1
|
Awate OA, Ng D, Stoudenmire JL, Moraes TF, Cornelissen CN. Investigating the importance of selected surface-exposed loops in HpuB for hemoglobin binding and utilization by Neisseria gonorrhoeae. Infect Immun 2024; 92:e0021124. [PMID: 38864605 PMCID: PMC11238557 DOI: 10.1128/iai.00211-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 05/16/2024] [Indexed: 06/13/2024] Open
Abstract
Neisseria gonorrhoeae is the etiological agent of the sexually transmitted infection gonorrhea. The pathogen is a global health challenge since no protective immunity results from infection, and far fewer treatment options are available with increasing antimicrobial resistance. With no efficacious vaccines, researchers are exploring new targets for vaccine development and innovative therapeutics. The outer membrane TonB-dependent transporters (TdTs) produced by N. gonorrhoeae are considered promising vaccine antigens as they are highly conserved and play crucial roles in overcoming nutritional immunity. One of these TdTs is part of the hemoglobin transport system comprised of HpuA and HpuB. This system allows N. gonorrhoeae to acquire iron from hemoglobin (hHb). In the current study, mutations in the hpuB gene were generated to better understand the structure-function relationships in HpuB. This study is one of the first to demonstrate that N. gonorrhoeae can bind to and utilize hemoglobin produced by animals other than humans. This study also determined that when HpuA is absent, mutations targeting extracellular loop 7 of HpuB led to defective hHb binding and utilization. However, when the lipoprotein HpuA is present, these loop 7 mutants recovered their ability to bind hHb, although the growth phenotype remained significantly impaired. Interestingly, loop 7 contains putative heme-binding motifs and a hypothetical α-helical region, both of which may be important for the use of hHb. Taken together, these results highlight the importance of loop 7 in the functionality of HpuB in binding hHb and extracting and internalizing iron.
Collapse
Affiliation(s)
- Olivia A. Awate
- Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia, USA
| | - Dixon Ng
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Julie L. Stoudenmire
- Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia, USA
| | - Trevor F. Moraes
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | | |
Collapse
|
2
|
Dyrda-Terniuk T, Pomastowski P. The Multifaceted Roles of Bovine Lactoferrin: Molecular Structure, Isolation Methods, Analytical Characteristics, and Biological Properties. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:20500-20531. [PMID: 38091520 PMCID: PMC10755757 DOI: 10.1021/acs.jafc.3c06887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/22/2023] [Accepted: 11/27/2023] [Indexed: 12/28/2023]
Abstract
Bovine lactoferrin (bLF) is widely known as an iron-binding glycoprotein from the transferrin family. The bLF molecule exhibits a broad spectrum of biological activity, including iron delivery, antimicrobial, antiviral, immunomodulatory, antioxidant, antitumor, and prebiotic functions, thereby making it one of the most valuable representatives for biomedical applications. Remarkably, LF functionality might completely differ in dependence on the iron saturation state and glycosylation patterns. Recently, a violently growing demand for bLF production has been observed, mostly for infant formulas, dietary supplements, and functional food formulations. Unfortunately, one of the reasons that inhibit the development of the bLF market and widespread protein implementation is related to its negligible amount in both major sources─colostrum and mature milk. This study provides a comprehensive overview of the significance of bLF research by delineating the key structural characteristics of the protein and elucidating their impact on its physicochemical and biological properties. Progress in the development of optimal isolation techniques for bLF is critically assessed, alongside the challenges that arise during its production. Furthermore, this paper presents a curated list of the most relevant instrumental techniques for the characterization of bLF. Lastly, it discusses the prospective applications and future directions for bLF-based formulations, highlighting their potential in various fields.
Collapse
Affiliation(s)
- Tetiana Dyrda-Terniuk
- Centre for Modern Interdisciplinary
Technologies, Nicolaus Copernicus University
in Toruń, Wileńska 4, 87-100 Toruń, Poland
| | - Paweł Pomastowski
- Centre for Modern Interdisciplinary
Technologies, Nicolaus Copernicus University
in Toruń, Wileńska 4, 87-100 Toruń, Poland
| |
Collapse
|
3
|
Awate OA, Ng D, Stoudenmire JL, Moraes TF, Cornelissen CN. Investigating the importance of surface exposed loops in the gonococcal HpuB transporter for hemoglobin binding and utilization. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.30.564842. [PMID: 37961140 PMCID: PMC10634946 DOI: 10.1101/2023.10.30.564842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Neisseria gonorrhoeae is the etiological agent of the sexually-transmitted infection gonorrhea and a global health challenge since no protective immunity results from infection and far fewer treatment options are available with increasing antimicrobial resistance. With no efficacious vaccines, researchers are exploring new targets for vaccine development and innovative therapeutics. The outer membrane TonB-dependent transporters (TdTs) produced by N. gonorrhoeae are considered promising antigen targets as they are highly conserved and play crucial roles in overcoming nutritional immunity. One of these TdTs, the hemoglobin transport system comprised of HpuA and HpuB, allows N. gonorrhoeae to acquire iron from hemoglobin (hHb). In the current study, mutations in the hpuB gene were generated to better understand the structure-function relationships in HpuB. This study is one of the first to demonstrate that N. gonorrhoeae can bind to and utilize hemoglobin produced by animals other than humans. This study also determined that when HpuA is absent, mutations targeting extracellular loop 7 of HpuB led to defective hHb binding and utilization. However, when the lipoprotein HpuA is present, these loop 7 mutants recovered their ability to bind hHB, although their growth phenotype remained significantly impaired. Interestingly, loop 7 contains putative heme binding motifs and a hypothetical α-helical region. Taken together, these results highlight the importance of loop 7 in the functionality of HpuB in binding hHb, and extracting and internalizing iron.
Collapse
|
4
|
Viviani V, Biolchi A, Pizza M. Synergistic activity of antibodies in the multicomponent 4CMenB vaccine. Expert Rev Vaccines 2022; 21:645-658. [PMID: 35257644 DOI: 10.1080/14760584.2022.2050697] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION : Vaccines based on multiple antigens often induce an immune response which is higher than that triggered by each single component, with antibodies acting cooperatively and synergistically in tackling the infection. AREAS COVERED An interesting example is the antibody response induced by the 4CMenB vaccine, currently licensed for the prevention of Neisseria meningitidis serogroup B (MenB). It contains four antigenic components: Factor H binding protein (fHbp), Neisseria adhesin A (NadA), Neisserial Heparin Binding Antigen (NHBA) and Outer Membrane Vesicles (OMV). Monoclonal and polyclonal antibodies raised by vaccination with 4CMenB show synergistic activity in complement-dependent bacterial killing. This review summarizes published and unpublished data and provides evidence of the added value of multicomponent vaccines. EXPERT OPINION : The ability of 4CMenB vaccine to elicit antibodies targeting multiple surface-exposed antigens is corroborated by the recent data on real world evidences. Bactericidal activity is generally mediated by antibodies that bind to antigens highly expressed on the bacterial surface and immunologically related. However, simultaneous binding of antibodies to various surface-exposed antigens can overcome the threshold density of antigen-antibody complexes needed for complement activation. The data discussed in this review highlight the interplay between antibodies targeting major and minor antigens and their effect on functionality. Clinical trial registration: www.clinicaltrials.gov identifiers of studies with original data mentioned in the article: NCT00937521, NCT00433914, NCT02140762 and NCT02285777.
Collapse
Affiliation(s)
| | | | - Mariagrazia Pizza
- Bacterial Vaccines, GSK, Siena, Italy.,GVGH, GSK Vaccine Institute for Global Health, Siena, Italy
| |
Collapse
|
5
|
Wanford JJ, Holmes JC, Bayliss CD, Green LR. Meningococcal core and accessory phasomes vary by clonal complex. Microb Genom 2020; 6:e000367. [PMID: 32375989 PMCID: PMC7371114 DOI: 10.1099/mgen.0.000367] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 03/27/2020] [Indexed: 11/21/2022] Open
Abstract
Neisseria meningitidis is a Gram-negative human commensal pathogen, with extensive phenotypic plasticity afforded by phase-variable (PV) gene expression. Phase variation is a stochastic switch in gene expression from an ON to an OFF state, mediated by localized hypermutation of simple sequence repeats (SSRs). Circulating N. meningitidis clones vary in propensity to cause disease, with some clonal complexes (ccs) classified as hypervirulent and others as carriage-associated. We examined the PV gene repertoires, or phasome, of these lineages in order to determine whether phase variation contributes to disease propensity. We analysed 3328 genomes representative of nine circulating meningococcal ccs with PhasomeIt, a tool that identifies PV genes by the presence of SSRs and homologous gene clusters. The presence, absence and functions of all identified PV gene clusters were confirmed by annotation or blast searches within the Neisseria PubMLST database. While no significant differences were detected in the number of PV genes or the core, conserved phasome content between hypervirulent and carriage lineages, individual ccs exhibited major variations in PV gene numbers. Phylogenetic clusters produced by phasome or core genome analyses were similar, indicating co-evolution of PV genes with the core genome. While conservation of PV clusters is high, with 76 % present in all meningococcal isolates, maintenance of an SSR is variable, ranging from conserved in all isolates to present only in a single cc, indicating differing evolutionary trajectories for each lineage. Diverse functional groups of PV genes were present across the meningococcal lineages; however, the majority directly or indirectly influence bacterial surface antigens and could impact on future vaccine development. Finally, we observe that meningococci have open pan phasomes, indicating ongoing evolution of PV gene content and a significant potential for adaptive changes in this clinically relevant genus.
Collapse
Affiliation(s)
- Joseph J. Wanford
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - Jonathan C. Holmes
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | | | - Luke R. Green
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| |
Collapse
|
6
|
Kánová E, Jiménez-Munguía I, Majerová P, Tkáčová Z, Bhide K, Mertinková P, Pulzová L, Kováč A, Bhide M. Deciphering the Interactome of Neisseria meningitidis With Human Brain Microvascular Endothelial Cells. Front Microbiol 2018; 9:2294. [PMID: 30319591 PMCID: PMC6168680 DOI: 10.3389/fmicb.2018.02294] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 09/07/2018] [Indexed: 11/16/2022] Open
Abstract
Neisseria meningitidis is able to translocate the blood-brain barrier and cause meningitis. Bacterial translocation is a crucial step in the onset of neuroinvasion that involves interactions between pathogen surface proteins and host cells receptors. In this study, we applied a systematic workflow to recover and identify proteins of N. meningitidis that may interact with human brain microvascular endothelial cells (hBMECs). Biotinylated proteome of N. meningitidis was incubated with hBMECs, interacting proteins were recovered by affinity purification and identified by SWATH-MS. Interactome of N. meningitidis comprised of 41 potentially surface exposed proteins. These were assigned into groups based on their probability to interact with hBMECs: high priority candidates (21 outer membrane proteins), medium priority candidates (14 inner membrane proteins) and low priority candidates (six secretory proteins). Ontology analysis provided information for 17 out of 41 surface proteins. Based on the series of bioinformatic analyses and literature review, five surface proteins (adhesin MafA1, major outer membrane protein P.IB, putative adhesin/invasion, putative lipoprotein and membrane lipoprotein) were selected and their recombinant forms were produced for experimental validation of interaction with hBMECs by ELISA and immunocytochemistry. All candidates showed interaction with hBMECs. In this study, we present a high-throughput approach to generate a dataset of plausible meningococcal ligands followed by systematic bioinformatic pipeline to categorize the proteins for experimental validation.
Collapse
Affiliation(s)
- Evelína Kánová
- Laboratory of Biomedical Microbiology and Immunology, The University of Veterinary Medicine and Pharmacy in Kosice, Kosice, Slovakia
| | - Irene Jiménez-Munguía
- Laboratory of Biomedical Microbiology and Immunology, The University of Veterinary Medicine and Pharmacy in Kosice, Kosice, Slovakia
| | - Petra Majerová
- Institute of Neuroimmunology of Slovak Academy of Sciences, Bratislava, Slovakia
| | - Zuzana Tkáčová
- Laboratory of Biomedical Microbiology and Immunology, The University of Veterinary Medicine and Pharmacy in Kosice, Kosice, Slovakia
| | - Katarína Bhide
- Laboratory of Biomedical Microbiology and Immunology, The University of Veterinary Medicine and Pharmacy in Kosice, Kosice, Slovakia
| | - Patrícia Mertinková
- Laboratory of Biomedical Microbiology and Immunology, The University of Veterinary Medicine and Pharmacy in Kosice, Kosice, Slovakia
| | - Lucia Pulzová
- Laboratory of Biomedical Microbiology and Immunology, The University of Veterinary Medicine and Pharmacy in Kosice, Kosice, Slovakia
| | - Andrej Kováč
- Institute of Neuroimmunology of Slovak Academy of Sciences, Bratislava, Slovakia
| | - Mangesh Bhide
- Laboratory of Biomedical Microbiology and Immunology, The University of Veterinary Medicine and Pharmacy in Kosice, Kosice, Slovakia.,Institute of Neuroimmunology of Slovak Academy of Sciences, Bratislava, Slovakia
| |
Collapse
|
7
|
Tommassen J, Arenas J. Biological Functions of the Secretome of Neisseria meningitidis. Front Cell Infect Microbiol 2017; 7:256. [PMID: 28670572 PMCID: PMC5472700 DOI: 10.3389/fcimb.2017.00256] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 05/29/2017] [Indexed: 11/13/2022] Open
Abstract
Neisseria meningitidis is a Gram-negative bacterial pathogen that normally resides as a commensal in the human nasopharynx but occasionally causes disease with high mortality and morbidity. To interact with its environment, it transports many proteins across the outer membrane to the bacterial cell surface and into the extracellular medium for which it deploys the common and well-characterized autotransporter, two-partner and type I secretion mechanisms, as well as a recently discovered pathway for the surface exposure of lipoproteins. The surface-exposed and secreted proteins serve roles in host-pathogen interactions, including adhesion to host cells and extracellular matrix proteins, evasion of nutritional immunity imposed by iron-binding proteins of the host, prevention of complement activation, neutralization of antimicrobial peptides, degradation of immunoglobulins, and permeabilization of epithelial layers. Furthermore, they have roles in interbacterial interactions, including the formation and dispersal of biofilms and the suppression of the growth of bacteria competing for the same niche. Here, we will review the protein secretion systems of N. meningitidis and focus on the functions of the secreted proteins.
Collapse
Affiliation(s)
- Jan Tommassen
- Department of Molecular Microbiology and Institute of Biomembranes, Utrecht UniversityUtrecht, Netherlands
| | - Jesús Arenas
- Department of Molecular Microbiology and Institute of Biomembranes, Utrecht UniversityUtrecht, Netherlands
| |
Collapse
|
8
|
Hooda Y, Lai CCL, Moraes TF. Identification of a Large Family of Slam-Dependent Surface Lipoproteins in Gram-Negative Bacteria. Front Cell Infect Microbiol 2017; 7:207. [PMID: 28620585 PMCID: PMC5449769 DOI: 10.3389/fcimb.2017.00207] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 05/09/2017] [Indexed: 02/01/2023] Open
Abstract
The surfaces of many Gram-negative bacteria are decorated with soluble proteins anchored to the outer membrane via an acylated N-terminus; these proteins are referred to as surface lipoproteins or SLPs. In Neisseria meningitidis, SLPs such as transferrin-binding protein B (TbpB) and factor-H binding protein (fHbp) are essential for host colonization and infection because of their essential roles in iron acquisition and immune evasion, respectively. Recently, we identified a family of outer membrane proteins called Slam (Surface lipoprotein assembly modulator) that are essential for surface display of neisserial SLPs. In the present study, we performed a bioinformatics analysis to identify 832 Slam related sequences in 638 Gram-negative bacterial species. The list included several known human pathogens, many of which were not previously reported to possess SLPs. Hypothesizing that genes encoding SLP substrates of Slams may be present in the same gene cluster as the Slam genes, we manually curated neighboring genes for 353 putative Slam homologs. From our analysis, we found that 185 (~52%) of the 353 putative Slam homologs are located adjacent to genes that encode a protein with an N-terminal lipobox motif. This list included genes encoding previously reported SLPs in Haemophilus influenzae and Moraxella catarrhalis, for which we were able to show that the neighboring Slams are necessary and sufficient to display these lipoproteins on the surface of Escherichia coli. To further verify the authenticity of the list of predicted SLPs, we tested the surface display of one such Slam-adjacent protein from Pasteurella multocida, a zoonotic pathogen. A robust Slam-dependent display of the P. multocida protein was observed in the E. coli translocation assay indicating that the protein is a Slam-dependent SLP. Based on multiple sequence alignments and domain annotations, we found that an eight-stranded beta-barrel domain is common to all the predicted Slam-dependent SLPs. These findings suggest that SLPs with a TbpB-like fold are found widely in Proteobacteria where they exist with their interaction partner Slam. In the future, SLPs found in pathogenic bacteria can be investigated for their role in virulence and may also serve as candidates for vaccine development.
Collapse
Affiliation(s)
- Yogesh Hooda
- Department of Biochemistry, University of TorontoToronto, ON, Canada
| | - Christine C L Lai
- Department of Biochemistry, University of TorontoToronto, ON, Canada
| | - Trevor F Moraes
- Department of Biochemistry, University of TorontoToronto, ON, Canada
| |
Collapse
|
9
|
Hooda Y, Shin HE, Bateman TJ, Moraes TF. Neisserial surface lipoproteins: structure, function and biogenesis. Pathog Dis 2017; 75:2966469. [PMID: 28158534 DOI: 10.1093/femspd/ftx010] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 01/29/2017] [Indexed: 11/14/2022] Open
Abstract
The surface of many Gram-negative bacteria contains lipidated protein molecules referred to as surface lipoproteins or SLPs. SLPs play critical roles in host immune evasion, nutrient acquisition and regulation of the bacterial stress response. The focus of this review is on the SLPs present in Neisseria, a genus of bacteria that colonise the mucosal surfaces of animals. Neisseria contains two pathogens of medical interest, namely Neisseria meningitidis and N. gonorrhoeae. Several SLPs have been identified in Neisseria and their study has elucidated key strategies used by these pathogens to survive inside the human body. Herein, we focus on the identification, structure and function of SLPs that have been identified in Neisseria. We also survey the translocation pathways used by these SLPs to reach the cell surface. Specifically, we elaborate on the strategies used by neisserial SLPs to translocate across the outer membrane with an emphasis on Slam, a novel outer membrane protein that has been implicated in SLP biogenesis. Taken together, the study of SLPs in Neisseria illustrates the widespread roles played by this family of proteins in Gram-negative bacteria.
Collapse
|
10
|
Comprehensive Spatial Analysis of the Borrelia burgdorferi Lipoproteome Reveals a Compartmentalization Bias toward the Bacterial Surface. J Bacteriol 2017; 199:JB.00658-16. [PMID: 28069820 DOI: 10.1128/jb.00658-16] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 01/03/2017] [Indexed: 12/13/2022] Open
Abstract
The Lyme disease spirochete Borrelia burgdorferi is unique among bacteria in its large number of lipoproteins that are encoded by a small, exceptionally fragmented, and predominantly linear genome. Peripherally anchored in either the inner or outer membrane and facing either the periplasm or the external environment, these lipoproteins assume varied roles. A prominent subset of lipoproteins functioning as the apparent linchpins of the enzootic tick-vertebrate infection cycle have been explored as vaccine targets. Yet, most of the B. burgdorferi lipoproteome has remained uncharacterized. Here, we comprehensively and conclusively localize the B. burgdorferi lipoproteome by applying established protein localization assays to a newly generated epitope-tagged lipoprotein expression library and by validating the obtained individual protein localization results using a sensitive global mass spectrometry approach. The derived consensus localization data indicate that 86 of the 125 analyzed lipoproteins encoded by B. burgdorferi are secreted to the bacterial surface. Thirty-one of the remaining 39 periplasmic lipoproteins are retained in the inner membrane, with only 8 lipoproteins being anchored in the periplasmic leaflet of the outer membrane. The localization of 10 lipoproteins was further defined or revised, and 52 surface and 23 periplasmic lipoproteins were newly localized. Cross-referencing prior studies revealed that the borrelial surface lipoproteome contributing to the host-pathogen interface is encoded predominantly by plasmids. Conversely, periplasmic lipoproteins are encoded mainly by chromosomal loci. These studies close a gap in our understanding of the functional lipoproteome of an important human pathogen and set the stage for more in-depth studies of thus-far-neglected spirochetal lipoproteins.IMPORTANCE The small and exceptionally fragmented genome of the Lyme disease spirochete Borrelia burgdorferi encodes over 120 lipoproteins. Studies in the field have predominantly focused on a relatively small number of surface lipoproteins that play important roles in the transmission and pathogenesis of this global human pathogen. Yet, a comprehensive spatial assessment of the entire borrelial lipoproteome has been missing. The current study newly identifies 52 surface and 23 periplasmic lipoproteins. Overall, two-thirds of the B. burgdorferi lipoproteins localize to the surface, while outer membrane lipoproteins facing the periplasm are rare. This analysis underscores the dominant contribution of lipoproteins to the spirochete's rather complex and adaptable host-pathogen interface, and it encourages further functional exploration of its lipoproteome.
Collapse
|
11
|
Ostan N, Morgenthau A, Yu RH, Gray-Owen SD, Schryvers AB. A comparative, cross-species investigation of the properties and roles of transferrin- and lactoferrin-binding protein B from pathogenic bacteria. Biochem Cell Biol 2016; 95:5-11. [PMID: 28129513 DOI: 10.1139/bcb-2016-0055] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Pathogenic bacteria from the families Neisseriaeceae and Moraxellaceae acquire iron from their host using surface receptors that have the ability to hijack iron from the iron-sequestering host proteins transferrin (Tf) and lactoferrin (Lf). The process of acquiring iron from Tf has been well-characterized, including the role of the surface lipoprotein transferrin-binding protein B (TbpB). In contrast, the only well-defined role for the homologue, LbpB, is in its protection against cationic antimicrobial peptides, which is mediated by regions present in some LbpBs that are highly enriched in glutamic or aspartic acid. In this study we compare the Tf-TbpB and the Lf-LbpB interactions and examine the protective effect of LbpB against extracts from human and transgenic mouse neutrophils to gains insights into the physiological roles of LbpB. The results indicate that in contrast to the Tf-TbpB interaction, Lf-LbpB interaction is sensitive to pH and varies between species. In addition, the results with transgenic mouse neutrophils raise the question of whether there is species specificity in the cleavage of Lf to generate cationic antimicrobial peptides or differences in the potency of peptides derived from mouse and human Lf.
Collapse
Affiliation(s)
- N Ostan
- a Department of Microbiology & Infectious Diseases, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - A Morgenthau
- b Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada.,c School of Medicine, New York Medical College, Valhalla, NY 10595, USA
| | - R H Yu
- a Department of Microbiology & Infectious Diseases, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - S D Gray-Owen
- b Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - A B Schryvers
- a Department of Microbiology & Infectious Diseases, University of Calgary, Calgary, AB T2N 4N1, Canada
| |
Collapse
|
12
|
Konovalova A, Silhavy TJ. Outer membrane lipoprotein biogenesis: Lol is not the end. Philos Trans R Soc Lond B Biol Sci 2016; 370:rstb.2015.0030. [PMID: 26370942 DOI: 10.1098/rstb.2015.0030] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Bacterial lipoproteins are lipid-anchored proteins that contain acyl groups covalently attached to the N-terminal cysteine residue of the mature protein. Lipoproteins are synthesized in precursor form with an N-terminal signal sequence (SS) that targets translocation across the cytoplasmic or inner membrane (IM). Lipid modification and SS processing take place at the periplasmic face of the IM. Outer membrane (OM) lipoproteins take the localization of lipoproteins (Lol) export pathway, which ends with the insertion of the N-terminal lipid moiety into the inner leaflet of the OM. For many lipoproteins, the biogenesis pathway ends here. We provide examples of lipoproteins that adopt complex topologies in the OM that include transmembrane and surface-exposed domains. Biogenesis of such lipoproteins requires additional steps beyond the Lol pathway. In at least one case, lipoprotein sequences reach the cell surface by being threaded through the lumen of a beta-barrel protein in an assembly reaction that requires the heteropentomeric Bam complex. The inability to predict surface exposure reinforces the importance of experimental verification of lipoprotein topology and we will discuss some of the methods used to study OM protein topology.
Collapse
Affiliation(s)
- Anna Konovalova
- Department of Molecular Biology, Lewis Thomas Laboratory, Princeton University, Washington Road, Princeton, NJ 08544, USA
| | - Thomas J Silhavy
- Department of Molecular Biology, Lewis Thomas Laboratory, Princeton University, Washington Road, Princeton, NJ 08544, USA
| |
Collapse
|
13
|
Wilson MM, Bernstein HD. Surface-Exposed Lipoproteins: An Emerging Secretion Phenomenon in Gram-Negative Bacteria. Trends Microbiol 2015; 24:198-208. [PMID: 26711681 DOI: 10.1016/j.tim.2015.11.006] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 11/17/2015] [Accepted: 11/23/2015] [Indexed: 01/07/2023]
Abstract
Bacterial lipoproteins are hydrophilic proteins that are anchored to a cell membrane by N-terminally linked fatty acids. It is widely believed that nearly all lipoproteins produced by Gram-negative bacteria are either retained in the inner membrane (IM) or transferred to the inner leaflet of the outer membrane (OM). Lipoproteins that are exposed on the cell surface have also been reported but are generally considered to be rare. Results from a variety of recent studies, however, now suggest that the prevalence of surface-exposed lipoproteins has been underestimated. In this review we describe the evidence that the surface exposure of lipoproteins in Gram-negative bacteria is a widespread phenomenon and discuss possible mechanisms by which these proteins might be transported across the OM.
Collapse
Affiliation(s)
- Marlena M Wilson
- Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Harris D Bernstein
- Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
14
|
Brooks CL, Arutyunova E, Lemieux MJ. The structure of lactoferrin-binding protein B from Neisseria meningitidis suggests roles in iron acquisition and neutralization of host defences. Acta Crystallogr F Struct Biol Commun 2014; 70:1312-7. [PMID: 25286931 PMCID: PMC4188071 DOI: 10.1107/s2053230x14019372] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 08/27/2014] [Indexed: 11/10/2022] Open
Abstract
Pathogens have evolved a range of mechanisms to acquire iron from the host during infection. Several Gram-negative pathogens including members of the genera Neisseria and Moraxella have evolved two-component systems that can extract iron from the host glycoproteins lactoferrin and transferrin. The homologous iron-transport systems consist of a membrane-bound transporter and an accessory lipoprotein. While the mechanism behind iron acquisition from transferrin is well understood, relatively little is known regarding how iron is extracted from lactoferrin. Here, the crystal structure of the N-terminal domain (N-lobe) of the accessory lipoprotein lactoferrin-binding protein B (LbpB) from the pathogen Neisseria meningitidis is reported. The structure is highly homologous to the previously determined structures of the accessory lipoprotein transferrin-binding protein B (TbpB) and LbpB from the bovine pathogen Moraxella bovis. Docking the LbpB structure with lactoferrin reveals extensive binding interactions with the N1 subdomain of lactoferrin. The nature of the interaction precludes apolactoferrin from binding LbpB, ensuring the specificity of iron-loaded lactoferrin. The specificity of LbpB safeguards proper delivery of iron-bound lactoferrin to the transporter lactoferrin-binding protein A (LbpA). The structure also reveals a possible secondary role for LbpB in protecting the bacteria from host defences. Following proteolytic digestion of lactoferrin, a cationic peptide derived from the N-terminus is released. This peptide, called lactoferricin, exhibits potent antimicrobial effects. The docked model of LbpB with lactoferrin reveals that LbpB interacts extensively with the N-terminal lactoferricin region. This may provide a venue for preventing the production of the peptide by proteolysis, or directly sequestering the peptide, protecting the bacteria from the toxic effects of lactoferricin.
Collapse
Affiliation(s)
- Cory L. Brooks
- Department of Chemistry, California State University Fresno, Fresno, CA 93710, USA
| | - Elena Arutyunova
- Department of Biochemistry, University of Alberta, Edmonton, AB T6J 2H7, Canada
| | - M. Joanne Lemieux
- Department of Biochemistry, University of Alberta, Edmonton, AB T6J 2H7, Canada
| |
Collapse
|
15
|
Secretion of bacterial lipoproteins: through the cytoplasmic membrane, the periplasm and beyond. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:1509-16. [PMID: 24780125 DOI: 10.1016/j.bbamcr.2014.04.022] [Citation(s) in RCA: 153] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 04/16/2014] [Accepted: 04/18/2014] [Indexed: 11/20/2022]
Abstract
Bacterial lipoproteins are peripherally anchored membrane proteins that play a variety of roles in bacterial physiology and virulence in monoderm (single membrane-enveloped, e.g., gram-positive) and diderm (double membrane-enveloped, e.g., gram-negative) bacteria. After export of prolipoproteins through the cytoplasmic membrane, which occurs predominantly but not exclusively via the general secretory or Sec pathway, the proteins are lipid-modified at the cytoplasmic membrane in a multistep process that involves sequential modification of a cysteine residue and cleavage of the signal peptide by the signal II peptidase Lsp. In both monoderms and diderms, signal peptide processing is preceded by acylation with a diacylglycerol through preprolipoprotein diacylglycerol transferase (Lgt). In diderms but also some monoderms, lipoproteins are further modified with a third acyl chain through lipoprotein N-acyl transferase (Lnt). Fully modified lipoproteins that are destined to be anchored in the inner leaflet of the outer membrane (OM) are selected, transported and inserted by the Lol (lipoprotein outer membrane localization) pathway machinery, which consists of the inner-membrane (IM) ABC transporter-like LolCDE complex, the periplasmic LolA chaperone and the OM LolB lipoprotein receptor. Retention of lipoproteins in the cytoplasmic membrane results from Lol avoidance signals that were originally described as the "+2 rule". Surface localization of lipoproteins in diderms is rare in most bacteria, with the exception of several spirochetal species. Type 2 (T2SS) and type 5 (T5SS) secretion systems are involved in secretion of specific surface lipoproteins of γ-proteobacteria. In the model spirochete Borrelia burgdorferi, surface lipoprotein secretion does not follow established sorting rules, but remains dependent on N-terminal peptide sequences. Secretion through the outer membrane requires maintenance of lipoproteins in a translocation-competent unfolded conformation, likely through interaction with a periplasmic holding chaperone, which delivers the proteins to an outer membrane lipoprotein flippase. This article is part of a Special Issue entitled: Protein trafficking and secretion in bacteria. Guest Editors: Anastassios Economou and Ross Dalbey.
Collapse
|
16
|
Morgenthau A, Beddek A, Schryvers AB. The negatively charged regions of lactoferrin binding protein B, an adaptation against anti-microbial peptides. PLoS One 2014; 9:e86243. [PMID: 24465982 PMCID: PMC3896470 DOI: 10.1371/journal.pone.0086243] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Accepted: 12/09/2013] [Indexed: 12/02/2022] Open
Abstract
Lactoferrin binding protein B (LbpB) is a bi-lobed membrane bound lipoprotein that is part of the lactoferrin receptor complex in a variety of Gram-negative pathogens. Despite high sequence diversity among LbpBs from various strains and species, a cluster of negatively charged amino acids is invariably present in the protein’s C-terminal lobe in all species except Moraxella bovis. The function of LbpB in iron acquisition has yet to be experimentally demonstrated, whereas in vitro studies have shown that LbpB confers protection against lactoferricin, a short cationic antimicrobial peptide released from the N- terminus of lactoferrin. In this study we demonstrate that the negatively charged regions can be removed from the Neisseria meningitidis LbpB without compromising stability, and this results in the inability of LbpB to protect against the bactericidal effects of lactoferricin. The release of LbpB from the cell surface by the autotransporter NalP reduces the protection against lactoferricin in the in vitro killing assay, attributed to removal of LbpB during washing steps, but is unlikely to have a similar impact in vivo. The protective effect of the negatively charged polysaccharide capsule in the killing assay was less than the protection conferred by LbpB, suggesting that LbpB plays a major role in protection against cationic antimicrobial peptides in vivo. The selective release of LbpB by NalP has been proposed to be a mechanism for evading the adaptive immune response, by reducing the antibody binding to the cell surface, but may also provide insights into the primary function of LbpB in vivo. Although TbpB and LbpB have been shown to be major targets of the human immune response, the selective release of LbpB suggests that unlike TbpB, LbpB may not be essential for iron acquisition, but important for protection against cationic antimicrobial peptides.
Collapse
Affiliation(s)
- Ari Morgenthau
- Department of Microbiology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Amanda Beddek
- Department of Microbiology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Anthony B. Schryvers
- Department of Microbiology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
- * E-mail:
| |
Collapse
|
17
|
Lipidation of the autotransporter NalP of Neisseria meningitidis is required for its function in the release of cell-surface-exposed proteins. Microbiology (Reading) 2013; 159:286-295. [DOI: 10.1099/mic.0.063982-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
18
|
Spaniol V, Troller R, Schaller A, Aebi C. Physiologic cold shock of Moraxella catarrhalis affects the expression of genes involved in the iron acquisition, serum resistance and immune evasion. BMC Microbiol 2011; 11:182. [PMID: 21838871 PMCID: PMC3163540 DOI: 10.1186/1471-2180-11-182] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2011] [Accepted: 08/12/2011] [Indexed: 11/10/2022] Open
Abstract
Background Moraxella catarrhalis, a major nasopharyngeal pathogen of the human respiratory tract, is exposed to rapid downshifts of environmental temperature when humans breathe cold air. It was previously shown that the prevalence of pharyngeal colonization and respiratory tract infections caused by M. catarrhalis are greatest in winter. The aim of this study was to investigate how M. catarrhalis uses the physiologic exposure to cold air to upregulate pivotal survival systems in the pharynx that may contribute to M. catarrhalis virulence. Results A 26°C cold shock induces the expression of genes involved in transferrin and lactoferrin acquisition, and enhances binding of these proteins on the surface of M. catarrhalis. Exposure of M. catarrhalis to 26°C upregulates the expression of UspA2, a major outer membrane protein involved in serum resistance, leading to improved binding of vitronectin which neutralizes the lethal effect of human complement. In contrast, cold shock decreases the expression of Hemagglutinin, a major adhesin, which mediates B cell response, and reduces immunoglobulin D-binding on the surface of M. catarrhalis. Conclusion Cold shock of M. catarrhalis induces the expression of genes involved in iron acquisition, serum resistance and immune evasion. Thus, cold shock at a physiologically relevant temperature of 26°C induces in M. catarrhalis a complex of adaptive mechanisms that enables the bacterium to target their host cellular receptors or soluble effectors and may contribute to enhanced growth, colonization and virulence.
Collapse
Affiliation(s)
- Violeta Spaniol
- Institute for Infectious Diseases, University of Bern, CH-3010 Bern, Switzerland
| | | | | | | |
Collapse
|
19
|
Abstract
Bacterial lipoproteins are a set of membrane proteins with many different functions. Due to this broad-ranging functionality, these proteins have a considerable significance in many phenomena, from cellular physiology through cell division and virulence. Here we give a general overview of lipoprotein biogenesis and highlight examples of the roles of lipoproteins in bacterial disease caused by a selection of medically relevant Gram-negative and Gram-positive pathogens: Mycobacterium tuberculosis, Streptococcus pneumoniae, Borrelia burgdorferi, and Neisseria meningitidis. Lipoproteins have been shown to play key roles in adhesion to host cells, modulation of inflammatory processes, and translocation of virulence factors into host cells. As such, a number of lipoproteins have been shown to be potential vaccines. This review provides a summary of some of the reported roles of lipoproteins and of how this knowledge has been exploited in some cases for the generation of novel countermeasures to bacterial diseases.
Collapse
|
20
|
Deletion of sua gene reduces the ability of Streptococcus uberis to adhere to and internalize into bovine mammary epithelial cells. Vet Microbiol 2010; 147:426-34. [PMID: 20708860 DOI: 10.1016/j.vetmic.2010.07.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2009] [Revised: 07/06/2010] [Accepted: 07/07/2010] [Indexed: 11/22/2022]
Abstract
To elucidate the role of Streptococcus uberis adhesion molecule (SUAM) in the pathogenesis of S. uberis mastitis, sua deletion in S. uberis UT888 was achieved by homologous recombination using a thermosensitive plasmid. The deletion mutant was analyzed for sua deletion by PCR, southern blot and DNA sequencing, and was designated Δsua S. uberis UT888. As compared to the isogenic parent strain, Δsua S. uberis UT888 did not produce SUAM based on SDS-PAGE gel and western blot. Deletion of sua and lack of expression of SUAM by Δsua S. uberis UT888 markedly reduced the ability of the sua gene deletion mutant of S. uberis to adhere to and internalize into mammary epithelial cells. These results confirm the central role of SUAM in adherence to and internalization of S. uberis into host cells.
Collapse
|
21
|
NalP-mediated proteolytic release of lactoferrin-binding protein B from the meningococcal cell surface. Infect Immun 2010; 78:3083-9. [PMID: 20421383 DOI: 10.1128/iai.01193-09] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacteria have developed several mechanisms for iron uptake during colonization of mammalian hosts, where the availability of free iron is limiting for growth. Neisseria meningitidis expresses under iron-limiting conditions a receptor complex consisting of the lactoferrin-binding proteins A (LbpA) and LbpB to acquire iron from lactoferrin, which is abundantly present on the mucosal surfaces of the human nasopharynx. LbpA is an integral outer membrane-embedded iron transporter, whereas LbpB is a cell surface-exposed lipoprotein. In this study, we demonstrate that LbpB is also released into the culture medium. We identified NalP, an autotransporter known to be involved in the processing of other autotransporters, as the protease responsible for LbpB release. This release of LbpB reduced the complement-mediated killing of the bacteria when incubated with an LbpB-specific bactericidal antiserum. Since antibodies directed against LbpB are found in convalescent-patient sera, the release of an immunogenic protein as LbpB may represent a novel means for N. meningitidis to escape the human immune response.
Collapse
|
22
|
The phasevarion: phase variation of type III DNA methyltransferases controls coordinated switching in multiple genes. Nat Rev Microbiol 2010; 8:196-206. [PMID: 20140025 DOI: 10.1038/nrmicro2283] [Citation(s) in RCA: 133] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In several host-adapted pathogens, phase variation has been found to occur in genes that encode methyltransferases associated with type III restriction-modification systems. It was recently shown that in the human pathogens Haemophilus influenzae, Neisseria gonorrhoeae and Neisseria meningitidis phase variation of a type III DNA methyltransferase, encoded by members of the mod gene family, regulates the expression of multiple genes. This novel genetic system has been termed the 'phasevarion' (phase-variable regulon). The wide distribution of phase-variable mod family genes indicates that this may be a common strategy used by host-adapted bacterial pathogens to randomly switch between distinct cell types.
Collapse
|
23
|
Abstract
The development of a comprehensive vaccine against meningococcal disease has been challenging. Recent developments in molecular genetics have provided both explanations for these challenges and possible solutions. Since genome sequence data became available there has been a marked increase in number of protein antigens that have been suggested as prospective vaccine components. This review catalogues the proposed vaccine candidates and examines the evidence for their inclusion in potential protein vaccine formulations.
Collapse
Affiliation(s)
- Ian M Feavers
- Division of Bacteriology, National Institute for Biological Standards and Control, Blanche Lane, South Mimms, Potters Bar, Hertfordshire EN6 3QG, United Kingdom.
| | | |
Collapse
|
24
|
Phasevarions mediate random switching of gene expression in pathogenic Neisseria. PLoS Pathog 2009; 5:e1000400. [PMID: 19390608 PMCID: PMC2667262 DOI: 10.1371/journal.ppat.1000400] [Citation(s) in RCA: 135] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2008] [Accepted: 03/26/2009] [Indexed: 11/23/2022] Open
Abstract
Many host-adapted bacterial pathogens contain DNA methyltransferases (mod genes) that are subject to phase-variable expression (high-frequency reversible ON/OFF switching of gene expression). In Haemophilus influenzae, the random switching of the modA gene controls expression of a phase-variable regulon of genes (a “phasevarion”), via differential methylation of the genome in the modA ON and OFF states. Phase-variable mod genes are also present in Neisseria meningitidis and Neisseria gonorrhoeae, suggesting that phasevarions may occur in these important human pathogens. Phylogenetic studies on phase-variable mod genes associated with type III restriction modification (R-M) systems revealed that these organisms have two distinct mod genes—modA and modB. There are also distinct alleles of modA (abundant: modA11, 12, 13; minor: modA4, 15, 18) and modB (modB1, 2). These alleles differ only in their DNA recognition domain. ModA11 was only found in N. meningitidis and modA13 only in N. gonorrhoeae. The recognition site for the modA13 methyltransferase in N. gonorrhoeae strain FA1090 was identified as 5′-AGAAA-3′. Mutant strains lacking the modA11, 12 or 13 genes were made in N. meningitidis and N. gonorrhoeae and their phenotype analyzed in comparison to a corresponding mod ON wild-type strain. Microarray analysis revealed that in all three modA alleles multiple genes were either upregulated or downregulated, some of which were virulence-associated. For example, in N. meningitidis MC58 (modA11), differentially expressed genes included those encoding the candidate vaccine antigens lactoferrin binding proteins A and B. Functional studies using N. gonorrhoeae FA1090 and the clinical isolate O1G1370 confirmed that modA13 ON and OFF strains have distinct phenotypes in antimicrobial resistance, in a primary human cervical epithelial cell model of infection, and in biofilm formation. This study, in conjunction with our previous work in H. influenzae, indicates that phasevarions may be a common strategy used by host-adapted bacterial pathogens to randomly switch between “differentiated” cell types. The pathogenic Neisseria are bacterial pathogens that cause meningitis and gonorrhoea. They have adapted to life exclusively in humans and have developed unique strategies to colonize the host and to evade the immune response. Central among these strategies are genetic switches that randomly turn genes on and off. In most cases, the genes controlled by these switches, contingency genes, are required for making bacterial surface structures. Recently we described a new class of contingency gene that methylates DNA. Rather than affecting the synthesis of a single surface structure, on/off switching of this DNA-methyltransferase gene leads to random switching of multiple genes. In this study, we have shown that this mechanism exists in all pathogenic Neisseria, and alters expression of multiple genes in all cases we examined. The two distinct populations of bacteria generated by this process had different behavior in model systems of colonization and infection. Understanding this process is key to understanding these human pathogens, and to developing strategies for treatment and prevention of the diseases they cause.
Collapse
|
25
|
Utilization of lactoferrin-bound and transferrin-bound iron by Campylobacter jejuni. J Bacteriol 2008; 190:1900-11. [PMID: 18203832 DOI: 10.1128/jb.01761-07] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Campylobacter jejuni NCTC 11168 was capable of growth to levels comparable with FeSO4 in defined iron-limited medium (minimal essential medium alpha [MEMalpha]) containing ferrilactoferrin, ferritransferrin, or ferri-ovotransferrin. Iron was internalized in a contact-dependent manner, with 94% of cell-associated radioactivity from either 55Fe-loaded transferrin or lactoferrin associated with the soluble cell fraction. Partitioning the iron source away from bacteria significantly decreased cellular growth. Excess cold transferrin or lactoferrin in cultures containing 55Fe-loaded transferrin or lactoferrin resulted in reduced levels of 55Fe uptake. Growth of C. jejuni in the presence of ferri- and an excess of apoprotein reduced overall levels of growth. Following incubation of cells in the presence of ferrilactoferrin, lactoferrin became associated with the cell surface; binding levels were higher after growth under iron limitation. A strain carrying a mutation in the cj0178 gene from the iron uptake system Cj0173c-Cj0178 demonstrated significantly reduced growth promotion in the presence of ferrilactoferrin in MEMalpha compared to wild type but was not affected in the presence of heme. Moreover, this mutant acquired less 55Fe than wild type when incubated with 55Fe-loaded protein and bound less lactoferrin. Complementation restored the wild-type phenotype when cells were grown with ferrilactoferrin. A mutant in the ABC transporter system permease gene (cj0174c) showed a small but significant growth reduction. The cj0176c-cj0177 intergenic region contains two separate Fur-regulated iron-repressible promoters. This is the first demonstration that C. jejuni is capable of acquiring iron from members of the transferrin protein family, and our data indicate a role for Cj0178 in this process.
Collapse
|
26
|
Jain S, van Ulsen P, Benz I, Schmidt MA, Fernandez R, Tommassen J, Goldberg MB. Polar localization of the autotransporter family of large bacterial virulence proteins. J Bacteriol 2006; 188:4841-50. [PMID: 16788193 PMCID: PMC1483012 DOI: 10.1128/jb.00326-06] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Autotransporters are an extensive family of large secreted virulence-associated proteins of gram-negative bacteria. Secretion of such large proteins poses unique challenges to bacteria. We demonstrate that autotransporters from a wide variety of rod-shaped pathogens, including IcsA and SepA of Shigella flexneri, AIDA-I of diffusely adherent Escherichia coli, and BrkA of Bordetella pertussis, are localized to the bacterial pole. The restriction of autotransporters to the pole is dependent on the presence of a complete lipopolysaccharide (LPS), consistent with known effects of LPS composition on membrane fluidity. Newly synthesized and secreted BrkA is polar even in the presence of truncated LPS, and all autotransporters examined are polar in the cytoplasm prior to secretion. Together, these findings are consistent with autotransporter secretion occurring at the poles of rod-shaped gram-negative organisms. Moreover, NalP, an autotransporter of spherically shaped Neisseria meningitidis contains the molecular information to localize to the pole of Escherichia coli. In N. meningitidis, NalP is secreted at distinct sites around the cell. These data are consistent with a model in which the secretion of large autotransporters occurs via specific conserved pathways located at the poles of rod-shaped bacteria, with profound implications for the underlying physiology of the bacterial cell and the nature of bacterial pathogen-host interactions.
Collapse
Affiliation(s)
- Sumita Jain
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, 65 Landsdowne St., Cambridge, MA 02139, USA
| | | | | | | | | | | | | |
Collapse
|
27
|
Bos MP, Tefsen B, Voet P, Weynants V, van Putten JPM, Tommassen J. Function of neisserial outer membrane phospholipase a in autolysis and assessment of its vaccine potential. Infect Immun 2005; 73:2222-31. [PMID: 15784566 PMCID: PMC1087465 DOI: 10.1128/iai.73.4.2222-2231.2005] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Outer membrane phospholipase A (OMPLA) is an outer membrane-localized enzyme, present in many gram-negative bacterial species. It is implicated in the virulence of several pathogens. Here, we investigated the presence, function, and vaccine potential of OMPLA in the human pathogen Neisseria meningitidis. Immunoblot analysis showed the presence of OMPLA in 28 out of 33 meningococcal strains investigated. The OMPLA-negative strains all contained a pldA gene, but these alleles contained premature stop codons. All six Neisseria gonorrhoeae strains tested, but only two out of seven commensal neisserial strains investigated, expressed OMPLA, showing that OMPLA is expressed by, but not limited to, many pathogenic neisserial strains. The function of OMPLA was investigated by assessing the phenotypes of isogenic strains, expressing no OMPLA, expressing wild-type levels of OMPLA, or overexpressing OMPLA. OMPLA exhibited phospholipase activity against endogenous phospholipids. Furthermore, OMPLA was characterized as an autolysin that acted under specific conditions, such as prolonged growth of the bacteria. The vaccine potential of the protein was investigated by immunizing mice with in vitro refolded, recombinant OMPLA. High levels of antibody titers were obtained, but the murine sera were neither bactericidal nor protective. Also, convalescent patients and vaccinee sera did not contain detectable levels of anti-OMPLA antibodies, indicating that OMPLA may not be sufficiently immunogenic to be included in a meningococcal vaccine.
Collapse
Affiliation(s)
- Martine P Bos
- Department of Molecular Microbiology and Institute for Biomembranes, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands.
| | | | | | | | | | | |
Collapse
|
28
|
Abstract
Meningococcal disease is one of the most feared and serious infections in the young and its prevention by vaccination is an important goal. The high degree of antigenic variability of the organism makes the meningococcus a challenging target for vaccine prevention. Meningococcal polysaccharide vaccines against serogroup A and C are efficacious and have been widely used, often in combination with serogroup Y and W135 components. Their relative lack of immunogenicity in young children and infants can be overcome by conjugation to a protein carrier. The effectiveness of serogroup C glycoconjugate vaccines in children of all ages has been demonstrated and they have now been introduced into routine vaccination schedules. Conjugate vaccines against other serogroups, including A, Y, and W135 will soon be available and it is hoped they may emulate this success. Prevention of serogroup B disease has proven more elusive. Several serogroup B vaccines based on outer membrane vesicles have been shown to be immunogenic and reasonably effective in adults and older children, but the protection offered by them is chiefly strain-specific. Multivalent recombinant PorA vaccines have been developed to broaden the protective effect, but no efficacy data are available as yet. Intensive efforts have been directed at other outer membrane protein vaccine candidates and lipopolysaccharide, and some of these have been shown to offer protection in experimental animal models. Nonpathogenic Neisseriae spp. such as Neisseria lactamica are also possible vaccine candidates. Previously unknown proteins have been identified from in silico analysis of the meningococcal genome and their vaccine potential explored. However, none of these has yet been presented as the 'universal' protective antigen and work in this field continues to be held back by our limited knowledge concerning the mechanisms of natural protection against serogroup B meningococci.
Collapse
Affiliation(s)
- Jens U Rüggeberg
- Department of Child Health and Vaccine Institute, St George's Hospital Medical School, London, UK
| | | |
Collapse
|
29
|
Delany I, Rappuoli R, Scarlato V. Fur functions as an activator and as a repressor of putative virulence genes in Neisseria meningitidis. Mol Microbiol 2004; 52:1081-90. [PMID: 15130126 DOI: 10.1111/j.1365-2958.2004.04030.x] [Citation(s) in RCA: 145] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Fur is a well-known iron-responsive repressor of gene transcription, which is used by many bacteria to respond to the low-iron environment that pathogens encounter during infection. Four promoters of Neisseria meningitidis predicted to have Fur-binding boxes were selected to study the molecular interactions between Fur and the promoter regions of genes expected to play a central role in survival and pathogenesis. We demonstrate that Fur acts not only as a repressor, but also as an activator of gene expression both in vivo and in vitro. We report that Fur binds to operators located upstream of three promoters that are positively regulated in vivo by Fur and iron, whereas Fur binds to an operator overlapping the classically iron-repressed tbp promoter. Deletion of the upstream operator in the norB promoter abolished activation of transcription in vivo in response to iron and in vitro in response to Fur. The role of such a dual mechanism of Fur regulation during infection is discussed.
Collapse
Affiliation(s)
- Isabel Delany
- Biochemistry and Molecular Biology Unit, IRIS, Chiron S.r.l., Via Fiorentina 1, 53100 Siena, Italy
| | | | | |
Collapse
|
30
|
Perkins-Balding D, Ratliff-Griffin M, Stojiljkovic I. Iron transport systems in Neisseria meningitidis. Microbiol Mol Biol Rev 2004; 68:154-71. [PMID: 15007100 PMCID: PMC362107 DOI: 10.1128/mmbr.68.1.154-171.2004] [Citation(s) in RCA: 126] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Acquisition of iron and iron complexes has long been recognized as a major determinant in the pathogenesis of Neisseria meningitidis. In this review, high-affinity iron uptake systems, which allow meningococci to utilize the human host proteins transferrin, lactoferrin, hemoglobin, and haptoglobin-hemoglobin as sources of essential iron, are described. Classic features of bacterial iron transport systems, such as regulation by the iron-responsive repressor Fur and TonB-dependent transport activity, are discussed, as well as more specific features of meningococcal iron transport. Our current understanding of how N. meningitidis acquires iron from the human host and the vaccine potentials of various components of these iron transport systems are also reviewed.
Collapse
Affiliation(s)
- Donna Perkins-Balding
- Rollins Research Center, Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia 30322, USA.
| | | | | |
Collapse
|
31
|
Abstract
Lactoferrin is a member of the transferrin family of iron-binding proteins. Numerous functions have been reported and continue to be reported for the protein, some of which are related to its iron-binding properties. Its extensive antimicrobial activities were originally attributed to its ability to sequester essential iron, however, it is now established that it possesses bactericidal activities as a result of a direct interaction between the protein or lactoferrin-derived peptides. This article reviews the antimicrobial activities of lactoferrin and discusses the potential mode of action of lactoferrin-derived cationic peptides against Gram-negative bacteria in the light of recent studies.
Collapse
Affiliation(s)
- Sebastien Farnaud
- Metalloprotein Research Group, Randall Centre for Molecular Mechanisms of Cell Function, King's College London, 3.6 A New Hunt's House, Guy's Campus, London SE1 1UL, UK.
| | | |
Collapse
|
32
|
Delany I, Ieva R, Alaimo C, Rappuoli R, Scarlato V. The iron-responsive regulator fur is transcriptionally autoregulated and not essential in Neisseria meningitidis. J Bacteriol 2003; 185:6032-41. [PMID: 14526014 PMCID: PMC225026 DOI: 10.1128/jb.185.20.6032-6041.2003] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2003] [Accepted: 07/28/2003] [Indexed: 11/20/2022] Open
Abstract
Fur is a well-known iron-responsive repressor of gene transcription, which is used by many bacteria to respond to the low-iron environment that pathogens encounter during infection. The fur gene in Neisseria meningitidis has been described as an essential gene that may regulate a broad array of genes. We succeeded in obtaining an N. meningitidis mutant with the fur gene knocked out and used it to undertake studies of fur-mediated iron regulation. We show that expression of both Fur and the transferrin binding protein Tbp2 is iron regulated and demonstrate that this regulation is Fur mediated for the Tbp2 protein. Footprinting analysis revealed that Fur binds to two distinct sites upstream of its coding region with different affinities and that these binding sites overlap two promoters that differentially control transcription of the fur gene in response to iron. The presence of two independently regulated fur promoters may allow meningococcus to fine-tune expression of this regulator controlling iron homeostasis, possibly during infection.
Collapse
Affiliation(s)
- Isabel Delany
- Biochemistry and Molecular Biology Unit, IRIS, Chiron S.r.l., 53100 Siena, Italy
| | | | | | | | | |
Collapse
|
33
|
Coutte L, Willery E, Antoine R, Drobecq H, Locht C, Jacob-Dubuisson F. Surface anchoring of bacterial subtilisin important for maturation function. Mol Microbiol 2003; 49:529-39. [PMID: 12828647 DOI: 10.1046/j.1365-2958.2003.03573.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Many extracytoplasmic proteins undergo proteolytic processing during secretion, which is essential to their maturation. These post-translational modifications are carried out by specific enzymes whose subcellular localization is important for function. We have described a maturation subtilisin in Gram-negative Bordetella pertussis, the autotransporter SphB1. SphB1 catalyses the maturation of the precursor of the adhesin filamentous haemagglutinin (FHA) at the bacterial surface, in addition to the processing of its own precursor. Here, we show that the outer membrane anchor of SphB1 is crucial to its function, as evidenced by the lack of FHA maturation in a strain releasing a variant of SphB1 into the milieu. In contrast, surface association is not required for automaturation of SphB1. The surface retention of mature SphB1 is mediated by lipidation of the protein. The tethered protease appears to be stabilized by unusual Gly- and Pro-rich motifs at the N-terminus of the protein. This represents a new mode of localization for a protease involved in protein secretion.
Collapse
Affiliation(s)
- Loic Coutte
- INSERM U44, Institut de Biologie de Lille, Institut Pasteur de Lille, 1 rue Calmette, 59019 Lille Cedex, France
| | | | | | | | | | | |
Collapse
|
34
|
Anderson JE, Hobbs MM, Biswas GD, Sparling PF. Opposing selective forces for expression of the gonococcal lactoferrin receptor. Mol Microbiol 2003; 48:1325-37. [PMID: 12787359 DOI: 10.1046/j.1365-2958.2003.03496.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
All isolates of Neisseria gonorrhoeae express receptors that bind human transferrin (Tf). Although lactoferrin (Lf) is abundant on mucosa and in purulent exudates, many gonococci do not express an Lf receptor. The naturally occurring Lf receptor deletion mutant FA1090 (LbpB-LbpA-) is infectious, but a Tf receptor mutant of FA1090 is unable to infect male volunteers [Cornelissen, C.N., Kelley, M., Hobbs, M.M., Anderson, J.E., Cannon, J.G., Cohen, M.S., and Sparling, P.F. (1998) Mol Microbiol 27: 611-616]. Here, we report that expression of an Lf receptor in the absence of the Tf receptor was sufficient for infection, and that expression of both Lf and Tf receptors resulted in a competitive advantage over a strain that made only the Tf receptor in mixed infection of male volunteers. We confirmed that nearly 50% of clinical isolates do not make an Lf receptor. Surprisingly, about half of geographically diverse Lf - isolates representing many different auxotypes and porin serovars carried an identical lbpB lbpA deletion. Among Lf+ strains, all produced the integral outer membrane protein LbpA, but 70% did not express the lipoprotein LbpB. Thus, there are apparently selective pressures for expression of the Lf receptor in the male urethra that are balanced by others against expression of the Lf receptor in niches other than the male urethra.
Collapse
Affiliation(s)
- James E Anderson
- Department of Medicine, School of Medicine, University of North Carolina, 521 Burnett Womack Building, CB 7030, Chapel Hill 27599, USA
| | | | | | | |
Collapse
|
35
|
Rohde KH, Gillaspy AF, Hatfield MD, Lewis LA, Dyer DW. Interactions of haemoglobin with the Neisseria meningitidis receptor HpuAB: the role of TonB and an intact proton motive force. Mol Microbiol 2002; 43:335-54. [PMID: 11985713 DOI: 10.1046/j.1365-2958.2002.02745.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We have characterized the interaction of the Neisseria meningitidis TonB-dependent receptor HpuAB with haemoglobin (Hb). Protease accessibility assays indicated that HpuA and HpuB are surface exposed, HpuB interacts physically with HpuA, and TonB energization affects the conformation of HpuAB. Binding assays using [125I]-Hb revealed that the bipartite receptor has a single binding site for Hb (Kd 150 nM). Competitive binding assays using heterologous Hbs revealed that HpuAB Hb recognition was not species specific. The binding kinetics of Hb to HpuAB were dramatically altered in a TonB- mutant and in wild-type meningococci treated with the protonophore carbonylcyanide m-chlorophenylhydrazone (CCCP), indicating that TonB and an intact proton motive force are required for normal Hb binding and release from HpuAB. Our results support a model in which both HpuA and HpuB are required to form a receptor complex in the outer membrane with a single binding site, whose structure and ligand interactions are significantly affected by the TonB-mediated energy state of the receptor.
Collapse
Affiliation(s)
- K H Rohde
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City 73104, USA.
| | | | | | | | | |
Collapse
|
36
|
Chen CJ, Mclean D, Thomas CE, Anderson JE, Sparling PF. Point mutations in HpuB enable gonococcal HpuA deletion mutants to grow on hemoglobin. J Bacteriol 2002; 184:420-6. [PMID: 11751818 PMCID: PMC139576 DOI: 10.1128/jb.184.2.420-426.2002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Neisseria gonorrhoeae ordinarily requires both HpuA and HpuB to use hemoglobin (Hb) as a source of iron for growth. Deletion of HpuA resulted in reduced Hb binding and failure of growth on Hb. We identified rare Hb-utilizing colonies (Hb(+)) from an hpuA deletion mutant of FA1090, which fell into two phenotypic classes. One class of the Hb(+) revertants required expression of both TonB and HpuB for growth on Hb, while the other class required neither TonB nor HpuB. All TonB/HpuB-dependent mutants had single amino acid alterations in HpuB, which occurred in clusters, particularly near the C terminus. The point mutations in HpuB did not restore normal Hb binding. Human serum albumin inhibited Hb-dependent growth of HpuB point mutants lacking HpuA but did not inhibit growth when expression of HpuA was restored. Thus, HpuB point mutants internalized heme in the absence of HpuA despite reduced binding of Hb. HpuA facilitated Hb binding and was important in allowing use of heme from Hb for growth.
Collapse
Affiliation(s)
- Ching-Ju Chen
- Department of Medicine, School of Medicine, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | | | | | | | | |
Collapse
|
37
|
Steeghs L, Cock HD, Evers E, Zomer B, Tommassen J, Ley PVD. Outer membrane composition of a lipopolysaccharide-deficient Neisseria meningitidis mutant. EMBO J 2001; 20:6937-45. [PMID: 11742971 PMCID: PMC125796 DOI: 10.1093/emboj/20.24.6937] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2001] [Revised: 10/22/2001] [Accepted: 11/01/2001] [Indexed: 11/13/2022] Open
Abstract
In the pathogen Neisseria meningitidis, a completely lipopolysaccharide (LPS)-deficient but viable mutant can be obtained by insertional inactivation of the lpxA gene, encoding UDP-GlcNAc acyltransferase required for the first step of lipid A biosynthesis. To study how outer membrane structure and biogenesis are affected by the absence of this normally major component, inner and outer membranes were separated and their composition analysed. The expression and assembly of integral outer membrane proteins appeared largely unaffected. However, the expression of iron limitation-inducible, cell surface-exposed lipoproteins was greatly reduced. Major changes were seen in the phospholipid composition, with a shift towards phosphatidylethanolamine and phosphatidylglycerol species containing mostly shorter chain, saturated fatty acids, one of which was unique to the LPS-deficient outer membrane. The presence of the capsular polysaccharide turned out to be essential for viability without LPS, as demonstrated by using a strain in which LPS biosynthesis could be switched on or off through a tac promoter-controlled lpxA gene. Taken together, these results can help to explain why meningococci have the unique ability to survive without LPS.
Collapse
Affiliation(s)
- Liana Steeghs
- Laboratory of Vaccine Research and Laboratory of Organic-Analytical Chemistry, National Institute of Public Health and the Environment, RIVM, Antonie van Leeuwenhoeklaan 9, PO Box 1, 3720 BA Bilthoven and Department of Molecular Microbiology and Institute of Biomembranes, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands Corresponding author at: Laboratory of Vaccine Research, National Institute of Public Health and the Environment, RIVM, Antonie van Leeuwenhoeklaan 9, PO Box 1, 3720 BA Bilthoven, The Netherlands e-mail:
| | - Hans de Cock
- Laboratory of Vaccine Research and Laboratory of Organic-Analytical Chemistry, National Institute of Public Health and the Environment, RIVM, Antonie van Leeuwenhoeklaan 9, PO Box 1, 3720 BA Bilthoven and Department of Molecular Microbiology and Institute of Biomembranes, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands Corresponding author at: Laboratory of Vaccine Research, National Institute of Public Health and the Environment, RIVM, Antonie van Leeuwenhoeklaan 9, PO Box 1, 3720 BA Bilthoven, The Netherlands e-mail:
| | - Evert Evers
- Laboratory of Vaccine Research and Laboratory of Organic-Analytical Chemistry, National Institute of Public Health and the Environment, RIVM, Antonie van Leeuwenhoeklaan 9, PO Box 1, 3720 BA Bilthoven and Department of Molecular Microbiology and Institute of Biomembranes, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands Corresponding author at: Laboratory of Vaccine Research, National Institute of Public Health and the Environment, RIVM, Antonie van Leeuwenhoeklaan 9, PO Box 1, 3720 BA Bilthoven, The Netherlands e-mail:
| | - Bert Zomer
- Laboratory of Vaccine Research and Laboratory of Organic-Analytical Chemistry, National Institute of Public Health and the Environment, RIVM, Antonie van Leeuwenhoeklaan 9, PO Box 1, 3720 BA Bilthoven and Department of Molecular Microbiology and Institute of Biomembranes, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands Corresponding author at: Laboratory of Vaccine Research, National Institute of Public Health and the Environment, RIVM, Antonie van Leeuwenhoeklaan 9, PO Box 1, 3720 BA Bilthoven, The Netherlands e-mail:
| | - Jan Tommassen
- Laboratory of Vaccine Research and Laboratory of Organic-Analytical Chemistry, National Institute of Public Health and the Environment, RIVM, Antonie van Leeuwenhoeklaan 9, PO Box 1, 3720 BA Bilthoven and Department of Molecular Microbiology and Institute of Biomembranes, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands Corresponding author at: Laboratory of Vaccine Research, National Institute of Public Health and the Environment, RIVM, Antonie van Leeuwenhoeklaan 9, PO Box 1, 3720 BA Bilthoven, The Netherlands e-mail:
| | - Peter van der Ley
- Laboratory of Vaccine Research and Laboratory of Organic-Analytical Chemistry, National Institute of Public Health and the Environment, RIVM, Antonie van Leeuwenhoeklaan 9, PO Box 1, 3720 BA Bilthoven and Department of Molecular Microbiology and Institute of Biomembranes, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands Corresponding author at: Laboratory of Vaccine Research, National Institute of Public Health and the Environment, RIVM, Antonie van Leeuwenhoeklaan 9, PO Box 1, 3720 BA Bilthoven, The Netherlands e-mail:
| |
Collapse
|
38
|
Abstract
The past century has seen the use of a number of vaccines for prevention and control of meningococcal disease with varied success. The use of polysaccharide vaccines for the control of outbreaks of serogroup C infections in teenagers and young adults and epidemic serogroup A disease has been established for 30 years and an effective protein-polysaccharide conjugate vaccine against serogroup C was introduced into the UK infant immunisation schedule in 2000. The next generation of these glycoconjugate vaccines will be on the shelf soon, eventually offering the prospect of eradication of serogroups A, C, Y and W135 through routine infant immunisation. Despite these exciting prospects, serogroup B meningococci still account for a majority of infections in industrialised nations but development of safe, immunogenic and effective serogroup B meningococcal vaccines has been an elusive goal. Outer membrane vesicle vaccines for B disease are already used in some countries, and will likely be used more widely in the next few years, but efficacy for endemic disease in children has so far been disappointing. However, the innovations arising from the availability of the meningococcal genome sequence, public and scientific interest in the disease and recent pharmaceutical company investment in development of serogroup B vaccines may have started the countdown to the end of meningococcal infection in children.
Collapse
Affiliation(s)
- S L Morley
- Department of Paediatrics, Imperial College School of Medicine, St Mary's Campus, Norfolk Place, London W2 1PG, UK.
| | | |
Collapse
|
39
|
Salvatore P, Pagliarulo C, Colicchio R, Zecca P, Cantalupo G, Tredici M, Lavitola A, Bucci C, Bruni CB, Alifano P. Identification, characterization, and variable expression of a naturally occurring inhibitor protein of IS1106 transposase in clinical isolates of Neisseria meningitidis. Infect Immun 2001; 69:7425-36. [PMID: 11705917 PMCID: PMC98831 DOI: 10.1128/iai.69.12.7425-7436.2001] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Transposition plays a role in the epidemiology and pathogenesis of Neisseria meningitidis. Insertion sequences are involved in reversible capsulation and insertional inactivation of virulence genes encoding outer membrane proteins. In this study, we have investigated and identified one way in which transposon IS1106 controls its own activity. We have characterized a naturally occurring protein (Tip) that inhibits the transposase. The inhibitor protein is a truncated version of the IS1106 transposase lacking the NH(2)-terminal DNA binding sequence, and it regulates transposition by competing with the transposase for binding to the outside ends of IS1106, as shown by gel shift and in vitro transposition assays. IS1106Tip mRNA is variably expressed among serogroup B meningococcal clinical isolates, and it is absent in most collection strains belonging to hypervirulent lineages.
Collapse
Affiliation(s)
- P Salvatore
- Dipartimento di Biologia e Patologia Cellulare e Molecolare "L. Califano," Università di Napoli "Federico II," Naples, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Ronpirin C, Jerse AE, Cornelissen CN. Gonococcal genes encoding transferrin-binding proteins A and B are arranged in a bicistronic operon but are subject to differential expression. Infect Immun 2001; 69:6336-47. [PMID: 11553578 PMCID: PMC98769 DOI: 10.1128/iai.69.10.6336-6347.2001] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Neisseria gonorrhoeae is capable of utilizing host iron-binding proteins, such as transferrin, lactoferrin, and hemoglobin, as the sole source of iron. The receptor involved in transferrin iron acquisition is composed of two distinct transferrin-binding proteins, TbpA and TbpB. The genes that encode these proteins are linked on the chromosome in the order tbpB-tbpA but are separated by an inverted repeat of unknown function. In this study, we sought to understand the transcriptional organization and regulation of the tbp genes, using a combination of lacZ transcriptional fusion analysis and reverse transcriptase PCR (RT-PCR). First, we demonstrated that tbpB and tbpA are cotranscribed and coregulated from the common upstream promoter that precedes tbpB. Using beta-galactosidase activity as a surrogate for tbp-specific transcription, we found that tbpB-specific transcripts were more prevalent than tbpA-specific transcripts after 2 h of growth under iron stress conditions. We confirmed the results obtained by fusion analysis by using RT-PCR applied to native RNA isolated from wild-type gonococci. Three different varieties of RT-PCR were employed: relative, competitive, and real time quantitative. The results of all analyses indicated that tbpB-specific transcripts were approximately twofold more prevalent than tbpA-specific transcripts at steady state. In iron-stressed cultures, the ratio of tbpB- to tbpA-specific message was approximately 2; however, in iron-replete cultures, this ratio dropped to 1. Using these techniques, we also quantitated the effects of iron, external pH, and presence of ligand on tbp mRNA levels.
Collapse
Affiliation(s)
- C Ronpirin
- Department of Microbiology and Immunology, Medical College of Virginia, Virginia Commonwealth University, Richmond, Virginia 23298-0678, USA
| | | | | |
Collapse
|
41
|
Håkansson A, Roche H, Mirza S, McDaniel LS, Brooks-Walter A, Briles DE. Characterization of binding of human lactoferrin to pneumococcal surface protein A. Infect Immun 2001; 69:3372-81. [PMID: 11292760 PMCID: PMC98296 DOI: 10.1128/iai.69.5.3372-3381.2001] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human lactoferrin is an iron-binding glycoprotein that is particularly prominent in exocrine secretions and leukocytes and is also found in serum, especially during inflammation. It is able to sequester iron from microbes and has immunomodulatory functions, including inhibition of both complement activation and cytokine production. This study used mutants lacking pneumococcal surface protein A (PspA) and PspC to demonstrate that the binding of human lactoferrin to the surface of Streptococcus pneumoniae was entirely dependent on PspA. Lactoferrin bound both family 1 and family 2 PspAs. Binding of lactoferrin to PspA was shown by surface colocalization with PspA and was verified by the lack of binding to PspA-negative mutants. Lactoferrin was expressed on the body of the cells but was largely absent from the poles. PspC showed exactly the same distribution on the pneumococcal surface as PspA but did not bind lactoferrin. PspA's binding site for lactoferrin was mapped using recombinant fragments of PspA of families 1 and 2. Binding of human lactoferrin was detected primarily in the C-terminal half of the alpha-helical domain of PspA (amino acids 167 to 288 of PspA/Rx1), with no binding to the N-terminal 115 amino acids in either strain. The interaction was highly specific. As observed previously, bovine lactoferrin bound poorly to PspA. Human transferrin did not bind PspA at all. The binding of lactoferrin to S. pneumoniae might provide a way for the bacteria to interfere with host immune functions or to aid in the acquisition of iron at the site of infection.
Collapse
Affiliation(s)
- A Håkansson
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA.
| | | | | | | | | | | |
Collapse
|
42
|
Salvatore P, Cantalupo G, Pagliarulo C, Tredici M, Lavitola A, Bucci C, Bruni CB, Alifano P. A new vector for insertion of any DNA fragment into the chromosome of transformable Neisseriae. Plasmid 2000; 44:275-9. [PMID: 11078653 DOI: 10.1006/plas.2000.1490] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A useful method for inserting any DNA fragment into the chromosome of Neisseriae has been developed. The method relies on recombination-proficient vector plasmid pNLE1, a pUC19 derivative containing (1) genes conferring resistance to ampicillin and erythromycin, as selectable markers; (2) a chromosomal region necessary for its integration into the Neisseria chromosome; (3) a specific uptake sequence which is required for natural transformation; (4) a promoter capable of functioning in Neisseria; and (5) several unique restriction sites useful for cloning. pNLE1 integrates into the leuS region of the neisserial chromosome at high frequencies by transformation-mediated recombination. The usefulness of this vector has been demonstrated by cloning the tetracycline-resistance gene (tet) and subsequently inserting the tet gene into the meningococcal chromosome.
Collapse
Affiliation(s)
- P Salvatore
- Dipartimento di Biologia e Patologia Cellulare e Molecolare "L. Califano,", Università di Napoli "Federico II,", Centro di Endocrinologia ed Oncologia Sperimentale "G. Salvatore" of the Consiglio Nazionale delle Ricerche, Naples, Italy
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Cornelissen CN, Anderson JE, Boulton IC, Sparling PF. Antigenic and sequence diversity in gonococcal transferrin-binding protein A. Infect Immun 2000; 68:4725-35. [PMID: 10899879 PMCID: PMC98422 DOI: 10.1128/iai.68.8.4725-4735.2000] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Neisseria gonorrhoeae is a gram-negative pathogen that is capable of satisfying its iron requirement with human iron-binding proteins such as transferrin and lactoferrin. Transferrin-iron utilization involves specific binding of human transferrin at the cell surface to what is believed to be a complex of two iron-regulated, transferrin-binding proteins, TbpA and TbpB. The genes encoding these proteins have been cloned and sequenced from a number of pathogenic, gram-negative bacteria. In the current study, we sequenced four additional tbpA genes from other N. gonorrhoeae strains to begin to assess the sequence diversity among gonococci. We compared these sequences to those from other pathogenic bacteria to identify conserved regions that might be important for the structure and function of these receptors. We generated polyclonal mouse sera against synthetic peptides deduced from the TbpA sequence from gonococcal strain FA19. Most of these synthetic peptides were predicted to correspond to surface-exposed regions of TbpA. We found that, while most reacted with denatured TbpA in Western blots, only one antipeptide serum reacted with native TbpA in the context of intact gonococci, consistent with surface exposure of the peptide to which this serum was raised. In addition, we evaluated a panel of gonococcal strains for antigenic diversity using these antipeptide sera.
Collapse
Affiliation(s)
- C N Cornelissen
- Department of Microbiology and Immunology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia 23298, USA.
| | | | | | | |
Collapse
|
44
|
Abstract
Neisseria meningitidis, an exclusive pathogen of humans, remains the leading worldwide cause of meningitis and fatal sepsis, usually in otherwise healthy individuals. In recent years, significant advances have improved our understanding of the epidemiology and genetic basis of meningococcal disease and led to progress in the development of the next generation of meningococcal vaccines. This review summarizes current knowledge of the human susceptibility to and the epidemiology and molecular pathogenesis of meningococcal disease.
Collapse
Affiliation(s)
- Y L Tzeng
- Department of Medicine and Microbiology, Emory University School of Medicine, Veterans Affairs Medical Center, Georgia, Atlanta, USA
| | | |
Collapse
|
45
|
Parkhill J, Achtman M, James KD, Bentley SD, Churcher C, Klee SR, Morelli G, Basham D, Brown D, Chillingworth T, Davies RM, Davis P, Devlin K, Feltwell T, Hamlin N, Holroyd S, Jagels K, Leather S, Moule S, Mungall K, Quail MA, Rajandream MA, Rutherford KM, Simmonds M, Skelton J, Whitehead S, Spratt BG, Barrell BG. Complete DNA sequence of a serogroup A strain of Neisseria meningitidis Z2491. Nature 2000; 404:502-6. [PMID: 10761919 DOI: 10.1038/35006655] [Citation(s) in RCA: 530] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Neisseria meningitidis causes bacterial meningitis and is therefore responsible for considerable morbidity and mortality in both the developed and the developing world. Meningococci are opportunistic pathogens that colonize the nasopharynges and oropharynges of asymptomatic carriers. For reasons that are still mostly unknown, they occasionally gain access to the blood, and subsequently to the cerebrospinal fluid, to cause septicaemia and meningitis. N. meningitidis strains are divided into a number of serogroups on the basis of the immunochemistry of their capsular polysaccharides; serogroup A strains are responsible for major epidemics and pandemics of meningococcal disease, and therefore most of the morbidity and mortality associated with this disease. Here we have determined the complete genome sequence of a serogroup A strain of Neisseria meningitidis, Z2491. The sequence is 2,184,406 base pairs in length, with an overall G+C content of 51.8%, and contains 2,121 predicted coding sequences. The most notable feature of the genome is the presence of many hundreds of repetitive elements, ranging from short repeats, positioned either singly or in large multiple arrays, to insertion sequences and gene duplications of one kilobase or more. Many of these repeats appear to be involved in genome fluidity and antigenic variation in this important human pathogen.
Collapse
Affiliation(s)
- J Parkhill
- The Sanger Centre, The Wellcome Trust Genome Campus, Hinxton, Cambridge, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Prinz T, Tommassen J. Association of iron-regulated outer membrane proteins of Neisseria meningitidis with the RmpM (class 4) protein. FEMS Microbiol Lett 2000; 183:49-53. [PMID: 10650201 DOI: 10.1111/j.1574-6968.2000.tb08932.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The RmpM (class 4) protein of Neisseria meningitidis has previously been shown to be associated with the outer membrane porins. In the present study, we demonstrate that this protein forms complexes with the lactoferrin receptor LbpA, the transferrin receptor TbpA and the siderophore receptor FrpB as well. This complexation apparently resulted in a stabilization of oligomeric forms of these iron-regulated proteins. In vitro experiments further revealed a reduced ability to acquire iron from human lactoferrin in the rmpM mutant. Furthermore, all TonB-dependent receptors investigated here appeared to exist as oligomers (probably dimers), suggesting that this is a general feature of this class of proteins.
Collapse
Affiliation(s)
- T Prinz
- Department of Molecular Microbiology and Institute of Biomembranes, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands.
| | | |
Collapse
|
47
|
Bowler LD, Hubank M, Spratt BG. Representational difference analysis of cDNA for the detection of differential gene expression in bacteria: development using a model of iron-regulated gene expression in Neisseria meningitidis. MICROBIOLOGY (READING, ENGLAND) 1999; 145 ( Pt 12):3529-3537. [PMID: 10627050 DOI: 10.1099/00221287-145-12-3529] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Representational difference analysis of cDNA (cDNA RDA) provides a powerful technique for the identification of specific differences between two mRNA populations. The method has previously been used to analyse differential gene expression in eukaryotes, but until now has not been successfully applied to prokaryotes. A strain of Neisseria meningitidis with a deletion of the iron-regulated lactoferrin-binding protein A (IbpA) gene, grown under iron-replete conditions, and the isogenic parent strain, grown under iron limitation, were used as a model for developing cDNA RDA for use with bacteria. In this system, the technique should specifically detect the differential expression of the IbpA gene in the parent strain, along with other genes whose expression is switched on (or up-regulated) under iron-deficient conditions. Since cDNA RDA requires high-quality, representative mRNA, a variety of methods for the isolation of RNA were evaluated. A triisopropylnaphthalene sulphonic acid/ p-aminosalicylic acid-based technique was found to give the best results. cDNA was prepared from total RNA isolated from the two N. meningitidis strains and subjected to an adapted cDNA RDA procedure. The method resulted in the amplification of five major PCR products, which included fragments of the IbpA gene and the iron-regulated RTX-like toxin gene (frpC), thus validating the technique for use with bacteria.
Collapse
Affiliation(s)
- Lucas D Bowler
- School of Biological Sciences, University of Sussex, Brighton BN1 9QG, UK1
| | - Mike Hubank
- Trafford Centre for Medical Research, University of Sussex, Brighton BN1 9RY, UK2
| | - Brian G Spratt
- Wellcome Trust Centre for the Epidemiology of Infectious Disease, Department of Zoology, University of Oxford, Oxford OX1 3PS, UK 3
- School of Biological Sciences, University of Sussex, Brighton BN1 9QG, UK1
| |
Collapse
|
48
|
Johnson AS, Gorringe AR, Mackinnon FG, Fox AJ, Borrow R, Robinson A. Analysis of the human Ig isotype response to lactoferrin binding protein A from Neisseria meningitidis. FEMS IMMUNOLOGY AND MEDICAL MICROBIOLOGY 1999; 25:349-54. [PMID: 10497865 DOI: 10.1111/j.1574-695x.1999.tb01359.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An effective vaccine for serogroup B meningococci has yet to be developed and attention has turned to subcapsular antigens of the meningococcus as possible vaccine candidates. Iron binding proteins are being studied, with most interest focused on the transferrin binding proteins (TbpA and TbpB) and the ferric binding protein (FbpA). This study describes the purification of lactoferrin binding protein A (LbpA) from two meningococcal strains and assesses the human isotype-specific serum antibody response to these proteins in patients with proven meningococcal disease due to a range of phenotypes. Overall, fewer than 50% of sera contained IgG that recognised LbpA isolated from either strain and this antibody response was not uniform between the two proteins. There was some evidence that the antibody response varied between meningococcal phenotypes. This study demonstrates that LbpA does not induce a highly cross-reactive antibody response, indicating that it is unlikely to be an effective vaccine antigen.
Collapse
Affiliation(s)
- A S Johnson
- Manchester Public Health Laboratory, Withington Hospital, UK.
| | | | | | | | | | | |
Collapse
|
49
|
Yu RH, Bonnah RA, Ainsworth S, Schryvers AB. Analysis of the immunological responses to transferrin and lactoferrin receptor proteins from Moraxella catarrhalis. Infect Immun 1999; 67:3793-9. [PMID: 10417140 PMCID: PMC96656 DOI: 10.1128/iai.67.8.3793-3799.1999] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Moraxella catarrhalis expresses surface receptor proteins that specifically bind host transferrin (Tf) and lactoferrin (Lf) in the first step of the iron acquisition pathway. Acute- and convalescent-phase antisera from a series of patients with M. catarrhalis pulmonary infections were tested against Tf and Lf receptor proteins purified from the corresponding isolates. After the purified proteins had been separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and Western blotting, we observed strong reactivity against Tf-binding protein B (TbpB; also called OMP1) and Lf-binding protein B (LbpB) but little or no reactivity against Tf-binding protein A (TbpA) or Lf-binding protein A (LbpA), using the convalescent-phase antisera. Considerable antigenic heterogeneity was observed when TbpBs and LbpBs isolated from different strains were tested with the convalescent-phase antisera. Comparison to the reactivity against electroblotted total cellular proteins revealed that the immune response against LbpB and TbpB constitutes a significant portion of the total detectable immune response to M. catarrhalis proteins. Preparations of affinity-isolated TbpA and LbpA reacted with convalescent-phase antisera in a solid-phase binding assay, but blocking with soluble TbpB, soluble LbpB, or extracts from an LbpA(-) mutant demonstrated that this reactivity was attributed to contaminants in the TbpA and LbpA preparations. These studies demonstrate the immunogenicity of M. catarrhalis TbpB and LbpB in humans and support their potential as vaccine candidates.
Collapse
Affiliation(s)
- R H Yu
- Department of Microbiology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
| | | | | | | |
Collapse
|
50
|
Kizil G, Todd I, Atta M, Borriello SP, Ait-Tahar K, Ala'Aldeen DA. Identification and characterization of TspA, a major CD4(+) T-cell- and B-cell-stimulating Neisseria-specific antigen. Infect Immun 1999; 67:3533-41. [PMID: 10377136 PMCID: PMC116541 DOI: 10.1128/iai.67.7.3533-3541.1999] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
In search for novel T-cell immunogens involved in protection against invasive meningococcal disease, we screened fractionated proteins of Neisseria meningitidis (strain SD, B:15:P1.16) by using peripheral blood mononuclear cells (PBMCs) and specific T-cell lines obtained from normal individuals and patients convalescing from N. meningitidis infection. Proteins of iron-depleted meningococci produced higher PBMC proliferation indices than proteins of iron-replete organisms, indicating that iron-regulated proteins are T-cell immunogens. Insoluble proteins of the iron-depleted cells, which produced better T-cell stimulation than soluble ones, were fractionated by using sodium dodecyl sulfate-polyacrylamide gels and recovered as five fractions (F1 to F5) corresponding to decreasing molecular weight ranges. The proteins were purified (by elution and precipitation) or electroblotted onto nitrocellulose membranes (dissolved and precipitated) before use in further T-cell proliferation assays. One of the fractions (F1), containing high-molecular-mass proteins (>130 kDa), consistently showed the strongest T-cell proliferation responses in all of the T-cell lines examined. F1 proteins were subdivided into four smaller fractions (F1A to F1D) which were reexamined in T-cell proliferation assays, and F1C induced the strongest responses in patients' T-cell lines. Rabbit polyclonal antibodies to F1C components were used to screen a genomic expression library of N. meningitidis. Two major clones (C1 and C24) of recombinant meningococcal DNA were identified and fully sequenced. Sequence analysis showed that C24 (1,874 bp) consisted of a single open reading frame (ORF), which was included in clone C1 (2, 778 bp). The strong CD4(+) T-cell-stimulating effect of the polypeptide product of this ORF (named TspA) was confirmed, using a patient T-cell line. Immunogenicity for B cells was confirmed by showing that convalescent patients' serum antibodies recognized TspA on Western blots. Additional genetic sequence downstream of C24 was obtained from the meningococcal genomic sequence database (Sanger Centre), enabling the whole gene of 2,761 bp to be reconstructed. The DNA and deduced amino acid sequence data for tspA failed to show significant homology to any known gene, except for a corresponding (uncharacterized) gene in Neisseria gonorrhoeae genome sequences, suggesting that tspA is unique to the genus Neisseria. The DNA and deduced amino acid sequence of the second ORF of clone C1 showed significant homology to gloA, encoding glyoxalase I enzyme, of Salmonella typhimurium and Escherichia coli. Thus, we have identified a novel neisserial protein (TspA) which proved to be a strong CD4(+) T-cell- and B-cell-stimulating immunogen with potential as a possible vaccine candidate.
Collapse
Affiliation(s)
- G Kizil
- Meningococcal Research Group, Divisions of Microbiology, School of Clinical Laboratory Sciences, University of Nottingham Faculty of Medicine and Health Sciences, Nottingham NG7 2UH, United Kingdom
| | | | | | | | | | | |
Collapse
|