1
|
Cheah HL, Citartan M, Lee LP, Ahmed SA, Salleh MZ, Teh LK, Tang TH. Exploring the transcription start sites and other genomic features facilitates the accurate identification and annotation of small RNAs across multiple stress conditions in Mycobacterium tuberculosis. Funct Integr Genomics 2024; 24:160. [PMID: 39264475 DOI: 10.1007/s10142-024-01437-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/22/2024] [Accepted: 08/23/2024] [Indexed: 09/13/2024]
Abstract
Mycobacterium tuberculosis (MTB) is a pathogen that is known for its ability to persist in harsh environments and cause chronic infections. Understanding the regulatory networks of MTB is crucial for developing effective treatments. Small regulatory RNAs (sRNAs) play important roles in gene expression regulation in all kingdoms of life, and their classification based solely on genomic location can be imprecise due to the computational-based prediction of protein-coding genes in bacteria, which often neglects segments of mRNA such as 5'UTRs, 3'UTRs, and intercistronic regions of operons. To address this issue, our study simultaneously discovered genomic features such as TSSs, UTRs, and operons together with sRNAs in the M. tuberculosis H37Rv strain (ATCC 27294) across multiple stress conditions. Our analysis identified 1,376 sRNA candidates and 8,173 TSSs in MTB, providing valuable insights into its complex regulatory landscape. TSS mapping enabled us to classify these sRNAs into more specific categories, including promoter-associated sRNAs, 5'UTR-derived sRNAs, 3'UTR-derived sRNAs, true intergenic sRNAs, and antisense sRNAs. Three of these sRNA candidates were experimentally validated using 3'-RACE-PCR: predictedRNA_0240, predictedRNA_0325, and predictedRNA_0578. Future characterization and validation are necessary to fully elucidate the functions and roles of these sRNAs in MTB. Our study is the first to simultaneously unravel TSSs and sRNAs in MTB and demonstrate that the identification of other genomic features, such as TSSs, UTRs, and operons, allows for more accurate and specific classification of sRNAs.
Collapse
Affiliation(s)
- Hong-Leong Cheah
- Advanced Medical and Dental Institute (AMDI), Universiti Sains Malaysia, Bertam, 13200, Kepala Batas, Penang, Malaysia
- Monash University Malaysia Genomics Platform, School of Science, Monash University Malaysia, Bandar Sunway, 47500, Subang Jaya, Selangor, Malaysia
| | - Marimuthu Citartan
- Advanced Medical and Dental Institute (AMDI), Universiti Sains Malaysia, Bertam, 13200, Kepala Batas, Penang, Malaysia.
| | - Li-Pin Lee
- Advanced Medical and Dental Institute (AMDI), Universiti Sains Malaysia, Bertam, 13200, Kepala Batas, Penang, Malaysia
| | - Siti Aminah Ahmed
- Advanced Medical and Dental Institute (AMDI), Universiti Sains Malaysia, Bertam, 13200, Kepala Batas, Penang, Malaysia
| | - Mohd Zaki Salleh
- Integrative Pharmacogenomics Institute (iPROMISE), Universiti Teknologi MARA (UiTM) Selangor, Bandar Puncak Alam, Selangor, Malaysia
- Faculty of Pharmacy, Universiti Teknologi MARA (UiTM) Selangor, Bandar Puncak Alam, Selangor, Malaysia
| | - Lay Kek Teh
- Integrative Pharmacogenomics Institute (iPROMISE), Universiti Teknologi MARA (UiTM) Selangor, Bandar Puncak Alam, Selangor, Malaysia
- Faculty of Pharmacy, Universiti Teknologi MARA (UiTM) Selangor, Bandar Puncak Alam, Selangor, Malaysia
| | - Thean-Hock Tang
- Advanced Medical and Dental Institute (AMDI), Universiti Sains Malaysia, Bertam, 13200, Kepala Batas, Penang, Malaysia.
| |
Collapse
|
2
|
Deb S, Basu J, Choudhary M. An overview of next generation sequencing strategies and genomics tools used for tuberculosis research. J Appl Microbiol 2024; 135:lxae174. [PMID: 39003248 DOI: 10.1093/jambio/lxae174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/07/2024] [Accepted: 07/10/2024] [Indexed: 07/15/2024]
Abstract
Tuberculosis (TB) is a grave public health concern and is considered the foremost contributor to human mortality resulting from infectious disease. Due to the stringent clonality and extremely restricted genomic diversity, conventional methods prove inefficient for in-depth exploration of minor genomic variations and the evolutionary dynamics operating in Mycobacterium tuberculosis (M.tb) populations. Until now, the majority of reviews have primarily focused on delineating the application of whole-genome sequencing (WGS) in predicting antibiotic resistant genes, surveillance of drug resistance strains, and M.tb lineage classifications. Despite the growing use of next generation sequencing (NGS) and WGS analysis in TB research, there are limited studies that provide a comprehensive summary of there role in studying macroevolution, minor genetic variations, assessing mixed TB infections, and tracking transmission networks at an individual level. This highlights the need for systematic effort to fully explore the potential of WGS and its associated tools in advancing our understanding of TB epidemiology and disease transmission. We delve into the recent bioinformatics pipelines and NGS strategies that leverage various genetic features and simultaneous exploration of host-pathogen protein expression profile to decipher the genetic heterogeneity and host-pathogen interaction dynamics of the M.tb infections. This review highlights the potential benefits and limitations of NGS and bioinformatics tools and discusses their role in TB detection and epidemiology. Overall, this review could be a valuable resource for researchers and clinicians interested in NGS-based approaches in TB research.
Collapse
Affiliation(s)
- Sushanta Deb
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman 99164, WA, United States
- All India Institute of Medical Sciences, New Delhi 110029, India
| | - Jhinuk Basu
- Department of Clinical Immunology and Rheumatology, Kalinga Institute of Medical Sciences (KIMS), KIIT University, Bhubaneswar 751024, India
| | - Megha Choudhary
- All India Institute of Medical Sciences, New Delhi 110029, India
| |
Collapse
|
3
|
Li Y, Kong X, Li Y, Tao N, Hou Y, Wang T, Li Y, Han Q, Liu Y, Li H. Association between two-component systems gene mutation and Mycobacterium tuberculosis transmission revealed by whole genome sequencing. BMC Genomics 2023; 24:718. [PMID: 38017383 PMCID: PMC10683263 DOI: 10.1186/s12864-023-09788-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 11/06/2023] [Indexed: 11/30/2023] Open
Abstract
BACKGROUND Two-component systems (TCSs) assume a pivotal function in Mycobacterium tuberculosis (M.tuberculosis) growth. However, the exact regulatory mechanism of this system needs to be elucidated, and only a few studies have investigated the effect of gene mutations within TCSs on M.tuberculosis transmission. This research explored the relationship between TCSs gene mutation and the global transmission of (M.tuberculosis). RESULTS A total of 13531 M.tuberculosis strains were enrolled in the study. Most of the M.tuberculosis strains belonged to lineage4 (n=6497,48.0%), followed by lineage2 (n=5136,38.0%). Our results showed that a total of 36 single nucleotide polymorphisms (SNPs) were positively correlated with clustering of lineage2, such as Rv0758 (phoR, C820G), Rv1747(T1102C), and Rv1057(C1168T). A total of 30 SNPs showed positive correlation with clustering of lineage4, such as phoR(C182A, C1184G, C662T, T758G), Rv3764c (tcrY, G1151T), and Rv1747 C20T. A total of 19 SNPs were positively correlated with cross-country transmission of lineage2, such as phoR A575C, Rv1028c (kdpD, G383T, G1246C), and Rv1057 G817T. A total of 41 SNPs were positively correlated with cross-country transmission of lineage4, such as phoR(T758G, T327G, C284G), kdpD(G1755A, G625C), Rv1057 C980T, and Rv1747 T373G. CONCLUSIONS Our study identified that SNPs in genes of two-component systems were related to the transmission of M. tuberculosis. This finding adds another layer of complexity to M. tuberculosis virulence and provides insight into future research that will help to elucidate a novel mechanism of M. tuberculosis pathogenicity.
Collapse
Affiliation(s)
- Yameng Li
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, 250014, People's Republic of China
| | - Xianglong Kong
- Artificial Intelligence Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, 250011, People's Republic of China
| | - Yifan Li
- Department of Respiratory and Critical Care Medicine, The Third Affiliated Hospital of Shandong First Medical University (Affiliated Hospital of Shandong Academy of Medical Sciences), Jinan, Shandong, 250031, People's Republic of China
| | - Ningning Tao
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong University, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jingwuweiqi Road, Huaiyin District, Jinan, Shandong, 250021, People's Republic of China
| | - Yawei Hou
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, 250014, People's Republic of China
| | - Tingting Wang
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, 250014, People's Republic of China
| | - Yingying Li
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, 250014, People's Republic of China
| | - Qilin Han
- Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, People's Republic of China
| | - Yao Liu
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong University, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jingwuweiqi Road, Huaiyin District, Jinan, Shandong, 250021, People's Republic of China.
| | - Huaichen Li
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, 250014, People's Republic of China.
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong University, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jingwuweiqi Road, Huaiyin District, Jinan, Shandong, 250021, People's Republic of China.
| |
Collapse
|
4
|
Combe M, Cherif E, Blaizot R, Breugnot D, Gozlan RE. What about Current Diversity of Mycolactone-Producing Mycobacteria? Implication for the Diagnosis and Treatment of Buruli Ulcer. Int J Mol Sci 2023; 24:13727. [PMID: 37762030 PMCID: PMC10531242 DOI: 10.3390/ijms241813727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/31/2023] [Accepted: 09/02/2023] [Indexed: 09/29/2023] Open
Abstract
The identification of an emerging pathogen in humans can remain difficult by conventional methods such as enrichment culture assays that remain highly selective, require appropriate medium and cannot avoid misidentifications, or serological tests that use surrogate antigens and are often hampered by the level of detectable antibodies. Although not originally designed for this purpose, the implementation of polymerase-chain-reaction (PCR) has resulted in an increasing number of diagnostic tests for many diseases. However, the design of specific molecular assays relies on the availability and reliability of published genetic sequences for the target pathogens as well as enough knowledge on the genetic diversity of species and/or variants giving rise to the same disease symptoms. Usually designed for clinical isolates, molecular tests are often not suitable for environmental samples in which the target DNA is mixed with a mixture of environmental DNA. A key challenge of such molecular assays is thus to ensure high specificity of the target genetic markers when focusing on clinical and environmental samples in order to follow the dynamics of disease transmission and emergence in humans. Here we focus on the Buruli ulcer (BU), a human necrotizing skin disease mainly affecting tropical and subtropical areas, commonly admitted to be caused by Mycobacterium ulcerans worldwide although other mycolactone-producing mycobacteria and even mycobacterium species were found associated with BU or BU-like cases. By revisiting the literature, we show that many studies have used non-specific molecular markers (IS2404, IS2606, KR-B) to identify M. ulcerans from clinical and environmental samples and propose that all mycolactone-producing mycobacteria should be definitively considered as variants from the same group rather than different species. Importantly, we provide evidence that the diversity of mycolactone-producing mycobacteria variants as well as mycobacterium species potentially involved in BU or BU-like skin ulcerations might have been underestimated. We also suggest that the specific variants/species involved in each BU or BU-like case should be carefully identified during the diagnosis phase, either via the key to genetic identification proposed here or by broader metabarcoding approaches, in order to guide the medical community in the choice for the most appropriate antibiotic therapy.
Collapse
Affiliation(s)
- Marine Combe
- ISEM, Université de Montpellier, CNRS, IRD, 34095 Montpellier, France; (E.C.); (D.B.); (R.E.G.)
| | - Emira Cherif
- ISEM, Université de Montpellier, CNRS, IRD, 34095 Montpellier, France; (E.C.); (D.B.); (R.E.G.)
| | - Romain Blaizot
- Service de Dermatologie, Centre Hospitalier Andrée Rosemon, Cayenne 97306, French Guiana;
| | - Damien Breugnot
- ISEM, Université de Montpellier, CNRS, IRD, 34095 Montpellier, France; (E.C.); (D.B.); (R.E.G.)
| | - Rodolphe Elie Gozlan
- ISEM, Université de Montpellier, CNRS, IRD, 34095 Montpellier, France; (E.C.); (D.B.); (R.E.G.)
| |
Collapse
|
5
|
D’Halluin A, Polgar P, Kipkorir T, Patel Z, Cortes T, Arnvig KB. Premature termination of transcription is shaped by Rho and translated uORFS in Mycobacterium tuberculosis. iScience 2023; 26:106465. [PMID: 37096044 PMCID: PMC10122055 DOI: 10.1016/j.isci.2023.106465] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 01/29/2023] [Accepted: 03/17/2023] [Indexed: 04/05/2023] Open
Abstract
Little is known about the decisions behind transcription elongation versus termination in the human pathogen Mycobacterium tuberculosis (M.TB). By applying Term-seq to M.TB we found that the majority of transcription termination is premature and associated with translated regions, i.e., within previously annotated or newly identified open reading frames. Computational predictions and Term-seq analysis, upon depletion of termination factor Rho, suggests that Rho-dependent transcription termination dominates all transcription termination sites (TTS), including those associated with regulatory 5' leaders. Moreover, our results suggest that tightly coupled translation, in the form of overlapping stop and start codons, may suppress Rho-dependent termination. This study provides detailed insights into novel M.TB cis-regulatory elements, where Rho-dependent, conditional termination of transcription and translational coupling together play major roles in gene expression control. Our findings contribute to a deeper understanding of the fundamental regulatory mechanisms that enable M.TB adaptation to the host environment offering novel potential points of intervention.
Collapse
Affiliation(s)
- Alexandre D’Halluin
- Structural and Molecular Biology, University College London, London WC1E 6BT, UK
| | - Peter Polgar
- Structural and Molecular Biology, University College London, London WC1E 6BT, UK
| | - Terry Kipkorir
- Structural and Molecular Biology, University College London, London WC1E 6BT, UK
| | - Zaynah Patel
- Structural and Molecular Biology, University College London, London WC1E 6BT, UK
| | - Teresa Cortes
- Instituto de Biomedicina de Valencia, CSIC, Valencia 46010, Spain
| | - Kristine B. Arnvig
- Structural and Molecular Biology, University College London, London WC1E 6BT, UK
- Corresponding author
| |
Collapse
|
6
|
Zhao B, Liu C, Fan J, Ma A, He W, Hu Y, Zhao Y. Transmission and Drug Resistance Genotype of Multidrug-Resistant or Rifampicin-Resistant Mycobacterium tuberculosis in Chongqing, China. Microbiol Spectr 2022; 10:e0240521. [PMID: 36214695 PMCID: PMC9604020 DOI: 10.1128/spectrum.02405-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 08/29/2022] [Indexed: 01/04/2023] Open
Abstract
Multidrug-resistant or rifampicin-resistant tuberculosis (MDR/RR-TB) is a global barrier for the Stop TB plan. To identify risk factors for treatment outcome and cluster transmission of MDR/RR-TB, whole-genome sequencing (WGS) data of isolates from patients of the Chongqing Tuberculosis Control Institute were used for phylogenetic classifications, resistance predictions, and cluster analysis. A total of 223 MDR/RR-TB cases were recorded between 1 January 2018 and 31 December 2020. Elderly patients and those with lung cavitation are at increased risk of death due to MDR/RR-TB. A total of 187 MDR/RR strains were obtained from WGS data; 152 were classified as lineage 2 strains. Eighty (42.8%) strains differing by a distance of 12 or fewer single nucleotide polymorphisms were classified as 20 genomic clusters, indicating recent transmission. Patients infected with lineage 2 strains or those with occupations listed as "other" are significantly associated with a transmission cluster of MDR/RR-TB. Analysis of resistant mutations against first-line tuberculosis drugs found that 76 (95.0%) of all 80 strains had the same mutations within each cluster. A total of 55.0% (44 of 80) of the MDR/RR-TB strains accumulated additional drug resistance mutations along the transmission chain, especially against fluoroquinolones (63.6% [28 of 44]). Recent transmission of MDR/RR strains is driving the MDR/RR-TB epidemics, leading to the accumulation of more serious resistance along the transmission chains. IMPORTANCE The drug resistance molecular characteristics of MDR/RR-TB were elucidated by genome-wide analysis, and risk factors for death by MDR/RR-TB were identified in combination with patient information. Cluster characteristics of MDR/RR-TB in the region were analyzed by genome-wide analysis, and risk factors for cluster transmission (recent transmission) were analyzed. These analyses provide reference for the prevention and treatment of MDR/RR-TB in Chongqing.
Collapse
Affiliation(s)
- Bing Zhao
- National Center for Tuberculosis Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing, China
| | - Chunfa Liu
- National Center for Tuberculosis Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing, China
| | - Jiale Fan
- National Center for Tuberculosis Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing, China
| | - Aijing Ma
- National Center for Tuberculosis Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing, China
| | - Wencong He
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing, China
| | - Yan Hu
- Tuberculosis Reference Laboratory, Chongqing Tuberculosis Control Institute, Jiulongpo, Chongqing, China
| | - Yanlin Zhao
- National Center for Tuberculosis Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing, China
| |
Collapse
|
7
|
Bajaj AO, Saraswat S, Knuuttila JEA, Freeke J, Stielow JB, Barker AP. Accurate Identification of Closely Related Mycobacterium tuberculosis Complex Species by High Resolution Tandem Mass Spectrometry. Front Cell Infect Microbiol 2021; 11:656880. [PMID: 34239815 PMCID: PMC8259740 DOI: 10.3389/fcimb.2021.656880] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 05/07/2021] [Indexed: 11/22/2022] Open
Abstract
Rapid and accurate differentiation of Mycobacterium tuberculosis complex (MTBC) species from other mycobacterium is essential for appropriate therapeutic management, timely intervention for infection control and initiation of appropriate health care measures. However, routine clinical characterization methods for Mycobacterium tuberculosis (Mtb) species remain both, time consuming and labor intensive. In the present study, an innovative liquid Chromatography-Mass Spectrometry method for the identification of clinically most relevant Mycobacterium tuberculosis complex species is tested using a model set of mycobacterium strains. The methodology is based on protein profiling of Mycobacterium tuberculosis complex isolates, which are used as markers of differentiation. To test the resolving power, speed, and accuracy of the method, four ATCC type strains and 37 recent clinical isolates of closely related species were analyzed using this new approach. Using different deconvolution algorithms, we detected hundreds of individual protein masses, with a subpopulation of these functioning as species-specific markers. This assay identified 216, 260, 222, and 201 proteoforms for M. tuberculosis ATCC 27294™, M. microti ATCC 19422™, M. africanum ATCC 25420™, and M. bovis ATCC 19210™ respectively. All clinical strains were identified to the correct species with a mean of 95% accuracy. Our study successfully demonstrates applicability of this novel mass spectrometric approach to identify clinically relevant Mycobacterium tuberculosis complex species that are very closely related and difficult to differentiate with currently existing methods. Here, we present the first proof-of-principle study employing a fast mass spectrometry-based method to identify the clinically most prevalent species within the Mycobacterium tuberculosis species complex.
Collapse
Affiliation(s)
- Amol O Bajaj
- Research & Development, Associated Regional and University Pathologists, Inc. (ARUP) Institute for Clinical and Experimental Pathology, Salt Lake City, UT, United States
| | - Suraj Saraswat
- Research & Development, Associated Regional and University Pathologists, Inc. (ARUP) Institute for Clinical and Experimental Pathology, Salt Lake City, UT, United States
| | - Juha E A Knuuttila
- Research & Development, Thermo Fisher Scientific, Helsinki-Vantaa, Finland
| | - Joanna Freeke
- Centre for Infectious Diseases, Radboud University Medical Center (UMC), Nijmegen, Netherlands.,Research & Development, Thermo Fisher Scientific, Landsmeer, Netherlands
| | - J Benjamin Stielow
- Centre for Infectious Diseases, Radboud University Medical Center (UMC), Nijmegen, Netherlands.,Research & Development, Thermo Fisher Scientific, Landsmeer, Netherlands
| | - Adam P Barker
- Research & Development, Associated Regional and University Pathologists, Inc. (ARUP) Institute for Clinical and Experimental Pathology, Salt Lake City, UT, United States
| |
Collapse
|
8
|
Sales ÉB, Fonseca AA, Gonçalves CM, Lage AP, Andrade GI, Suffys PN, Gomes HM, Dias NL, Ferreira Neto JS, Guimarães AMDS, Heinemann MB. Multispacer Sequence Typing for Mycobacterium bovis Genotyping. Front Vet Sci 2021; 8:666283. [PMID: 33981748 PMCID: PMC8107269 DOI: 10.3389/fvets.2021.666283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 03/30/2021] [Indexed: 11/13/2022] Open
Abstract
The molecular typing of Mycobacterium bovis, which causes bovine tuberculosis, can be accomplished by combining different polymorphic markers, contributing to its epidemiological investigation. Multispacer sequence typing (MST) is a sequencing-based method that employs intergenic regions susceptible to higher mutation rates given the low selection pressure. It has been applied to M. tuberculosis, but not to M. bovis. The aim of this study was to evaluate a MST for M. bovis. A total of 58 strains isolated from tissues with lesions suggestive of bovine tuberculosis, coming from cattle herds in six Brazilian states and four standard samples of M. bovis were typified employing the MST technique. Fourteen intergenic regions were used, and four types of genetic events were reported: single nucleotide mutation (SNP), insertion, deletion, and tandem repeat (TR). Seven loci were chosen for typing. Twenty-eight type sequences (ST) were identified, indicating type sequences (ST) were identified, indicating a 92.9% HGDI (Hunter Gaston Discriminatory Index). The data were used to analyze the evolutionary patterns of these isolates and correlate them to phylogeographic lineages based on the formation of clonal complexes generated from eBURST software. Later, we associated the MST with spoligotyping technique, currently considered the gold standard for classification of M. bovis. The results support the MST as an alternative method for genotyping of M. bovis. The method has the advantage of sequencing and the availability of sequences analyzed in public databases, which can be used by professionals around the world as a tool for further analysis. This was the first study to identify the variability of isolates of M. bovis by the MST method.
Collapse
Affiliation(s)
- Érica Bravo Sales
- Laboratório Federal de Defesa Agropecuária de Minas Gerais, Pedro Leopoldo, Minas Gerais, Brazil
| | - Antônio Augusto Fonseca
- Laboratório Federal de Defesa Agropecuária de Minas Gerais, Pedro Leopoldo, Minas Gerais, Brazil
| | | | - Andrey Pereira Lage
- Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Giovanna Ivo Andrade
- Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | | | - Natanael Lamas Dias
- Laboratório Federal de Defesa Agropecuária de Minas Gerais, Pedro Leopoldo, Minas Gerais, Brazil
| | | | | | | |
Collapse
|
9
|
Byrne AS, Goudreau A, Bissonnette N, Shamputa IC, Tahlan K. Methods for Detecting Mycobacterial Mixed Strain Infections-A Systematic Review. Front Genet 2020; 11:600692. [PMID: 33408740 PMCID: PMC7779811 DOI: 10.3389/fgene.2020.600692] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 11/19/2020] [Indexed: 12/22/2022] Open
Abstract
Mixed strain infection (MSI) refers to the concurrent infection of a susceptible host with multiple strains of a single pathogenic species. Known to occur in humans and animals, MSIs deserve special consideration when studying transmission dynamics, evolution, and treatment of mycobacterial diseases, notably tuberculosis in humans and paratuberculosis (or Johne's disease) in ruminants. Therefore, a systematic review was conducted to examine how MSIs are defined in the literature, how widespread the phenomenon is across the host species spectrum, and to document common methods used to detect such infections. Our search strategy identified 121 articles reporting MSIs in both humans and animals, the majority (78.5%) of which involved members of the Mycobacterium tuberculosis complex, while only a few (21.5%) examined non-tuberculous mycobacteria (NTM). In addition, MSIs exist across various host species, but most reports focused on humans due to the extensive amount of work done on tuberculosis. We reviewed the strain typing methods that allowed for MSI detection and found a few that were commonly employed but were associated with specific challenges. Our review notes the need for standardization, as some highly discriminatory methods are not adapted to distinguish between microevolution of one strain and concurrent infection with multiple strains. Further research is also warranted to examine the prevalence of NTM MSIs in both humans and animals. In addition, it is envisioned that the accurate identification and a better understanding of the distribution of MSIs in the future will lead to important information on the epidemiology and pathophysiology of mycobacterial diseases.
Collapse
Affiliation(s)
| | - Alex Goudreau
- Science & Health Sciences Librarian, University of New Brunswick, Saint John, NB, Canada
| | - Nathalie Bissonnette
- Sherbrooke Research and Development Center, Agriculture and Agri-Food Canada, Sherbrooke, QC, Canada
| | - Isdore Chola Shamputa
- Department of Nursing & Health Sciences, University of New Brunswick, Saint John, NB, Canada
| | - Kapil Tahlan
- Department of Biology, Memorial University of Newfoundland, St. John's, NL, Canada
| |
Collapse
|
10
|
Lekko YM, Ooi PT, Omar S, Mazlan M, Ramanoon SZ, Jasni S, Jesse FFA, Che-Amat A. Mycobacterium tuberculosis complex in wildlife: Review of current applications of antemortem and postmortem diagnosis. Vet World 2020; 13:1822-1836. [PMID: 33132593 PMCID: PMC7566238 DOI: 10.14202/vetworld.2020.1822-1836] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 07/16/2020] [Indexed: 12/31/2022] Open
Abstract
Tuberculosis (TB) is a chronic inflammatory and zoonotic disease caused by Mycobacterium tuberculosis complex (MTBC) members, which affects various domestic animals, wildlife, and humans. Some wild animals serve as reservoir hosts in the transmission and epidemiology of the disease. Therefore, the monitoring and surveillance of both wild and domestic hosts are critical for prevention and control strategies. For TB diagnosis, the single intradermal tuberculin test or the single comparative intradermal tuberculin test, and the gamma-interferon test, which is regarded as an ancillary test, are used. Postmortem examination can identify granulomatous lesions compatible with a diagnosis of TB. In contrast, smears of the lesions can be stained for acid-fast bacilli, and samples of the affected organs can be subjected to histopathological analyses. Culture is the gold standard test for isolating mycobacterial bacilli because it has high sensitivity and specificity compared with other methods. Serology for antibody detection allows the testing of many samples simply, rapidly, and inexpensively, and the protocol can be standardized in different laboratories. Molecular biological analyses are also applicable to trace the epidemiology of the disease. In conclusion, reviewing the various techniques used in MTBC diagnosis can help establish guidelines for researchers when choosing a particular diagnostic method depending on the situation at hand, be it disease outbreaks in wildlife or for epidemiological studies. This is because a good understanding of various diagnostic techniques will aid in monitoring and managing emerging pandemic threats of infectious diseases from wildlife and also preventing the potential spread of zoonotic TB to livestock and humans. This review aimed to provide up-to-date information on different techniques used for diagnosing TB at the interfaces between wildlife, livestock, and humans.
Collapse
Affiliation(s)
- Yusuf Madaki Lekko
- Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.,Department of Veterinary Medicine, Faculty of Veterinary Medicine, University of Maiduguri, 1069 PMB, Maiduguri, Borno State, Nigeria
| | - Peck Toung Ooi
- Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Sharina Omar
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Mazlina Mazlan
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Siti Zubaidah Ramanoon
- Department of Farm and Exotic Animal Medicine and Surgery, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Sabri Jasni
- Department of Paraclinical, Faculty of Veterinary Medicine, Universiti Malaysia Kelantan, Pengkalan Chepa, 16100 Kota Bharu, Kelantan, Malaysia
| | - Faez Firdaus Abdullah Jesse
- Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Azlan Che-Amat
- Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| |
Collapse
|
11
|
Guimaraes AMS, Zimpel CK. Mycobacterium bovis: From Genotyping to Genome Sequencing. Microorganisms 2020; 8:E667. [PMID: 32375210 PMCID: PMC7285088 DOI: 10.3390/microorganisms8050667] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 04/17/2020] [Accepted: 04/21/2020] [Indexed: 12/15/2022] Open
Abstract
Mycobacterium bovis is the main pathogen of bovine, zoonotic, and wildlife tuberculosis. Despite the existence of programs for bovine tuberculosis (bTB) control in many regions, the disease remains a challenge for the veterinary and public health sectors, especially in developing countries and in high-income nations with wildlife reservoirs. Current bTB control programs are mostly based on test-and-slaughter, movement restrictions, and post-mortem inspection measures. In certain settings, contact tracing and surveillance has benefited from M. bovis genotyping techniques. More recently, whole-genome sequencing (WGS) has become the preferential technique to inform outbreak response through contact tracing and source identification for many infectious diseases. As the cost per genome decreases, the application of WGS to bTB control programs is inevitable moving forward. However, there are technical challenges in data analyses and interpretation that hinder the implementation of M. bovis WGS as a molecular epidemiology tool. Therefore, the aim of this review is to describe M. bovis genotyping techniques and discuss current standards and challenges of the use of M. bovis WGS for transmission investigation, surveillance, and global lineages distribution. We compiled a series of associated research gaps to be explored with the ultimate goal of implementing M. bovis WGS in a standardized manner in bTB control programs.
Collapse
Affiliation(s)
- Ana M. S. Guimaraes
- Laboratory of Applied Research in Mycobacteria, Department of Microbiology, University of São Paulo, São Paulo 01246-904, Brazil;
| | - Cristina K. Zimpel
- Laboratory of Applied Research in Mycobacteria, Department of Microbiology, University of São Paulo, São Paulo 01246-904, Brazil;
- Department of Preventive Veterinary Medicine and Animal Health, University of São Paulo, São Paulo 01246-904, Brazil
| |
Collapse
|
12
|
Reis AC, Albuquerque T, Botelho A, Cunha MV. Polyclonal infection as a new scenario in Mycobacterium caprae epidemiology. Vet Microbiol 2019; 240:108533. [PMID: 31902500 DOI: 10.1016/j.vetmic.2019.108533] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 11/27/2019] [Accepted: 11/27/2019] [Indexed: 11/30/2022]
Abstract
Portugal is one of the European Union countries with an ongoing eradication program for bovine tuberculosis (TB), which does not include systematic goat testing. However, surveillance in small ruminants is increasingly important, since goat and sheep can harbour Mycobacterium caprae and be an infection source to cattle with impact in the success of bovine TB control. Furthermore, the information regarding the epidemiology and biology of M. caprae is quite limited comparing to the cognate bovine-adapted ecotype, M. bovis. In this work, we applied spoligotyping and MIRU-VNTR (Mycobacterial Interspersed Repetitive Units-Variable Number of Tandem Repeats) to M. caprae obtained between 2003 and 2014 from 55 animal hosts, including goat (n = 29), cattle (n = 21), sheep (n = 1) and wild boar (n = 4) from Portugal. The molecular analysis revealed a unique spoligotyping pattern (SB0157) and 24 MIRU types. Genotyping of serial M. caprae from herds with recurrent outbreaks enabled further discrimination of epidemiologically related isolates, supporting a clonal structure in Portugal and denoting the emergence of clonal diversity at the herd level, more apparent for MIRU4. Results suggest a founder effect and adaptive genotypic divergence, paving the way for sympatric speciation. Double allele findings at MIRU4 in over 20 % of infected animals indicates that co-infection and in vivo microevolution may be frequent in the goat-adapted ecotype. While polyclonal infection appears common in M. caprae epidemiology, the functional significance of subtle genotypic variations remains to be disclosed, namely at the interface with the host, to expand knowledge on the epidemiology and biology of this neglected ecotype.
Collapse
Affiliation(s)
- Ana C Reis
- INIAV, IP - National Institute for Agrarian and Veterinary Research, Av. da República, Quinta do Marquês, Edifício Principal, Piso 1, 2780 -157 Oeiras, Portugal; cE3c - Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências da Universidade de Lisboa, Edifício C2, 4º Piso, Campo Grande, 1749-016 Lisboa, Portugal; BioISI - Biosystems & Integrative Sciences Institute, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Teresa Albuquerque
- INIAV, IP - National Institute for Agrarian and Veterinary Research, Av. da República, Quinta do Marquês, Edifício Principal, Piso 1, 2780 -157 Oeiras, Portugal
| | - Ana Botelho
- INIAV, IP - National Institute for Agrarian and Veterinary Research, Av. da República, Quinta do Marquês, Edifício Principal, Piso 1, 2780 -157 Oeiras, Portugal
| | - Mónica V Cunha
- INIAV, IP - National Institute for Agrarian and Veterinary Research, Av. da República, Quinta do Marquês, Edifício Principal, Piso 1, 2780 -157 Oeiras, Portugal; cE3c - Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências da Universidade de Lisboa, Edifício C2, 4º Piso, Campo Grande, 1749-016 Lisboa, Portugal; BioISI - Biosystems & Integrative Sciences Institute, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal.
| |
Collapse
|
13
|
Cohen KA, Manson AL, Desjardins CA, Abeel T, Earl AM. Deciphering drug resistance in Mycobacterium tuberculosis using whole-genome sequencing: progress, promise, and challenges. Genome Med 2019; 11:45. [PMID: 31345251 PMCID: PMC6657377 DOI: 10.1186/s13073-019-0660-8] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Tuberculosis (TB) is a global infectious threat that is intensified by an increasing incidence of highly drug-resistant disease. Whole-genome sequencing (WGS) studies of Mycobacterium tuberculosis, the causative agent of TB, have greatly increased our understanding of this pathogen. Since the first M. tuberculosis genome was published in 1998, WGS has provided a more complete account of the genomic features that cause resistance in populations of M. tuberculosis, has helped to fill gaps in our knowledge of how both classical and new antitubercular drugs work, and has identified specific mutations that allow M. tuberculosis to escape the effects of these drugs. WGS studies have also revealed how resistance evolves both within an individual patient and within patient populations, including the important roles of de novo acquisition of resistance and clonal spread. These findings have informed decisions about which drug-resistance mutations should be included on extended diagnostic panels. From its origins as a basic science technique, WGS of M. tuberculosis is becoming part of the modern clinical microbiology laboratory, promising rapid and improved detection of drug resistance, and detailed and real-time epidemiology of TB outbreaks. We review the successes and highlight the challenges that remain in applying WGS to improve the control of drug-resistant TB through monitoring its evolution and spread, and to inform more rapid and effective diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Keira A Cohen
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MA, 21205, USA.
| | - Abigail L Manson
- Broad Institute of Harvard and Massachusetts Institute of Technology, 415 Main Street, Cambridge, MA, 02142, USA
| | - Christopher A Desjardins
- Broad Institute of Harvard and Massachusetts Institute of Technology, 415 Main Street, Cambridge, MA, 02142, USA
| | - Thomas Abeel
- Broad Institute of Harvard and Massachusetts Institute of Technology, 415 Main Street, Cambridge, MA, 02142, USA
- Delft Bioinformatics Lab, Delft University of Technology, 2628, XE, Delft, The Netherlands
| | - Ashlee M Earl
- Broad Institute of Harvard and Massachusetts Institute of Technology, 415 Main Street, Cambridge, MA, 02142, USA.
| |
Collapse
|
14
|
Marianelli C, Amato B, Boniotti MB, Vitale M, Pruiti Ciarello F, Pacciarini ML, Di Marco Lo Presti V. Genotype diversity and distribution of Mycobacterium bovis from livestock in a small, high-risk area in northeastern Sicily, Italy. PLoS Negl Trop Dis 2019; 13:e0007546. [PMID: 31306431 PMCID: PMC6658142 DOI: 10.1371/journal.pntd.0007546] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 07/25/2019] [Accepted: 06/11/2019] [Indexed: 11/18/2022] Open
Abstract
Bovine tuberculosis (bTB) caused by Mycobacterium bovis is an important re-emerging disease affecting livestock, wildlife and humans. Epidemiological studies are crucial to identifying the source of bTB infection, and its transmission dynamics and host preference, and thus to the implementation of effective strategies to contain it. In this study, we typed M. bovis isolates from livestock, and investigated their genetic diversity and distribution. A total of 204 M. bovis isolates were collected from cattle (n = 164) and Sicilian black pigs (n = 40) reared in a limited area of the province of Messina, northeastern Sicily, an area that had previously been identified as having the highest incidence of bTB in livestock on the island. All M. bovis isolates were typed by both spoligotyping and 12-loci MIRU-VNTR analysis. Results from both methods were then combined in order to improve the discriminatory power of M. bovis typing. We identified 73 combined genetic profiles. Thirty-five point six percent of the profiles were common to at least two animals, whereas 64.4% of profiles occurred in only one animal. A number of genetic profiles were predominant in either cattle or black pigs. We identified common genetic patterns in M. bovis isolates originating not only from neighboring districts, but also from non-neighboring districts. Our findings suggest that bTB is widespread in our setting, and is caused by a large number of genetically diverse M. bovis strains. The ecology and farming practices characteristic of the area may explain the substantial M. bovis heterogeneity observed, and could represent obstacles to bTB eradication. Bovine tuberculosis is a widespread infectious disease affecting both domestic and wild animals, as well as humans. In addition to being of public health concern, the disease, caused mainly by Mycobacterium bovis, has a significant economic impact on the farming industry due to the costs of eradication efforts. In Sicily, the largest of the Italian islands, bovine tuberculosis in livestock is of great concern, and targeted control strategies are needed. Molecular epidemiology is an essential tool for determining the distribution of a disease, so as to control it and minimize its threat to the population. We typed M. bovis isolates isolated from cattle and pigs reared in a limited area of Sicily. An in-depth comparison of the genetic makeup of these isolates allowed us a better understanding of the genetic diversity and distribution of the pathogen in our population of animals. We found that the disease is widespread in the area and caused by a large variety of M. bovis strains, which are in several cases common to different species of livestock. The paper concludes with a discussion of the findings in light of the environmental and ecological setting, and of farming practices in the area. The results are expected to contribute to the improvement of surveillance and control programs of bovine tuberculosis in the region.
Collapse
Affiliation(s)
- Cinzia Marianelli
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
- * E-mail:
| | - Benedetta Amato
- Sezione Diagnostica Barcellona P.G., Istituto Zooprofilattico Sperimentale della Sicilia, Barcellona Pozzo di Gotto, Italy
| | - Maria Beatrice Boniotti
- National Reference Centre for Bovine Tuberculosis, Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna, Brescia, Italy
| | - Maria Vitale
- Sezione Diagnostica Barcellona P.G., Istituto Zooprofilattico Sperimentale della Sicilia, Barcellona Pozzo di Gotto, Italy
| | - Flavia Pruiti Ciarello
- Sezione Diagnostica Barcellona P.G., Istituto Zooprofilattico Sperimentale della Sicilia, Barcellona Pozzo di Gotto, Italy
| | - Maria Lodovica Pacciarini
- National Reference Centre for Bovine Tuberculosis, Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna, Brescia, Italy
| | - Vincenzo Di Marco Lo Presti
- Sezione Diagnostica Barcellona P.G., Istituto Zooprofilattico Sperimentale della Sicilia, Barcellona Pozzo di Gotto, Italy
| |
Collapse
|
15
|
Li X, Lv X, Lin Y, Zhen J, Ruan C, Duan W, Li Y, Xie J. Role of two-component regulatory systems in intracellular survival of Mycobacterium tuberculosis. J Cell Biochem 2019; 120:12197-12207. [PMID: 31026098 DOI: 10.1002/jcb.28792] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 01/11/2019] [Accepted: 01/14/2019] [Indexed: 11/06/2022]
Abstract
The typical two-component regulatory systems (TCSs), consisting of response regulator and histidine kinase, play a central role in survival of pathogenic bacteria under stress conditions such as nutrient starvation, hypoxia, and nitrosative stress. A total of 11 complete paired two-component regulatory systems have been found in Mycobacterium tuberculosis, including a few isolated kinase and regulatory genes. Increasing evidence has shown that TCSs are closely associated with multiple physiological process like intracellular persistence, pathogenicity, and metabolism. This review gives the two-component signal transduction systems in M. tuberculosis and their signal transduction roles in adaption to the environment.
Collapse
Affiliation(s)
- Xue Li
- State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Institute of Modern Biopharmaceuticals, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| | - Xi Lv
- State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Institute of Modern Biopharmaceuticals, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| | - Yanping Lin
- State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Institute of Modern Biopharmaceuticals, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| | - Junfeng Zhen
- State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Institute of Modern Biopharmaceuticals, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| | - Cao Ruan
- State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Institute of Modern Biopharmaceuticals, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| | - Wei Duan
- State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Institute of Modern Biopharmaceuticals, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| | - Yue Li
- State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Institute of Modern Biopharmaceuticals, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| | - Jianping Xie
- State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Institute of Modern Biopharmaceuticals, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| |
Collapse
|
16
|
Deciphering Within-Host Microevolution of Mycobacterium tuberculosis through Whole-Genome Sequencing: the Phenotypic Impact and Way Forward. Microbiol Mol Biol Rev 2019; 83:83/2/e00062-18. [PMID: 30918049 DOI: 10.1128/mmbr.00062-18] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The Mycobacterium tuberculosis genome is more heterogenous and less genetically stable within the host than previously thought. Currently, only limited data exist on the within-host microevolution, diversity, and genetic stability of M. tuberculosis As a direct consequence, our ability to infer M. tuberculosis transmission chains and to understand the full complexity of drug resistance profiles in individual patients is limited. Furthermore, apart from the acquisition of certain drug resistance-conferring mutations, our knowledge on the function of genetic variants that emerge within a host and their phenotypic impact remains scarce. We performed a systematic literature review of whole-genome sequencing studies of serial and parallel isolates to summarize the knowledge on genetic diversity and within-host microevolution of M. tuberculosis We identified genomic loci of within-host emerged variants found across multiple studies and determined their functional relevance. We discuss important remaining knowledge gaps and finally make suggestions on the way forward.
Collapse
|
17
|
Bhembe NL, Nwodo UU, Okoh AI, Obi CL, Mabinya LV, Green E. Clonality and genetic profiles of drug-resistant Mycobacterium tuberculosis in the Eastern Cape Province, South Africa. Microbiologyopen 2019; 8:e00449. [PMID: 30801981 PMCID: PMC6436438 DOI: 10.1002/mbo3.449] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 12/15/2016] [Accepted: 12/20/2016] [Indexed: 01/05/2023] Open
Abstract
In this study, we investigated the diversity of drug-resistant Mycobacterium tuberculosis isolates from families who own cattle in the Eastern Cape Province of South Africa using spoligotyping and mycobacterial interspersed repetitive-unit-variable number tandem repeat (MIRU-VNTR) typing. The Mycobacterium tuberculosis was investigated using MIRU-VNTR and the Mycobacterium tuberculosis families were evaluated using spoligotyping. Spoligotyping grouped 91% of the isolates into seven clusters, while 9% of the deoxyribonucleic acid (DNA) from TB isolates were unclustered from a total of 154 DNA used. Previously described shared types were observed in 89.6% of the isolates, with the Beijing family, SIT1, the principal genotype in the province, while the families T, SIT53 and X1, SIT1329 were the least detected genotypes. MIRU-VNTR grouped 81% of the isolates in 23 clusters while 19% were unclustered. A combination of the VNTR and spoligotyping grouped 79% of the isolates into 23 clusters with 21% unclustered. The low level of diversity and the clonal spread of drug-resistant Mycobacterium tuberculosis isolates advocate that the spread of TB in this study may be instigated by the clonal spread of Beijing genotype. The results from this study provide vital information about the lack of TB control and distribution of Mycobacterium tuberculosis complex strain types in the Eastern Cape Province of South Africa.
Collapse
Affiliation(s)
- Nolwazi L Bhembe
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, South Africa.,Molecular Pathogenesis and Molecular Epidemiology Research Group, Department of Biochemistry and Microbiology, University of Fort Hare, Alice, South Africa
| | - Uchechukwu U Nwodo
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, South Africa.,Molecular Pathogenesis and Molecular Epidemiology Research Group, Department of Biochemistry and Microbiology, University of Fort Hare, Alice, South Africa
| | - Anthony I Okoh
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, South Africa.,Molecular Pathogenesis and Molecular Epidemiology Research Group, Department of Biochemistry and Microbiology, University of Fort Hare, Alice, South Africa
| | - Chikwelu L Obi
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, South Africa.,Academic and Research Division, University of Fort Hare, Alice, South Africa
| | - Leonard V Mabinya
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, South Africa.,Molecular Pathogenesis and Molecular Epidemiology Research Group, Department of Biochemistry and Microbiology, University of Fort Hare, Alice, South Africa
| | - Ezekiel Green
- Department of Biotechnology and Food Science, Faculty of Science, University of Johannesburg, Doornfontein, South Africa
| |
Collapse
|
18
|
Meehan CJ, Moris P, Kohl TA, Pečerska J, Akter S, Merker M, Utpatel C, Beckert P, Gehre F, Lempens P, Stadler T, Kaswa MK, Kühnert D, Niemann S, de Jong BC. The relationship between transmission time and clustering methods in Mycobacterium tuberculosis epidemiology. EBioMedicine 2018; 37:410-416. [PMID: 30341041 PMCID: PMC6284411 DOI: 10.1016/j.ebiom.2018.10.013] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 09/17/2018] [Accepted: 10/03/2018] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Tracking recent transmission is a vital part of controlling widespread pathogens such as Mycobacterium tuberculosis. Multiple methods with specific performance characteristics exist for detecting recent transmission chains, usually by clustering strains based on genotype similarities. With such a large variety of methods available, informed selection of an appropriate approach for determining transmissions within a given setting/time period is difficult. METHODS This study combines whole genome sequence (WGS) data derived from 324 isolates collected 2005-2010 in Kinshasa, Democratic Republic of Congo (DRC), a high endemic setting, with phylodynamics to unveil the timing of transmission events posited by a variety of standard genotyping methods. Clustering data based on Spoligotyping, 24-loci MIRU-VNTR typing, WGS based SNP (Single Nucleotide Polymorphism) and core genome multi locus sequence typing (cgMLST) typing were evaluated. FINDINGS Our results suggest that clusters based on Spoligotyping could encompass transmission events that occurred almost 200 years prior to sampling while 24-loci-MIRU-VNTR often represented three decades of transmission. Instead, WGS based genotyping applying low SNP or cgMLST allele thresholds allows for determination of recent transmission events, e.g. in timespans of up to 10 years for a 5 SNP/allele cut-off. INTERPRETATION With the rapid uptake of WGS methods in surveillance and outbreak tracking, the findings obtained in this study can guide the selection of appropriate clustering methods for uncovering relevant transmission chains within a given time-period. For high resolution cluster analyses, WGS-SNP and cgMLST based analyses have similar clustering/timing characteristics even for data obtained from a high incidence setting.
Collapse
Affiliation(s)
- Conor J Meehan
- Unit of Mycobacteriology, Biomedical Sciences, Institute of Tropical Medicine, Antwerp 2000, Belgium.
| | - Pieter Moris
- Unit of Mycobacteriology, Biomedical Sciences, Institute of Tropical Medicine, Antwerp 2000, Belgium; Adrem Data Lab (Adrem), Department of Mathematics and Computer Science, University of Antwerp, Antwerp 2020, Belgium; Biomedical Informatics Research Network Antwerp (biomina), University of Antwerp, Antwerp 2020, Belgium
| | - Thomas A Kohl
- German Center for Infection Research, Partner Site Hamburg-Lübeck-Borstel-Riems, D-23845 Borstel, Germany; Molecular and Experimental Mycobacteriology, Priority Area Infections, Research Center Borstel, D-23845 Borstel, Germany
| | - Jūlija Pečerska
- Swiss Institute of Bioinformatics (SIB), 1015 Lausanne, Switzerland
| | - Suriya Akter
- Unit of Mycobacteriology, Biomedical Sciences, Institute of Tropical Medicine, Antwerp 2000, Belgium
| | - Matthias Merker
- German Center for Infection Research, Partner Site Hamburg-Lübeck-Borstel-Riems, D-23845 Borstel, Germany; Molecular and Experimental Mycobacteriology, Priority Area Infections, Research Center Borstel, D-23845 Borstel, Germany
| | - Christian Utpatel
- German Center for Infection Research, Partner Site Hamburg-Lübeck-Borstel-Riems, D-23845 Borstel, Germany; Molecular and Experimental Mycobacteriology, Priority Area Infections, Research Center Borstel, D-23845 Borstel, Germany
| | - Patrick Beckert
- German Center for Infection Research, Partner Site Hamburg-Lübeck-Borstel-Riems, D-23845 Borstel, Germany; Molecular and Experimental Mycobacteriology, Priority Area Infections, Research Center Borstel, D-23845 Borstel, Germany
| | - Florian Gehre
- Unit of Mycobacteriology, Biomedical Sciences, Institute of Tropical Medicine, Antwerp 2000, Belgium; Vaccines and Immunity Theme, Medical Research Council Unit The Gambia, Serekunda, Gambia; Department Infectious Diseases Epidemiology, Bernhard Nocht Institute for Tropical Medicine, Hamburg 20359, Germany
| | - Pauline Lempens
- Unit of Mycobacteriology, Biomedical Sciences, Institute of Tropical Medicine, Antwerp 2000, Belgium
| | - Tanja Stadler
- Swiss Institute of Bioinformatics (SIB), 1015 Lausanne, Switzerland
| | - Michel K Kaswa
- Unit of Mycobacteriology, Biomedical Sciences, Institute of Tropical Medicine, Antwerp 2000, Belgium; National Tuberculosis Program, Kinshasa, DR Congo
| | - Denise Kühnert
- Max Planck Institute for the Science of Human History, 07745 JENA, Germany
| | - Stefan Niemann
- German Center for Infection Research, Partner Site Hamburg-Lübeck-Borstel-Riems, D-23845 Borstel, Germany; Molecular and Experimental Mycobacteriology, Priority Area Infections, Research Center Borstel, D-23845 Borstel, Germany
| | - Bouke C de Jong
- Unit of Mycobacteriology, Biomedical Sciences, Institute of Tropical Medicine, Antwerp 2000, Belgium
| |
Collapse
|
19
|
Fawzy A, Zschöck M, Ewers C, Eisenberg T. Genotyping methods and molecular epidemiology of Mycobacterium avium subsp. paratuberculosis (MAP). Int J Vet Sci Med 2018; 6:258-264. [PMID: 30564606 PMCID: PMC6286618 DOI: 10.1016/j.ijvsm.2018.08.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 08/02/2018] [Accepted: 08/02/2018] [Indexed: 12/22/2022] Open
Abstract
Mycobacterium avium subsp. paratuberculosis (MAP) is the causative agent of Johne’s disease (JD) which affects mainly ruminants and is characterized by chronic diarrhea and emaciation. Johne’s disease is highly prevalent in many countries around the world and leads to high economic losses associated with decreased production. Genotyping of the involved pathogen could be used in the study of population genetics, pathogenesis and molecular epidemiology including disease surveillance and outbreak investigation. Principally, researchers have first assumed the presence of two different MAP strains that are associated with the animal host species (cattle and sheep). However, nowadays MAP characterization depends mainly upon genetic testing using genetic markers such as insertion elements, repetitive sequences and single nucleotide polymorphisms. This work aims to provide an overview of the advances in molecular biological tools used for MAP typing in the last two decades, discuss how these methods have been used to address interesting epidemiological questions, and explore the future prospects of MAP molecular epidemiology given the ever decreasing costs of the high throughput sequencing technology.
Collapse
Affiliation(s)
- Ahmad Fawzy
- Faculty of Veterinary Medicine, Department of Medicine and Infectious Diseases, Cairo University, Egypt
- Hessian State Laboratory (LHL), Giessen, Germany
- Institute of Hygiene and Animal Infectious Diseases, Justus-Liebig University, Giessen, Germany
- Corresponding author at: Institute of Hygiene and Animal Infectious Diseases, Justus-Liebig University, Giessen, Germany.
| | | | - Christa Ewers
- Institute of Hygiene and Animal Infectious Diseases, Justus-Liebig University, Giessen, Germany
| | - Tobias Eisenberg
- Hessian State Laboratory (LHL), Giessen, Germany
- Institute of Hygiene and Animal Infectious Diseases, Justus-Liebig University, Giessen, Germany
| |
Collapse
|
20
|
O'Toole RF. Development of a New Genome-Wide MLST Scheme for High-Resolution Typing of Diverse Mycobacterium tuberculosis Complex Strains. EBioMedicine 2018; 34:6-7. [PMID: 30087031 PMCID: PMC6116476 DOI: 10.1016/j.ebiom.2018.07.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Accepted: 07/30/2018] [Indexed: 11/23/2022] Open
Abstract
In this issue of EBioMedicine, Kohl and colleagues describe the development of a new core genome MLST scheme (cgMLST) for Mycobacterium tuberculosis complex strains based on a set of 2891 genes. Here, the application of the scheme to a number of tuberculosis surveillance studies is examined.
Collapse
Affiliation(s)
- Ronan F O'Toole
- School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, Australia; Department of Clinical Microbiology, Trinity College Dublin, Ireland.
| |
Collapse
|
21
|
Kundu M. The role of two-component systems in the physiology of Mycobacterium tuberculosis. IUBMB Life 2018; 70:710-717. [PMID: 29885211 DOI: 10.1002/iub.1872] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 04/22/2018] [Indexed: 12/14/2022]
Abstract
Tuberculosis is a global health problem, with a third of the world's population infected with the bacillus, Mycobacterium tuberculosis. The problem is exacerbated by the emergence of multidrug resistant and extensively drug resistant strains. The search for new drug targets is therefore a priority for researchers in the field. The two-component systems (TCSs) are central to the ability of the bacterium to sense and to respond appropriately to its environment. Here we summarize current knowledge on the paired TCSs of M. tuberculosis. We discuss what is currently understood regarding the signals to which each of the sensor kinases responds, and the regulons of each of the cognate response regulators. We also discuss what is known regarding attempts to inhibit the TCSs by small molecules and project their potential as pharmacological targets for the development of novel antimycobacterial agents. © 2018 IUBMB Life, 70(8):710-717, 2018.
Collapse
|
22
|
Bakuła Z, Brzostek A, Borówka P, Żaczek A, Szulc-Kiełbik I, Podpora A, Parniewski P, Strapagiel D, Dziadek J, Proboszcz M, Bielecki J, van Ingen J, Jagielski T. Molecular typing of Mycobacterium kansasii using pulsed-field gel electrophoresis and a newly designed variable-number tandem repeat analysis. Sci Rep 2018; 8:4462. [PMID: 29535391 PMCID: PMC5849605 DOI: 10.1038/s41598-018-21562-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 02/06/2018] [Indexed: 11/09/2022] Open
Abstract
Molecular epidemiological studies of Mycobacterium kansasii are hampered by the lack of highly-discriminatory genotyping modalities. The purpose of this study was to design a new, high-resolution fingerprinting method for M. kansasii. Complete genome sequence of the M. kansasii ATCC 12478 reference strain was searched for satellite-like repetitive DNA elements comprising tandem repeats. A total of 24 variable-number tandem repeat (VNTR) loci were identified with potential discriminatory capacity. Of these, 17 were used to study polymorphism among 67 M. kansasii strains representing six subtypes (I-VI). The results of VNTR typing were compared with those of pulsed-field gel electrophoresis (PFGE) with AsnI digestion. Six VNTRs i.e. (VNTR 1, 2, 8, 14, 20 and 23) allow to differentiate analyzed strains with the same discriminatory capacities as use of a 17-loci panel. VNTR typing and PFGE in conjunction revealed 45 distinct patterns, including 11 clusters with 33 isolates and 34 unique patterns. The Hunter-Gaston's discriminatory index was 0.95 and 0.66 for PFGE and VNTR typing respectively, and 0.97 for the two methods combined. In conclusion, this study delivers a new typing scheme, based on VNTR polymorphism, and recommends it as a first-line test prior to PFGE analysis in a two-step typing strategy for M. kansasii.
Collapse
Affiliation(s)
- Zofia Bakuła
- Department of Applied Microbiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Anna Brzostek
- Institute of Medical Biology, Polish Academy of Sciences, Łódź, Poland
| | - Paulina Borówka
- Department of Anthropology, University of Łódź, Łódź, Poland
| | - Anna Żaczek
- Department of Biochemistry and Cell Biology, University of Rzeszów, Rzeszów, Poland
| | | | - Agata Podpora
- Department of Applied Microbiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Paweł Parniewski
- Institute of Medical Biology, Polish Academy of Sciences, Łódź, Poland
| | - Dominik Strapagiel
- Biobank Lab, Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Łódź, Łódź, Poland
| | - Jarosław Dziadek
- Institute of Medical Biology, Polish Academy of Sciences, Łódź, Poland
| | - Małgorzata Proboszcz
- Department of Internal Medicine, Pulmonary Diseases and Allergy, Medical University of Warsaw, Warsaw, Poland
| | - Jacek Bielecki
- Department of Applied Microbiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Jakko van Ingen
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Tomasz Jagielski
- Department of Applied Microbiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland.
| |
Collapse
|
23
|
Xu G, Mao X, Wang J, Pan H. Clustering and recent transmission of Mycobacterium tuberculosis in a Chinese population. Infect Drug Resist 2018; 11:323-330. [PMID: 29563813 PMCID: PMC5846054 DOI: 10.2147/idr.s156534] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Purpose The objectives of the present study were to characterize the clinical isolates prevailing in the northeast of Jiangsu and to investigate the mode of transmission. The study also aimed to explore the extent to which Mycobacterium tuberculosis strains contributed to drug resistance and the possible factors related to the recent transmission. Patients and methods We consecutively enrolled 912 culture-confirmed pulmonary tuberculosis (TB) cases from 1 January 2013 to 31 December 2014 in Lianyungang City, which is located in the center of China’s vast ocean area and the northeast of Jiangsu province. Isolates were genotyped using 15-locus mycobacterial interspersed repetitive unit-variable number tandem repeat (MIRU-VNTR) typing. The Hunter–Gaston discrimination index (HGDI) was used to estimate the discriminatory power and diversity of molecular markers. Results Among 741 successfully genotyped isolates, 144 (19.43%) strains formed 46 clusters, while 597 (80.57%) isolates had the unique MIRU pattern. The total HGDI for all 15 loci was 0.999. The average cluster size was 3 (2–13) patients. The estimated proportion of recent transmission was 13.34%. Patients with unfavorable treatment outcomes were infected with clustered strains at a higher proportion than were those with favorable treatment outcomes (adjusted OR: 1.78, 95% CI: 1.14–2.85, P=0.012). Conclusion The probability of recent TB transmission was relatively low in the study site, while the cases mainly arose from the activation of previous infection. Spatial analysis showed that strains forming larger clusters had the characteristics of regional aggregation.
Collapse
Affiliation(s)
- Guisheng Xu
- Department of Epidemiology, Key Laboratory of Infectious Diseases, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Xuhua Mao
- Department of Clinical Laboratory, Yixing People's Hospital, Wuxi, China
| | - Jianming Wang
- Department of Epidemiology, Key Laboratory of Infectious Diseases, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Hongqiu Pan
- Department of Tuberculosis, The Third Hospital of Zhenjiang, Zhenjiang, China
| |
Collapse
|
24
|
Armas F, Camperio C, Coltella L, Selvaggini S, Boniotti MB, Pacciarini ML, Di Marco Lo Presti V, Marianelli C. Comparison of semi-automated commercial rep-PCR fingerprinting, spoligotyping, 12-locus MIRU-VNTR typing and single nucleotide polymorphism analysis of the embB gene as molecular typing tools for Mycobacterium bovis. J Med Microbiol 2017; 66:1151-1157. [DOI: 10.1099/jmm.0.000536] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Federica Armas
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
| | - Cristina Camperio
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
| | - Luana Coltella
- Microbiology Laboratory, Bambino Gesù Paediatric Hospital, Rome, Italy
| | | | - Maria Beatrice Boniotti
- National Reference Centre for Mycobacterium Bovis Tuberculosis, Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna, Brescia, Italy
| | - Maria Lodovica Pacciarini
- National Reference Centre for Mycobacterium Bovis Tuberculosis, Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna, Brescia, Italy
| | | | - Cinzia Marianelli
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
25
|
Abstract
Tuberculosis (TB) remains the most deadly bacterial infectious disease worldwide. Its treatment and control are threatened by increasing numbers of multidrug-resistant (MDR) or nearly untreatable extensively drug-resistant (XDR) strains. New concepts are therefore urgently needed to understand the factors driving the TB epidemics and the spread of different strain populations, especially in association with drug resistance. Classical genotyping and, more recently, whole-genome sequencing (WGS) revealed that the world population of tubercle bacilli is more diverse than previously thought. Several major phylogenetic lineages can be distinguished, which are associated with their sympatric host population. Distinct clonal (sub)populations can even coexist within infected patients. WGS is now used as the ultimate approach for differentiating clinical isolates and for linking phenotypic to genomic variation from lineage to strain levels. Multiple lines of evidence indicate that the genetic diversity of TB strains translates into pathobiological consequences, and key molecular mechanisms probably involved in differential pathoadaptation of some main lineages have recently been identified. Evidence also accumulates on molecular mechanisms putatively fostering the emergence and rapid expansion of particular MDR and XDR strain groups in some world regions. However, further integrative studies will be needed for complete elucidation of the mechanisms that allow the pathogen to infect its host, acquire multidrug resistance, and transmit so efficiently. Such knowledge will be key for the development of the most effective new diagnostics, drugs, and vaccination strategies.
Collapse
|
26
|
Bolaños CAD, Paula CLD, Guerra ST, Franco MMJ, Ribeiro MG. Diagnosis of mycobacteria in bovine milk: an overview. Rev Inst Med Trop Sao Paulo 2017; 59:e40. [PMID: 28591268 PMCID: PMC5466425 DOI: 10.1590/s1678-9946201759040] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 02/22/2017] [Indexed: 11/22/2022] Open
Abstract
Tuberculosis remains as the world's biggest threat. In 2014, human tuberculosis ranked as a major infectious disease by the first time, overcoming HIV death rates. Bovine tuberculosis is a chronic disease of global distribution that affects animals and can be transmitted to humans by the consumption of raw milk, representing a serious public health concern. Despite the efforts of different countries to control and eradicate bovine tuberculosis, the high negative economic impact on meat and milk production chains remains, given the decreased production efficiency (approximately 25%), the high number of condemned carcasses, and increased animal culling rates. This scenario has motivated the establishment of official programs based on regulations and diagnostic procedures. Although Mycobacterium tuberculosis and Mycobacterium bovis are the major pathogenic species to humans and bovines, respectively, nontuberculous mycobacteria within the Mycobacterium genus have become increasingly important in recent decades due to human infections, including the ones that occur in immunocompetent people. Diagnosis of mycobacteria can be performed by microbiological culture from tissue samples (lymph nodes, lungs) and secretions (sputum, milk). In general, these pathogens demand special nutrient requirements for isolation/growth, and the use of selective and rich culture media. Indeed, within these genera, mycobacteria are classified as either fast- or slow-growth microorganisms. Regarding the latter ones, incubation times can vary from 45 to 90 days. Although microbiological culture is still considered the gold standard method for diagnosis, molecular approaches have been increasingly used. We describe here an overview of the diagnosis of Mycobacterium species in bovine milk.
Collapse
Affiliation(s)
- Carmen Alicia Daza Bolaños
- UNESP - Universidade Estadual Paulista Julio de Mesquita Filho, Faculdade de Medicina Veterinária e Zootecnia, Departamento de Higiene Veterinária e Saúde Pública, Botucatu, São Paulo, Brazil
| | - Carolina Lechinski de Paula
- UNESP - Universidade Estadual Paulista Julio de Mesquita Filho, Faculdade de Medicina Veterinária e Zootecnia, Departamento de Higiene Veterinária e Saúde Pública, Botucatu, São Paulo, Brazil
| | - Simony Trevizan Guerra
- UNESP - Universidade Estadual Paulista Julio de Mesquita Filho, Faculdade de Medicina Veterinária e Zootecnia, Departamento de Higiene Veterinária e Saúde Pública, Botucatu, São Paulo, Brazil
| | - Marília Masello Junqueira Franco
- UNESP - Universidade Estadual Paulista Julio de Mesquita Filho, Faculdade de Medicina Veterinária e Zootecnia, Departamento de Higiene Veterinária e Saúde Pública, Botucatu, São Paulo, Brazil
| | - Márcio Garcia Ribeiro
- UNESP - Universidade Estadual Paulista Julio de Mesquita Filho, Faculdade de Medicina Veterinária e Zootecnia, Departamento de Higiene Veterinária e Saúde Pública, Botucatu, São Paulo, Brazil
| |
Collapse
|
27
|
Molecular epidemiology of Mycobacterium tuberculosis complex in Brussels, 2010-2013. PLoS One 2017; 12:e0172554. [PMID: 28222189 PMCID: PMC5319770 DOI: 10.1371/journal.pone.0172554] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 02/06/2017] [Indexed: 11/22/2022] Open
Abstract
The tuberculosis (TB) incidence rate in Brussels-Capital Region is 3-fold higher than in Belgium as a whole. Eight years after the realization of initial prospective population-based molecular epidemiology investigations in this Region, a similar study over the period 2010–2013 was conducted. TB strains isolated from 945 patients were submitted to genotyping by standardized 24-locus-MIRU-VNTR typing and spoligotyping. The phylogenetic analysis showed that the LAM (16.7%) and Haarlem (15.7%) branches are the two most prevalent TB lineages circulating in Brussels. Analysis of the MDR subgroup showed an association with Beijing strains (39.9%) and patients native of Eastern Europe (40.7%). Genotyping detected 113 clusters involving 321 patients, giving a recent transmission index of 22.9%. Molecular-guided epidemiological investigations and routine surveillance activities revealed family transmission or social contact for patients distributed over 34 clusters. Most of the patients were foreign-born (75.7%). However, cluster analysis revealed only limited trans-national transmission. Comparison with the previous study shows a stable epidemiological situation except for the mean age difference between Belgian-born and foreign-born patients which has disappeared. This study confirms that molecular epidemiology has become an important determinant for TB control programs. However, sufficient financial means need to be available to perform all required epidemiological investigations.
Collapse
|
28
|
The Evolution of Strain Typing in the Mycobacterium tuberculosis Complex. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1019:43-78. [PMID: 29116629 DOI: 10.1007/978-3-319-64371-7_3] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Tuberculosis (TB) is a contagious disease with a complex epidemiology. Therefore, molecular typing (genotyping) of Mycobacterium tuberculosis complex (MTBC) strains is of primary importance to effectively guide outbreak investigations, define transmission dynamics and assist global epidemiological surveillance of the disease. Large-scale genotyping is also needed to get better insights into the biological diversity and the evolution of the pathogen. Thanks to its shorter turnaround and simple numerical nomenclature system, mycobacterial interspersed repetitive unit-variable-number tandem repeat (MIRU-VNTR) typing, based on 24 standardized plus 4 hypervariable loci, optionally combined with spoligotyping, has replaced IS6110 DNA fingerprinting over the last decade as a gold standard among classical strain typing methods for many applications. With the continuous progress and decreasing costs of next-generation sequencing (NGS) technologies, typing based on whole genome sequencing (WGS) is now increasingly performed for near complete exploitation of the available genetic information. However, some important challenges remain such as the lack of standardization of WGS analysis pipelines, the need of databases for sharing WGS data at a global level, and a better understanding of the relevant genomic distances for defining clusters of recent TB transmission in different epidemiological contexts. This chapter provides an overview of the evolution of genotyping methods over the last three decades, which culminated with the development of WGS-based methods. It addresses the relative advantages and limitations of these techniques, indicates current challenges and potential directions for facilitating standardization of WGS-based typing, and provides suggestions on what method to use depending on the specific research question.
Collapse
|
29
|
Ei PW, Aung WW, Lee JS, Choi GE, Chang CL. Molecular Strain Typing of Mycobacterium tuberculosis: a Review of Frequently Used Methods. J Korean Med Sci 2016; 31:1673-1683. [PMID: 27709842 PMCID: PMC5056196 DOI: 10.3346/jkms.2016.31.11.1673] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 08/06/2016] [Indexed: 11/20/2022] Open
Abstract
Tuberculosis, caused by the bacterium Mycobacterium tuberculosis, remains one of the most serious global health problems. Molecular typing of M. tuberculosis has been used for various epidemiologic purposes as well as for clinical management. Currently, many techniques are available to type M. tuberculosis. Choosing the most appropriate technique in accordance with the existing laboratory conditions and the specific features of the geographic region is important. Insertion sequence IS6110-based restriction fragment length polymorphism (RFLP) analysis is considered the gold standard for the molecular epidemiologic investigations of tuberculosis. However, other polymerase chain reaction-based methods such as spacer oligonucleotide typing (spoligotyping), which detects 43 spacer sequence-interspersing direct repeats (DRs) in the genomic DR region; mycobacterial interspersed repetitive units-variable number tandem repeats, (MIRU-VNTR), which determines the number and size of tandem repetitive DNA sequences; repetitive-sequence-based PCR (rep-PCR), which provides high-throughput genotypic fingerprinting of multiple Mycobacterium species; and the recently developed genome-based whole genome sequencing methods demonstrate similar discriminatory power and greater convenience. This review focuses on techniques frequently used for the molecular typing of M. tuberculosis and discusses their general aspects and applications.
Collapse
Affiliation(s)
- Phyu Win Ei
- Advanced Molecular Research Centre, Department of Medical Research, Yangon, Myanmar
| | - Wah Wah Aung
- Advanced Molecular Research Centre, Department of Medical Research, Yangon, Myanmar
| | - Jong Seok Lee
- International Tuberculosis Research Center, Changwon, Korea
| | - Go Eun Choi
- Institute of Convergence Bio-Health, Dong-A University, Busan, Korea
| | - Chulhun L Chang
- Department of Laboratory Medicine, Pusan National University Yangsan Hospital, Yangsan, Korea.
| |
Collapse
|
30
|
Carvalho RCT, Vasconcellos SEG, Issa MDA, Soares Filho PM, Mota PMPC, Araújo FRD, Carvalho ACDS, Gomes HM, Suffys PN, Figueiredo EEDS, Paschoalin VMF. Molecular Typing of Mycobacterium bovis from Cattle Reared in Midwest Brazil. PLoS One 2016; 11:e0162459. [PMID: 27631383 PMCID: PMC5024986 DOI: 10.1371/journal.pone.0162459] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Accepted: 08/23/2016] [Indexed: 11/18/2022] Open
Abstract
Mycobacterium bovis is the causative agent of bovine tuberculosis (BTB), the pathogen responsible for serious economic impact on the livestock sector. In order to obtain data on isolated M. bovis strains and assist in the control and eradication program for BTB, a cross sectional descriptive molecular epidemiology study in the Brazilian Midwest was conducted. Through spoligotyping and 24-loci MIRU-VNTR methods, 37 clinical isolates of M. bovis circulating in the region were analyzed, 10 isolated from the state of Mato Grosso, 12 from the state of Mato Grosso do Sul and 15 from the state of Goiás. The spoligotyping analysis identified 10 distinct M. bovis profiles (SB0121 n = 14, SB0295 n = 6, SB0140 n = 6, SB0881 n = 3, SB1144 n = 2, SB1145 n = 2, SB0134 n = 1, SB1050 n = 1, SB1055 n = 1, SB1136 n = 1) grouped in six clusters and four orphan patterns. The MIRU-VNTR 24-loci grouped the same isolates in six clusters and 22 unique orphan patterns, showing higher discriminatory power than spoligotyping. When associating the results of both techniques, the isolates were grouped in five clusters and 24 unique M. bovis profiles. Among the 24-loci MIRU-VNTR evaluated, two, ETR-A and QUB 11b loci, showed high discriminatory ability (h = ≥ 0.50), while MIRU 16, MIRU 27, ETR-B, ETR-C, Mtub21 and QUB 26 loci showed moderate ability (h = 0.33 or h = 0.49) and were the most effective in evaluating the genotypic similarities among the clinical M. bovis isolate samples. Herein, the 29 patterns found amongst the 37 isolates of M. bovis circulating in the Brazilian Midwest can be due to the animal movement between regions, municipalities and farms, thus causing the spread of various M. bovis strains in herds from Midwest Brazil.
Collapse
Affiliation(s)
- Ricardo César Tavares Carvalho
- Instituto de Química, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro/RJ, Brasil
- Faculdade de Nutrição, Universidade Federal de Mato Grosso (UFMT), Cuiabá/MT, Brasil
| | - Sidra Ezidio Gonçalves Vasconcellos
- Laboratório de Biologia Molecular Aplicado a Micobactérias, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro/RJ, Brasil
| | - Marina de Azevedo Issa
- Laboratório Nacional Agropecuário (LANAGRO), Ministério da Agricultura, Pecuária e Abastecimento (MAPA), Pedro Leopoldo/MG, Brasil
| | - Paulo Martins Soares Filho
- Laboratório Nacional Agropecuário (LANAGRO), Ministério da Agricultura, Pecuária e Abastecimento (MAPA), Pedro Leopoldo/MG, Brasil
| | - Pedro Moacyr Pinto Coelho Mota
- Laboratório Nacional Agropecuário (LANAGRO), Ministério da Agricultura, Pecuária e Abastecimento (MAPA), Pedro Leopoldo/MG, Brasil
| | | | - Ana Carolina da Silva Carvalho
- Instituto de Química, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro/RJ, Brasil
- Universidade Federal do Rio de Janeiro (UFRJ)-Campus Macaé, Macaé/RJ, Brasil
| | - Harrison Magdinier Gomes
- Laboratório de Biologia Molecular Aplicado a Micobactérias, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro/RJ, Brasil
| | - Philip Noel Suffys
- Laboratório de Biologia Molecular Aplicado a Micobactérias, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro/RJ, Brasil
- Mycobacteriology Unit, Tropical Institute of Medicine, Antwerp, Belgium
| | | | | |
Collapse
|
31
|
REMap: Operon map of M. tuberculosis based on RNA sequence data. Tuberculosis (Edinb) 2016; 99:70-80. [PMID: 27450008 DOI: 10.1016/j.tube.2016.04.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 04/19/2016] [Accepted: 04/24/2016] [Indexed: 12/18/2022]
Abstract
A map of the transcriptional organization of genes of an organism is a basic tool that is necessary to understand and facilitate a more accurate genetic manipulation of the organism. Operon maps are largely generated by computational prediction programs that rely on gene conservation and genome architecture and may not be physiologically relevant. With the widespread use of RNA sequencing (RNAseq), the prediction of operons based on actual transcriptome sequencing rather than computational genomics alone is much needed. Here, we report a validated operon map of Mycobacterium tuberculosis, developed using RNAseq data from both the exponential and stationary phases of growth. At least 58.4% of M. tuberculosis genes are organized into 749 operons. Our prediction algorithm, REMap (RNA Expression Mapping of operons), considers the many cases of transcription coverage of intergenic regions, and avoids dependencies on functional annotation and arbitrary assumptions about gene structure. As a result, we demonstrate that REMap is able to more accurately predict operons, especially those that contain long intergenic regions or functionally unrelated genes, than previous operon prediction programs. The REMap algorithm is publicly available as a user-friendly tool that can be readily modified to predict operons in other bacteria.
Collapse
|
32
|
Cheng XF, Jiang C, Zhang M, Xia D, Chu LL, Wen YF, Zhu M, Jiang YG. Mycobacterial Interspersed Repetitive Unit Can Predict Drug Resistance of Mycobacterium tuberculosis in China. Front Microbiol 2016; 7:378. [PMID: 27047485 PMCID: PMC4803746 DOI: 10.3389/fmicb.2016.00378] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 03/08/2016] [Indexed: 11/23/2022] Open
Abstract
Background: Recently, Mycobacterial Interspersed Repetitive Unit (MIRU) was supposed to be associated with drug resistance in Mycobacterium tuberculosis (M. tuberculosis), but whether the association exists actually in local strains in China was still unknown. This research was conducted to explore that association and the predictability of MIRU to drug resistance of Tuberculosis (TB). Methods: The clinical isolates were collected and the susceptibility test were conducted with Lowenstein–Jensen (LJ) medium for five anti-TB drug. Based on PCR of MIRU-VNTR (Variable Number of Tandem Repeat) genotyping, we tested the number of the repeat unite of MIRU. Then, we used logistic regression to evaluate the association between 15 MIRU and drug resistance. In addition, we explored the most suitable MIRU locus of identified MIRU loci for drug resistance by multivariate logistic regression. Results: Of the 102 strains, one isolate was resistant to rifampicin and one isolate was resistant to streptomycin. Among these fifteen MIRU, there was a association between MIRU loci polymorphism and anti-tuberculosis drug resistance, ETRB (P = 0.03, OR = 0.19, 95% CI 0.05–0.81) and ETRC (P = 0.01, OR = 0.14, 95% CI 0.03–0.64) were negatively related to isoniazid resistance; MIRU20 (P = 0.05, OR = 2.87, 95% CI 1.01–8.12) was positively associated with ethambutol resistance; and QUB11a (P = 0.02, OR = 0.79, 95% CI 0.65–0.96) was a negative association factor of p-aminosalicylic acid resistance. Conclusion: Our research showed that MIRU loci may predict drug resistance of tuberculosis in China. However, the mechanism still needs further exploration.
Collapse
Affiliation(s)
- Xian-Feng Cheng
- School of Public Health, Wannan Medical CollegeWuhu, China; Clinical Laboratory, Institute of Dermatology, Chinese Academy of Medical Sciences - Peking Union Medical CollegeNanjing, China
| | - Chao Jiang
- School of Public Health, Wannan Medical College Wuhu, China
| | - Min Zhang
- Clinical Laboratory, Zhongda Hospital, School of Medicine, Southeast University Nanjing, China
| | - Dan Xia
- School of Public Health, Wannan Medical College Wuhu, China
| | - Li-Li Chu
- Pediatric Research Institute, Nanjing Children's Hospital, Nanjing Medical University Nanjing, China
| | - Yu-Feng Wen
- School of Public Health, Wannan Medical College Wuhu, China
| | - Ming Zhu
- Clinical Laboratory, Ma'anshan Center for Disease Control and Prevention Ma'anshan, China
| | - Yue-Gen Jiang
- Clinical Laboratory, Institute of Dermatology, Chinese Academy of Medical Sciences - Peking Union Medical CollegeNanjing, China; Clinical Laboratory, Ma'anshan Center for Disease Control and PreventionMa'anshan, China
| |
Collapse
|
33
|
Abstract
Two-component regulatory systems (2CRSs) are widely used by bacteria to sense and respond to environmental stimuli with coordinated changes in gene expression. Systems are normally comprised of a sensory kinase protein that activates a transcriptional regulator by phosphorylation. Mycobacteria have few 2CRSs, but they are of key importance for bacterial survival and play important roles in pathogenicity. Mycobacterium tuberculosis has 12 paired two-component regulatory systems (which include a system with two regulators and one sensor, and a split sensor system), as well as four orphan regulators. Several systems are involved in virulence, and disruption of different systems leads to attenuation or hypervirulence. PhoPR plays a major role in regulating cell wall composition, and its inactivation results in sufficient attenuation of M. tuberculosis that deletion strains are live vaccine candidates. MprAB controls the stress response and is required for persistent infections. SenX3-RegX3 is required for control of aerobic respiration and phosphate uptake, and PrrAB is required for adaptation to intracellular infection. MtrAB is an essential system that controls DNA replication and cell division. The remaining systems (KdpDE, NarL, TrcRS, TcrXY, TcrA, PdtaRS, and four orphan regulators) are less well understood. The structure and binding motifs for several regulators have been characterized, revealing variations in function and operation. The sensors are less well characterized, and stimuli for many remain to be confirmed. This chapter reviews our current understanding of the role of two-component systems in mycobacteria, in particular M. tuberculosis.
Collapse
|
34
|
Rezasoltani S, Dabiri H, Khaki P, Rostami Nejad M, Karimnasab N, Modirrousta S. Characterization of Leptospira interrogans Serovars by Polymorphism Variable Number Tandem Repeat Analysis. Jundishapur J Microbiol 2015; 8:e22819. [PMID: 26568805 PMCID: PMC4641467 DOI: 10.5812/jjm.22819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2014] [Revised: 01/23/2015] [Accepted: 02/16/2015] [Indexed: 11/29/2022] Open
Abstract
Background: Leptospirosis is recognized as a re-emerging infectious disease; therefore, understanding the epidemiology of the disease is vital for designing intervention programs and diminishing its transmission. Recently, Multilocus variable number tandem repeat analysis (MLVA) is used for segregating and identifying Leptospira serovars. The method has potential application in investigating the molecular epidemiology of Leptospira. Objectives: The propose of this study was genomic identification of pathogenic Leptospires in Iran by MLVA. Materials and Methods: Leptospira serovars were obtained from National Reference Laboratory of Leptospira at Razi Vaccine and Serum Research Institute, Karaj, Iran. Serovars were cultured into the liquid EMJH medium and incubated at 28˚C for 7 days. DNA of serovars was extracted using the phenol-chloroform method. PCR was performed with 5 selected variable number tandem repeat analysis (VNTR) loci. The amplified products were analyzed by agarose gel electrophoresis. The size of the amplified products was estimated by 100 bp ladder and sequencing analysis. Results: The saprophytic serovar showed no amplified fragments. PCR products in all pathogenic serovars were observed. The 12 reference serovars used for the development of technique displayed distinct patterns. Conclusions: Results showed that MLVA technique with its range of polymorphism is a good marker for identification of pathogenic serovars. Some VNTR loci are more powerful than the other ones with regard to differentiation. Serovars from the same geographical area have more genetic similarity than same serovars from different places. MLVA is a suitable technique for epidemiological survey.
Collapse
Affiliation(s)
- Sama Rezasoltani
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, IR Iran
- Corresponding author: Sama Rezasoltani, Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, IR Iran. Tel: +98-9123197258, Fax: +98-2188656198, E-mail:
| | - Hossein Dabiri
- Department of Medical Microbiology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, IR Iran
| | - Pejvak Khaki
- Department of Microbiology, Razi Vaccine and Serum Institute, Karaj, IR Iran
| | - Mohammad Rostami Nejad
- Department of Celiac Disease, Shahid Beheshti University of Medical Sciences, Tehran, IR Iran
| | - Nasim Karimnasab
- Department of Microbiology, Faculty of Basic Sciences, Karaj Branch, Islamic Azad University, Karaj, IR Iran
| | - Shiva Modirrousta
- Department of Microbiology, Faculty of Basic Sciences, Zanjan Branch, Islamic Azad University, Zanjan, IR Iran
| |
Collapse
|
35
|
Sun Z, Li W, Xu S, Huang H. The discovery, function and development of the variable number tandem repeats in different Mycobacterium species. Crit Rev Microbiol 2015; 42:738-58. [PMID: 26089025 DOI: 10.3109/1040841x.2015.1022506] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The method of genotyping by variable number tandem repeats (VNTRs) facilitates the epidemiological studies of different Mycobacterium species worldwide. Until now, the VNTR method is not fully understood, for example, its discovery, function and classification. The inconsistent nomenclature and terminology of VNTR is especially confusing. In this review, we first describe in detail the VNTRs in Mycobacterium tuberculosis (M. tuberculosis), as this pathogen resulted in more deaths than any other microbial pathogen as well as for which extensive studies of VNTRs were carried out, and then we outline the recent progress of the VNTR-related epidemiological research in several other Mycobacterium species, such as M. abscessus, M. africanum, M. avium, M. bovis, M. canettii, M. caprae, M. intracellulare, M. leprae, M. marinum, M. microti, M. pinnipedii and M. ulcerans from different countries and regions. This article is aimed mainly at the practical notes of VNTR to help the scientists in better understanding and performing this method.
Collapse
Affiliation(s)
- Zhaogang Sun
- a Beijing Tuberculosis & Thoracic Tumor Research Institute, Beijing Key Laboratory for Drug Resistance Tuberculosis Research , Beijing , China and
| | - Weimin Li
- b Beijing Chest Hospital, National Tuberculosis Clinical Laboratory, Capital Medical University , Beijing , China
| | - Shaofa Xu
- b Beijing Chest Hospital, National Tuberculosis Clinical Laboratory, Capital Medical University , Beijing , China
| | - Hairong Huang
- b Beijing Chest Hospital, National Tuberculosis Clinical Laboratory, Capital Medical University , Beijing , China
| |
Collapse
|
36
|
Genetic diversity of Mycobacterium avium subspecies paratuberculosis and the influence of strain type on infection and pathogenesis: a review. Vet Res 2015; 46:64. [PMID: 26092160 PMCID: PMC4473831 DOI: 10.1186/s13567-015-0203-2] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 01/16/2015] [Indexed: 12/12/2022] Open
Abstract
Mycobacterium avium subspecies paratuberculosis (Map) is an important pathogen that causes a chronic, progressive granulomatous enteritis known as Johne's disease or paratuberculosis. The disease is endemic in many parts of the world and responsible for considerable losses to the livestock and associated industries. Diagnosis and control are problematic, due mostly to the long incubation period of the disease when infected animals show no clinical signs and are difficult to detect, and the ability of the organism to survive and persist in the environment. The existence of phenotypically distinct strains of Map has been known since the 1930s but the genetic differentiation of Map strain types has been challenging and only recent technologies have proven sufficiently discriminative for strain comparisons, tracing the sources of infection and epidemiological studies. It is important to understand the differences that exist between Map strains and how they influence both development and transmission of disease. This information is required to develop improved diagnostics and effective vaccines for controlling Johne's disease. Here I review the current classification of Map strain types, the sources of the genetic variability within strains, growth characteristics and epidemiological traits associated with strain type and the influence of strain type on infection and pathogenicity.
Collapse
|
37
|
Yu-Feng W, Chao J, Xian-Feng C. Drug-resistant tuberculosis can be predicted by Mycobacterial interspersed repetitive unit locus. Front Microbiol 2015; 6:147. [PMID: 25759689 PMCID: PMC4338821 DOI: 10.3389/fmicb.2015.00147] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 02/09/2015] [Indexed: 11/25/2022] Open
Abstract
It is unknown whether MIRU-VNTR (Mycobacterial Interspersed Repetitive Unit-Variable Number of Tandem Repeat) is associated with drug resistance of Mycobacterium tuberculosis. The purpose of this study was to explore the ability of 24 MIRU loci to predict the drug resistance of Isoniazid (INH), Rifampicin (RFP), Streptomycin (SM), Ethambutol (EMB) and Pyrazinamide (PZA). We collected the drug resistance and MIRU loci information of 109 strains of M. tuberculosis from an open database. The results of multivariate logistic regression showed that the VNTR polymorphism of MTUB04 was related to INH resistance [odds ratio (OR) = 2.82, P = 0.00], RFP resistance (OR = 1.91, P = 0.02), SM resistance (OR = 1.98, P = 0.01) and EMB resistance (OR = 1.95, P = 0.03). MIRU40 was associated with INH resistance (OR = 2.22, P = 0.00). MTUB21 was connected with INH resistance (OR = 1.63, P = 0.02) and SM resistance (OR = 1.69, P = 0.01). MIRU26 was correlated with SM resistance (OR = 1.52, P = 0.04). MIRU39 was associated with EMB resistance (OR = 4.07, P = 0.02). The prediction power of MIRU loci were 0.84, 0.70, 0.85, and 0.74 respectively for INH (predicted by MTUB04, MIRU20, and MTUB21), RFP (predicted by MTUB04), SM (predicted by MTUB21 and MIRU26) and EMB (MTUB04 and MIRU39) through ROC analysis. Our results showed that MIRU loci were related to anti-tuberculosis drug and could predict the drug resistance of tuberculosis.
Collapse
Affiliation(s)
- Wen Yu-Feng
- School of Public Health, Wannan Medical College Wuhu, China
| | - Jiang Chao
- School of Public Health, Wannan Medical College Wuhu, China
| | - Cheng Xian-Feng
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Nanjing, China
| |
Collapse
|
38
|
Chui L, Li V. Technical and Software Advances in Bacterial Pathogen Typing. METHODS IN MICROBIOLOGY 2015. [DOI: 10.1016/bs.mim.2015.06.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
39
|
Pouseele H, Supply P. Accurate Whole-Genome Sequencing-Based Epidemiological Surveillance of Mycobacterium Tuberculosis. METHODS IN MICROBIOLOGY 2015. [DOI: 10.1016/bs.mim.2015.04.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
40
|
High-throughput mycobacterial interspersed repetitive-unit-variable-number tandem-repeat genotyping for Mycobacterium tuberculosis epidemiological studies. J Clin Microbiol 2014; 53:498-503. [PMID: 25428144 DOI: 10.1128/jcm.01611-14] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The emergence of drug-resistant forms of tuberculosis (TB) represents a major public health concern. Understanding the transmission routes of the disease is a key factor for its control and for the implementation of efficient interventions. Mycobacterial interspersed repetitive-unit-variable-number tandem-repeat (MIRU-VNTR) marker typing is a well-described method for lineage identification and transmission tracking. However, the conventional manual genotyping technique is cumbersome and time-consuming and entails many risks for errors, thus hindering its implementation and dissemination. We describe here a new approach using the QIAxcel system, an automated high-throughput capillary electrophoresis system that also carries out allele calling. This automated method was assessed on 1,824 amplicons from 82 TB isolates and tested with sets of markers of 15 or 24 loci. Overall allele-calling concordance between the methods from 140 to 1,317 bp was 98.9%. DNA concentrations and repeatability and reproducibility performances showed no biases in allele calling. Furthermore, turnaround time using this automated system was reduced by 81% compared to the conventional manual agarose gel method. In sum, this new automated method facilitates MIRU-VNTR genotyping and provides reliable results. Therefore, it is well suited for field genotyping. The implementation of this method will help to achieve accurate and cost-effective epidemiological studies, especially in countries with a high prevalence of TB, where the high number of strains complicates the surveillance of circulating lineages and requires efficient interventions to be carried out in an urgent manner.
Collapse
|
41
|
Rifat D, Belchis DA, Karakousis PC. senX3-independent contribution of regX3 to Mycobacterium tuberculosis virulence. BMC Microbiol 2014; 14:265. [PMID: 25344463 PMCID: PMC4213456 DOI: 10.1186/s12866-014-0265-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 10/09/2014] [Indexed: 01/27/2023] Open
Abstract
Background Mycobacterium tuberculosis (Mtb) must adapt to various stress conditions during host infection. The two-component regulatory system (2CRS) SenX3-RegX3 is required for Mtb virulence. We showed recently that the senX3-regX3 intergenic region contains promoter activity, driving senX3-independent regX3 expression. In the current study, we tested the hypothesis that RegX3 has a SenX3-independent role in Mtb virulence. The gene expression patterns, growth, and survival of mutants containing transposon insertions in senX3 (senX3::Tn) and regX3 (regX3::Tn) were compared to those of their respective complemented strains and the isogenic wild-type parent strain during axenic growth in nutrient-rich broth, phosphate depletion, nutrient starvation, and in the lungs of BALB/c mice. Results regX3 expression was reduced in senX3::Tn during phosphate depletion and nutrient starvation, and expression of the phosphate-specific transport gene pstC2 was reduced similarly in senX3::Tn and regX3::Tn during phosphate depletion. Although senX3 and regX3 were each dispensable for Mtb growth in nutrient-rich broth, disruption of senX3 or regX3 caused a similar growth defect during phosphate depletion. Interestingly, senX3::Tn, in which monocistronic regX3 expression is preserved, showed significantly higher survival relative to regX3::Tn after 7 days of nutrient starvation (p <0.01), and in mouse lungs at Day 31 (p < 0.01), Day 62 (p < 0.01), and Day 124 (p = 0.05) after aerosol infection. Conclusion Our data demonstrate the specificity of the senX3-regX3 2CRS for sensing and responding to low ambient phosphate, but also raise the possibility that RegX3 may function independently of its cognate sensor histidine kinase.
Collapse
|
42
|
Bacteriological diagnosis and molecular strain typing of Mycobacterium bovis and Mycobacterium caprae. Res Vet Sci 2014; 97 Suppl:S30-43. [DOI: 10.1016/j.rvsc.2014.04.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Revised: 04/08/2014] [Accepted: 04/24/2014] [Indexed: 11/24/2022]
|
43
|
Diversity and evolution of Mycobacterium tuberculosis: moving to whole-genome-based approaches. Cold Spring Harb Perspect Med 2014; 4:a021188. [PMID: 25190252 DOI: 10.1101/cshperspect.a021188] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Genotyping of clinical Mycobacterium tuberculosis complex (MTBC) strains has become a standard tool for epidemiological tracing and for the investigation of the local and global strain population structure. Of special importance is the analysis of the expansion of multidrug (MDR) and extensively drug-resistant (XDR) strains. Classical genotyping and, more recently, whole-genome sequencing have revealed that the strains of the MTBC are more diverse than previously anticipated. Globally, several phylogenetic lineages can be distinguished whose geographical distribution is markedly variable. Strains of particular (sub)lineages, such as Beijing, seem to be more virulent and associated with enhanced resistance levels and fitness, likely fueling their spread in certain world regions. The upcoming generalization of whole-genome sequencing approaches will expectedly provide more comprehensive insights into the molecular and epidemiological mechanisms involved and lead to better diagnostic and therapeutic tools.
Collapse
|
44
|
Relaxed selection drives a noisy noncoding transcriptome in members of the Mycobacterium tuberculosis complex. mBio 2014; 5:e01169-14. [PMID: 25096875 PMCID: PMC4128351 DOI: 10.1128/mbio.01169-14] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Related species are often used to understand the molecular underpinning of virulence through examination of a shared set of biological features attributable to a core genome of orthologous genes. An important but insufficiently studied issue, however, is the extent to which the regulatory architectures are similarly conserved. A small number of studies have compared the primary transcriptomes of different bacterial species, but few have compared closely related species with clearly divergent evolutionary histories. We addressed the impact of differing modes of evolution within the genus Mycobacterium through comparison of the primary transcriptome of M. marinum with that of a closely related lineage, M. bovis. Both are thought to have evolved from an ancestral generalist species, with M. bovis and other members of the M. tuberculosis complex having subsequently undergone downsizing of their genomes during the transition to obligate pathogenicity. M. marinum, in contrast, has retained a large genome, appropriate for an environmental organism, and is a broad-host-range pathogen. We also examined changes over a shorter evolutionary time period through comparison of the primary transcriptome of M. bovis with that of another member of the M. tuberculosis complex (M. tuberculosis) which possesses an almost identical genome but maintains a distinct host preference. Our comparison of the transcriptional start site (TSS) maps of M. marinum and M. bovis uncovers a pillar of conserved promoters, noncoding RNA (NCRNA), and a genome-wide signal in the −35 promoter regions of both species. We identify evolutionarily conserved transcriptional attenuation and highlight its potential contribution to multidrug resistance mediated through the transcriptional regulator whiB7. We show that a species population history is reflected in its transcriptome and posit relaxed selection as the main driver of an abundance of canonical −10 promoter sites in M. bovis relative to M. marinum. It appears that transcriptome composition in mycobacteria is driven primarily by the availability of such sites and that their frequencies diverge significantly across the mycobacterial clade. Finally, through comparison of M. bovis and M. tuberculosis, we illustrate that single nucleotide polymorphism (SNP)-driven promoter differences likely underpin many of the transcriptional differences between M. tuberculosis complex lineages.
Collapse
|
45
|
Rifat D, Karakousis PC. Differential regulation of the two-component regulatory system senX3-regX3 in Mycobacterium tuberculosis. MICROBIOLOGY-SGM 2014; 160:1125-1133. [PMID: 24722908 DOI: 10.1099/mic.0.077180-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The highly successful pathogen Mycobacterium tuberculosis (Mtb) has evolved strategies to adapt to various stress conditions, thus promoting survival within the infected host. The two-component regulatory system (2CRS) senX3-regX3, which has been implicated in the Mtb response to inorganic phosphate depletion, is believed to behave as an auto-regulatory bicistronic operon. Unlike other 2CRS, Mtb senX3-regX3 features an intergenic region (IR) containing several mycobacterium interspersed repetitive units (MIRU) of unknown function. In this study, we used a lacZ reporter system to study the promoter activity of the 5' untranslated region of senX3, and that of various numbers of MIRUs in the senX3-regX3 IR, during axenic Mtb growth in nutrient-rich broth, and upon exposure to growth-restricting conditions. Activity of the senX3 promoter was induced during phosphate depletion and nutrient starvation, and IR promoter activity under these conditions was directly proportional to the number of MIRUs present. Quantitative reverse transcriptase (qRT)-PCR analysis of exponentially growing Mtb revealed monocistronic transcription of senX3 and regX3, and, to a lesser degree, bicistronic transcription of the operon. In addition, we observed primarily monocistronic upregulation of regX3 during phosphate depletion of Mtb, which was confirmed by Northern analysis in wild-type Mtb and by RT-PCR in a senX3-disrupted mutant, while upregulation of regX3 in nutrient-starved Mtb was chiefly bicistronic. Our findings of differential regulation of senX3-regX3 highlight the potential regulatory role of MIRUs in the Mtb genome and provide insight into the regulatory mechanisms underlying Mtb adaptation to physiologically relevant conditions.
Collapse
Affiliation(s)
- Dalin Rifat
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Petros C Karakousis
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.,Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
46
|
Field N, Cohen T, Struelens MJ, Palm D, Cookson B, Glynn JR, Gallo V, Ramsay M, Sonnenberg P, MacCannell D, Charlett A, Egger M, Green J, Vineis P, Abubakar I. Strengthening the Reporting of Molecular Epidemiology for Infectious Diseases (STROME-ID): an extension of the STROBE statement. THE LANCET. INFECTIOUS DISEASES 2014; 14:341-52. [DOI: 10.1016/s1473-3099(13)70324-4] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
47
|
Current methods in the molecular typing of Mycobacterium tuberculosis and other mycobacteria. BIOMED RESEARCH INTERNATIONAL 2014; 2014:645802. [PMID: 24527454 PMCID: PMC3914561 DOI: 10.1155/2014/645802] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Accepted: 11/18/2013] [Indexed: 11/18/2022]
Abstract
In the epidemiology of tuberculosis (TB) and nontuberculous mycobacterial (NTM) diseases, as in all infectious diseases, the key issue is to define the source of infection and to disclose its routes of transmission and dissemination in the environment. For this to be accomplished, the ability of discerning and tracking individual Mycobacterium strains is of critical importance. Molecular typing methods have greatly improved our understanding of the biology of mycobacteria and provide powerful tools to combat the diseases caused by these pathogens. The utility of various typing methods depends on the Mycobacterium species under investigation as well as on the research question. For tuberculosis, different methods have different roles in phylogenetic analyses and person-to-person transmission studies. In NTM diseases, most investigations involve the search for environmental sources or phylogenetic relationships. Here, too, the type of setting determines which methodology is most suitable. Within this review, we summarize currently available molecular methods for strain typing of M. tuberculosis and some NTM species, most commonly associated with human disease. For the various methods, technical practicalities as well as discriminatory power and accomplishments are reviewed.
Collapse
|
48
|
Banu S, Rahman MT, Uddin MKM, Khatun R, Ahmed T, Rahman MM, Husain MA, van Leth F. Epidemiology of tuberculosis in an urban slum of Dhaka City, Bangladesh. PLoS One 2013; 8:e77721. [PMID: 24204933 PMCID: PMC3804597 DOI: 10.1371/journal.pone.0077721] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2013] [Accepted: 09/03/2013] [Indexed: 11/19/2022] Open
Abstract
Background The objectives of this study were to assess the tuberculosis (TB) burden and to provide an insight into the type of circulating M. tuberculosis species in urban slums of Bangladesh. We also aimed to test the feasibility of a larger transmission study in this setting. Methods This cross-sectional study was conducted in an urban slum of Dhaka city. The household members were actively screened to assess the presence of TB-related signs and symptoms; cough ≥3 weeks and body mass index (BMI) <17 kg/m2. Sputum specimens from suspects were collected for acid fast bacilli (AFB) microscopy, culture and drug susceptibility testing. Genotyping of M. tuberculosis was done using spoligotyping and variable number tandem repeats of mycobacterial interspersed repetitive units typing. Results Among 9,877 adult screened for pulmonary TB (PTB), 25 were positive for AFB on microscopy and/or culture and the prevalence of new PTB cases was estimated to be 253/100,000. Only one child TB case was diagnosed among 5,147 child screened. Out of 26 cases, 21(81%) had cough for several duration and 5(19%) did not present with cough at the time of screening. One multidrug resistant case was found. Fifty two percent of all TB cases had BMI <17 kg/m2 (p = <0.001). Among the 20 analyzed isolates, 13 different spoligotype patterns were identified in which 5 clusters contained 12 strains and 8 strains had unique pattern. Conclusions The study revealed high prevalence of TB in urban slums. Screening using low BMI can be beneficial among risk group population. It is important to conduct larger study to validate clinical variables like cough <3 weeks and low BMI to define TB suspect and also to investigate the transmission of TB in slum settings.
Collapse
Affiliation(s)
- Sayera Banu
- Centre for Communicable Diseases, International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
- * E-mail:
| | - Md. Toufiq Rahman
- Centre for Communicable Diseases, International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - Mohammad Khaja Mafij Uddin
- Centre for Communicable Diseases, International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - Razia Khatun
- Centre for Communicable Diseases, International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - Tahmeed Ahmed
- Centre for Communicable Diseases, International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - Md. Mojibur Rahman
- National Tuberculosis Control Program, Directorate General of Health Services, Mohakhali, Dhaka, Bangladesh
| | - Md. Ashaque Husain
- National Tuberculosis Control Program, Directorate General of Health Services, Mohakhali, Dhaka, Bangladesh
| | - Frank van Leth
- Department of Global Health, Academic Medical Centre, University of Amsterdam, Amsterdam Institute for Global Health and Development, Amsterdam, The Netherlands
| |
Collapse
|
49
|
Chen GL, Chang YJ, Hsueh CH. PRAP: an ab initio software package for automated genome-wide analysis of DNA repeats for prokaryotes. Bioinformatics 2013; 29:2683-9. [DOI: 10.1093/bioinformatics/btt482] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
|
50
|
Use of whole genome sequencing to determine the microevolution of Mycobacterium tuberculosis during an outbreak. PLoS One 2013; 8:e58235. [PMID: 23472164 PMCID: PMC3589338 DOI: 10.1371/journal.pone.0058235] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Accepted: 02/05/2013] [Indexed: 11/19/2022] Open
Abstract
Rationale Current tools available to study the molecular epidemiology of tuberculosis do not provide information about the directionality and sequence of transmission for tuberculosis cases occurring over a short period of time, such as during an outbreak. Recently, whole genome sequencing has been used to study molecular epidemiology of Mycobacterium tuberculosis over short time periods. Objective To describe the microevolution of M. tuberculosis during an outbreak caused by one drug-susceptible strain. Method and Measurements We included 9 patients with tuberculosis diagnosed during a period of 22 months, from a population-based study of the molecular epidemiology in San Francisco. Whole genome sequencing was performed using Illumina’s sequencing by synthesis technology. A custom program written in Python was used to determine single nucleotide polymorphisms which were confirmed by PCR product Sanger sequencing. Main results We obtained an average of 95.7% (94.1–96.9%) coverage for each isolate and an average fold read depth of 73 (1 to 250). We found 7 single nucleotide polymorphisms among the 9 isolates. The single nucleotide polymorphisms data confirmed all except one known epidemiological link. The outbreak strain resulted in 5 bacterial variants originating from the index case A1 with 0–2 mutations per transmission event that resulted in a secondary case. Conclusions Whole genome sequencing analysis from a recent outbreak of tuberculosis enabled us to identify microevolutionary events observable during transmission, to determine 0–2 single nucleotide polymorphisms per transmission event that resulted in a secondary case, and to identify new epidemiologic links in the chain of transmission.
Collapse
|