1
|
Haddadi M, Haghi M, Rezaei N, Kiani Z, Akkülah T, Celik A. APOE and Alzheimer's disease: Pathologic clues from transgenic Drosophila melanogaster. Arch Gerontol Geriatr 2024; 123:105420. [PMID: 38537387 DOI: 10.1016/j.archger.2024.105420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/03/2024] [Accepted: 03/19/2024] [Indexed: 06/06/2024]
Abstract
Alzheimer's disease (AD) is one of the most common forms of neurodegenerative diseases. Apolipoprotein E4 (ApoE4) is the main genetic risk factor in the development of late-onset AD. However, the exact mechanism underlying ApoE4-mediated neurodegeneration remains unclear. We utilized Drosophila melanogaster to examine the neurotoxic effects of various human APOE isoforms when expressed specifically in glial and neural cells. We assessed impacts on mitochondrial dynamics, ER stress, lipid metabolism, and bio-metal ion concentrations in the central nervous system (CNS) of the transgenic flies. Dachshund antibody staining revealed a reduction in the number of Kenyon cells. Behavioral investigations including ethanol tolerance and learning and memory performance demonstrated neuronal dysfunction in APOE4-expressing larvae and adult flies. Transcription level of marf and drp-1 were found to be elevated in APOE4 flies, while atf4, atf6, and xbp-1 s showed down regulation. Enhanced concentrations of triglyceride and cholesterol in the CNS were observed in APOE4 transgenic flies, with especially pronounced effects upon glial-specific expression of the gene. Spectrophotometry of brain homogenate revealed enhanced Fe++ and Zn++ ion levels in conjunction with diminished Cu++ levels upon APOE4 expression. To explore therapeutic strategies, we subjected the flies to heat-shock treatment, aiming to activate heat-shock proteins (HSPs) and assess their potential to mitigate the neurotoxic effects of APOE isoforms. The results showed potential therapeutic benefits for APOE4-expressing flies, hinting at an ability to attenuate memory deterioration. Overall, our findings suggest that APOE4 can alter lipid metabolism, bio metal ion homeostasis, and disrupt the harmonious fission-fusion balance of neuronal and glial mitochondria, ultimately inducing ER stress. These alterations mirror the main clinical manifestations of AD in patients. Therefore, our work underscores the suitability of Drosophila as a fertile model for probing the pathological roles of APOE and furthering our understanding of diverse isoform-specific functions.
Collapse
Affiliation(s)
- Mohammad Haddadi
- Department of Biology, Faculty of Basic Sciences, University of Zabol, Zabol, Iran; Genetics and Non-communicable Diseases Research Center, Zahedan University of Medical Sciences, Zahedan, Iran.
| | - Mehrnaz Haghi
- Department of Biology, College of Sciences, Shiraz University, Shiraz, Iran
| | - Niloofar Rezaei
- Department of Biology, Faculty of Basic Sciences, University of Zabol, Zabol, Iran
| | - Zahra Kiani
- Department of Biology, Faculty of Basic Sciences, University of Zabol, Zabol, Iran
| | - Taha Akkülah
- Department of Molecular Biology and Genetics, Bogazici University, Istanbul, Turkiye; Center for Life Sciences and Technologies, Bogazici University, Istanbul, Turkiye
| | - Arzu Celik
- Department of Molecular Biology and Genetics, Bogazici University, Istanbul, Turkiye; Center for Life Sciences and Technologies, Bogazici University, Istanbul, Turkiye
| |
Collapse
|
2
|
Ushima R, Sugimoto R, Sano Y, Ogi H, Ino R, Hayakawa H, Shimada K, Tsuchida T. New Gall-Forming Insect Model, Smicronyx madaranus: Critical Stages for Gall Formation, Phylogeny, and Effectiveness of Gene Functional Analysis. INSECTS 2024; 15:63. [PMID: 38249069 PMCID: PMC10816246 DOI: 10.3390/insects15010063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/12/2024] [Accepted: 01/13/2024] [Indexed: 01/23/2024]
Abstract
The molecular mechanisms underlying insect gall formation remain unclear. A major reason for the inability to identify the responsible genes is that only a few systems can be experimentally validated in the laboratory. To overcome these problems, we established a new galling insect model, Smicronyx madaranus. Our manipulation experiments using nail polish sealing and insecticide treatment revealed an age-dependent change in gall formation by S. madaranus; adult females and larvae are responsible for gall induction and enlargement, respectively. Furthermore, it has been suggested that substances released during oviposition and larval feeding are involved in each process. Phylogenetic analysis showed that gall-forming weevils, including S. madaranus, belong to two distinct lineages that utilize different host plants. This may indicate that gall-forming traits evolved independently in these Smicronyx lineages. The efficacy of RNA interference (RNAi) in S. madaranus was confirmed by targeting the multicopper oxidase 2 gene. It is expected that the mechanisms of gall formation will be elucidated by a comprehensive functional analysis of candidate genes using RNAi and the S. madaranus galling system in the near future.
Collapse
Affiliation(s)
- Ryo Ushima
- Graduate School of Science and Engineering for Education, University of Toyama, Toyama City 930-8555, Toyama, Japan
| | - Ryoma Sugimoto
- Graduate School of Science and Engineering for Education, University of Toyama, Toyama City 930-8555, Toyama, Japan
| | - Yota Sano
- Graduate School of Science and Engineering for Education, University of Toyama, Toyama City 930-8555, Toyama, Japan
| | - Hinako Ogi
- School of Science, University of Toyama, Toyama City 930-8555, Toyama, Japan
| | - Ryuichiro Ino
- School of Science, University of Toyama, Toyama City 930-8555, Toyama, Japan
| | - Hiroshi Hayakawa
- Museum of Natural and Environmental History, Shizuoka, Shizuoka City 422-8017, Shizuoka, Japan
| | - Keisuke Shimada
- Ishikawa Museum of Natural History, Ri-441, Choshi-Machi, Kanazawa City 920-1147, Ishikawa, Japan
| | - Tsutomu Tsuchida
- Faculty of Science, Academic Assembly, University of Toyama, 3190 Gofuku, Toyama City 930-8555, Toyama, Japan
| |
Collapse
|
3
|
Abstract
Many insects contain endosymbiotic bacteria within their bodies. In multiple endosymbiotic systems comprising two or more symbionts, each of the symbionts is generally localized in a different host cell or tissue. Bemisia tabaci (Sweet potato whitefly) possesses a unique endosymbiotic system where co-obligate symbionts are localized in the same bacteriocytes. Using fluorescence in situ hybridization, we found that endosymbionts in B. tabaci MEAM1 occupy distinct subcellular habitats, or niches, within a single bacteriocyte. Hamiltonella was located adjacent to the nucleus of the bacteriocyte, while Portiera was present in the cytoplasm surrounding Hamiltonella. Immunohistochemical analysis revealed that the endoplasmic reticulum separates the two symbionts. Habitat segregation was maintained for longer durations in female bacteriocytes. The same segregation was observed in three genetically distinct B. tabaci groups (MEAM1, MED Q1, and Asia II 6) and Trialeurodes vaporariorum, which shared a common ancestor with Bemisia over 80 million years ago, even though the coexisting symbionts and the size of bacteriocytes were different. These results suggest that the habitat segregation system existed in the common ancestor and was conserved in both lineages, despite different bacterial partners coexisting with Portiera. Our findings provide insights into the evolution and maintenance of complex endosymbiotic systems and highlight the importance of organelles for the construction of separate niches for endosymbionts. IMPORTANCE Co-obligate endosymbionts in B. tabaci are exceptionally localized within the same bacteriocyte (a specialized cell for endosymbiosis), but the underlying mechanism for their coexistence remains largely unknown. This study provides evidence for niche segregation at the subcellular level between the two symbionts. We showed that the endoplasmic reticulum is a physical barrier separating the two species. Despite differences in co-obligate partners, this subcellular niche segregation was conserved across various whitefly species. The physical proximity of symbionts may enable the efficient biosynthesis of essential nutrients via shared metabolic pathways. The expression "Good fences make good neighbors" appears to be true for insect endosymbiotic systems.
Collapse
|
4
|
Trojanowicz R, Vestri A, Rippa M, Zyss J, Matczyszyn K, Petti L. DNA Antiadhesive Layer for Reusable Plasmonic Sensors: Nanostructure Pitch Effect. ACS OMEGA 2022; 7:31682-31690. [PMID: 36120011 PMCID: PMC9475616 DOI: 10.1021/acsomega.2c01370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
A long-term reusable sensor that provides the opportunity to easily regenerate the active surface and minimize the occurrence of undesired absorption events is an appealing solution that helps to cut down the costs and improve the device performances. Impressive advances have been made in the past years concerning the development of novel cutting-edge sensors, but the reusability can currently represent a challenge. Direct shielding of the sensor surface is not always applicable, because it can impact the device performance. This study reports an antiadhesive layer (AAL) made of 90 mg/mL DNA sodium salt from salmon testes (ssstDNA) for passivating gold plasmonic sensor surfaces. Our gold two-dimensional (2D) nanostructured plasmonic metasurfaces modified with AAL were used for DNA quantification. AAL is thin enough that the plasmonic sensor remains sensitive to subsequent deposition of DNA, which serves as an analyte. AAL protects the gold surface from unwanted nonspecific adsorption by enabling wash-off of the deposited analyte after analysis and thus recovery of the LSPR peak position (rLSPR). The calibration curve obtained on a single nanostructure (Achiral Octupolar, 100 nm pitch) gave an LOD = 105 ng/mL and an extraordinary dynamic range, performances comparable or superior to those of commercial UV-vis spectrometers for acid nucleic dosage. Two different analytes were tested: ssstDNA (∼2000 bp) in deionized water and double-strand DNA (dsDNA) of 546-1614 bp in 100 mM Tris buffer and 10 mM MgCl2. The two nanostructures (Achiral Octupolar 25 and 100) were found to have the same sensitivity to DNA in deionized water but different sensitivity to DNA in a salt/buffer solution, opening a potential for solute discrimination. To the best of our knowledge, this is the first report on the use of AAL made of several kilobase-pairs-long dsDNA to produce a reusable plasmonic sensor. The working principle and limitations are drawn based on the LSPR and SERS study.
Collapse
Affiliation(s)
- Remigiusz
K. Trojanowicz
- Advanced
Materials Engineering and Modelling Group, Faculty of Chemistry, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland
| | - Ambra Vestri
- Institute
of Applied Sciences and Intelligent Systems “E. Caianiello”
of CNR, 80072 Pozzuoli, Italy
| | - Massimo Rippa
- Institute
of Applied Sciences and Intelligent Systems “E. Caianiello”
of CNR, 80072 Pozzuoli, Italy
| | - Joseph Zyss
- LUMIN
Laboratory and Institut d’Alembert, Ecole Normale Supérieure
Paris-Saclay, CNRS, Université Paris-Saclay, 4, avenue des Sciences, 91190 Gif-sur-Yvette, France
| | - Katarzyna Matczyszyn
- Advanced
Materials Engineering and Modelling Group, Faculty of Chemistry, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland
| | - Lucia Petti
- Institute
of Applied Sciences and Intelligent Systems “E. Caianiello”
of CNR, 80072 Pozzuoli, Italy
| |
Collapse
|
5
|
Sergaki C, Anwar S, Fritzsche M, Mate R, Francis RJ, MacLellan-Gibson K, Logan A, Amos GCA. Developing whole cell standards for the microbiome field. MICROBIOME 2022; 10:123. [PMID: 35945640 PMCID: PMC9361656 DOI: 10.1186/s40168-022-01313-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 06/24/2022] [Indexed: 05/08/2023]
Abstract
BACKGROUND Effective standardisation of the microbiome field is essential to facilitate global translational research and increase the reproducibility of microbiome studies. In this study, we describe the development and validation of a whole cell reference reagent specific to the gut microbiome by the UK National Institute for Biological Standards and Control. We also provide and test a two-step reporting framework to allow microbiome researchers to quickly and accurately validate choices of DNA extraction, sequencing, and bioinformatic pipelines. RESULTS Using 20 strains that are commonly found in the gut, we developed a whole cell reference reagent (WC-Gut RR) for the evaluation of the DNA extraction protocols commonly used in microbiome pipelines. DNA was first analysed using the physicochemical measures of yield, integrity, and purity, which demonstrated kits widely differed in the quality of the DNA they produced. Importantly, the combination of the WC-Gut RR and the three physicochemical measures allowed us to differentiate clearly between kit performance. We next assessed the ability of WC-Gut RR to evaluate kit performance in the reconstitution of accurate taxonomic profiles. We applied a four-measure framework consisting of Sensitivity, false-positive relative abundance (FPRA), Diversity, and Similarity as previously described for DNA reagents. Using the WC-Gut RR and these four measures, we could reliably identify the DNA extraction kits' biases when using with both 16S rRNA sequencing and shotgun sequencing. Moreover, when combining this with complementary DNA standards, we could estimate the relative bias contributions of DNA extraction kits vs bioinformatic analysis. Finally, we assessed WC-Gut RR alongside other commercially available reagents. The analysis here clearly demonstrates that reagents of lower complexity, not composed of anaerobic and hard-to-lyse strains from the gut, can artificially inflate the performance of microbiome DNA extraction kits and bioinformatic pipelines. CONCLUSIONS We produced a complex whole cell reagent that is specific for the gut microbiome and can be used to evaluate and benchmark DNA extractions in microbiome studies. Used alongside a DNA standard, the NIBSC DNA-Gut-Mix RR helps estimating where biases occur in microbiome pipelines. In the future, we aim to establish minimum thresholds for data quality through an interlaboratory collaborative study. Video Abstract.
Collapse
Affiliation(s)
- Chrysi Sergaki
- Division of Bacteriology, National Institute for Biological Standards and Control, Potters Bar, Hertfordshire, EN6 3QG, UK.
| | - Saba Anwar
- Division of Bacteriology, National Institute for Biological Standards and Control, Potters Bar, Hertfordshire, EN6 3QG, UK
| | - Martin Fritzsche
- Division of Analytical and Biological Sciences, National Institute for Biological Standards and Control, Potters Bar, Hertfordshire, EN6 3QG, UK
| | - Ryan Mate
- Division of Analytical and Biological Sciences, National Institute for Biological Standards and Control, Potters Bar, Hertfordshire, EN6 3QG, UK
| | - Robert J Francis
- Division of Analytical and Biological Sciences, National Institute for Biological Standards and Control, Potters Bar, Hertfordshire, EN6 3QG, UK
| | - Kirsty MacLellan-Gibson
- Division of Analytical and Biological Sciences, National Institute for Biological Standards and Control, Potters Bar, Hertfordshire, EN6 3QG, UK
| | - Alastair Logan
- Division of Bacteriology, National Institute for Biological Standards and Control, Potters Bar, Hertfordshire, EN6 3QG, UK
| | - Gregory C A Amos
- Division of Bacteriology, National Institute for Biological Standards and Control, Potters Bar, Hertfordshire, EN6 3QG, UK
| |
Collapse
|
6
|
Nishide Y, Oguchi K, Murakami M, Moriyama M, Koga R, Fukatsu T. Endosymbiotic bacteria of the boar louse Haematopinus apri (Insecta: Phthiraptera: Anoplura). Front Microbiol 2022; 13:962252. [PMID: 36003934 PMCID: PMC9393614 DOI: 10.3389/fmicb.2022.962252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 07/08/2022] [Indexed: 11/13/2022] Open
Abstract
Insects exclusively feeding on vertebrate blood are usually dependent on symbiotic bacteria for provisioning of B vitamins. Among them, sucking lice are prominent in that their symbiotic bacteria as well as their symbiotic organs exhibit striking diversity. Here we investigated the bacterial diversity associated with the boar louse Haematopinus apri in comparison with the hog louse Haematopinus suis. Amplicon sequencing analysis identified the primary endosymbiont predominantly detected from all populations of H. apri with some minor secondary bacterial associates. Sequencing and phylogenetic analysis of bacterial 16S rRNA gene confirmed that the endosymbionts of the boar louse H. apri, the hog louse H. suis and the cattle louse Haematopinus eurysternus form a distinct clade in the Gammaproteobacteria. The endosymbiont clade of Haematopinus spp. was phylogenetically distinct from the primary endosymbionts of other louse lineages. Fluorescence in situ hybridization visualized the endosymbiont localization within midgut epithelium, ovarial ampulla and posterior oocyte of H. apri, which were substantially the same as the endosymbiont localization previously described in H. suis and H. eurysternus. Mitochondrial haplotype analysis revealed that, although the domestic pig was derived from the wild boar over the past 8,000 years of human history, the populations of H. apri constituted a distinct sister clade to the populations of H. suis. Based on these results, we discussed possible evolutionary trajectories of the boar louse, the hog louse and their endosymbionts in the context of swine domestication. We proposed ‘Candidatus Haematopinicola symbiotica’ for the distinct clade of the endosymbionts of Haematopinus spp.
Collapse
Affiliation(s)
- Yudai Nishide
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba, Japan
- *Correspondence: Yudai Nishide,
| | - Kohei Oguchi
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
- Misaki Marine Biological Station, School of Science, The University of Tokyo, Miura, Japan
| | - Maria Murakami
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba, Japan
| | - Minoru Moriyama
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Ryuichi Koga
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Takema Fukatsu
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
- Takema Fukatsu,
| |
Collapse
|
7
|
Widerspick L, Vázquez CA, Niemetz L, Heung M, Olal C, Bencsik A, Henkel C, Pfister A, Brunetti JE, Kucinskaite-Kodze I, Lawrence P, Muñoz Fontela C, Diederich S, Escudero-Pérez B. Inactivation Methods for Experimental Nipah Virus Infection. Viruses 2022; 14:v14051052. [PMID: 35632791 PMCID: PMC9145063 DOI: 10.3390/v14051052] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 04/29/2022] [Accepted: 05/12/2022] [Indexed: 02/07/2023] Open
Abstract
Nipah virus (NiV) is an emerging zoonotic paramyxovirus that causes severe disease in humans and livestock. Due to its high pathogenicity in humans and the lack of available vaccines and therapeutics, NiV needs to be handled in biosafety level 4 (BSL-4) laboratories. Safe inactivation of samples containing NiV is thus necessary to allow further processing in lower containment areas. To date, there is only limited information available on NiV inactivation methods validated by BSL-4 facilities that can be used as a reference. Here, we compare some of the most common inactivation methods in order to evaluate their efficacy at inactivating NiV in infected cells, supernatants and organs. Thus, several physical and chemical inactivation methods, and combinations thereof, were assessed. Viral replication was monitored for 3 weeks and NiV presence was assessed by RT-qPCR, plaque assay and indirect immunofluorescence. A total of nineteen methods were shown to reduce NiV infectious particles in cells, supernatants and organs to undetectable levels. Therefore, we provide a list of methods for the safe and efficient inactivation of NiV.
Collapse
Affiliation(s)
- Lina Widerspick
- WHO Collaborating Centre for Arbovirus and Haemorrhagic Fever Reference and Research, Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany; (L.W.); (L.N.); (M.H.); (C.O.); (A.B.); (C.H.); (A.P.); (J.E.B.); (C.M.F.)
- German Center for Infection Research (DZIF), Partner Site Hamburg-Luebeck-Borstel-Reims, 38124 Braunschweig, Germany
| | - Cecilia Alejandra Vázquez
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires 1428, Argentina;
| | - Linda Niemetz
- WHO Collaborating Centre for Arbovirus and Haemorrhagic Fever Reference and Research, Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany; (L.W.); (L.N.); (M.H.); (C.O.); (A.B.); (C.H.); (A.P.); (J.E.B.); (C.M.F.)
- German Center for Infection Research (DZIF), Partner Site Hamburg-Luebeck-Borstel-Reims, 38124 Braunschweig, Germany
| | - Michelle Heung
- WHO Collaborating Centre for Arbovirus and Haemorrhagic Fever Reference and Research, Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany; (L.W.); (L.N.); (M.H.); (C.O.); (A.B.); (C.H.); (A.P.); (J.E.B.); (C.M.F.)
- German Center for Infection Research (DZIF), Partner Site Hamburg-Luebeck-Borstel-Reims, 38124 Braunschweig, Germany
| | - Catherine Olal
- WHO Collaborating Centre for Arbovirus and Haemorrhagic Fever Reference and Research, Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany; (L.W.); (L.N.); (M.H.); (C.O.); (A.B.); (C.H.); (A.P.); (J.E.B.); (C.M.F.)
- German Center for Infection Research (DZIF), Partner Site Hamburg-Luebeck-Borstel-Reims, 38124 Braunschweig, Germany
| | - András Bencsik
- WHO Collaborating Centre for Arbovirus and Haemorrhagic Fever Reference and Research, Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany; (L.W.); (L.N.); (M.H.); (C.O.); (A.B.); (C.H.); (A.P.); (J.E.B.); (C.M.F.)
- German Center for Infection Research (DZIF), Partner Site Hamburg-Luebeck-Borstel-Reims, 38124 Braunschweig, Germany
| | - Christoph Henkel
- WHO Collaborating Centre for Arbovirus and Haemorrhagic Fever Reference and Research, Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany; (L.W.); (L.N.); (M.H.); (C.O.); (A.B.); (C.H.); (A.P.); (J.E.B.); (C.M.F.)
- German Center for Infection Research (DZIF), Partner Site Hamburg-Luebeck-Borstel-Reims, 38124 Braunschweig, Germany
| | - Anneke Pfister
- WHO Collaborating Centre for Arbovirus and Haemorrhagic Fever Reference and Research, Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany; (L.W.); (L.N.); (M.H.); (C.O.); (A.B.); (C.H.); (A.P.); (J.E.B.); (C.M.F.)
- German Center for Infection Research (DZIF), Partner Site Hamburg-Luebeck-Borstel-Reims, 38124 Braunschweig, Germany
| | - Jesús Emanuel Brunetti
- WHO Collaborating Centre for Arbovirus and Haemorrhagic Fever Reference and Research, Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany; (L.W.); (L.N.); (M.H.); (C.O.); (A.B.); (C.H.); (A.P.); (J.E.B.); (C.M.F.)
- German Center for Infection Research (DZIF), Partner Site Hamburg-Luebeck-Borstel-Reims, 38124 Braunschweig, Germany
| | | | - Philip Lawrence
- Science and Humanities Confluence Research Center (EA 1598), Catholic University of Lyon (UCLy), 69002 Lyon, France;
| | - César Muñoz Fontela
- WHO Collaborating Centre for Arbovirus and Haemorrhagic Fever Reference and Research, Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany; (L.W.); (L.N.); (M.H.); (C.O.); (A.B.); (C.H.); (A.P.); (J.E.B.); (C.M.F.)
- German Center for Infection Research (DZIF), Partner Site Hamburg-Luebeck-Borstel-Reims, 38124 Braunschweig, Germany
| | - Sandra Diederich
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany;
| | - Beatriz Escudero-Pérez
- WHO Collaborating Centre for Arbovirus and Haemorrhagic Fever Reference and Research, Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany; (L.W.); (L.N.); (M.H.); (C.O.); (A.B.); (C.H.); (A.P.); (J.E.B.); (C.M.F.)
- German Center for Infection Research (DZIF), Partner Site Hamburg-Luebeck-Borstel-Reims, 38124 Braunschweig, Germany
- Correspondence:
| |
Collapse
|
8
|
Kumar G, Bhadury P. Effect of different fixatives on yield of DNA from human fecal samples. IOP SCINOTES 2022. [DOI: 10.1088/2633-1357/ac6d2e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Abstract
Fixation and transportation of human fecal samples is often difficult in geographically remote locations due to unavailability of options for immediate freezing. In this study effectiveness of five different chemical fixatives were evaluated on human fecal samples including for supernatant using RNAprotect Bacteria Reagent (Qiagen), 95% ethanol, acetone, TRIzol and a mixture of all these fixatives, in addition to immediate freezing. DNA was extracted from the fecal samples using QIAamp Fast Stool DNA Minikit as well as quality and yield of extracted DNA was monitored for a period of 30 days. It was found that except TRIzol, all other preservatives showed good DNA quality and yield for a period of one month based on agarose gel electrophoresis, Nanodrop and Qubit measurements. It was also found that supernatant of fecal sample fixed with RNAprotect Bacteria Reagent gave reliable DNA yield in comparison to other various fixatives. The study also revealed that quality and yield of DNA from fecal samples fixed in acetone were very promising since it is a cost-effective fixative. Overall, the study shows future applicability for downstream DNA analyses of the RNAprotect Bacteria Reagent, 95% ethanol, acetone, and a mixture of all these fixatives for fixing human fecal samples to be collected from geographically remote locations or in regions where available resources are largely limited.
Collapse
|
9
|
Nakashita A, Wang Y, Lu S, Shimada K, Tsuchida T. Ecology and genetic structure of the invasive spotted lanternfly Lycorma delicatula in Japan where its distribution is slowly expanding. Sci Rep 2022; 12:1543. [PMID: 35105894 PMCID: PMC8807778 DOI: 10.1038/s41598-022-05541-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 01/10/2022] [Indexed: 11/15/2022] Open
Abstract
Lycorma delicatula has expanded its distribution from China to Japan, Korea, and the USA, causing significant economic damage to vineyards in the latter two countries. However, in Japan, L. delicatula has long been limited to the Hokuriku region, central Japan, and no significant damage to crops has been reported since it was first reported there in 2009. Manipulation experiments and field observations in the Hokuriku region, where winter precipitation is extremely high, revealed that egg numbers and hatchability were significantly reduced in exposed places, especially when wax was excluded from the egg mass. Phylogenetic analysis showed that the population in Japan could be divided into at least two groups. Most L. delicatula samples from Hokuriku formed a clade with those from northwestern China. Samples from Okayama, where the distribution of L. delicatula was recently confirmed, had the same haplotype as those from central China, Korea, and the USA. These results suggest that environmental factors and genetic characteristics of L. delicatula are involved in the relatively slow expansion of its distribution in Hokuriku. Conversely, in Okayama, where precipitation is relatively low, the rapidly increasing haplotype in Korea and the USA was detected, leading to concerns that its distribution will expand further.
Collapse
Affiliation(s)
- Ayano Nakashita
- School of Science, University of Toyama, Toyama City, Toyama, 930-8555, Japan
| | - Yayun Wang
- School of Science, University of Toyama, Toyama City, Toyama, 930-8555, Japan
| | - Sihan Lu
- College of Protection, Key Laboratory for Biology and Sustainable Management of Plant Diseases and Pest of Anhui Higher Education Institutes, Anhui Agricultural University, Hefei, 230036, China
| | - Keisuke Shimada
- Ishikawa Museum of Natural History, Ri-441, Choshi-machi, Kanazawa City, Ishikawa, 920-1147, Japan
| | - Tsutomu Tsuchida
- Faculty of Science, Academic Assembly, University of Toyama, 3190 Gofuku, Toyama City, Toyama, 930-8555, Japan.
| |
Collapse
|
10
|
Dedow LK, Oren E, Braybrook SA. Fake news blues: A GUS staining protocol to reduce false-negative data. PLANT DIRECT 2022; 6:e367. [PMID: 35198848 PMCID: PMC8842172 DOI: 10.1002/pld3.367] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 11/18/2021] [Accepted: 11/23/2021] [Indexed: 06/14/2023]
Abstract
The β-glucuronidase gene, uidA (GUS), has remained a favorite reporter gene in plants since its introduction in 1987 for its stability and versatility in a variety of fluorometric, spectrophotometric, and histochemical techniques. One of the most popular uses is as a reporter gene for visualizing endogenous promoter activities within plant tissues. Despite this popularity, specific protocols for minimizing nonrepresentative staining patterns, including false negatives, in challenging tissue types are not common. This became a large issue during our work on dark-grown Arabidopsis hypocotyls, and we set out to develop a protocol that would ensure accurate staining in a tissue that is biologically resistant to reagent penetration. Through extensive testing using a variety of constitutive and endogenous promoter::GUS fusion lines, we have developed an optimized GUS staining protocol that combines the use of acetone as a fixative, deliberate physical damage, and proper positive and negative controls to help ensure accurate staining along the hypocotyl while minimizing false negatives. Hopefully, our recommendations will allow for improved staining that more accurately reflects the true activity of cloned endogenous promoters and thus facilitate a more accurate understanding of promoter activity in Arabidopsis hypocotyls and other hard-to-stain tissues.
Collapse
Affiliation(s)
- Lauren K. Dedow
- Department of Molecular, Cell and Developmental BiologyUniversity of California Los AngelesLos AngelesCAUSA
| | - Emily Oren
- Department of Molecular, Cell and Developmental BiologyUniversity of California Los AngelesLos AngelesCAUSA
| | - Siobhan A. Braybrook
- Department of Molecular, Cell and Developmental BiologyUniversity of California Los AngelesLos AngelesCAUSA
| |
Collapse
|
11
|
Inui N, Oguchi K, Shinji J, Okanishi M, Shimomura M, Miura T. Parasitism-Induced Intersexuality in a Sexually Dimorphic Varunid Crab, Ptychognathus ishii (Decapoda: Varunidae). Zoolog Sci 2021; 38:416-426. [PMID: 34664916 DOI: 10.2108/zs210049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 07/11/2021] [Indexed: 11/17/2022]
Abstract
Although many animals that perform sexual reproduction exhibit sexual dimorphism, individuals with intersex traits between the traits of males and females appear in some species, depending on environmental factors. Ptychognathus ishii, a varunid crab, exhibits distinctive sexual dimorphism in the morphology of its abdomen, chelipeds and setal tufts on the chelipeds. In this study, however, we report for the first time that intersex individuals with intermediate characters between those of males and females were occasionally found in wild populations. Morphological features of intersex individuals are described. Their taxonomic positions are identified based on DNA sequences of part of the mitochondrial cytochrome c oxidase I (COI) gene. It was shown that the intersexuality was induced by entoniscid parasites, because all intersex individuals were parasitized by entoniscid isopods, identified as Entionella sp. The apparent correlation between parasitism and morphological anomalies suggests that the parasitic isopods affect physiological conditions, leading to the feminization of male hosts.
Collapse
Affiliation(s)
- Naoto Inui
- Misaki Marine Biological Station, School of Science, The University of Tokyo, Misaki, Miura, Kanagawa 238-0225, Japan
| | - Kohei Oguchi
- Misaki Marine Biological Station, School of Science, The University of Tokyo, Misaki, Miura, Kanagawa 238-0225, Japan.,National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8566, Japan
| | - Junpei Shinji
- Misaki Marine Biological Station, School of Science, The University of Tokyo, Misaki, Miura, Kanagawa 238-0225, Japan.,Center for Ocean Literacy and Education, Graduate School of Education, The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Masanori Okanishi
- Misaki Marine Biological Station, School of Science, The University of Tokyo, Misaki, Miura, Kanagawa 238-0225, Japan
| | - Michitaka Shimomura
- Seto Marine Biological Laboratory, Kyoto University, Nishimuro-gun, Wakayama 649-2211, Japan
| | - Toru Miura
- Misaki Marine Biological Station, School of Science, The University of Tokyo, Misaki, Miura, Kanagawa 238-0225, Japan,
| |
Collapse
|
12
|
Marquina D, Buczek M, Ronquist F, Łukasik P. The effect of ethanol concentration on the morphological and molecular preservation of insects for biodiversity studies. PeerJ 2021; 9:e10799. [PMID: 33614282 PMCID: PMC7883690 DOI: 10.7717/peerj.10799] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 12/29/2020] [Indexed: 12/20/2022] Open
Abstract
Traditionally, insects collected for scientific purposes have been dried and pinned, or preserved in 70% ethanol. Both methods preserve taxonomically informative exoskeletal structures well but are suboptimal for preserving DNA for molecular biology. Highly concentrated ethanol (95–100%), preferred as a DNA preservative, has generally been assumed to make specimens brittle and prone to breaking. However, systematic studies on the correlation between ethanol concentration and specimen preservation are lacking. Here, we tested how preservative ethanol concentration in combination with different sample handling regimes affect the integrity of seven insect species representing four orders, and differing substantially in the level of sclerotization. After preservation and treatments (various levels of disturbance), we counted the number of appendages (legs, wings, antennae, or heads) that each specimen had lost. Additionally, we assessed the preservation of DNA after long-term storage by comparing the ratio of PCR amplicon copy numbers to an added artificial standard. We found that high ethanol concentrations indeed induce brittleness in insects. However, the magnitude and nature of the effect varied strikingly among species. In general, ethanol concentrations at or above 90% made the insects more brittle, but for species with robust, thicker exoskeletons, this did not translate to an increased loss of appendages. Neither freezing the samples nor drying the insects after immersion in ethanol had a negative effect on the retention of appendages. However, the morphology of the insects was severely damaged if they were allowed to dry. We also found that DNA preserves less well at lower ethanol concentrations when stored at room temperature for an extended period. However, the magnitude of the effect varies among species; the concentrations at which the number of COI amplicon copies relative to the standard was significantly decreased compared to 95% ethanol ranged from 90% to as low as 50%. While higher ethanol concentrations positively affect long-term DNA preservation, there is a clear trade-off between preserving insects for morphological examination and genetic analysis. The optimal ethanol concentration for the latter is detrimental for the former, and vice versa. These trade-offs need to be considered in large insect biodiversity surveys and other projects aiming to combine molecular work with traditional morphology-based characterization of collected specimens.
Collapse
Affiliation(s)
- Daniel Marquina
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm, Sweden.,Department of Zoology, Stockholm University, Stockholm, Sweden
| | - Mateusz Buczek
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Krakow, Poland
| | - Fredrik Ronquist
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm, Sweden
| | - Piotr Łukasik
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm, Sweden.,Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Krakow, Poland
| |
Collapse
|
13
|
Haghi M, Masoudi R, Najibi SM. Distinctive alteration in the expression of autophagy genes in Drosophila models of amyloidopathy and tauopathy. Ups J Med Sci 2020; 125:265-273. [PMID: 32657227 PMCID: PMC7594860 DOI: 10.1080/03009734.2020.1785063] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is one the most common types of dementia. Plaques of amyloid beta and neurofibrillary tangles of tau are two major hallmarks of AD. Metabolism of these two proteins, in part, depends on autophagy pathways. Autophagy dysfunction and protein aggregation in AD may be involved in a vicious circle. The aim of this study was to investigate whether tau or amyloid beta 42 (Aβ42) could affect expression of autophagy genes, and whether they exert their effects in the same way or not. METHODS Expression levels of some autophagy genes, Hook, Atg6, Atg8, and Cathepsin D, were measured using quantitative PCR in transgenic Drosophila melanogaster expressing either Aβ42 or Tau R406W. RESULTS We found that Hook mRNA levels were downregulated in Aβ42-expressing flies both 5 and 25 days old, while they were increased in 25-day-old flies expressing Tau R406W. Both Atg6 and Atg8 were upregulated at day 5 and then downregulated in 25-day-old flies expressing either Aβ42 or Tau R406W. Cathepsin D expression levels were significantly increased in 5-day-old flies expressing Tau R406W, while there was no significant change in the expression levels of this gene in 5-day-old flies expressing Aβ42. Expression levels of Cathepsin D were significantly decreased in 25-day-old transgenic flies expressing Tau R406W or Aβ42. CONCLUSION We conclude that both Aβ42 and Tau R406W may affect autophagy through dysregulation of autophagy genes. Interestingly, it seems that these pathological proteins exert their toxic effects on autophagy through different pathways and independently.
Collapse
Affiliation(s)
- Mehrnaz Haghi
- Department of Biology, College of Sciences, Shiraz University, Shiraz, Iran
| | - Raheleh Masoudi
- Department of Biology, College of Sciences, Shiraz University, Shiraz, Iran
- CONTACT Raheleh Masoudi Department of Biology, College of Sciences, Shiraz University, Shiraz, Iran
| | - Seyed Morteza Najibi
- Center for Molecular Protein Science, Lund University, Lund, Sweden
- Department of Statistics, College of Sciences, Shiraz University, Shiraz, Iran
| |
Collapse
|
14
|
Walker DM, Hill AJ, Albecker MA, McCoy MW, Grisnik M, Romer A, Grajal-Puche A, Camp C, Kelehear C, Wooten J, Rheubert J, Graham SP. Variation in the Slimy Salamander (Plethodon spp.) Skin and Gut-Microbial Assemblages Is Explained by Geographic Distance and Host Affinity. MICROBIAL ECOLOGY 2020; 79:985-997. [PMID: 31802185 DOI: 10.1007/s00248-019-01456-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 10/23/2019] [Indexed: 06/10/2023]
Abstract
A multicellular host and its microbial communities are recognized as a metaorganism-a composite unit of evolution. Microbial communities have a variety of positive and negative effects on the host life history, ecology, and evolution. This study used high-throughput amplicon sequencing to characterize the complete skin and gut microbial communities, including both bacteria and fungi, of a terrestrial salamander, Plethodon glutinosus (Family Plethodontidae). We assessed salamander populations, representing nine mitochondrial haplotypes ('clades'), for differences in microbial assemblages across 13 geographic locations in the Southeastern United States. We hypothesized that microbial assemblages were structured by both host factors and geographic distance. We found a strong correlation between all microbial assemblages at close geographic distances, whereas, as spatial distance increases, the patterns became increasingly discriminate. Network analyses revealed that gut-bacterial communities have the highest degree of connectedness across geographic space. Host salamander clade was explanatory of skin-bacterial and gut-fungal assemblages but not gut-bacterial assemblages, unless the latter were analyzed within a phylogenetic context. We also inferred the function of gut-fungal assemblages to understand how an understudied component of the gut microbiome may influence salamander life history. We concluded that dispersal limitation may in part describe patterns in microbial assemblages across space and also that the salamander host may select for skin and gut communities that are maintained over time in closely related salamander populations.
Collapse
Affiliation(s)
- Donald M Walker
- Department of Biology, Middle Tennessee State University, PO Box 60, Murfreesboro, TN, 37132, USA.
| | - Aubree J Hill
- Department of Biology, Tennessee Technological University, 1100 N. Dixie Ave, Cookeville, TN, 38505, USA
| | - Molly A Albecker
- Department of Biology, East Carolina University, Greenville, NC, 27858, USA
| | - Michael W McCoy
- Department of Biology, East Carolina University, Greenville, NC, 27858, USA
| | - Matthew Grisnik
- Department of Biology, Middle Tennessee State University, PO Box 60, Murfreesboro, TN, 37132, USA
| | - Alexander Romer
- Department of Biology, Middle Tennessee State University, PO Box 60, Murfreesboro, TN, 37132, USA
| | - Alejandro Grajal-Puche
- Department of Biology, Middle Tennessee State University, PO Box 60, Murfreesboro, TN, 37132, USA
| | - Carlos Camp
- Department of Biology, Piedmont College, 1021 Central Avenue, Demorest, GA, 30535, USA
| | - Crystal Kelehear
- Smithsonian Tropical Research Institute, Apartado, 0843-03092, Balboa, Ancon, Panama, Republic of Panama
- Department of Biology, Geology and Physical Sciences, Sul Ross State University, Alpine, TX, 79832, USA
| | - Jessica Wooten
- Department of Biology, Piedmont College, 1021 Central Avenue, Demorest, GA, 30535, USA
| | - Justin Rheubert
- Department of Natural Sciences, The University of Findlay, 1000 N. Main St, Findlay, OH, 45840, USA
| | - Sean P Graham
- Department of Biology, Geology and Physical Sciences, Sul Ross State University, Alpine, TX, 79832, USA
| |
Collapse
|
15
|
Oishi S, Moriyama M, Koga R, Fukatsu T. Morphogenesis and development of midgut symbiotic organ of the stinkbug Plautia stali (Hemiptera: Pentatomidae). ZOOLOGICAL LETTERS 2019; 5:16. [PMID: 31164991 PMCID: PMC6544922 DOI: 10.1186/s40851-019-0134-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 05/19/2019] [Indexed: 06/09/2023]
Abstract
Diverse insects are intimately associated with microbial symbionts, which play a variety of biological roles in their adaptation to and survival in the natural environment. Such insects often possess specialized organs for hosting the microbial symbionts. What developmental processes and mechanisms underlie the formation of the host organs for microbial symbiosis is of fundamental biological interest but poorly understood. Here we investigate the morphogenesis of the midgut symbiotic organ and the process of symbiont colonization therein during the developmental course of the stinkbug Plautia stali. Upon hatching, the midgut is a simple and smooth tube. Subsequently, symbiont colonization to the posterior midgut occurs, and thickening and folding of the midgut epithelium proceed during the first instar period. By the second instar, rudimentary crypts have formed, and their inner cavities are colonized by the symbiotic bacteria. From the second instar to the fourth instar, while the alimentary tract grows and the posterior midgut is established as the symbiotic organ with numerous crypts, the anterior midgut and the posterior midgut are structurally and functionally isolated by a strong constriction in the middle. By the early fifth instar, the midgut symbiotic organ attains the maximal length, but toward the mid fifth instar, the basal region of each crypt starts to constrict and narrow, which deforms the midgut symbiotic organ as a whole into a shorter, thicker and twisted shape. By the late fifth instar to adulthood, the crypts are constricted off, by which the symbiotic bacteria are confined in the crypt cavities and isolated from the midgut main tract, and concurrently, the strong midgut constriction in the middle becomes loose and open, by which the food flow from the anterior midgut to the posterior midgut recovers. This study provides the most detailed and comprehensive descriptions ever reported on the morphogenesis of the symbiotic organ and the process of symbiont colonization in an obligatory insect-bacterium gut symbiotic system. Considering that P. stali is recently emerging as a useful model system for experimentally studying the intimate insect-microbe gut symbiosis, the knowledge obtained in this study establishes the foundation for the further development of this research field.
Collapse
Affiliation(s)
- Sayumi Oishi
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, 113-0033 Japan
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, 305-8566 Japan
| | - Minoru Moriyama
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, 305-8566 Japan
- Computational Bio Big Data Open Innovation Laboratory (CBBD-OIL), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, 305-8566 Japan
| | - Ryuichi Koga
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, 305-8566 Japan
| | - Takema Fukatsu
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, 113-0033 Japan
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, 305-8566 Japan
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, 305-8572 Japan
| |
Collapse
|
16
|
Sardenne F, Bodin N, Metral L, Crottier A, Le Grand F, Bideau A, Brisset B, Bourjea J, Saraux C, Bonhommeau S, Kerzérho V, Bernard S, Rouyer T. Effects of extraction method and storage of dry tissue on marine lipids and fatty acids. Anal Chim Acta 2019; 1051:82-93. [DOI: 10.1016/j.aca.2018.11.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 10/29/2018] [Accepted: 11/05/2018] [Indexed: 11/30/2022]
|
17
|
Charvet S, Riemann L, Alneberg J, Andersson AF, von Borries J, Fischer U, Labrenz M. AFISsys - An autonomous instrument for the preservation of brackish water samples for microbial metatranscriptome analysis. WATER RESEARCH 2019; 149:351-361. [PMID: 30469021 DOI: 10.1016/j.watres.2018.11.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 11/02/2018] [Accepted: 11/09/2018] [Indexed: 06/09/2023]
Abstract
Microbial communities are the main drivers of biogeochemical cycling of multiple elements sustaining life in the ocean. The rapidity of their response to stressors and abrupt environmental changes implies that even fast and infrequent events can affect local transformations of organic matter and nutrients. Modern molecular techniques now allow for monitoring of microbial activities and functions in the environment through the analysis of genes and expressed genes contained in natural microbial assemblages. However, messenger RNA turnover in cells can be as short as 30 seconds and stability varies greatly between transcripts. Sampling of in situ communities involves an inevitable delay between the collection of seawater and the extraction of its RNA, leaving the bacterial communities plenty of time to alter their gene expression. The characteristics of microbial RNA turnover make time-series very difficult because samples need to be processed immediately to limit alterations to the metatranscriptomes. To address these challenges we designed an autonomous in situ fixation multi-sampler (AFISsys) for the reliable sampling of microbial metatranscriptomes at frequent intervals, for refined temporal resolution. To advance the development of this instrument, we examined the minimal seawater volume necessary for adequate coverage of community gene expression, and the suitability of phenol/ethanol fixation for immediate and long-term preservation of transcripts from a microbial community. We then evaluated the field eligibility of the instrument itself, with two case studies in a brackish system. AFISsys is able to collect, fix, and store water samples independently at a predefined temporal resolution. Phenol/ethanol fixation can conserve metatranscriptomes directly in the environment for up to a week, for later analysis in the laboratory. Thus, the AFISsys constitutes an invaluable tool for the integration of molecular functional analyses in environmental monitoring in brackish waters and in aquatic environments in general.
Collapse
Affiliation(s)
- Sophie Charvet
- IOW - Leibniz Institute for Baltic Sea Research, Warnemuende, Germany
| | - Lasse Riemann
- Marine Biological Section, Department of Biology, University of Copenhagen, Denmark
| | - Johannes Alneberg
- KTH - Royal Institute of Technology, Science for Life Laboratory, Sweden
| | - Anders F Andersson
- KTH - Royal Institute of Technology, Science for Life Laboratory, Sweden
| | | | - Uwe Fischer
- HYDRO-BIOS Apparatebau GmbH, Altenholz, Germany
| | - Matthias Labrenz
- IOW - Leibniz Institute for Baltic Sea Research, Warnemuende, Germany.
| |
Collapse
|
18
|
Whitman JD, Yanega D, Watson CBG, Strode VW. Collection and Preservation of Terrestrial Arthropods. Methods Mol Biol 2019; 1897:163-189. [PMID: 30539445 DOI: 10.1007/978-1-4939-8935-5_17] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Arthropods comprise an amazingly diverse group of life forms that are extensively studied in almost every field of the biological sciences. Given that the vast majority of animals are arthropods (primarily insects, arachnids, and crustaceans), knowledge of the specific methods to collect and preserves these organisms for scientific purposes can be indispensable. The application of this research can play major roles in fundamental aspects of human society, including agriculture and medicine. With something on the order of 5-10 million or more arthropod species in existence, it is a challenge for any biologist to attempt to assess and document biodiversity, but many of us find ourselves in a position to either perform this task, or assist others in doing so. It is therefore of utmost importance that proper collection and preservation techniques are used for arthropods which are then made available to scientists for diverse fields of research. The actual practical details of collection and preservation are nearly as diverse as the organisms themselves, so we can only attempt to give basic guidelines here, discussing equipment, trapping techniques, preservation methods, and documentation methods necessary for scientists inexperienced in arthropod collecting to preserve research-quality specimens.
Collapse
Affiliation(s)
- Jeffrey D Whitman
- Departments of Pathology and Laboratory Medicine, University of California, San Francisco, San Francisco, CA, USA.
| | - Douglas Yanega
- Department of Entomology, University of California, Riverside, Riverside, CA, USA
- Entomology Research Museum, University of California, Riverside, Riverside, CA, USA
| | - Cole B G Watson
- Entomology Research Museum, University of California, Riverside, Riverside, CA, USA
| | - Vincent W Strode
- Department of Entomology, University of California, Riverside, Riverside, CA, USA
| |
Collapse
|
19
|
Hirota B, Okude G, Anbutsu H, Futahashi R, Moriyama M, Meng XY, Nikoh N, Koga R, Fukatsu T. A Novel, Extremely Elongated, and Endocellular Bacterial Symbiont Supports Cuticle Formation of a Grain Pest Beetle. mBio 2017; 8:e01482-17. [PMID: 28951480 PMCID: PMC5615201 DOI: 10.1128/mbio.01482-17] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 08/21/2017] [Indexed: 12/23/2022] Open
Abstract
The saw-toothed grain beetle, Oryzaephilus surinamensis (Silvanidae), is a cosmopolitan stored-product pest. Early studies on O. surinamensis in the 1930s described the presence of peculiar bacteriomes harboring endosymbiotic bacteria in the abdomen. Since then, however, the microbiological nature of the symbiont has been elusive. Here we investigated the endosymbiotic system of O. surinamensis in detail. In the abdomen of adults, pupae, and larvae, four oval bacteriomes were consistently identified, whose cytoplasm was full of extremely elongated tubular bacterial cells several micrometers wide and several hundred micrometers long. Molecular phylogenetic analysis identified the symbiont as a member of the Bacteroidetes, in which the symbiont was the most closely related to the endosymbiont of a grain pest beetle, Rhyzopertha dominica (Bostrichidae). The symbiont was detected in developing embryos, corroborating vertical symbiont transmission through host generations. The symbiont gene showed AT-biased nucleotide composition and accelerated molecular evolution, plausibly reflecting degenerative evolution of the symbiont genome. When the symbiont infection was experimentally removed, the aposymbiotic insects grew and reproduced normally, but exhibited a slightly but significantly more reddish cuticle and lighter body mass. These results indicate that the symbiont of O. surinamensis is not essential for the host's growth and reproduction but contributes to the host's cuticle formation. Symbiont genome sequencing and detailed comparison of fitness parameters between symbiotic and aposymbiotic insects under various environmental conditions will provide further insights into the symbiont's biological roles for the stored-product pest.IMPORTANCE Some beetles notorious as stored-product pests possess well-developed symbiotic organs called bacteriomes for harboring specific symbiotic bacteria, although their biological roles have been poorly understood. Here we report a peculiar endosymbiotic system of a grain pest beetle, Oryzaephilus surinamensis, in which four oval bacteriomes in the abdomen are full of extremely elongated tubular bacterial cells. Experimental symbiont elimination did not hinder the host's growth and reproduction, but resulted in emergence of reddish beetles, uncovering the symbiont's involvement in host's cuticle formation. We speculate that the extremely elongated symbiont cell morphology might be due to the degenerative symbiont genome deficient in bacterial cell division and/or cell wall formation, which highlights an evolutionary consequence of intimate host-symbiont coevolution.
Collapse
Affiliation(s)
- Bin Hirota
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
- Department of Biological Sciences, Graduate School of Science, the University of Tokyo, Tokyo, Japan
| | - Genta Okude
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
- Department of Biological Sciences, Graduate School of Science, the University of Tokyo, Tokyo, Japan
| | - Hisashi Anbutsu
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
- Computational Bio Big-Data Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, Japan
| | - Ryo Futahashi
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Minoru Moriyama
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Xian-Ying Meng
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Naruo Nikoh
- Department of Liberal Arts, the Open University of Japan, Chiba, Japan
| | - Ryuichi Koga
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Takema Fukatsu
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
- Department of Biological Sciences, Graduate School of Science, the University of Tokyo, Tokyo, Japan
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
20
|
CRENAME, A Molecular Microbiology Method Enabling Multiparametric Assessment of Potable/Drinking Water. Methods Mol Biol 2017. [PMID: 28540705 DOI: 10.1007/978-1-4939-7060-5_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
The microbial assessment of potable/drinking water is done to ensure that the resource is free of fecal contamination indicators or waterborne pathogens. Culture-based methods for verifying the microbial safety are limited in the sense that a standard volume of water is generally tested for only one indicator (family) or pathogen.In this work, we describe a membrane filtration-based molecular microbiology method, CRENAME (Concentration Recovery Extraction of Nucleic Acids and Molecular Enrichment), exploiting molecular enrichment by whole genome amplification (WGA) to yield, in less than 4 h, a nucleic acid preparation which can be repetitively tested by real-time PCR for example, to provide multiparametric presence/absence tests (1 colony forming unit or microbial particle per standard volume of 100-1000 mL) for bacterial or protozoan parasite cells or particles susceptible to contaminate potable/drinking water.
Collapse
|
21
|
Hosokawa T, Matsuura Y, Kikuchi Y, Fukatsu T. Recurrent evolution of gut symbiotic bacteria in pentatomid stinkbugs. ZOOLOGICAL LETTERS 2016; 2:24. [PMID: 27980805 PMCID: PMC5131451 DOI: 10.1186/s40851-016-0061-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 11/26/2016] [Indexed: 06/06/2023]
Abstract
BACKGROUND Diverse animals are intimately associated with microbial symbionts. How such host-symbiont associations have evolved is a fundamental biological issue. Recent studies have revealed a variety of evolutionary relationships, such as obligatory, facultative, and free-living, of gut bacterial symbiosis within the stinkbug family Pentatomidae, although the whole evolutionary picture remains elusive. RESULTS Here we investigated a comprehensive assembly of Japanese pentatomid stinkbugs representing 28 genera, 35 species, and 143 populations. Polymerase chain reaction (PCR), cloning, and sequencing of bacterial 16S rRNA gene from their midgut symbiotic organ consistently detected a single bacterial species from each of the insect samples, indicating a general tendency toward monosymbiotic gut association. Bacterial sequences detected from different populations of the same species were completely or nearly identical, indicating that the majority of the gut symbiotic associations are stably maintained at the species level. Furthermore, bacterial sequences detected from different species in the same genus tended to form well-supported clades, suggesting that host-symbiont associations are often stable even at the genus level. Meanwhile, when we compared such sequences with published sequences available in DNA databases, we found a number of counter-examples to such stable host-symbiont relationships; i.e., symbionts from different host species in the same genus may be phylogenetically distant, and symbionts from the same host species may be phylogenetically diverse. Likewise, symbionts of diverse pentatomid species may be closely related to symbionts of other stinkbug families, and symbionts of diverse pentatomid species may even be allied to free-living bacteria. Molecular evolutionary analyses revealed that higher molecular evolutionary rates, higher AT nucleotide compositions, and smaller genome sizes tended to be associated with the pentatomid symbionts constituting the stable lineages, whereas these traits were rarely observed in the pentatomid symbionts of promiscuous type. CONCLUSIONS These results indicate that gut symbiotic bacteria have evolved repeatedly and dynamically in the stinkbug family Pentatomidae, which have plausibly entailed frequent symbiont acquisitions, losses, replacements and transfers, while establishing a number of relatively stable host-symbiont associations. The diverse host-symbiont relationships observed in the Pentatomidae will provide an ideal arena for investigating the evolution of symbiosis experimentally and theoretically.
Collapse
Affiliation(s)
- Takahiro Hosokawa
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, 305-8566 Japan
- Faculty of Science, Kyushu University, Fukuoka, 819-0395 Japan
| | - Yu Matsuura
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, 305-8566 Japan
- Tropical Biosphere Research Center, University of the Ryukyus, Okinawa, 903-0213 Japan
| | - Yoshitomo Kikuchi
- National Institute of Advanced Industrial Science and Technology (AIST), Hokkaido Center, Sapporo, 062-8517 Japan
| | - Takema Fukatsu
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, 305-8566 Japan
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo, 113-0033 Japan
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, 305-8572 Japan
| |
Collapse
|
22
|
Kikuchi Y, Tada A, Musolin DL, Hari N, Hosokawa T, Fujisaki K, Fukatsu T. Collapse of Insect Gut Symbiosis under Simulated Climate Change. mBio 2016; 7:e01578-16. [PMID: 27703075 PMCID: PMC5050343 DOI: 10.1128/mbio.01578-16] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Accepted: 09/07/2016] [Indexed: 11/29/2022] Open
Abstract
Global warming impacts diverse organisms not only directly but also indirectly via other organisms with which they interact. Recently, the possibility that elevated temperatures resulting from global warming may substantially affect biodiversity through disrupting mutualistic/parasitic associations has been highlighted. Here we report an experimental demonstration that global warming can affect a pest insect via suppression of its obligate bacterial symbiont. The southern green stinkbug Nezara viridula depends on a specific gut bacterium for its normal growth and survival. When the insects were reared inside or outside a simulated warming incubator wherein temperature was controlled at 2.5°C higher than outside, the insects reared in the incubator exhibited severe fitness defects (i.e., retarded growth, reduced size, yellowish body color, etc.) and significant reduction of symbiont population, particularly in the midsummer season, whereas the insects reared outside did not. Rearing at 30°C or 32.5°C resulted in similar defective phenotypes of the insects, whereas no adult insects emerged at 35°C. Notably, experimental symbiont suppression by an antibiotic treatment also induced similar defective phenotypes of the insects, indicating that the host's defective phenotypes are attributable not to the heat stress itself but to the suppression of the symbiont population induced by elevated temperature. These results strongly suggest that high temperature in the midsummer season negatively affects the insects not directly but indirectly via the heat-vulnerable obligate bacterial symbiont, which highlights the practical relevance of mutualism collapse in this warming world. IMPORTANCE Climate change is among the biggest environmental issues in the contemporary world, and its impact on the biodiversity and ecosystem is not only of scientific interest but also of practical concern for the general public. On the basis of our laboratory data obtained under strictly controlled environmental conditions and our simulated warming data obtained in seminatural settings (elevated 2.5°C above the normal temperature), we demonstrate here that Nezara viridula, the notorious stinkbug pest, suffers serious fitness defects in the summer season under the simulated warming conditions, wherein high temperature acts on the insect not directly but indirectly via suppression of its obligate gut bacterium. Our finding highlights that heat-susceptible symbionts can be the "Achilles' heel" of symbiont-dependent organisms under climate change conditions.
Collapse
Affiliation(s)
- Yoshitomo Kikuchi
- National Institute of Advanced Industrial Science and Technology (AIST) Hokkaido, Sapporo, Japan
| | - Akiyo Tada
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Dmitry L Musolin
- Saint Petersburg State Forest Technical University, Saint Petersburg, Russia
| | - Nobuhiro Hari
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | | | - Kenji Fujisaki
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Takema Fukatsu
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| |
Collapse
|
23
|
Two Bacterial Genera, Sodalis and Rickettsia, Associated with the Seal Louse Proechinophthirus fluctus (Phthiraptera: Anoplura). Appl Environ Microbiol 2016; 82:3185-97. [PMID: 26994086 PMCID: PMC4959230 DOI: 10.1128/aem.00282-16] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 03/14/2016] [Indexed: 12/13/2022] Open
Abstract
UNLABELLED Roughly 10% to 15% of insect species host heritable symbiotic bacteria known as endosymbionts. The lice parasitizing mammals rely on endosymbionts to provide essential vitamins absent in their blood meals. Here, we describe two bacterial associates from a louse, Proechinophthirus fluctus, which is an obligate ectoparasite of a marine mammal. One of these is a heritable endosymbiont that is not closely related to endosymbionts of other mammalian lice. Rather, it is more closely related to endosymbionts of the genus Sodalis associated with spittlebugs and feather-chewing bird lice. Localization and vertical transmission of this endosymbiont are also more similar to those of bird lice than to those of other mammalian lice. The endosymbiont genome appears to be degrading in symbiosis; however, it is considerably larger than the genomes of other mammalian louse endosymbionts. These patterns suggest the possibility that this Sodalis endosymbiont might be recently acquired, replacing a now-extinct, ancient endosymbiont. From the same lice, we also identified an abundant bacterium belonging to the genus Rickettsia that is closely related to Rickettsia ricketsii, a human pathogen vectored by ticks. No obvious masses of the Rickettsia bacterium were observed in louse tissues, nor did we find any evidence of vertical transmission, so the nature of its association remains unclear. IMPORTANCE Many insects are host to heritable symbiotic bacteria. These heritable bacteria have been identified from numerous species of parasitic lice. It appears that novel symbioses have formed between lice and bacteria many times, with new bacterial symbionts potentially replacing existing ones. However, little was known about the symbionts of lice parasitizing marine mammals. Here, we identified a heritable bacterial symbiont in lice parasitizing northern fur seals. This bacterial symbiont appears to have been recently acquired by the lice. The findings reported here provide insights into how new symbioses form and how this lifestyle is shaping the symbiont genome.
Collapse
|
24
|
Takeshita K, Matsuura Y, Itoh H, Navarro R, Hori T, Sone T, Kamagata Y, Mergaert P, Kikuchi Y. Burkholderia of Plant-Beneficial Group are Symbiotically Associated with Bordered Plant Bugs (Heteroptera: Pyrrhocoroidea: Largidae). Microbes Environ 2015; 30:321-9. [PMID: 26657305 PMCID: PMC4676555 DOI: 10.1264/jsme2.me15153] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
A number of phytophagous stinkbugs (order Heteroptera: infraorder Pentatomomorpha) harbor symbiotic bacteria in a specific midgut region composed of numerous crypts. Among the five superfamilies of the infraorder Pentatomomorpha, most members of the Coreoidea and Lygaeoidea are associated with a specific group of the genus Burkholderia, called the “stinkbug-associated beneficial and environmental (SBE)” group, which is not vertically transmitted, but acquired from the environment every host generation. A recent study reported that, in addition to these two stinkbug groups, the family Largidae of the superfamily Pyrrhocoroidea also possesses a Burkholderia symbiont. Despite this recent finding, the phylogenetic position and biological nature of Burkholderia associated with Largidae remains unclear. Based on the combined results of fluorescence in situ hybridization, cloning analysis, Illumina deep sequencing, and egg inspections by diagnostic PCR, we herein demonstrate that the largid species are consistently associated with the “plant-associated beneficial and environmental (PBE)” group of Burkholderia, which are phylogenetically distinct from the SBE group, and that they maintain symbiosis through the environmental acquisition of the bacteria. Since the superfamilies Coreoidea, Lygaeoidea, and Pyrrhocoroidea are monophyletic in the infraorder Pentatomomorpha, it is plausible that the symbiotic association with Burkholderia evolved at the common ancestor of the three superfamilies. However, the results of this study strongly suggest that a dynamic transition from the PBE to SBE group, or vice versa, occurred in the course of stinkbug evolution.
Collapse
|
25
|
Kono N, Nakamura H, Ito Y, Tomita M, Arakawa K. Evaluation of the impact of RNA preservation methods of spiders for de novo transcriptome assembly. Mol Ecol Resour 2015; 16:662-72. [PMID: 26561354 DOI: 10.1111/1755-0998.12485] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2015] [Revised: 10/26/2015] [Accepted: 10/29/2015] [Indexed: 11/30/2022]
Abstract
With advances in high-throughput sequencing technologies, de novo transcriptome sequencing and assembly has become a cost-effective method to obtain comprehensive genetic information of a species of interest, especially in nonmodel species with large genomes such as spiders. However, high-quality RNA is essential for successful sequencing, and sample preservation conditions require careful consideration for the effective storage of field-collected samples. To this end, we report a streamlined feasibility study of various storage conditions and their effects on de novo transcriptome assembly results. The storage parameters considered include temperatures ranging from room temperature to -80°C; preservatives, including ethanol, RNAlater, TRIzol and RNAlater-ICE; and sample submersion states. As a result, intact RNA was extracted and assembly was successful when samples were preserved at low temperatures regardless of the type of preservative used. The assemblies as well as the gene expression profiles were shown to be robust to RNA degradation, when 30 million 150-bp paired-end reads are obtained. The parameters for sample storage, RNA extraction, library preparation, sequencing and in silico assembly considered in this work provide a guideline for the study of field-collected samples of spiders.
Collapse
Affiliation(s)
- Nobuaki Kono
- Institute for Advanced Biosciences, Keio University, Mizukami 246-2, Kakuganji, Tsuruoka, Yamagata, 997-0052, Japan
| | - Hiroyuki Nakamura
- Spiber Inc., Mizukami 234-1, Kakuganji, Tsuruoka, Yamagata, 997-0052, Japan
| | - Yusuke Ito
- Spiber Inc., Mizukami 234-1, Kakuganji, Tsuruoka, Yamagata, 997-0052, Japan
| | - Masaru Tomita
- Institute for Advanced Biosciences, Keio University, Mizukami 246-2, Kakuganji, Tsuruoka, Yamagata, 997-0052, Japan
| | - Kazuharu Arakawa
- Institute for Advanced Biosciences, Keio University, Mizukami 246-2, Kakuganji, Tsuruoka, Yamagata, 997-0052, Japan
| |
Collapse
|
26
|
Hao S, Wang H, Tao W, Wang J, Zhang Z, Zhang Q, Zhang M, Guo L, Shi X. Multiplex-PCR for Identification of Two Species in Genus Hishimonus (Hemiptera: Cicadellidae) in Jujube Orchards. JOURNAL OF ECONOMIC ENTOMOLOGY 2015; 108:2443-2449. [PMID: 26453733 DOI: 10.1093/jee/tov191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2014] [Accepted: 06/12/2015] [Indexed: 06/05/2023]
Abstract
The insect family Cicadellidae includes economically important vectors of plant pathogens. Hishimonus sellatus (Uhler) transmits jujube witches'-broom (JWB). Currently, H. sellatus and Hishimonus lamellatus Cai et Kuoh are observed to co-occur at the same locality on jujube. H. lamellatus is now suspected to be a JWB vector. As such, correct identification of Hishimonus species present in vineyards is essential for epidemiological surveys. However, traditional identification of Hishimonus by morphology is limited to the adult male. We provide a comprehensive description of morphological and molecular tools for discriminating between H. sellatus and H. lamellatus, for use in identification and monitoring of the two Hishimonus species and studies of their plant hosts. A rapid and inexpensive method is introduced to identify H. sellatus and H. lamellatus occurring in jujube orchards. This method is based on amplification of mitochondrial cytochrome oxidase I (COI) gene, using PCR with multiplexed, species-specific primers. The reliability of this new method has been tested on different populations from different sites in Beijing region of China.
Collapse
Affiliation(s)
- Shaodong Hao
- Beijing Key Laboratory of New Technology in Agricultural Application, College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| | - He Wang
- Beijing Forest Protection Station,Beijing 100029, China
| | - Wanqiang Tao
- Beijing Forest Protection Station,Beijing 100029, China
| | - Jinzhong Wang
- Beijing Key Laboratory of New Technology in Agricultural Application, College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China.
| | - Zhiyong Zhang
- Beijing Key Laboratory of New Technology in Agricultural Application, College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| | - Qiuling Zhang
- Pinggu Branch School of Beijing Agricultural Broadcast Television College, Beijing 101200, China
| | - Minzhao Zhang
- Beijing Key Laboratory of New Technology in Agricultural Application, College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| | - Li Guo
- Beijing Key Laboratory of New Technology in Agricultural Application, College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| | - Xiaoyu Shi
- Beijing Key Laboratory of New Technology in Agricultural Application, College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| |
Collapse
|
27
|
Hammer TJ, Dickerson JC, Fierer N. Evidence-based recommendations on storing and handling specimens for analyses of insect microbiota. PeerJ 2015; 3:e1190. [PMID: 26311208 PMCID: PMC4548535 DOI: 10.7717/peerj.1190] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 07/24/2015] [Indexed: 11/20/2022] Open
Abstract
Research on insect microbiota has greatly expanded over the past decade, along with a growing appreciation of the microbial contributions to insect ecology and evolution. Many of these studies use DNA sequencing to characterize the diversity and composition of insect-associated microbial communities. The choice of strategies used for specimen collection, storage, and handling could introduce biases in molecular assessments of insect microbiota, but such potential influences have not been systematically evaluated. Likewise, although it is common practice to surface sterilize insects prior to DNA extraction, it is not known if this time-consuming step has any effect on microbial community analyses. To resolve these methodological unknowns, we conducted an experiment wherein replicate individual insects of four species were stored intact for two months using five different methods—freezing, ethanol, dimethyl sulfoxide (DMSO), cetrimonium bromide (CTAB), and room-temperature storage without preservative—and then subjected to whole-specimen 16S rRNA gene sequencing to assess whether the structure of the insect-associated bacterial communities was impacted by these different storage strategies. Overall, different insect species harbored markedly distinct bacterial communities, a pattern that was highly robust to the method used to store samples. Storage method had little to no effect on assessments of microbiota composition, and the magnitude of the effect differed among the insect species examined. No single method emerged as “best,” i.e., one consistently having the highest similarity in community structure to control specimens, which were not stored prior to homogenization and DNA sequencing. We also found that surface sterilization did not change bacterial community structure as compared to unsterilized insects, presumably due to the vastly greater microbial biomass inside the insect body relative to its surface. We therefore recommend that researchers can use any of the methods tested here, and base their choice according to practical considerations such as prior use, cost, and availability in the field, although we still advise that all samples within a study be handled in an identical manner when possible. We also suggest that, in large-scale molecular studies of hundreds of insect specimens, surface sterilization may not be worth the time and effort involved. This information should help researchers design sampling strategies and will facilitate cross-comparisons and meta-analyses of microbial community data obtained from insect specimens preserved in different ways.
Collapse
Affiliation(s)
- Tobin J Hammer
- Department of Ecology and Evolutionary Biology, University of Colorado at Boulder , Boulder, CO , United States ; Cooperative Institute for Research in Environmental Sciences, University of Colorado at Boulder , Boulder, CO , United States
| | - Jacob C Dickerson
- Department of Ecology and Evolutionary Biology, University of Colorado at Boulder , Boulder, CO , United States
| | - Noah Fierer
- Department of Ecology and Evolutionary Biology, University of Colorado at Boulder , Boulder, CO , United States ; Cooperative Institute for Research in Environmental Sciences, University of Colorado at Boulder , Boulder, CO , United States
| |
Collapse
|
28
|
Ukuda-Hosokawa R, Sadoyama Y, Kishaba M, Kuriwada T, Anbutsu H, Fukatsu T. Infection Density Dynamics of the Citrus Greening Bacterium "Candidatus Liberibacter asiaticus" in Field Populations of the Psyllid Diaphorina citri and Its Relevance to the Efficiency of Pathogen Transmission to Citrus Plants. Appl Environ Microbiol 2015; 81:3728-36. [PMID: 25819961 PMCID: PMC4421049 DOI: 10.1128/aem.00707-15] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 03/17/2015] [Indexed: 01/02/2023] Open
Abstract
Huanglongbing, or citrus greening, is a devastating disease of citrus plants recently spreading worldwide, which is caused by an uncultivable bacterial pathogen, "Candidatus Liberibacter asiaticus," and vectored by a phloem-sucking insect, Diaphorina citri. We investigated the infection density dynamics of "Ca. Liberibacter asiaticus" in field populations of D. citri with experiments using field-collected insects to address how "Ca. Liberibacter asiaticus" infection density in the vector insect is relevant to pathogen transmission to citrus plants. Of 500 insects continuously collected from "Ca. Liberibacter asiaticus"-infected citrus trees with pathological symptoms in the spring and autumn of 2009, 497 (99.4%) were "Ca. Liberibacter asiaticus" positive. The infections were systemic across head-thorax and abdomen, ranging from 10(3) to 10(7) bacteria per insect. In spring, the infection densities were low in March, at ∼ 10(3) bacteria per insect, increasing up to 10(6) to 10(7) bacteria per insect in April and May, and decreasing to 10(5) to 10(6) bacteria per insect in late May, whereas the infection densities were constantly ∼ 10(6) to 10(7) bacteria per insect in autumn. Statistical analysis suggested that several factors, such as insect sex, host trees, and collection dates, may be correlated with "Ca. Liberibacter asiaticus" infection densities in field D. citri populations. Inoculation experiments with citrus seedlings using field-collected "Ca. Liberibacter asiaticus"-infected insects suggested that (i) "Ca. Liberibacter asiaticus"-transmitting insects tend to exhibit higher infection densities than do nontransmitting insects, (ii) a threshold level (∼ 10(6) bacteria per insect) of "Ca. Liberibacter asiaticus" density in D. citri is required for successful transmission to citrus plants, and (iii) D. citri attaining the threshold infection level transmits "Ca. Liberibacter asiaticus" to citrus plants in a stochastic manner. These findings provide valuable insights into understanding, predicting, and controlling this notorious citrus pathogen.
Collapse
Affiliation(s)
- Rie Ukuda-Hosokawa
- Okinawa Prefectural Plant Protection Center, Yaeyama Branch Office, Ishigaki, Okinawa, Japan Okinawa Prefectural Agricultural Research Center, Itoman, Okinawa, Japan
| | | | - Misaki Kishaba
- Okinawa Prefectural Yaeyama Agriculture, Forestry and Fisheries Promotion Center, Ishigaki, Okinawa, Japan
| | - Takashi Kuriwada
- Kagoshima University, Faculty of Education, Laboratory of Zoology, Kagoshima, Japan
| | - Hisashi Anbutsu
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Takema Fukatsu
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo, Japan Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
29
|
Female-specific specialization of a posterior end region of the midgut symbiotic organ in Plautia splendens and allied stinkbugs. Appl Environ Microbiol 2015; 81:2603-11. [PMID: 25636847 DOI: 10.1128/aem.04057-14] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Many stinkbugs (Insecta: Hemiptera: Heteroptera) are associated with bacterial symbionts in a posterior region of the midgut. In these stinkbugs, adult females excrete symbiont-containing materials from the anus for transmission of the beneficial symbionts to their offspring. For ensuring the vertical symbiont transmission, a variety of female-specific elaborate traits at the cellular, morphological, developmental, and behavioral levels have been reported from diverse stinkbugs of the families Plataspidae, Urostylididae, Parastrachiidae, etc. Meanwhile, such elaborate female-specific traits for vertical symbiont transmission have been poorly characterized for the largest and economically important stinkbug family Pentatomidae. Here, we investigated the midgut symbiotic system of a pentatomid stinkbug, Plautia splendens. A specific gammaproteobacterial symbiont was consistently present extracellularly in the cavity of numerous crypts arranged in four rows on the midgut fourth section. The symbiont was smeared on the egg surface upon oviposition by adult females, orally acquired by newborn nymphs, and thereby transmitted vertically to the next generation and important for growth and survival of the host insects. We found that, specifically in adult females, several rows of crypts at the posterior end region of the symbiotic midgut were morphologically differentiated and conspicuously enlarged, often discharging the symbiotic bacteria from the crypt cavity to the main tract of the symbiotic midgut. The female-specific enlarged end crypts were also found in other pentatomid stinkbugs Plautia stali and Carbula crassiventris. These results suggest that the enlarged end crypts represent a female-specific specialized morphological trait for vertical symbiont transmission commonly found among stinkbugs of the family Pentatomidae.
Collapse
|
30
|
Hosokawa T, Kaiwa N, Matsuura Y, Kikuchi Y, Fukatsu T. Infection prevalence of Sodalis symbionts among stinkbugs. ZOOLOGICAL LETTERS 2015; 1:5. [PMID: 26605050 PMCID: PMC4604117 DOI: 10.1186/s40851-014-0009-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2014] [Accepted: 11/11/2014] [Indexed: 06/02/2023]
Abstract
INTRODUCTION Diverse insects and other organisms are associated with microbial symbionts, which often significantly contribute to growth and survival of their hosts and/or drastically affect phenotypes of their hosts in a variety of ways. Sodalis glossinidius was first identified as a facultative bacterial symbiont of tsetse flies, and recent studies revealed that Sodalis-allied bacteria encompass diverse ecological niches ranging from free-living bacteria through facultative symbionts to obligate symbionts associated with a diverse array of insects. Despite potential ecological and evolutionary relevance of the Sodalis symbionts, their infection prevalence in natural insect populations has been poorly investigated. RESULTS Here we surveyed diverse stinkbugs and allied terrestrial heteropteran bugs, which represented 17 families, 77 genera, 108 species, 310 populations and 960 individuals, for infection with the Sodalis symbionts. Diagnostic PCR detected relatively low infection frequencies of the Sodalis symbionts: 13.6% (14/103) of the species, 7.5% (22/295) of the populations, and 4.3% (35/822) of the individuals of the stinkbugs except for those belonging to the family Urostylididae. Among the urostylidid stinkbugs, strikingly, the Sodalis symbionts exhibited very high infection frequencies: 100% (5/5) of the species, 100% (15/15) of the populations, and 94.2% (130/138) of the individuals we examined. Molecular phylogenetic analysis based on bacterial 16S rRNA gene sequences revealed that all the symbionts were placed in the clade of Sodalis-allied bacteria while the symbiont phylogeny did not reflect the systematics of their stinkbug hosts. Notably, the Sodalis symbionts of the urostylidid stinkbugs were not clustered with the Sodalis symbionts of the other stinkbug groups on the phylogeny, suggesting their distinct evolutionary trajectories. CONCLUSIONS The relatively low infection frequency and the overall host-symbiont phylogenetic incongruence suggest that the Sodalis symbionts are, in general, facultative symbiotic associates in the majority of the stinkbug groups. On the other hand, it is conceivable, although speculative, that the Sodalis symbionts may play some substantial biological roles for their host stinkbugs of the Urostylididae.
Collapse
Affiliation(s)
- Takahiro Hosokawa
- />Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, 305-8566 Japan
- />Tropical Biosphere Research Center, University of the Ryukyus, Okinawa, 903-0213 Japan
| | - Nahomi Kaiwa
- />Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, 305-8566 Japan
- />Department of General Systems Studies, Graduate School of Arts and Science, University of Tokyo, Tokyo, 153-8902 Japan
| | - Yu Matsuura
- />Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, 305-8566 Japan
- />Graduate School of Environmental Science, Hokkaido University, Sapporo, 060-0810 Japan
| | - Yoshitomo Kikuchi
- />Bioproduction Research Institute, Hokkaido Center, National Institute of Advanced Industrial Science and Technology (AIST), Sapporo, 062-8517 Japan
| | - Takema Fukatsu
- />Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, 305-8566 Japan
- />Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, 305-8572 Japan
- />Department of Biological Sciences, University of Tokyo, Tokyo, 113-0033 Japan
| |
Collapse
|
31
|
Zhang W, Kwok RTK, Chen Y, Chen S, Zhao E, Yu CYY, Lam JWY, Zheng Q, Tang BZ. Real-time monitoring of the mitophagy process by a photostable fluorescent mitochondrion-specific bioprobe with AIE characteristics. Chem Commun (Camb) 2015; 51:9022-5. [DOI: 10.1039/c5cc02486b] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
A tetraphenylethene-based AIE bioprobe is developed for mitochondrial imaging. The probe shows high brightness, tolerance to environmental changes and photostability, making it promising for monitoring of mitophagy process.
Collapse
Affiliation(s)
- Weijie Zhang
- Department of Hepatobiliary Surgery
- Union Hospital
- Tongji Medical College
- Huazhong University of Science and Technology
- Wuhan 430022
| | - Ryan T. K. Kwok
- Department of Chemistry
- Institute for Advanced Study
- Division of Biomedical Engineering
- Division of Life Science
- State Key Laboratory of Molecular Neuroscience
| | - Yilong Chen
- Department of Chemistry
- Institute for Advanced Study
- Division of Biomedical Engineering
- Division of Life Science
- State Key Laboratory of Molecular Neuroscience
| | - Sijie Chen
- Department of Chemistry
- Institute for Advanced Study
- Division of Biomedical Engineering
- Division of Life Science
- State Key Laboratory of Molecular Neuroscience
| | - Engui Zhao
- Department of Chemistry
- Institute for Advanced Study
- Division of Biomedical Engineering
- Division of Life Science
- State Key Laboratory of Molecular Neuroscience
| | - Chris Y. Y. Yu
- Department of Chemistry
- Institute for Advanced Study
- Division of Biomedical Engineering
- Division of Life Science
- State Key Laboratory of Molecular Neuroscience
| | - Jacky W. Y. Lam
- Department of Chemistry
- Institute for Advanced Study
- Division of Biomedical Engineering
- Division of Life Science
- State Key Laboratory of Molecular Neuroscience
| | - Qichang Zheng
- Department of Hepatobiliary Surgery
- Union Hospital
- Tongji Medical College
- Huazhong University of Science and Technology
- Wuhan 430022
| | - Ben Zhong Tang
- Department of Chemistry
- Institute for Advanced Study
- Division of Biomedical Engineering
- Division of Life Science
- State Key Laboratory of Molecular Neuroscience
| |
Collapse
|
32
|
Ni J, Takehara M, Watanabe H. Heterologous Overexpression of a Mutant Termite Cellulase Gene inEscherichia coliby DNA Shuffling of Four Orthologous Parental cDNAs. Biosci Biotechnol Biochem 2014; 69:1711-20. [PMID: 16195589 DOI: 10.1271/bbb.69.1711] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Among cellulase genes, those of animals are known for their difficulty in overexpression. We constructed a chimeric library by family shuffling of endo-beta-1,4-glucanase genes from four different termite species (Reticulitermes speratus, Nasutitermes takasagoensis, Coptotermes formosanus, and Coptotermes acinaciformis) sharing 78.5-96% homology in amino acid sequence. The constructed library was screened by Congo red plate assay combined with 96-well micro-enzyme assay, and clones showing enhanced CMCase activities were obtained. The mutated genes were overexpressed in Escherichia coli intracellularly as an active form. The endo-beta-1,4-glucanase (CMCase) activity in soluble fractions of E. coli harboring the mutant genes was 20-30 fold higher than that of wild-type genes. The mutant enzyme showed high activity against CMC and properties similar to those of the native enzymes.
Collapse
Affiliation(s)
- Jinfeng Ni
- National Institute of Agrobiological Sciences, Owashi, Tsukuba, Ibaraki 305-8634, Japan
| | | | | |
Collapse
|
33
|
Abstract
Taxonomists must be familiar with a number of issues in collecting and transporting samples using freezing methods (liquid nitrogen and dry ice), desiccants (silica gel and blotter paper), and preservatives (CTAB, ethanol, and isopropanol), with each method having its own merits and limitations. For most molecular studies, a reasonably good quality and quantity of DNA is required, which can only be obtained using standard DNA extraction protocols. There are many DNA extraction protocols that vary from simple and quick ones that yield low-quality DNA but good enough for routine analyses to the laborious and time-consuming standard methods that usually produce high quality and quantities of DNA. The protocol to be chosen will depend on the quality and quantity of DNA needed, the nature of samples, and the presence of natural substances that may interfere with the extraction and subsequent analysis. The protocol described in this chapter has been tested for extracting DNA from eight species and provided very good quality and quantity of DNA for different applications, including those genotyping methods that use restriction enzymes.
Collapse
Affiliation(s)
- Kassa Semagn
- International Maize and Wheat Improvement Center (CIMMYT), Nairobi, Kenya
| |
Collapse
|
34
|
Shelomi M, Watanabe H, Arakawa G. Endogenous cellulase enzymes in the stick insect (Phasmatodea) gut. JOURNAL OF INSECT PHYSIOLOGY 2014; 60:25-30. [PMID: 24216471 DOI: 10.1016/j.jinsphys.2013.10.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Revised: 10/18/2013] [Accepted: 10/23/2013] [Indexed: 06/02/2023]
Abstract
High cellulase (endo-beta-1,4-glucanase) activity was detected in the anterior midgut of the walking stick (Phasmatodea) Eurycantha calcarata. The enzyme was isolated and analyzed via mass spectrometry. RT-PCR revealed two endoglucanase genes, EcEG1 and EcEG2. Mascot analysis of the purified enzyme confirms it to be the product of gene EcEG1. Homologous cDNAs were also isolated from a distantly related species, Entoria okinawaensis, suggesting a general distribution of cellulase genes in phasmids. Phasmid cellulases showed high homology to endogenously-produced glycoside hydrolase family 9 (GH9) endoglucanases from insects, especially to those of termites, cockroaches, and crickets. The purified E. calcarata enzyme showed clear antigency against an anti-serum for termite GH9 cellulase, which, together with the sequence homology, further suggests an endogenous origin of the enzyme. This discovery suggests a possible nutritive value for cellulose in the leaf-feeding phasmids, unlike in herbivorous Lepidoptera.
Collapse
Affiliation(s)
- Matan Shelomi
- Department of Entomology and Nematology, University of California Davis, 1 Shields Ave., Davis, CA 95616, USA.
| | - Hirofumi Watanabe
- Insect Mimetics Research Unit, National Institute of Agrobiological Sciences, Owashi 1-2, Tsukuba, Ibaraki 305-8634, Japan.
| | - Gaku Arakawa
- Insect Mimetics Research Unit, National Institute of Agrobiological Sciences, Owashi 1-2, Tsukuba, Ibaraki 305-8634, Japan
| |
Collapse
|
35
|
Phenotypic effect of "Candidatus Rickettsiella viridis," a facultative symbiont of the pea aphid (Acyrthosiphon pisum), and its interaction with a coexisting symbiont. Appl Environ Microbiol 2013; 80:525-33. [PMID: 24212575 DOI: 10.1128/aem.03049-13] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A gammaproteobacterial facultative symbiont of the genus Rickettsiella was recently identified in the pea aphid, Acyrthosiphon pisum. Infection with this symbiont altered the color of the aphid body from red to green, potentially affecting the host's ecological characteristics, such as attractiveness to different natural enemies. In European populations of A. pisum, the majority of Rickettsiella-infected aphids also harbor another facultative symbiont, of the genus Hamiltonella. We investigated this Rickettsiella symbiont for its interactions with the coinfecting Hamiltonella symbiont, its phenotypic effects on A. pisum with and without Hamiltonella coinfection, and its infection prevalence in A. pisum populations. Histological analyses revealed that coinfecting Rickettsiella and Hamiltonella exhibited overlapping localizations in secondary bacteriocytes, sheath cells, and hemolymph, while Rickettsiella-specific localization was found in oenocytes. Rickettsiella infections consistently altered hosts' body color from red to green, where the greenish hue was affected by both host and symbiont genotypes. Rickettsiella-Hamiltonella coinfections also changed red aphids to green; this greenish hue tended to be enhanced by Hamiltonella coinfection. With different host genotypes, Rickettsiella infection exhibited either weakly beneficial or nearly neutral effects on host fitness, whereas Hamiltonella infection and Rickettsiella-Hamiltonella coinfection had negative effects. Despite considerable frequencies of Rickettsiella infection in European and North American A. pisum populations, no Rickettsiella infection was detected among 1,093 insects collected from 14 sites in Japan. On the basis of these results, we discuss possible mechanisms for the interaction of Rickettsiella with other facultative symbionts, their effects on their hosts' phenotypes, and their persistence in natural host populations. We propose the designation "Candidatus Rickettsiella viridis" for the symbiont.
Collapse
|
36
|
Diversity of bacterial endosymbionts associated with Macrosteles leafhoppers vectoring phytopathogenic phytoplasmas. Appl Environ Microbiol 2013; 79:5013-22. [PMID: 23770905 DOI: 10.1128/aem.01527-13] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Here, we investigate the endosymbiotic microbiota of the Macrosteles leafhoppers M. striifrons and M. sexnotatus, known as vectors of phytopathogenic phytoplasmas. PCR, cloning, sequencing, and phylogenetic analyses of bacterial 16S rRNA genes identified two obligate endosymbionts, "Candidatus Sulcia muelleri" and "Candidatus Nasuia deltocephalinicola," and five facultative endosymbionts, Wolbachia, Rickettsia, Burkholderia, Diplorickettsia, and a novel bacterium belonging to the Rickettsiaceae, from the leafhoppers. "Ca. Sulcia muelleri" and "Ca. Nasuia deltocephalinicola" exhibited 100% infection frequencies in the host species and populations and were separately harbored within different bacteriocytes that constituted a pair of coherent bacteriomes in the abdomen of the host insects, as in other deltocephaline leafhoppers. Wolbachia, Rickettsia, Burkholderia, Diplorickettsia, and the novel Rickettsiaceae bacterium exhibited infection frequencies at 7%, 31%, 12%, 0%, and 24% in M. striifrons and at 20%, 0%, 0%, 20%, and 0% in M. sexnotatus, respectively. Although undetected in the above analyses, phytoplasma infections were detected in 16% of M. striifrons and 60% of M. sexnotatus insects by nested PCR of 16S rRNA genes. Two genetically distinct phytoplasmas, namely, "Candidatus Phytoplasma asteris," associated with aster yellows and related plant diseases, and "Candidatus Phytoplasma oryzae," associated with rice yellow dwarf disease, were identified from the leafhoppers. These results highlight strikingly complex endosymbiotic microbiota of the Macrosteles leafhoppers and suggest ecological interactions between the obligate endosymbionts, the facultative endosymbionts, and the phytopathogenic phytoplasmas within the same host insects, which may affect vector competence of the leafhoppers.
Collapse
|
37
|
Diversification of endosymbiosis: replacements, co-speciation and promiscuity of bacteriocyte symbionts in weevils. ISME JOURNAL 2013; 7:1378-90. [PMID: 23446834 DOI: 10.1038/ismej.2013.27] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The processes and mechanisms underlying the diversification of host-microbe endosymbiotic associations are of evolutionary interest. Here we investigated the bacteriocyte-associated primary symbionts of weevils wherein the ancient symbiont Nardonella has experienced two independent replacement events: once by Curculioniphilus symbiont in the lineage of Curculio and allied weevils of the tribe Curculionini, and once by Sodalis-allied symbiont in the lineage of grain weevils of the genus Sitophilus. The Curculioniphilus symbiont was detected from 27 of 36 Curculionini species examined, the symbiont phylogeny was congruent with the host weevil phylogeny, and the symbiont gene sequences exhibited AT-biased nucleotide compositions and accelerated molecular evolution. These results suggest that the Curculioniphilus symbiont was acquired by an ancestor of the tribe Curculionini, replaced the original symbiont Nardonella, and has co-speciated with the host weevils over evolutionary time, but has been occasionally lost in several host lineages. By contrast, the Sodalis-allied symbiont of Sitophilus weevils exhibited no host-symbiont co-speciation, no AT-biased nucleotide compositions and only moderately accelerated molecular evolution. These results suggest that the Sodalis-allied symbiont was certainly acquired by an ancestor of the Sitophilus weevils and replaced the original Nardonella symbiont, but the symbiotic association must have experienced occasional re-associations such as new acquisitions, horizontal transfers, replacements and/or losses. We detected Sodalis-allied facultative symbionts in populations of the Curculionini weevils, which might represent potential evolutionary sources of the Sodalis-allied primary symbionts. Comparison of these newcomer bacteriocyte-associated symbiont lineages highlights potential evolutionary trajectories and consequences of novel symbionts after independent replacements of the same ancient symbiont.
Collapse
|
38
|
Abstract
The correct identification of the insect species involved in phytoplasma transmission is an essential condition for managing phytoplasma diseases and employing control strategies. The taxonomy of leafhoppers, planthoppers, and psyllids traditionally relies on morphological characters. Unfortunately, the identification of the distinctive traits requires skills and experience possessed by only a few specialist entomologists. In this chapter we provide protocols for the molecular identification of phytoplasma-vector species, mainly based on the polymerase chain reaction (PCR) amplification of mitochondrial and ribosomal DNA. Protocols for the application of molecular identification keys to dried specimens stored in insect collections are also provided. The same total DNA preparations can serve as a PCR template for either insect species or phytoplasma identification. The molecular identification methods can be applied not only to males, but also to nymphs and females for which a morphological taxonomic tool is generally unavailable. We suggest that taxonomic databases of planthoppers, leafhoppers, and psyllids should include species-specific DNA sequences as soon as they become available.
Collapse
Affiliation(s)
- Sabrina Bertin
- DIVAPRA-Entomologia e Zoologia applicate all'Ambiente Carlo Vidano, Università degli Studi di Torino, Grugliasco, Italy.
| | | |
Collapse
|
39
|
Stewart FJ. Preparation of Microbial Community cDNA for Metatranscriptomic Analysis in Marine Plankton. Methods Enzymol 2013; 531:187-218. [DOI: 10.1016/b978-0-12-407863-5.00010-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
40
|
Koga R, Nikoh N, Matsuura Y, Meng XY, Fukatsu T. Mealybugs with distinct endosymbiotic systems living on the same host plant. FEMS Microbiol Ecol 2012; 83:93-100. [PMID: 22809388 DOI: 10.1111/j.1574-6941.2012.01450.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2012] [Revised: 07/08/2012] [Accepted: 07/12/2012] [Indexed: 11/29/2022] Open
Abstract
Mealybugs (Homoptera: Coccoidea: Pseudococcidae) possess a large bacteriome consisting of a number of bacteriocytes whose cytoplasm is populated by endosymbiotic bacteria. In many mealybugs of the subfamily Pseudococcinae, a peculiar endosymbiotic configuration has been identified: within the bacteriocytes, the primary betaproteobacterial endosymbiont Tremblaya princeps endocellularly harbor secondary gammaproteobacterial endosymbionts in a nested manner. Meanwhile, some mealybugs of the subfamily Phenacoccinae are associated only with a betaproteobacterial endosymbiont, designated as Tremblaya phenacola, which constitutes a distinct sister clade of T. princeps. However, cytological configuration of the endosymbiotic system in the phenacoccine mealybugs has not been established. Here, we investigated the endosymbiotic systems of the azalea mealybugs Crisicoccus azaleae (Pseudococcinae) and Phenacoccus azaleae (Phenacoccinae) living on the same host plants. Crisicoccus azaleae possessed a nested endosymbiotic system with T. princeps within the bacteriocyte cytoplasm and itself endocellularly harboring gammaproteobacterial cells, whereas P. azaleae exhibited a simple endosymbiotic system in which T. phenacola cells are localized within the bacteriocytes without additional gammaproteobacterial associates. Considering that these mealybugs live on the identical plant phloem sap, these different endosymbiotic consortia likely play similar biological roles for their host insects. The findings presented here should be helpful for future functional and comparative genomics toward elucidating evolutionary pathways of mealybugs and their endosymbionts.
Collapse
Affiliation(s)
- Ryuichi Koga
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan.
| | | | | | | | | |
Collapse
|
41
|
De Biase A, Antonini G, Mancini E, Trizzino M, Cline A, Audisio P. Discordant patterns in the genetic, ecological, and morphological diversification of a recently radiated phytophagous beetle clade (Coleoptera: Nitidulidae: Meligethinae). RENDICONTI LINCEI-SCIENZE FISICHE E NATURALI 2012. [DOI: 10.1007/s12210-012-0174-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
42
|
Novel clade of alphaproteobacterial endosymbionts associated with stinkbugs and other arthropods. Appl Environ Microbiol 2012; 78:4149-56. [PMID: 22504806 DOI: 10.1128/aem.00673-12] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Here we report a novel clade of secondary endosymbionts associated with insects and other arthropods. Seed bugs of the genus Nysius (Hemiptera: Lygaeidae) harbor the primary gammaproteobacterial symbiont Schneideria nysicola within a pair of bacteriomes in the abdomen. Our survey of Nysius species for their facultative bacterial associates consistently yielded a novel type of alphaproteobacterial 16S rRNA gene sequence in addition to those of Wolbachia. Diagnostic PCR survey of 343 individuals representing 24 populations of four Nysius species revealed overall detection rates of the alphaproteobacteria at 77.6% in Nysius plebeius, 87.7% in Nysius sp. 1, 81.0% in Nysius sp. 2, and 100% in Nysius expressus. Further survey of diverse stinkbugs representing 24 families, 191 species, and 582 individuals detected the alphaproteobacteria from an additional 12 species representing six families. Molecular phylogenetic analysis showed that the alphaproteobacteria from the stinkbugs form a distinct and coherent monophyletic group in the order Rickettsiales together with several uncharacterized endosymbionts from fleas and ticks. The alphaproteobacterial symbiont clade was allied to bacterial clades such as the endosymbionts of acanthamoebae, the endosymbionts of cnidarians, and Midichloria spp., the mitochondrion-associated endosymbionts of ticks. In situ hybridization and electron microscopy identified small filamentous bacterial cells in various tissues of N. plebeius, including the bacteriome and ovary. The concentrated localization of the symbiont cells at the anterior pole of oocytes indicated its vertical transmission route through host insect generations. The designation "Candidatus Lariskella arthropodarum" is proposed for the endosymbiont clade.
Collapse
|
43
|
Justine JL, Briand MJ, Bray RA. A quick and simple method, usable in the field, for collecting parasites in suitable condition for both morphological and molecular studies. Parasitol Res 2012; 111:341-51. [DOI: 10.1007/s00436-012-2845-6] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Accepted: 01/24/2012] [Indexed: 10/14/2022]
|
44
|
Reductive genome evolution, host-symbiont co-speciation and uterine transmission of endosymbiotic bacteria in bat flies. ISME JOURNAL 2011; 6:577-87. [PMID: 21938025 DOI: 10.1038/ismej.2011.125] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Bat flies of the family Nycteribiidae are known for their extreme morphological and physiological traits specialized for ectoparasitic blood-feeding lifestyle on bats, including lack of wings, reduced head and eyes, adenotrophic viviparity with a highly developed uterus and milk glands, as well as association with endosymbiotic bacteria. We investigated Japanese nycteribiid bat flies representing 4 genera, 8 species and 27 populations for their bacterial endosymbionts. From all the nycteribiid species examined, a distinct clade of gammaproteobacteria was consistently detected, which was allied to endosymbionts of other insects such as Riesia spp. of primate lice and Arsenophonus spp. of diverse insects. In adult insects, the endosymbiont was localized in specific bacteriocytes in the abdomen, suggesting an intimate host-symbiont association. In adult females, the endosymbiont was also found in the cavity of milk gland tubules, which suggests uterine vertical transmission of the endosymbiont to larvae through milk gland secretion. In adult females of Penicillidia jenynsii, we discovered a previously unknown type of symbiotic organ in the Nycteribiidae: a pair of large bacteriomes located inside the swellings on the fifth abdominal ventral plate. The endosymbiont genes consistently exhibited adenine/thymine biased nucleotide compositions and accelerated rates of molecular evolution. The endosymbiont genome was estimated to be highly reduced, ~0.76 Mb in size. The endosymbiont phylogeny perfectly mirrored the host insect phylogeny, indicating strict vertical transmission and host-symbiont co-speciation in the evolutionary course of the Nycteribiidae. The designation 'Candidatus Aschnera chinzeii' is proposed for the endosymbiont clade.
Collapse
|
45
|
Kondo NI, Tuda M, Toquenaga Y, Lan YC, Buranapanichpan S, Horng SB, Shimada M, Fukatsu T. Wolbachia infections in world populations of bean beetles (Coleoptera: Chrysomelidae: Bruchinae) infesting cultivated and wild legumes. Zoolog Sci 2011; 28:501-8. [PMID: 21728798 DOI: 10.2108/zsj.28.501] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Wolbachia endosymbionts are widespread among insects and other arthropods, often causing cytoplasmic incompatibility and other reproductive phenotypes in their hosts. Recently, possibilities of Wolbachia-mediated pest control and management have been proposed, and the bean beetles of the subfamily Bruchinae are known as serious pests of harvested and stored beans worldwide. Here we investigated Wolbachia infections in bean beetles from the world, representing seven genera, 20 species and 87 populations. Of 20 species examined, Wolbachia infections were detected in four species, Megabruchidius sophorae, Callosobruchus analis, C. latealbus and C. chinensis. Infection frequencies were partial in M. sophorae but perfect in the other species. In addition to C. chinensis described in the previous studies, C. latealbus was infected with two distinct Wolbachia strains. These Wolbachia strains from the bean beetles were phylogenetically not closely related to each other. Among world populations of C. chinensis, some Taiwanese populations on a wild leguminous plant, Rhynchosia minima, exhibited a peculiar Wolbachia infection pattern, suggesting the possibility that these populations comprise a distinct host race or a cryptic species.
Collapse
Affiliation(s)
- Natsuko I Kondo
- Environmental Biology, National Institute for Environmental Studies (NIES), 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Evolution of symbiotic organs and endosymbionts in lygaeid stinkbugs. ISME JOURNAL 2011; 6:397-409. [PMID: 21814289 DOI: 10.1038/ismej.2011.103] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We investigated seed bugs of the genus Nysius (Insecta: Hemiptera: Lygaeidae) for their symbiotic bacteria. From all the samples representing 4 species, 18 populations and 281 individuals, specific bacterial 16S rRNA gene sequences were consistently identified, which formed a distinct clade in the Gammaproteobacteria. In situ hybridization showed that the bacterium was endocellularly localized in a pair of large bacteriomes that were amorphous in shape, deep red in color, and in association with gonads. In the ovary of adult females, the endosymbiont was also localized in the 'infection zone' in the middle of each germarium and in the 'symbiont ball' at the anterior pole of each oocyte, indicating vertical transmission of the endosymbiont through the ovarial passage. Phylogenetic analyses based on bacterial 16S rRNA, groEL and gyrB genes consistently supported a coherent monophyly of the Nysius endosymbionts. The possibility of a sister relationship to 'Candidatus Kleidoceria schneideri', the bacteriome-associated endosymbiont of a lygaeid bug Kleidocerys resedae, was statistically rejected, indicating independent evolutionary origins of the endosymbionts in the Lygaeidae. The endosymbiont genes consistently exhibited AT-biased nucleotide compositions and accelerated rates of molecular evolution, and the endosymbiont genome was only 0.6 Mb in size. The endosymbiont phylogeny was congruent with the host insect phylogeny, suggesting strict vertical transmission and host-symbiont co-speciation over evolutionary time. Based on these results, we discuss the evolution of bacteriomes and endosymbionts in the Heteroptera, most members of which are associated with gut symbiotic bacteria. The designation 'Candidatus Schneideria nysicola' is proposed for the endosymbiont clade.
Collapse
|
47
|
Kaiwa N, Hosokawa T, Kikuchi Y, Nikoh N, Meng XY, Kimura N, Ito M, Fukatsu T. Bacterial symbionts of the giant jewel stinkbug Eucorysses grandis (Hemiptera: Scutelleridae). Zoolog Sci 2011; 28:169-74. [PMID: 21385056 DOI: 10.2108/zsj.28.169] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Microbiological characterization of gut symbiotic bacteria in a limited number of stinkbugs of the families Acanthosomatidae, Plataspidae, Pentatomidae, Scutelleridae, Parastrachiidae, Alydidae and Pyrrhocoridae has shown symbiotic association with midgut bacteria to be common in phytophagous taxa of these heteropteran insects. Here we investigated the midgut bacterial symbiont of Eucorysses grandis, a stinkbug of the family Scutelleridae. A specific gammaproteobacterium was consistently identified in insects from five different geographic origins. The bacterium was detected in 64 of 64 insects sampled from three host populations. Phylogenetic analyses revealed that the bacterium constitutes a distinct lineage in the Gammaproteobacteria, neither closely related to the gut symbiont of another scutellerid stinkbug, Cantao ocellatus, nor to gut symbionts of other stinkbugs. Diagnostic PCR, in situ hybridization and electron microscopy demonstrated that the bacterium is located extracelluarly, in the midgut fourth section, which possesses crypts. These results indicate that the primary gut symbionts have multiple evolutionary origins in the Scutelleridae. A Sodalis-allied facultative symbiont was also identified in some insects from natural populations. Biological aspects of the primary gut symbiont and the secondary Sodalis-allied symbiont are discussed.
Collapse
Affiliation(s)
- Nahomi Kaiwa
- Department of General Systems Studies, the University of Tokyo, Tokyo 153-8902, Japan
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Specific developmental window for establishment of an insect-microbe gut symbiosis. Appl Environ Microbiol 2011; 77:4075-81. [PMID: 21531836 DOI: 10.1128/aem.00358-11] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The alydid stinkbug Riptortus pedestris is specifically associated with a beneficial Burkholderia symbiont in the midgut crypts. Exceptional among insect-microbe mutualistic associations, the Burkholderia symbiont is not vertically transmitted but orally acquired by nymphal insects from the environment every generation. Here we experimentally investigated the process of symbiont acquisition during the nymphal development of R. pedestris. In a field population, many 2nd instar nymphs were Burkholderia free, while all 3rd, 4th, and 5th instar nymphs were infected. When reared on soil-grown potted soybean plants, Burkholderia acquisition occurred at a drastically higher frequency in the 2nd instar than in the other instars. Oral administration of cultured Burkholderia cells showed that 2nd and 3rd instar nymphs are significantly more susceptible to the symbiont infection than 1st, 4th, and 5th instar nymphs. Histological observations revealed rudimentary midgut crypts in the 1st instar, in contrast to well-developed midgut crypts in the 2nd and later instars. These results indicate that R. pedestris acquires the Burkholderia symbiont from the environment mainly during the 2nd instar period and strongly suggest that the competence for the symbiont infection is developmentally regulated by the host side. Potential mechanisms involved in infection competence and possible reasons why the infection preferentially occurs in the 2nd instar are discussed.
Collapse
|
49
|
Matsui H, Tsuchiya R, Isobe Y, Narita M. Analysis of bacterial community structure in Saba-Narezushi (Narezushi of Mackerel) by 16S rRNA gene clone library. Journal of Food Science and Technology 2011; 50:791-6. [PMID: 24425983 DOI: 10.1007/s13197-011-0382-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 04/07/2011] [Accepted: 04/12/2011] [Indexed: 11/25/2022]
Abstract
Narezushi, a derivation of sushi, is a traditional Japanese food made by fermenting salted fish meat and cooked rice together. In this study, the microbial diversity of saba-narezushi (narezushi of mackerel, Scomber japonicus) was analyzed by the 16S ribosomal RNA gene clone library method. Chemical composition was also analyzed to compare with different kinds of narezushi. The chemical composition of the narezushi was similar to those obtained from samma-narezushi. Ninety-four clones were randomly selected and DNA sequences of cloned fragments (approx. 890 bp) were analyzed. The DNA sequences obtained were phylogenetically analyzed. The expected operational taxonomy units (OTUs) by Chao1 estimates and Shannon-Wiener index (H') at 97% identity threshold were 48 and 1.822, respectively. The sequence similarity of the cloned fragment was equal to or higher than 98% of the sequence of cultivated bacterial species in the public database. Most of the clones (85%) belonged to lactic acid bacteria (LAB). Lactobacillus curvatus was the most abundant species followed by Lactococcus piscium and Leuconostoc gasicomitatum, suggesting that these bacteria play important roles in the fermentation of saba-narezushi.
Collapse
Affiliation(s)
- Hiroki Matsui
- Graduate School of Bioresources, Mie University, Tsu, 514-8507 Japan
| | - Rie Tsuchiya
- Faculty of Education, Mie University, Tsu, 514-8507 Japan
| | - Yuka Isobe
- Faculty of Education, Mie University, Tsu, 514-8507 Japan
| | - Miyo Narita
- Faculty of Education, Mie University, Tsu, 514-8507 Japan
| |
Collapse
|
50
|
Daane KM, Wistrom CM, Shapland EB, Sisterson MS. Seasonal abundance of Draeculacephala minerva and other Xylella fastidiosa vectors in California almond orchards and vineyards. JOURNAL OF ECONOMIC ENTOMOLOGY 2011; 104:367-374. [PMID: 21510181 DOI: 10.1603/ec10226] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Almond leaf scorch (ALS) disease is caused by the bacterium Xylella fastidiosa and transmitted by xylem-feeding insects. Reports of increased incidence of ALS-diseased trees in California prompted surveys in three almond [Prunus dulcis (Mill.) D. A. Webb]-growing regions, from June 2003 to September 2005, to determine insect vector species composition and abundance. For comparison, sampling in and near vineyards in the San Joaquin Valley, California, also was completed. Sampling in or near almond orchards collected >42,000 Cicadomorpha of which 4.8% were xylem feeders, including 1912 grass sharpshooter, Draeculacephala minerva Ball; five Xyphon fulgida Nottingham; and a single spittlebug, Philaenus spumarius L. The most abundant vector was D. minerva. Season-long sampling indicated that D. minerva was a year-round resident in and/or near almonds in the Sacramento Valley, but not in the San Joaquin Valley. Similarly, D. minerca was rare in vineyards in the San Joaquin Valley, but was abundant in irrigated pastures near vineyards. D. minerva was most frequently collected along orchard margins, and peak densities were observed in summer, the period of time when bacterial titers are reported to increase in infected trees. Screening of D. minerva for presence of X.fastidiosa found that 1.1% of insects collected near almond orchards and 4.5% of insects collected from pastures tested positive. The X. fastidiosa subspecies and genotype detected in insects collected from orchards matched those collected from ALS-diseased almond trees in the same orchard. Of the few X. fulgida and P. spumarius collected, none tested positive for X. fastidiosa. Results are discussed with respect to X. fastidiosa vector control and detection methods.
Collapse
Affiliation(s)
- Kent M Daane
- Department of Environmental Science, Policy and Management, University of California, Berkeley, CA 94720-3114, USA.
| | | | | | | |
Collapse
|