourage further testing of ecological and evolutionary hypotheses with comparative population genetics in Caenorhabditis and other taxa.
Collapse
Affiliation(s)
- Shuning Li
- Department of Ecology and Evolutionary Biology, University of Toronto, , Toronto, Ontario, Canada , M5S 3B2, Department of Applied Biological Sciences, Saga University, , Saga 840-8502, Japan
| | | | | | | | | |
Collapse
|
11
|
Ecological Interactions of the Host-Insect System Quercus robur and Tortrix viridana. CHALLENGES AND OPPORTUNITIES FOR THE WORLD'S FORESTS IN THE 21ST CENTURY 2014. [DOI: 10.1007/978-94-007-7076-8_33] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
12
|
Pellissier L, Litsios G, Guisan A, Alvarez N. Molecular substitution rate increases in myrmecophilous lycaenid butterflies (Lepidoptera). ZOOL SCR 2012. [DOI: 10.1111/j.1463-6409.2012.00556.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
13
|
De Biase A, Antonini G, Mancini E, Trizzino M, Cline A, Audisio P. Discordant patterns in the genetic, ecological, and morphological diversification of a recently radiated phytophagous beetle clade (Coleoptera: Nitidulidae: Meligethinae). RENDICONTI LINCEI-SCIENZE FISICHE E NATURALI 2012. [DOI: 10.1007/s12210-012-0174-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
14
|
Aardema ML, Zhen Y, Andolfatto P. The evolution of cardenolide-resistant forms of Na⁺,K⁺ -ATPase in Danainae butterflies. Mol Ecol 2011; 21:340-9. [PMID: 22126595 DOI: 10.1111/j.1365-294x.2011.05379.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Cardenolides are a class of plant secondary compounds that inhibit the proper functioning of the Na(+) , K(+) -ATPase enzyme in susceptible animals. Nonetheless, many insect species are able to sequester cardenolides for their own defence. These include butterflies in the subfamily Danainae (Family: Nymphalidae) such as the monarch (Danaus plexippus). Previous studies demonstrated that monarchs harbour an asparagine (N) to histidine (H) substitution (N122H) in the α subunit of Na(+) , K(+) -ATPase (ATPα) that reduces this enzyme's sensitivity to cardenolides. More recently, it has been suggested that at ATPα position 111, monarchs may also harbour a leucine (L)/glutamine (Q) polymorphism. This later amino acid could also contribute to cardenolide insensitivity. However, here we find that incorrect annotation of the initially reported DNA sequence for ATPα has led to several erroneous conclusions. Using a population genetic and phylogenetic analysis of monarchs and their close relatives, we show that an ancient Q111L substitution occurred prior to the radiation of all Danainae, followed by a second substitution at the same site to valine (V), which arose before the diversification of the Danaus genus. In contrast, N122H appears to be a recent substitution specific to monarchs. Surprisingly, examination of a broader insect phylogeny reveals that the same progression of amino acid substitutions (Q111L → L111V + N122H) has also occurred in Chyrsochus beetles (Family: Chrysomelidae, Subfamily: Eumolpinae) that feed on cardenolide-containing host plants. The parallel pattern of amino acid substitution in these two distantly related lineages is consistent with an adaptive role for these substitutions in reducing cardenolide sensitivity and suggests that their temporal order may be limited by epistatic interactions.
Collapse
Affiliation(s)
- Matthew L Aardema
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA.
| | | | | |
Collapse
|
15
|
Cryptic gametic interactions confer both conspecific and heterospecific advantages in the Chrysochus (Coleoptera: Chrysomelidae) hybrid zone. Genetica 2011; 139:663-76. [DOI: 10.1007/s10709-011-9567-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2010] [Accepted: 03/14/2011] [Indexed: 11/26/2022]
|
16
|
Host plant shifts affect a major defense enzyme in Chrysomela lapponica. Proc Natl Acad Sci U S A 2011; 108:4897-901. [PMID: 21383196 DOI: 10.1073/pnas.1013846108] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Chrysomelid leaf beetles use chemical defenses to overcome predatory attack and microbial infestation. Larvae of Chrysomela lapponica that feed on willow sequester plant-derived salicin and other leaf alcohol glucosides, which are modified in their defensive glands to bioactive compounds. Salicin is converted into salicylaldehyde by a consecutive action of a β-glucosidase and salicyl alcohol oxidase (SAO). The other leaf alcohol glucosides are not oxidized, but are deglucosylated and esterified with isobutyric- and 2-methylbutyric acid. Like some other closely related Chrysomela species, certain populations of C. lapponica shift host plants from willow to salicin-free birch. The only striking difference between willow feeders and birch feeders in terms of chemical defense is the lack of salicylaldehyde formation. To clarify the impact of host plant shifts on SAO activity, we identified and compared this enzyme by cloning, expression, and functional testing in a willow-feeding and birch-feeding population of C. lapponica. Although the birch feeders still demonstrated defensive gland-specific expression, their SAO mRNA levels were 1,000-fold lower, and the SAO enzyme was nonfunctional. Obviously, the loss of catalytic function of the SAO of birch-adapted larvae is fixed at the transcriptional, translational, and enzyme levels, thus avoiding costly expression of a highly abundant protein that is not required in the birch feeders.
Collapse
|
17
|
Kelley ST, Dobler S. Comparative analysis of microbial diversity in Longitarsus flea beetles (Coleoptera: Chrysomelidae). Genetica 2010; 139:541-50. [PMID: 20844936 DOI: 10.1007/s10709-010-9498-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Accepted: 09/04/2010] [Indexed: 02/06/2023]
Abstract
Herbivorous beetles comprise a significant fraction of eukaryotic biodiversity and their plant-feeding adaptations make them notorious agricultural pests. Despite more than a century of research on their ecology and evolution, we know little about the diversity and function of their symbiotic microbial communities. Recent culture-independent molecular studies have shown that insects possess diverse gut microbial communities that appear critical for their survival. In this study, we combined culture-independent methods and high-throughput sequencing strategies to perform a comparative analysis of Longitarsus flea-beetles microbial community diversity (MCD). This genus of beetle herbivores contains host plant specialists and generalists that feed on a diverse array of toxic plants. Using a deep-sequencing approach, we characterized the MCD of eleven Longitarsus species across the genus, several of which represented independent shifts to the same host plant families. Database comparisons found that Longitarsus-associated microbes came from two habitat types: insect guts and the soil rhizosphere. Statistical clustering of the Longitarsus microbial communities found little correlation with the beetle phylogeny, and uncovered discrepancies between bacterial communities extracted directly from beetles and those from frass. A Principal Coordinates Analysis also found some correspondence between beetle MCD and host plant family. Collectively, our data suggest that environmental factors play a dominant role in shaping Longitarsus MCD and that the root-feeding beetle larvae of these insects are inoculated by soil rhizosphere microbes. Future studies will investigate MCD of select Longitarsus species across their geographic ranges and explore the connection between the soil rhizosphere and the beetle MCD.
Collapse
Affiliation(s)
- Scott T Kelley
- Department of Biology, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182, USA.
| | | |
Collapse
|
18
|
Evans LM, Allan GJ, Shuster SM, Woolbright SA, Whitham TG. Tree hybridization and genotypic variation drive cryptic speciation of a specialist mite herbivore. Evolution 2008; 62:3027-40. [PMID: 18752612 DOI: 10.1111/j.1558-5646.2008.00497.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Few studies have investigated the roles that plant hybridization and individual plant genotype play in promoting population divergence within arthropod species. Using nrDNA sequence information and reciprocal transfer experiments, we examined how tree cross type (i.e., pure Populus angustifolia and P. angustifolia x P. fremontii F(1) type hybrids) and individual tree genotype influence host race formation in the bud-galling mite Aceria parapopuli. Three main findings emerged: (1) Strong genetic differentiation of mite populations found on pure P. angustifolia and F(1) type hybrids indicates that these mites represent morphologically cryptic species. (2) Within the F(1) type hybrids, population genetic analyses indicate migration among individual trees; however, (3) transfer experiments show that the mites found on heavily infested F(1) type trees perform best on their natal host genotype, suggesting that genetic interactions between mites and their host trees drive population structure, local adaptation, and host race formation. These findings argue that hybridization and genotypic differences in foundation tree species may drive herbivore population structure, and have evolutionary consequences for dependent arthropod species.
Collapse
Affiliation(s)
- Luke M Evans
- Department of Biological Sciences, Environmental Genetics and Genomics Laboratory, Merriam-Powell Center for Environmental Research, Northern Arizona University, Flagstaff, Arizona 86011, USA.
| | | | | | | | | |
Collapse
|
19
|
BERKOV AMY. The impact of redefined species limits in Palame (Coleoptera: Cerambycidae: Lamiinae: Acanthocinini) on assessments of host, seasonal, and stratum specificity. Biol J Linn Soc Lond 2008. [DOI: 10.1111/j.1095-8312.2002.tb02082.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
20
|
Attié M, Bourgoin T, Veslot J, Soulier‐Perkins A. Patterns of trophic relationships between planthoppers (Hemiptera: Fulgoromorpha) and their host plants on the Mascarene Islands. J NAT HIST 2008. [DOI: 10.1080/00222930802106963] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
21
|
McLeish MJ, Crespi BJ, Chapman TW, Schwarz MP. Parallel diversification of Australian gall-thrips on Acacia. Mol Phylogenet Evol 2007; 43:714-25. [PMID: 17467300 DOI: 10.1016/j.ympev.2007.03.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2006] [Revised: 03/12/2007] [Accepted: 03/14/2007] [Indexed: 10/23/2022]
Abstract
The diversification of gall-inducing Australian Kladothrips (Insecta: Thysanoptera) on Acacia has produced a pair of sister-clades, each of which includes a suite of lineages that utilize virtually the same set of 15 closely related host plant species. This pattern of parallel insect-host plant radiation may be driven by cospeciation, host-shifting to the same set of host plants, or some combination of these processes. We used molecular-phylogenetic data on the two gall-thrips clades to analyze the degree of concordance between their phylogenies, which is indicative of parallel divergence. Analyses of phylogenetic concordance indicate statistically-significant similarity between the two clades. Their topologies also fit with a hypothesis of some degree of host-plant tracking. Based on phylogenetic and taxonomic information regarding the phylogeny of the Acacia host plants in each clade, one or more species has apparently shifted to more-divergent Acacia host-plant species, and in each case these shifts have resulted in notable divergence in aspects of the phenotype including morphology, life history and behaviour. Our analyses indicate that gall-thrips on Australian Acacia have undergone parallel diversification as a result of some combination of cospeciation, highly restricted host-plant shifting, or both processes, but that the evolution of novel phenotypic diversity in this group is a function of relatively few shifts to divergent host plants. This combination of ecologically restricted and divergent radiation may represent a microcosm for the macroevolution of host plant relationships and phenotypic diversity among other phytophagous insects.
Collapse
Affiliation(s)
- M J McLeish
- South African National Biodiversity Institute, Kirstenbosch Research Centre, Private Bag X7, Claremont, Cape Town, South Africa.
| | | | | | | |
Collapse
|
22
|
Kergoat GJ, Silvain JF, Delobel A, Tuda M, Anton KW. Defining the limits of taxonomic conservatism in host-plant use for phytophagous insects: molecular systematics and evolution of host-plant associations in the seed-beetle genus Bruchus Linnaeus (Coleoptera: Chrysomelidae: Bruchinae). Mol Phylogenet Evol 2006; 43:251-69. [PMID: 17276089 DOI: 10.1016/j.ympev.2006.11.026] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2006] [Revised: 10/16/2006] [Accepted: 11/28/2006] [Indexed: 11/27/2022]
Abstract
In this study, we have investigated the limits of taxonomic conservatism in host-plant use in the seed-beetle genus Bruchus. To reconstruct the insect phylogeny, parsimony and multiple partitioned Bayesian inference analyses were conducted on a combined data set of four genes. Permutation tests and both global and local maximum-likelihood optimizations of host preferences at distinct taxonomic levels revealed that host-fidelity is still discernible beyond the host-plant tribe level, suggesting the existence of more important than previously thought evolutionary constraints, which are further discussed in details. Our tree topologies are also mostly consistent with extant taxonomic groups. Through the analysis of this empirical data set we also provide meaningful insights on two methodological issues. First, Bayesian inference analyses suggest that partitioning by using codon positions greatly increase the accuracy of phylogenetical reconstructions. Regarding reconstruction of ancestral character states through maximum likelihood, the present study also highlights the usefulness of local optimizations. The issue of over-parameterization is also addressed, as the optimizations with the most parameter-rich models have returned the most counterintuitive results.
Collapse
Affiliation(s)
- Gaël J Kergoat
- INRA, Centre de Biologie et de Gestion des Populations (CBGP-UMR1062), Campus International de Baillarguet, 34988 Montferrier-sur-Lez, France.
| | | | | | | | | |
Collapse
|
23
|
Schwartz SK, Peterson MA. Strong material benefits and no longevity costs of multiple mating in an extremely polyandrous leaf beetle, Chrysochus cobaltinus (Coleoptera: Chrysomelidae). Behav Ecol 2006. [DOI: 10.1093/beheco/arl033] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
24
|
McKenna DD, Farrell BD. Molecular phylogenetics and evolution of host plant use in the Neotropical rolled leaf 'hispine' beetle genus Cephaloleia (Chevrolat) (Chrysomelidae: Cassidinae). Mol Phylogenet Evol 2006; 37:117-31. [PMID: 16054400 DOI: 10.1016/j.ympev.2005.06.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2004] [Revised: 05/20/2005] [Accepted: 06/08/2005] [Indexed: 11/18/2022]
Abstract
Here, we report the results of a species level phylogenetic study of Cephaloleia beetles designed to clarify relationships and patterns of host plant taxon and tissue use among species. Our study is based on up to 2088bp of mtDNA sequence data. Maximum parsimony, maximum likelihood, and Bayesian methods of phylogenetic inference consistently recover a monophyletic Cephaloleia outside of a basal clade of primarily palm feeding species (the 'Arecaceae-feeding clade'), and C. irregularis. In all three analyses, the 'Arecaceae-feeding clade' includes Cephaloleia spp. with unusual morphological features, and a few species currently placed in other cassidine genera and tribes. All three analyses also recover a clade that includes all Zingiberales feeding Cephaloleia and most Cephaloleia species (the 'Zingiberales-feeding clade'). Two notable clades are found within the 'Zingiberales-feeding clade.' One is comprised of beetles that normally feed only on the young rolled leaves of plants in the families Heliconiaceae and Marantaceae (the 'Heliconiaceae & Marantaceae-feeding clade'). The other is comprised of relative host tissue generalist, primarily Zingiberales feeding species (the 'generalist-feeding clade'). A few species in the 'generalist-feeding clade' utilize Cyperaceae or Poaceae as hosts. Overall, relatively basal Cephaloleia (e.g., the 'Arecaceae clade') feed on relatively basal monocots (e.g., Cyclanthaceae and Arecaceae), and relatively derived Cephaloleia (e.g., the 'Zingiberales-feeding clade') feed on relatively derived monocots (mostly in the order Zingiberales). Zingiberales feeding and specialization on young rolled Zingiberales leaves have each apparently evolved just once in Cephaloleia.
Collapse
Affiliation(s)
- Duane D McKenna
- Harvard University, Museum of Comparative Zoology, Cambridge, MA 02138, USA.
| | | |
Collapse
|
25
|
Smith CI, Farrell BD. Evolutionary Consequences of Dispersal Ability in Cactus-feeding Insects. Genetica 2006; 126:323-34. [PMID: 16636926 DOI: 10.1007/s10709-005-0714-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2005] [Accepted: 07/07/2005] [Indexed: 10/24/2022]
Abstract
Although gene flow is an important determinant of evolutionary change, the role of ecological factors such as specialization in determining migration and gene flow has rarely been explored empirically. To examine the consequences of dispersal ability and habitat patchiness on gene flow, migration rates were compared in three cactophagous longhorn beetles using coalescent analyses of mtDNA sequences. Analyses of covariance were used to identify the roles of dispersal ability and habitat distribution in determining migration patterns. Dispersal ability was a highly significant predictor of gene flow (p< 0.001), and was more important than any other factor. These findings predict that dispersal ability may be an import factor shaping both microevolutionary and macroevolutionary patterns; this prediction is borne out by comparisons of species diversity in cactus-feeding groups.
Collapse
Affiliation(s)
- Christopher Irwin Smith
- Museum of Comparative Zoology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA.
| | | |
Collapse
|
26
|
Zayed A, Packer L, Grixti JC, Ruz L, Owen RE, Toro H. Increased genetic differentiation in a specialist versus a generalist bee: implications for conservation. CONSERV GENET 2006. [DOI: 10.1007/s10592-005-9094-5] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
27
|
Peterson MA, Honchak BM, Locke SE, Beeman TE, Mendoza J, Green J, Buckingham KJ, White MA, Monsen KJ. RELATIVE ABUNDANCE AND THE SPECIES-SPECIFIC REINFORCEMENT OF MALE MATING PREFERENCE IN THE CHRYSOCHUS (COLEOPTERA: CHRYSOMELIDAE) HYBRID ZONE. Evolution 2005. [DOI: 10.1111/j.0014-3820.2005.tb00976.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
28
|
Kergoat GJ, Delobel A, Fédière G, Rü BL, Silvain JF. Both host-plant phylogeny and chemistry have shaped the African seed-beetle radiation. Mol Phylogenet Evol 2005; 35:602-11. [PMID: 15878129 DOI: 10.1016/j.ympev.2004.12.024] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2004] [Revised: 12/22/2004] [Accepted: 12/23/2004] [Indexed: 11/16/2022]
Abstract
For the last 40 years, many authors have attempted to characterize the main patterns of plant-insect evolutionary interactions and understand their causes. In the present work on African seed-beetles (Coleoptera: Bruchidae), we have performed a 10-year field work to sample seeds of more than 300 species of potential host-plants (from the family Fabaceae), to obtain bruchids by rearing. This seed sampling in the field was followed by the monitoring of adult emergences which gave us the opportunity to identify host-plant use accurately. Then, by using molecular phylogenetics (on a combined data set of four genes), we have investigated the relationships between host-plant preferences and insect phylogeny. Our objectives were to investigate the level of taxonomic conservatism in host-plant fidelity and host-plant chemistry. Our results indicate that phylogenetically related insects are associated with phylogenetically related host-plants but the phylogeny of the latter cannot alone explain the observed patterns. Major host shifts from Papilionoideae to Mimosoideae subfamilies have happened twice independently suggesting that feeding specialization on a given host-plant group is not always a dead end in seed-beetles. If host-plant taxonomy and chemistry in legumes generally provide consistent data, it appears that the nature of the seed secondary compounds may be the major factor driving the diversification of a large clade specializing on the subfamily Mimosoideae in which host-plant taxonomy is not consistent with chemical similarity.
Collapse
Affiliation(s)
- Gaël J Kergoat
- IRD, UR R072 c/o CNRS, UPR 9034, Lab. PGE, avenue de la Terrasse, 91198 Gif/Yvette, France.
| | | | | | | | | |
Collapse
|
29
|
PETERSON MA, MONSEN KJ, PEDERSEN H, MCFARLAND T, BEARDEN J. Direct and indirect analysis of the fitness of Chrysochus (Coleoptera: Chrysomelidae) hybrids. Biol J Linn Soc Lond 2005. [DOI: 10.1111/j.1095-8312.2004.00429.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
30
|
Peterson MA, Honchak BM, Locke SE, Beeman TE, Mendoza J, Green J, Buckingham KJ, White MA, Monsen KJ. RELATIVE ABUNDANCE AND THE SPECIES-SPECIFIC REINFORCEMENT OF MALE MATING PREFERENCE IN THE CHRYSOCHUS (COLEOPTERA: CHRYSOMELIDAE) HYBRID ZONE. Evolution 2005. [DOI: 10.1554/05-120.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
31
|
Abstract
Herbivorous insects and other small consumers are often specialized both in use of particular host taxa and in use of particular host tissues. Such consumers also often seem to show consistent differences in the rates of evolution of these two dimensions of host use, implying common processes, but this has been little studied. Here we quantify these rates of change in host use evolution in a major radiation of herbivorous insects, the Chrysomeloidea, whose diversity has been attributed to their use of flowering plants. We find a significant difference in the rates of evolutionary change in these two dimensions of host use, with host taxon associations most labile. There are apparently similar differences in rates of host use evolution in other parasite groups, suggesting the generality of this pattern. Divergences in parasite form associated with use of different host tissues may facilitate resource partitioning among successive adaptive radiations on particular host taxa.
Collapse
Affiliation(s)
- Brian D Farrell
- Museum of Comparative Zoology, Harvard University, Cambridge, Massachusetts 02138, USA.
| | | |
Collapse
|
32
|
Gaete-Eastman C, Figueroa CC, Olivares-Donoso R, Niemeyer HM, Ramírez CC. Diet breadth and its relationship with genetic diversity and differentiation: the case of southern beech aphids (Hemiptera: Aphididae). BULLETIN OF ENTOMOLOGICAL RESEARCH 2004; 94:219-227. [PMID: 15191623 DOI: 10.1079/ber2004298] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Herbivorous insect species with narrow diet breadth are expected to be more prone to genetic differentiation than insect species with a wider diet breadth. However, a generalist can behave as a local specialist if a single host-plant species is locally available, while a specialist can eventually behave as a generalist if its preferred host is not available. These problems can be addressed by comparing closely related species differing in diet breadth with overlapping distributions of insect and host populations. In this work, diet breadth, genetic diversity and population differentiation of congeneric aphid species from southern beech forests in Chile were compared. While at the species level no major differences in genetic diversity were found, a general trend towards higher genetic diversity as diet breadth increased was apparent. The aphid species with wider diet breadth, Neuquenaphis edwardsi (Laing), showed the highest genetic diversity, while the specialist Neuquenaphis staryi Quednau & Remaudière showed the lowest. These differences were less distinct when the comparisons were made in the same locality and over the same host. Comparison of allopatric populations indicates that genetic differentiation was higher for the specialists, Neuquenaphis similis Hille Ris Lambers and N. staryi, than for the generalist N. edwardsi. Over the same host at different locations, genetic differentiation among populations of N. edwardsi was higher than among populations of N. similis. The results support the assumption that specialists should show more pronounced genetic structuring than generalists, although the geographical distribution of host plants may be playing an important role.
Collapse
Affiliation(s)
- C Gaete-Eastman
- Centro de Investigación en Biotecnología Silvoagrícola, Instituto de Biología Vegetaly Biotecnología, Universidad de Talca, Casilla 747, Talca, Chile
| | | | | | | | | |
Collapse
|
33
|
Li X, Baudry J, Berenbaum MR, Schuler MA. Structural and functional divergence of insect CYP6B proteins: From specialist to generalist cytochrome P450. Proc Natl Acad Sci U S A 2004; 101:2939-44. [PMID: 14981232 PMCID: PMC365724 DOI: 10.1073/pnas.0308691101] [Citation(s) in RCA: 192] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
How polyphagous herbivores cope with the diversity and unpredictability of plant defenses remains largely unknown at both the genetic and molecular levels. To examine whether generalist counterdefense enzymes are structurally more flexible and functionally more diverse, two counterdefensive allelochemical-metabolizing cytochrome P450 proteins, CYP6B1 from the specialist Papilio polyxenes, feeding on furanocoumarin-containing plants, and CYP6B8 from the generalist Helicoverpa zea, feeding on hundreds of host plant species, are compared structurally and functionally. Molecular modeling indicates that CYP6B8 has more flexible overall folding, a more elastic catalytic pocket, and one more substrate access channel than CYP6B1. Baculovirus-mediated expression of the CYP6B8 and CYP6B1 proteins demonstrates that CYP6B8 metabolizes six biosynthetically diverse plant allelochemicals (xanthotoxin, quercetin, flavone, chlorogenic acid, indole-3-carbinol, and rutin) and three insecticides (diazinon, cypermethrin, and aldrin), whereas CYP6B1 metabolizes only two allelochemicals (xanthotoxin and flavone) and one insecticide (diazinon) of those tested. These results indicate that generalist counterdefense proteins are capable of accepting a more structurally diverse array of compounds compared with specialist counterdefense proteins.
Collapse
Affiliation(s)
- Xianchun Li
- Department of Entomology, University of Illinois, Urbana, IL 61801, USA
| | | | | | | |
Collapse
|
34
|
Percy DM. Radiation, diversity, and host-plant interactions among island and continental legume-feeding psyllids. Evolution 2004; 57:2540-56. [PMID: 14686530 DOI: 10.1111/j.0014-3820.2003.tb01498.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Island archipelagos and insect-plant associations have both independently provided many useful systems for evolutionary study. The arytainine psyllid (Sternorrhyncha: Hemiptera) radiation on broom (Fabaceae: Genisteae) in the Canary Island archipelago provides a discrete system for examining the speciation of highly host-specific phytophagous insects in an island context. Phylogenetic reconstructions based on three datasets (adult and nymph morphological characters, and two mitochondrial DNA regions: part of the small subunit rRNA, and part of cytochrome oxidase I, cytochrome oxidase II and the intervening tRNA leucine) are generally consistent. The combined molecular tree provides a well-supported estimate of psyllid relationships and shows that there have been several colonizations of the Macaronesian islands but that only one has resulted in a significant radiation. Psyllid diversification has apparently been constrained by the presence of suitable host groups within the genistoid legumes, and the diversity, distribution, and abundance of those groups. The phylogeny, by indicating pairs of sister species, allows putative mechanisms of speciation to be assessed. The most common conditions associated with psyllid speciation are geographical allopatry with a host switch to closely related hosts (six examples), or geographical allopatry on the same host (four examples). Where allopatric speciation involves a host switch, these have all been to related hosts. There is some evidence that switches between unrelated host plants may be more likely in sympatry. Only one sister pair (Aryrtainilla cytisi and A. telonicola) and the putative host races of Arytinnis modica are sympatric but on unrelated hosts, which may be a necessary condition for sympatric speciation in these insects. Where several psyllids share the same host, resources appear to be partitioned by ecological specialization and differing psyllid phenology.
Collapse
Affiliation(s)
- Diana M Percy
- Division of Environmental and Evolutionary Biology, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom.
| |
Collapse
|
35
|
Farrell BD, Sequeira AS. EVOLUTIONARY RATES IN THE ADAPTIVE RADIATION OF BEETLES ON PLANTS*. Evolution 2004. [DOI: 10.1554/03-453] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
36
|
Percy DM. RADIATION, DIVERSITY, AND HOST-PLANT INTERACTIONS AMONG ISLAND AND CONTINENTAL LEGUME-FEEDING PSYLLIDS. Evolution 2003. [DOI: 10.1554/02-558] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
37
|
Berlocher SH, Feder JL. Sympatric speciation in phytophagous insects: moving beyond controversy? ANNUAL REVIEW OF ENTOMOLOGY 2002; 47:773-815. [PMID: 11729091 DOI: 10.1146/annurev.ento.47.091201.145312] [Citation(s) in RCA: 450] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Sympatric speciation is the splitting of one evolutionary lineage into two without the occurrence of geographic isolation. The concept has been intimately tied to entomology since the 1860s, when Benjamin Walsh proposed that many host-specific phytophagous insects originate by shifting and adapting to new host plant species. If true, sympatric speciation would have tremendous implications for our understanding of species and their origins, biodiversity (25-40% of all animals are thought to be phytophagous specialists), insect-plant coevolution, community ecology, phylogenetics, and systematics, as well as practical significance for the management of insect pests. During much of the twentieth century sympatric speciation was viewed as much less plausible than geographic (allopatric) speciation. However, empirical field studies, laboratory experiments, developments in population genetics theory, and phylogenetic and biogeographic data have all recently combined to shed a more favorable light on the process. We review the evidence for sympatric speciation via host shifting for phytophagous insects and propose a set of testable predictions for distinguishing geographic mode (allopatric versus sympatric) of divergence. Our conclusion is that sympatric speciation is a viable hypothesis. We highlight areas where more thorough testing is needed to move sympatric speciation into the realm of accepted scientific theory.
Collapse
Affiliation(s)
- Stewart H Berlocher
- Department of Entomology, University of Illinois, 320 Morrill Hall, 505 S. Goodwin Avenue, Urbana, Illinois 61801, USA.
| | | |
Collapse
|
38
|
Johnson KP, Williams BL, Drown DM, Adams RJ, Clayton DH. The population genetics of host specificity: genetic differentiation in dove lice (Insecta: Phthiraptera). Mol Ecol 2002; 11:25-38. [PMID: 11903902 DOI: 10.1046/j.0962-1083.2001.01412.x] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Some species of parasites occur on a wide range of hosts while others are restricted to one or a few host species. The host specificity of a parasite species is determined, in part, by its ability to disperse between host species. Dispersal limitations can be studied by exploring the genetic structure of parasite populations both within a single species of host and across multiple host species. In this study we examined the genetic structure in the mitochondrial cytochrome oxidase I (COI) gene of two genera of lice (Insecta: Phthiraptera) occurring on multiple sympatric species of doves in southern North and Central America. One genus, Columbicola, is generally less host-specific than the other, Physconelloides. For both genera we identified substantial genetic differentiation between populations of conspecific lice on different host species, generally 10-20% sequence divergence. This level of divergence is in the range of that often observed between species of these two genera. We used nested clade analysis to explore fine scale genetic structure within species of these feather lice. We found that species of Physconelloides exhibited more genetic structure, both among hosts and among geographical localities, than did species of Columbicola. In many cases, single haplotypes within species of Columbicola are distributed on multiple host species. Thus, the population genetic structure of species of Physconelloides reveals evidence of geographical differentiation on top of high host species specificity. Underlying differences in dispersal biology probably explain the differences in population genetic structure that we observed between Columbicola and Physconelloides.
Collapse
|
39
|
Farrell BD, Sequeira AS, O'Meara BC, Normark BB, Chung JH, Jordal BH. The evolution of agriculture in beetles (Curculionidae: Scolytinae and Platypodinae). Evolution 2001; 55:2011-27. [PMID: 11761062 DOI: 10.1111/j.0014-3820.2001.tb01318.x] [Citation(s) in RCA: 196] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Beetles in the weevil subfamilies Scolytinae and Platypodinae are unusual in that they burrow as adults inside trees for feeding and oviposition. Some of these beetles are known as ambrosia beetles for their obligate mutualisms with asexual fungi--known as ambrosia fungi--that are derived from plant pathogens in the ascomycete group known as the ophiostomatoid fungi. Other beetles in these subfamilies are known as bark beetles and are associated with free-living, pathogenic ophiostomatoid fungi that facilitate beetle attack of phloem of trees with resin defenses. Using DNA sequences from six genes, including both copies of the nuclear gene encoding enolase, we performed a molecular phylogenetic study of bark and ambrosia beetles across these two subfamilies to establish the rate and direction of changes in life histories and their consequences for diversification. The ambrosia beetle habits have evolved repeatedly and are unreversed. The subfamily Platypodinae is derived from within the Scolytinae, near the tribe Scolytini. Comparison of the molecular branch lengths of ambrosia beetles and ambrosia fungi reveals a strong correlation, which a fungal molecular clock suggests spans 60 to 21 million years. Bark beetles have shifted from ancestral association with conifers to angiosperms and back again several times. Each shift to angiosperms is associated with elevated diversity, whereas the reverse shifts to conifers are associated with lowered diversity. The unusual habit of adult burrowing likely facilitated the diversification of these beetle-fungus associations, enabling them to use the biomass-rich resource that trees represent and set the stage for at least one origin of eusociality.
Collapse
Affiliation(s)
- B D Farrell
- Museum of Comparative Zoology, Harvard University, Cambridge, Massachusetts 02138, USA.
| | | | | | | | | | | |
Collapse
|
40
|
Farrell BD. Evolutionary assembly of the milkweed fauna: cytochrome oxidase I and the age of Tetraopes beetles. Mol Phylogenet Evol 2001; 18:467-78. [PMID: 11277638 DOI: 10.1006/mpev.2000.0888] [Citation(s) in RCA: 126] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The insects that feed on the related plant families Apocynaceae and Asclepiadaceae (here collectively termed "milkweeds") comprise a "component community" of highly specialized, distinctive lineages of species that frequently sequester toxic cardiac glycosides from their host plants for defense against predators and are thus often aposematic, advertising their consequent unpalatability. Such sets of specialized lineages provide opportunities for comparative studies of the rate of adaptation, diversification, and habitat-related effects on molecular evolution. The cerambycid genus Tetraopes is the most diverse of the new world milkweed herbivores and the species are generally host specific, being restricted to single, different species of Asclepias, more often so than most other milkweed insects. Previous work revealed correspondence between the phylogeny of these beetles and that of their hosts. The present study provides analyses of near-complete DNA sequences for Tetraopes and relatives that are used to establish a molecular clock and temporal framework for Tetraopes evolution with their milkweed hosts.
Collapse
Affiliation(s)
- B D Farrell
- Museum of Comparative Zoology, Harvard University, Cambridge, Massachusetts 02138, USA
| |
Collapse
|
41
|
Farrell BD, Sequeira AS, O'Meara BC, Normark BB, Chung JH, Jordal BH. THE EVOLUTION OF AGRICULTURE IN BEETLES (CURCULIONIDAE: SCOLYTINAE AND PLATYPODINAE). Evolution 2001. [DOI: 10.1554/0014-3820(2001)055[2011:teoaib]2.0.co;2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
42
|
Dobler S, Müller JK. Resolving phylogeny at the family level by mitochondrial cytochrome oxidase sequences: phylogeny of carrion beetles (Coleoptera, Silphidae). Mol Phylogenet Evol 2000; 15:390-402. [PMID: 10860648 DOI: 10.1006/mpev.1999.0765] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We investigated the phylogenetic relationships of carrion beetles (Coleoptera, Silphidae) using 2094 bp of their mitochondrial cytochrome oxidase subunit I and II and tRNA leucine gene sequences. Shorter fragments of this gene region previously have been used to establish generic relationships in insects. In this study, they provided more than sufficient resolution, although the third positions of the protein-coding sequences reached saturation for the deeper divergences. This first published phylogeny for the Silphidae comprises 23 species from 13 genera sampled across the geographic range of the family. In addition, we included species from three related families as outgroups. One of these families, the Agyrtidae, was, until recently, included in the Silphidae, but its resolution here justifies its current position as a separate family. The silphid subfamilies Nicrophorinae and Silphinae are monophyletic in all analyses. All genera for which several species were sampled are supported as monophyletic groups, with the exception of the genus Silpha. European and North American representatives of two Nicrophorus species described from both continents are supported as each others' closest relatives. The lineage that colonized Gondwanaland and that most likely originated in the Palearctic is the most basal within the Silphinae.
Collapse
Affiliation(s)
- S Dobler
- Zoological Institute, Universität Freiburg, Freiburg, 79104, Germany
| | | |
Collapse
|