1
|
Zhan L, He J, Meng S, Guo Z, Chen Y, Storey KB, Zhang J, Yu D. Mitochondrial Protein-Coding Gene Expression in the Lizard Sphenomorphus incognitus (Squamata:Scincidae) Responding to Different Temperature Stresses. Animals (Basel) 2024; 14:1671. [PMID: 38891717 PMCID: PMC11170996 DOI: 10.3390/ani14111671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 05/25/2024] [Accepted: 05/31/2024] [Indexed: 06/21/2024] Open
Abstract
In the context of global warming, the frequency of severe weather occurrences, such as unexpected cold spells and heat waves, will grow, as well as the intensity of these natural disasters. Lizards, as a large group of reptiles, are ectothermic. Their body temperatures are predominantly regulated by their environment and temperature variations directly impact their behavior and physiological activities. Frequent cold periods and heat waves can affect their biochemistry and physiology, and often their ability to maintain their body temperature. Mitochondria, as the center of energy metabolism, are crucial for maintaining body temperature, regulating metabolic rate, and preventing cellular oxidative damage. Here, we used RT-qPCR technology to investigate the expression patterns and their differences for the 13 mitochondrial PCGs in Sphenomorphus incognitus (Squamata:Scincidae), also known as the brown forest skink, under extreme temperature stress at 4 °C, 8 °C, 34 °C, and 38 °C for 24 h, compared to the control group at 25 °C. In southern China, for lizards, 4 °C is close to lethal, and 8 °C induces hibernation, while 34/38 °C is considered hot and environmentally realistic. Results showed that at a low temperature of 4 °C for 24 h, transcript levels of ATP8, ND1, ND4, COI, and ND4L significantly decreased, to values of 0.52 ± 0.08, 0.65 ± 0.04, 0.68 ± 0.10, 0.28 ± 0.02, and 0.35 ± 0.02, respectively, compared with controls. By contrast, transcript levels of COIII exhibited a significant increase, with a mean value of 1.86 ± 0.21. However, exposure to 8 °C for 24 h did not lead to an increase in transcript levels. Indeed, transcript levels of ATP6, ATP8, ND1, ND3, and ND4 were significantly downregulated, to 0.48 ± 0.11, 0.68 ± 0.07, 0.41 ± 0.08, 0.54 ± 0.10, and 0.52 ± 0.07, respectively, as compared with controls. Exposure to a hot environment of 34 °C for 24 h led to an increase in transcript levels of COI, COII, COIII, ND3, ND5, CYTB, and ATP6, with values that were 3.3 ± 0.24, 2.0 ± 0.2, 2.70 ± 1.06, 1.57 ± 0,08, 1.47 ± 0.13, 1.39 ± 0.56, and 1.86 ± 0.12, respectively, over controls. By contrast, ND4L exhibited a significant decrease (to 0.31 ± 0.01) compared with controls. When exposed to 38 °C, the transcript levels of the 13 PCGs significantly increased, ranging from a 2.04 ± 0.23 increase in ND1 to a 6.30 ± 0.96 rise in ND6. Under two different levels of cold and heat stress, the expression patterns of mitochondrial genes in S. incognitus vary, possibly associated with different strategies employed by this species in response to low and high temperatures, allowing for rapid compensatory adjustments in mitochondrial electron transport chain proteins in response to temperature changes. Furthermore, this underscores once again the significant role of mitochondrial function in determining thermal plasticity in reptiles.
Collapse
Affiliation(s)
- Lemei Zhan
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China; (L.Z.)
| | - Jingyi He
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China; (L.Z.)
| | - Siqi Meng
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China; (L.Z.)
| | - Zhiqiang Guo
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China; (L.Z.)
| | - Yuxin Chen
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China; (L.Z.)
| | - Kenneth B. Storey
- Department of Biology, Carleton University, Ottawa, ON K1S5B6, Canada;
| | - Jiayong Zhang
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China; (L.Z.)
| | - Danna Yu
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China; (L.Z.)
- Key Lab of Wildlife Biotechnology, Conservation and Utilization of Zhejiang Province, Zhejiang Normal University, Jinhua 321004, China
| |
Collapse
|
2
|
Photoferrotrophy and phototrophic extracellular electron uptake is common in the marine anoxygenic phototroph Rhodovulum sulfidophilum. THE ISME JOURNAL 2021; 15:3384-3398. [PMID: 34054125 PMCID: PMC8528915 DOI: 10.1038/s41396-021-01015-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 05/07/2021] [Accepted: 05/12/2021] [Indexed: 02/03/2023]
Abstract
Photoferrotrophy allows anoxygenic phototrophs to use reduced iron as an electron donor for primary productivity. Recent work shows that freshwater photoferrotrophs can use electrons from solid-phase conductive substances via phototrophic extracellular electron uptake (pEEU), and the two processes share the underlying electron uptake mechanism. However, the ability of marine phototrophs to perform photoferrotrophy and pEEU, and the contribution of these processes to primary productivity is largely unknown. To fill this knowledge gap, we isolated 15 new strains of the marine anoxygenic phototroph Rhodovulum sulfidophilum on electron donors such as acetate and thiosulfate. We observed that all of the R. sulfidophilum strains isolated can perform photoferrotrophy. We chose strain AB26 as a representative strain to study further, and find that it can also perform pEEU from poised electrodes. We show that during pEEU, AB26 transfers electrons to the photosynthetic electron transport chain. Furthermore, systems biology-guided mutant analysis shows that R. sulfidophilum AB26 uses a previously unknown diheme cytochrome c protein, which we call EeuP, for pEEU but not photoferrotrophy. Homologs of EeuP occur in a range of widely distributed marine microbes. Overall, these results suggest that photoferrotrophy and pEEU contribute to the biogeochemical cycling of iron and carbon in marine ecosystems.
Collapse
|
3
|
The complete mitochondrial genome of Choroterpes (Euthralus) yixingensis (Ephemeroptera: Leptophlebiidae) and its mitochondrial protein-coding gene expression under imidacloprid stress. Gene 2021; 800:145833. [PMID: 34274477 DOI: 10.1016/j.gene.2021.145833] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 07/06/2021] [Accepted: 07/13/2021] [Indexed: 11/21/2022]
Abstract
As one of the most common benthic invertebrates in freshwater, mayflies are very sensitive to changes in water quality and have high requirements for the water environment to allow their nymphs to successfully live and grow. Neonicotinoids, such as imidacloprid, can enter fresh water and pollute the aquatic environment. The present study had two goals: (1) investigate imidacloprid effects on mayfly larvae Choroterpes (Euthralus) yixingensis, and (2) contribute to the phylogenetic status of Ephemeroptera that has always been controversial. Nymphs were collected from Jinhua, China and exposed to different concentrations imidacloprid (5, 10, 20, and 40 μg/L) in the laboratory. Survival of C. yixingensis nymphs decreased as a function of time and imidacloprid concentration with only ~ 55% survival after 72 h exposure to 40 μg/L imidacloprid. After culture under 40 μg/L imidacloprid for 24 h, the steady state transcript levels of mitochondrial COX3, ND4 and ND4L genes were reduced to just 0.07 ± 0.11, 0.30 ± 0.16, and 0.28 ± 0.13 as compared with respective control values (P < 0.01). Steady state transcript levels of ND4 and ND4L were also significantly reduced in a dose-dependent manner (P < 0.05), suggesting that the steady state transcript pattern of these genes in mayfly nymphs can change in response to different levels of environmental contamination. Hence, the mitochondrial protein-coding genes of mayflies could potentially be developed as biomarkers for water ecotoxicity monitoring in the future. In addition, we used the mitochondrial genome sequence of C. yixingensis for an assessment of the phylogenetic tree of Ephemeroptera. The monophyly of Leptophlebiidae was supported and showed that Leptophlebiidae was a sister group to the clade (Baetidae + Caenidae).
Collapse
|
4
|
Zhang F, Vik SB. Analysis of the assembly pathway for membrane subunits of Complex I reveals that subunit L (ND5) can assemble last in E. coli. BBA ADVANCES 2021; 1. [DOI: 10.1016/j.bbadva.2021.100027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
5
|
Guzman MS, Rengasamy K, Binkley MM, Jones C, Ranaivoarisoa TO, Singh R, Fike DA, Meacham JM, Bose A. Phototrophic extracellular electron uptake is linked to carbon dioxide fixation in the bacterium Rhodopseudomonas palustris. Nat Commun 2019; 10:1355. [PMID: 30902976 PMCID: PMC6430793 DOI: 10.1038/s41467-019-09377-6] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 03/07/2019] [Indexed: 01/06/2023] Open
Abstract
Extracellular electron uptake (EEU) is the ability of microbes to take up electrons from solid-phase conductive substances such as metal oxides. EEU is performed by prevalent phototrophic bacterial genera, but the electron transfer pathways and the physiological electron sinks are poorly understood. Here we show that electrons enter the photosynthetic electron transport chain during EEU in the phototrophic bacterium Rhodopseudomonas palustris TIE-1. Cathodic electron flow is also correlated with a highly reducing intracellular redox environment. We show that reducing equivalents are used for carbon dioxide (CO2) fixation, which is the primary electron sink. Deletion of the genes encoding ruBisCO (the CO2-fixing enzyme of the Calvin-Benson-Bassham cycle) leads to a 90% reduction in EEU. This work shows that phototrophs can directly use solid-phase conductive substances for electron transfer, energy transduction, and CO2 fixation. Extracellular electron uptake (EEU) is the ability of microbes to take up electrons from solid-phase conductive substances such as metal oxides. Here, Guzman et al. show that electrons enter the photosynthetic electron transport chain and are used for CO2 fixation during EEU in a phototrophic bacterium.
Collapse
Affiliation(s)
- Michael S Guzman
- Department of Biology, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Karthikeyan Rengasamy
- Department of Biology, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Michael M Binkley
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Clive Jones
- Department of Earth and Planetary Sciences, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | | | - Rajesh Singh
- Department of Biology, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - David A Fike
- Department of Earth and Planetary Sciences, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - J Mark Meacham
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO, 63130, USA.,Institute of Materials Science Engineering, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Arpita Bose
- Department of Biology, Washington University in St. Louis, St. Louis, MO, 63130, USA.
| |
Collapse
|
6
|
Erhardt H, Steimle S, Muders V, Pohl T, Walter J, Friedrich T. Disruption of individual nuo-genes leads to the formation of partially assembled NADH:ubiquinone oxidoreductase (complex I) in Escherichia coli. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011; 1817:863-71. [PMID: 22063474 DOI: 10.1016/j.bbabio.2011.10.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Revised: 10/14/2011] [Accepted: 10/21/2011] [Indexed: 10/15/2022]
Abstract
The proton-pumping NADH:ubiquinone oxidoreductase, respiratory complex I, couples the electron transfer from NADH to ubiquinone with the translocation of protons across the membrane. In Escherichia coli the complex is made up of 13 different subunits encoded by the so-called nuo-genes. Mutants, in which each of the nuo-genes was individually disrupted by the insertion of a resistance cartridge were unable to assemble a functional complex I. Each disruption resulted in the loss of complex I-mediated activity and the failure to extract a structurally intact complex. Thus, all nuo-genes are required either for the assembly or the stability of a functional E. coli complex I. The three subunits comprising the soluble NADH dehydrogenase fragment of the complex were detected in the cytoplasm of several nuo-mutants as one distinct band after BN-PAGE. It is discussed that the fully assembled NADH dehydrogenase fragment represents an assembly intermediate of the E. coli complex I. A partially assembled complex I bound to the membrane was detected in the nuoK and nuoL mutants, respectively. Overproduction of the ΔNuoL variant resulted in the accumulation of two populations of a partially assembled complex in the cytoplasmic membranes. Both populations are devoid of NuoL. One population is enzymatically active, while the other is not. The inactive population is missing cluster N2 and is tightly associated with the inducible lysine decarboxylase. This article is part of a Special Issue entitled: Biogenesis/Assembly of Respiratory Enzyme Complexes.
Collapse
Affiliation(s)
- Heiko Erhardt
- Albert-Ludwigs-Universität, Freiburg, Institut für Organische Chemie und Biochemie and Spemann Graduate School of Biology and Medicine, Albertstr. 21, 79104 Freiburg i. Br., Germany
| | | | | | | | | | | |
Collapse
|
7
|
Torres-Bacete J, Sinha PK, Matsuno-Yagi A, Yagi T. Structural contribution of C-terminal segments of NuoL (ND5) and NuoM (ND4) subunits of complex I from Escherichia coli. J Biol Chem 2011; 286:34007-14. [PMID: 21835926 DOI: 10.1074/jbc.m111.260968] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The proton-translocating NADH-quinone oxidoreductase (complex I/NDH-1) is a multisubunit enzymatic complex. It has a characteristic L-shaped form with two domains, a hydrophilic peripheral domain and a hydrophobic membrane domain. The membrane domain contains three antiporter-like subunits (NuoL, NuoM, and NuoN, Escherichia coli naming) that are considered to be involved in the proton translocation. Deletion of either NuoL or NuoM resulted in an incomplete assembly of NDH-1 and a total loss of the NADH-quinone oxidoreductase activity. We have truncated the C terminus segments of NuoM and NuoL by introducing STOP codons at different locations using site-directed mutagenesis of chromosomal DNA. Our results suggest an important structural role for the C-terminal segments of both subunits. The data further advocate that the elimination of the last transmembrane helix (TM14) of NuoM and the TM16 (at least C-terminal seven residues) or together with the HL helix and the TM15 of the NuoL subunit lead to reduced stability of the membrane arm and therefore of the whole NDH-1 complex. A region of NuoL critical for stability of NDH-1 architecture has been discussed.
Collapse
Affiliation(s)
- Jesus Torres-Bacete
- Department of Molecular and Experimental Medicine, MEM-256, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | |
Collapse
|
8
|
Bosch G, Skovran E, Xia Q, Wang T, Taub F, Miller JA, Lidstrom ME, Hackett M. Comprehensive proteomics of Methylobacterium extorquens AM1 metabolism under single carbon and nonmethylotrophic conditions. Proteomics 2008; 8:3494-505. [PMID: 18686303 DOI: 10.1002/pmic.200800152] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In order to validate a gel free quantitative proteomics assay for the model methylotrophic bacterium Methylobacterium extorquens AM1, we examined the M. extorquens AM1 proteome under single carbon (methanol) and multicarbon (succinate) growth, conditions that have been studied for decades and for which extensive corroborative data have been compiled. In total, 4447 proteins from a database containing 7556 putative ORFs from M. extorquens AM1 could be identified with two or more peptide sequences, corresponding to a qualitative proteome coverage of 58%. Statistically significant nonzero (log(2) scale) differential abundance ratios of methanol/succinate could be detected for 317 proteins using summed ion intensity measurements and 585 proteins using spectral counting, at a q-value cut-off of 0.01, a measure of false discovery rate. The results were compared to recent microarray studies performed under equivalent chemostat conditions. The M. extorquens AM1 studies demonstrated the feasibility of scaling up the multidimensional capillary HPLC MS/MS approach to a prokaryotic organism with a proteome more than three times the size of microbes we have investigated previously, while maintaining a high degree of proteome coverage and reliable quantitative abundance ratios.
Collapse
Affiliation(s)
- Gundula Bosch
- Department of Chemical Engineering, University of Washington, Seattle, WA 98195, USA
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Schneider D, Pohl T, Walter J, Dörner K, Kohlstädt M, Berger A, Spehr V, Friedrich T. Assembly of the Escherichia coli NADH:ubiquinone oxidoreductase (complex I). BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2008; 1777:735-9. [PMID: 18394423 DOI: 10.1016/j.bbabio.2008.03.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2008] [Accepted: 03/03/2008] [Indexed: 11/19/2022]
Abstract
The proton-pumping NADH:ubiquinone oxidoreductase is the first of the respiratory chain complexes in many bacteria and the mitochondria of most eukaryotes. In general, the bacterial complex consists of 14 different subunits. In addition to the homologues of these subunits, the mitochondrial complex contains approximately 31 additional proteins. While it was shown that the mitochondrial complex is assembled from distinct intermediates, nothing is known about the assembly of the bacterial complex. We used Escherichia coli mutants, in which the nuo-genes coding the subunits of complex I were individually disrupted by an insertion of a resistance cartridge to determine whether they are required for the assembly of a functional complex I. No complex I-mediated enzyme activity was detectable in the mutant membranes and it was not possible to extract a structurally intact complex I from the mutant membranes. However, the subunits and the cofactors of the soluble NADH dehydrogenase fragment of the complex were detected in the cytoplasm of some of the nuo-mutants. It is discussed whether this fragment represents an assembly intermediate. In addition, a membrane-bound fragment exhibiting NADH/ferricyanide oxidoreductase activity and containing the iron-sulfur cluster N2 was detected in one mutant.
Collapse
Affiliation(s)
- Daniel Schneider
- Institut für Organische Chemie und Biochemie, Albert-Ludwigs-Universität Freiburg, Albertstr. 21, 79104 Freiburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Abstract
The number of NADH dehydrogenases and their role in energy transduction in
Escherchia coli
have been under debate for a long time. Now it is evident that
E. coli
possesses two respiratory NADH dehydrogenases, or NADH:ubiquinone oxidoreductases, that have traditionally been called NDH-I and NDH-II. This review describes the properties of these two NADH dehydrogenases, focusing on the mechanism of the energy converting NADH dehydrogenase as derived from the high resolution structure of the soluble part of the enzyme. In
E. coli
, complex I operates in aerobic and anaerobic respiration, while NDH-II is repressed under anaerobic growth conditions. The insufficient recycling of NADH most likely resulted in excess NADH inhibiting tricarboxylic acid cycle enzymes and the glyoxylate shunt.
Salmonella enterica
serovar Typhimurium complex I mutants are unable to activate ATP-dependent proteolysis under starvation conditions. NDH-II is a single subunit enzyme with a molecular mass of 47 kDa facing the cytosol. Despite the absence of any predicted transmembrane segment it has to be purified in the presence of detergents, and the activity of the preparation is stimulated by an addition of lipids.
Collapse
|
11
|
Wei W, Jiang J, Li X, Wang L, Yang SS. Isolation of salt-sensitive mutants from Sinorhizobium meliloti and characterization of genes involved in salt tolerance. Lett Appl Microbiol 2004; 39:278-83. [PMID: 15287875 DOI: 10.1111/j.1472-765x.2004.01577.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AIMS The purpose of our research is to isolate salt-sensitive mutants and to study the genes involved in salt tolerance of the salt-tolerant bacterium Sinorhizobium meliloti 042BM. METHODS Wild type S. meliloti 042BM bacteria are able to grow at a NaCl concentration of 0.6 mol l(-1). A transposon Tn5-1063a mutagenesis library of S. meliloti 042BM was constructed and eight salt-sensitive mutants were isolated, which were unable to growth on FY plates containing 0.4 mol l(-1) NaCl. SIGNIFICANCE Our interest is to provide information about the mechanism of salt tolerance in bacteria by studying the genes involved in salt tolerance. Here, seven different genes were identified. These genes include omp10 encoding a cell outer membrane protein, relA encoding (p)ppGpp synthetase, greA encoding a transcription cleavage factor, nuoL encoding NADH dehydrogenase I chain L transmembrane protein, a putative nuclease/helicase gene and two unknown genes. Based on these findings, we suggest that the regulation of salt tolerance of S. meliloti 042BM is complex and on several levels.
Collapse
Affiliation(s)
- W Wei
- Department of Microbiology, College of Biological Sciences, China Agricultural University, Beijing, PR China
| | | | | | | | | |
Collapse
|
12
|
Mills SD, Yang W, MacCormack K. Molecular characterization of benzimidazole resistance in Helicobacter pylori. Antimicrob Agents Chemother 2004; 48:2524-30. [PMID: 15215104 PMCID: PMC434220 DOI: 10.1128/aac.48.7.2524-2530.2004] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
A family of benzimidazole derivatives (BI) was shown to possess potent and selective activity against Helicobacter pylori, although the precise cellular target of the BIs is unknown. Spontaneous H. pylori mutants were isolated as resistant to a representative BI (compound A). Genomic DNA was isolated from a BI-resistant mutant, transformed into a BI-sensitive strain, and found to be sufficient to confer BI resistance. The resistance determinant was localized to a 17-kb clone after screening a lambda-based genomic library constructed from the BI-resistant strain. Upon sequencing and mapping onto the H. pylori strain J99 genome, the 17-kb clone was shown to contain the entire nuo operon (NADH:ubiquinone oxidoreductase). Further subcloning and DNA sequencing revealed that a single point mutation in nuoD was responsible for BI resistance. The mutation resulted in a G398S amino acid change at the C terminus of NuoD. Thirty-three additional spontaneous BI-resistant mutants were characterized. Sequencing of nuoD from 32 isolated mutants revealed three classes of missense mutation resulting in amino acid changes in NuoD: G398S, F404S, and V407M. One BI-resistant isolate did not have a mutation in nuoD. Instead, a T27A amino acid change was identified in NuoB. MIC testing of the wild-type H. pylori strain and four classes of nuo mutants revealed that all NuoD mutant classes were hypersensitive to rotenone, a known inhibitor of complex I (NADH:ubiquinone oxidoreductase) suggested to bind to NuoD. Further, a nuoD knockout verified that it is essential in H. pylori and may be the target of the BI compounds.
Collapse
Affiliation(s)
- Scott D Mills
- Department of Molecular Sciences, Infection Discovery, AstraZeneca R&D Boston, 35 Gatehouse Drive, Waltham, MA 02451, USA.
| | | | | |
Collapse
|
13
|
Mathiesen C, Hägerhäll C. The 'antiporter module' of respiratory chain complex I includes the MrpC/NuoK subunit -- a revision of the modular evolution scheme. FEBS Lett 2003; 549:7-13. [PMID: 12914915 DOI: 10.1016/s0014-5793(03)00767-1] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Respiratory chain Complex I or NADH:quinone oxidoreductase catalyzes oxidation of NADH in the mitochondrial matrix or bacterial cytoplasm and reduction of quinone in the membrane, coupled to pumping of 4H(+)/2e(-) across the membrane. The same enzyme complex is also capable of the reverse reaction, i.e. Deltamu(H(+))-supported NAD(+) reduction. The molecular mechanism that couples electron transfer to proton pumping is not understood. The Complex I enzyme, containing 14 protein subunits necessary for function, has evolved from smaller functional building blocks. Three Complex I protein subunits, NuoL, NuoM and NuoN, show primary sequence similarity to one particular class of antiporters, and are thus predicted to play a role in the proton translocation machinery. These antiporters, MrpA and MrpD are encoded by a conserved gene cluster, that contains seven genes. In previous work we have determined that these antiporters come in two subclasses, MrpA-type and MrpD-type, and that the Complex I subunit NuoL is more closely related to MrpA and NuoM and N are more closely related to the MrpD antiporter. This implied that both MrpA and MrpD had been recruited to Complex I, rather than arising from gene duplications of one antiporter encoding gene. In this work we show that MrpC and NuoK are homologous proteins. The most plausible explanation for these findings is that a multisubunit antiporter complex was recruited to the ancestral enzyme. We further conclude that the last common ancestor of the Complex I enzyme family and membrane bound NiFe hydrogenases of type 3 and 4 contained the NuoKLMN subunit module.
Collapse
Affiliation(s)
- Cecilie Mathiesen
- Department of Biochemistry, Lund University, PO Box 124, 22100 Lund, Sweden
| | | |
Collapse
|
14
|
Van Dien SJ, Okubo Y, Hough MT, Korotkova N, Taitano T, Lidstrom ME. Reconstruction of C(3) and C(4) metabolism in Methylobacterium extorquens AM1 using transposon mutagenesis. MICROBIOLOGY (READING, ENGLAND) 2003; 149:601-609. [PMID: 12634329 DOI: 10.1099/mic.0.25955-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The growth of Methylobacterium extorquens AM1 on C(1) compounds has been well-studied, but little is known about how this methylotroph grows on multicarbon compounds. A Tn5 transposon mutagenesis procedure was performed to identify genes involved in the growth of M. extorquens AM1 on succinate and pyruvate. Of the 15000 insertion colonies screened, 71 mutants were found that grew on methanol but either grew slowly or were unable to grow on one or both of the multicarbon substrates. For each of these mutants, the chromosomal region adjacent to the insertion site was sequenced, and 55 different genes were identified and assigned putative functions. These genes fell into a number of predicted categories, including central carbon metabolism, carbohydrate metabolism, regulation, transport and non-essential housekeeping functions. This study focused on genes predicted to encode enzymes of central heterotrophic metabolism: 2-oxoglutarate dehydrogenase, pyruvate dehydrogenase and NADH : ubiquinone oxidoreductase. In each case, the mutants showed normal growth on methanol and impaired growth on pyruvate and succinate, consistent with a role specific to heterotrophic metabolism. For the first two cases, no detectable activity of the corresponding enzyme was found in the mutant, verifying the predictions. The results of this study were used to reconstruct multicarbon metabolism of M. extorquens AM1 during growth on methanol, succinate and pyruvate.
Collapse
Affiliation(s)
- Stephen J Van Dien
- Departments of Chemical Engineering, University of Washington, Seattle, WA 98195, USA
| | - Yoko Okubo
- Departments of Chemical Engineering, University of Washington, Seattle, WA 98195, USA
| | - Melinda T Hough
- Departments of Microbiology, University of Washington, Seattle, WA 98195, USA
| | - Natalia Korotkova
- Departments of Chemical Engineering, University of Washington, Seattle, WA 98195, USA
| | - Tricia Taitano
- Departments of Microbiology, University of Washington, Seattle, WA 98195, USA
| | - Mary E Lidstrom
- Departments of Microbiology, University of Washington, Seattle, WA 98195, USA
- Departments of Chemical Engineering, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
15
|
Cardol P, Matagne RF, Remacle C. Impact of mutations affecting ND mitochondria-encoded subunits on the activity and assembly of complex I in Chlamydomonas. Implication for the structural organization of the enzyme. J Mol Biol 2002; 319:1211-21. [PMID: 12079358 DOI: 10.1016/s0022-2836(02)00407-2] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The mitochondrial rotenone-sensitive NADH:ubiquinone oxidoreductase (complex I) comprises more than 35 subunits, the majority of which are encoded by the nucleus. In Chlamydomonas reinhardtii, only five components (ND1, ND2, ND4, ND5 and ND6) are coded for by the mitochondrial genome. Here, we characterize two mitochondrial mutants (dum5 and dum17) showing strong reduction or inactivation of complex I activity: dum5 is a 1T deletion in the 3' UTR of nd5 whereas dum17 is a 1T deletion in the coding sequence of nd6. The impact of these mutations and of mutations affecting nd1, nd4 and nd4/nd5 genes on the assembly of complex I is investigated. After separation of the respiratory complexes by blue native (BN)-PAGE or sucrose gradient centrifugation, we demonstrate that the absence of intact ND1 or ND6 subunit prevents the assembly of the 850 kDa whole complex, whereas the loss of ND4 or ND4/ND5 leads to the formation of a subcomplex of 650 kDa present in reduced amount. The implications of our findings for the possible role of these ND subunits on the activity of complex I and for the structural organization of the membrane arm of the enzyme are discussed. In mitochondria from all the strains analyzed, we moreover detected a 160-210 kDa fragment comprising the hydrophilic 49 kDa and 76 kDa subunits of the complex I peripheral arm and showing NADH dehydrogenase activity.
Collapse
Affiliation(s)
- Pierre Cardol
- Genetics of Microorganisms, Department of Life Sciences, B22, University of Liège, Belgium
| | | | | |
Collapse
|
16
|
Tichi MA, Meijer WG, Tabita FR. Complex I and its involvement in redox homeostasis and carbon and nitrogen metabolism in Rhodobacter capsulatus. J Bacteriol 2001; 183:7285-94. [PMID: 11717288 PMCID: PMC95578 DOI: 10.1128/jb.183.24.7285-7294.2001] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A transposon mutant of Rhodobacter capsulatus, strain Mal7, that was incapable of photoautotrophic and chemoautotrophic growth and could not grow photoheterotrophically in the absence of an exogenous electron acceptor was isolated. The phenotype of strain Mal7 suggested that the mutation was in some gene(s) not previously shown to be involved in CO(2) fixation control. The site of transposition in strain Mal7 was identified and shown to be in the gene nuoF, which encodes one of the 14 subunits for NADH ubiquinone-oxidoreductase, or complex I. To confirm the role of complex I and nuoF for CO(2)-dependent growth, a site-directed nuoF mutant was constructed (strain SBC1) in wild-type strain SB1003. The complex I-deficient strains Mal7 and SBC1 exhibited identical phenotypes, and the pattern of CO(2) fixation control through the Calvin-Benson-Bassham pathway was the same for both strains. It addition, it was shown that electron transport through complex I led to differential control of the two major cbb operons of this organism. Complex I was further shown to be linked to the control of nitrogen metabolism during anaerobic photosynthetic growth of R. capsulatus.
Collapse
Affiliation(s)
- M A Tichi
- Department of Microbiology and the Plant Molecular Biology/Biotechnology Program, The Ohio State University, Columbus, Ohio 43210-1292, USA
| | | | | |
Collapse
|
17
|
Remacle C, Baurain D, Cardol P, Matagne RF. Mutants of Chlamydomonas reinhardtii deficient in mitochondrial complex I: characterization of two mutations affecting the nd1 coding sequence. Genetics 2001; 158:1051-60. [PMID: 11454754 PMCID: PMC1461730 DOI: 10.1093/genetics/158.3.1051] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The mitochondrial rotenone-sensitive NADH:ubiquinone oxidoreductase (complex I) comprises more than 30 subunits, the majority of which are encoded by the nucleus. In Chlamydomonas reinhardtii, only five components of complex I are coded for by mitochondrial genes. Three mutants deprived of complex I activity and displaying slow growth in the dark were isolated after mutagenic treatment with acriflavine. A genetical analysis demonstrated that two mutations (dum20 and dum25) affect the mitochondrial genome whereas the third mutation (dn26) is of nuclear origin. Recombinational analyses showed that dum20 and dum25 are closely linked on the genetic map of the mitochondrial genome and could affect the nd1 gene. A sequencing analysis confirmed this conclusion: dum20 is a deletion of one T at codon 243 of nd1; dum25 corresponds to a 6-bp deletion that eliminates two amino acids located in a very conserved hydrophilic segment of the protein.
Collapse
Affiliation(s)
- C Remacle
- Laboratory of Genetics of Microorganisms, Department of Plant Biology, University of Liège, B-4000 Liège Sart-Tilman, Belgium
| | | | | | | |
Collapse
|
18
|
Yagi T, Seo BB, Di Bernardo S, Nakamaru-Ogiso E, Kao MC, Matsuno-Yagi A. NADH dehydrogenases: from basic science to biomedicine. J Bioenerg Biomembr 2001; 33:233-42. [PMID: 11695833 DOI: 10.1023/a:1010787004053] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
This review article is concerned with two on-going research projects in our laboratory, both of which are related to the study of the NADH dehydrogenase enzyme complexes in the respiratory chain. The goal of the first project is to decipher the structure and mechanism of action of the proton-translocating NADH-quinone oxidoreductase (NDH-1) from two bacteria, Paracoccus denitrificans and Thermus thermophilus HB-8. These microorganisms are of particular interest because of the close resemblance of the former (P. denitrificans) to a mammalian mitochondria, and because of the thermostability of the enzymes of the latter (T. thermophilus). The NDH-1 enzyme complex of these and other bacteria is composed of 13 to 14 unlike subunits and has a relatively simple structure relative to the mitochondrial proton-translocating NADH-quinone oxidoreductase (complex I), which is composed of at least 42 different subunits. Therefore, the bacterial NDH-I is believed to be a useful model for studying the mitochondrial complex I, which is understood to have the most intricate structure of all the membrane-associated enzyme complexes. Recently, the study of the NADH dehydrogenase complex has taken on new urgency as a result of reports that complex I defects are involved in many human mitochondrial diseases. Thus the goal of the second project is to develop possible gene therapies for mitochondrial diseases caused by complex I defects. This project involves attempting to repair complex I defects in the mammalian system using Saccharomyces cerevisiae NDI1 genes, which code for the internal, rotenone-insensitive NADH-quinone oxidoreductase. In this review, we will discuss our progress and the data generated by these two projects to date. In addition, background information and the significance of various approaches employed to pursue these research objectives will be described.
Collapse
Affiliation(s)
- T Yagi
- Department of Molecular, and Experimental Medicine, The Scripps Research Institute, La Jolla, California 92037, USA.
| | | | | | | | | | | |
Collapse
|
19
|
Dupuis A, Prieur I, Lunardi J. Toward a characterization of the connecting module of complex I. J Bioenerg Biomembr 2001; 33:159-68. [PMID: 11695825 DOI: 10.1023/a:1010770600418] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Complex I [NADH-ubiquinone oxidoreductase (complex I, EC 1.6.5.3)] couples electron transfer between NADH and ubiquinone to proton transport across the bacterial cytoplasmic membrane and the mitochondrial inner membrane. This sophisticated enzyme consists of three specialized modules: (1) a hydrophilic NADH-oxidizing module that constitutes the input machinery of the enzyme; (2) a hydrophobic module that anchors the enzyme in the membrane and must take part in proton transport; and (3) a connecting domain that links the two previous modules. Using the complex I of Rhodobacter capsulatus, we developed a genetic study of the structure and function of the connecting module. In the present review, we put together the salient results of these studies, with recent reports of the literature, to try and elucidate the structure of the connecting module and its potential role in the coupling process between electron and proton flux within complex I. From this overview, we conclude that the NUOB-NUOD dimer of the connecting module and a hydrophobic subunit such as NUOH must share a quinone-reduction site. The function of this site in the mechanism of complex I is discussed.
Collapse
Affiliation(s)
- A Dupuis
- Département de Biologie Moléculaire et Structurale, CEA Grenoble, France.
| | | | | |
Collapse
|
20
|
Roth R, Hägerhäll C. Transmembrane orientation and topology of the NADH:quinone oxidoreductase putative quinone binding subunit NuoH. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1504:352-62. [PMID: 11245799 DOI: 10.1016/s0005-2728(00)00265-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
NADH:quinone oxidoreductase, or Complex I, is a multi-subunit membrane-bound enzyme in the respiratory chain of many pro- and eukaryotes. The enzyme catalyzes the oxidation of NADH and donates electrons to the quinone pool, coupled to proton translocation across the membrane, but the mechanism of energy transduction is not understood. In bacteria the enzyme consists of 14 subunits, seven membrane spanning and seven protruding from the membrane. The hydrophobic NuoH (NQO8, ND1, NAD1, NdhA) subunit is seemingly involved in quinone binding. A homologous, structurally and most likely functionally similar subunit is also found in F(420)H2 oxidoreductases and in complex membrane-bound hydrogenases. We have made theoretical analyses of NuoH and NuoH-like polypeptides and experimentally analyzed the transmembrane topology of the NuoH subunit from Rhodobacter capsulatus by constructing and analyzing alkaline phosphatase fusion proteins. This demonstrated that the NuoH polypeptide has eight transmembrane segments, and four highly conserved hydrophilic sequence motifs facing the inside, bacterial cytoplasm. The N-terminal and C-terminal ends are located on the outside of the membrane. A topology model of NuoH based on these results is presented, and implications from the model are discussed.
Collapse
Affiliation(s)
- R Roth
- Department of Biochemistry, Lund University, Box 124, 22100, Lund, Sweden
| | | |
Collapse
|
21
|
Prieur I, Lunardi J, Dupuis A. Evidence for a quinone binding site close to the interface between NUOD and NUOB subunits of Complex I. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1504:173-8. [PMID: 11245783 DOI: 10.1016/s0005-2728(01)00158-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Piericidin, rotenone and pyridaben are specific inhibitors of the NADH-ubiquinone oxidoreductase (Complex I) that bind to its ubiquinone binding site(s). Using site directed mutagenesis, we demonstrate that residues G409, D412, R413 and V407 of the C-terminus of Complex I NUOD subunit are directly involved in the binding of these inhibitors. We propose that the corresponding inhibitor/quinone binding site would be located close to NUOD-NUOB interface.
Collapse
Affiliation(s)
- I Prieur
- Laboratoire de Bioénergétique Cellulaire et Pathologique (EA 2943-UJF), Département de Biologie Moléculaire et Structurale CEA Grenoble, 17 rue des Martyrs, 38054 Cedex 9, Grenoble, France.
| | | | | |
Collapse
|
22
|
Pulkes T, Eunson L, Patterson V, Siddiqui A, Wood NW, Nelson IP, Morgan-Hughes JA, Hanna MG. The mitochondrial DNA G13513A transition in ND5 is associated with a LHON/MELAS overlap syndrome and may be a frequent cause of MELAS. Ann Neurol 2001. [DOI: 10.1002/1531-8249(199912)46:6%3c916::aid-ana16%3e3.0.co;2-r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
23
|
Pulkes T, Eunson L, Patterson V, Siddiqui A, Wood NW, Nelson IP, Morgan-Hughes JA, Hanna MG. The mitochondrial DNA G13513A transition in ND5 is associated with a LHON/MELAS overlap syndrome and may be a frequent cause of MELAS. Ann Neurol 1999; 46:916-9. [PMID: 10589546 DOI: 10.1002/1531-8249(199912)46:6<916::aid-ana16>3.0.co;2-r] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
We report on 4 male patients with clinical, radiological, and muscle biopsy findings typical of the mitochondrial encephalomyopathy with lactic acidosis and stroke-like episodes (MELAS) phenotype. Skeletal muscle mitochondrial DNA (mtDNA) analysis showed that all patients harbored a heteroplasmic G13513A mutation in the ND5 subunit gene. One of these cases (Patient 1) presented with symptoms characteristic of Leber's hereditary optic neuropathy (LHON) 2 years before the first stroke-like episode. Quantitative analysis in several postmortem tissue sections showed that the relative proportions of mutant mtDNA were generally lower than those reported with other pathogenic mtDNA mutations. Single-fiber polymerase chain reaction studies demonstrated significantly higher amounts of mutant mtDNA in ragged red fibers (RRFs) compared with non-RRFs. This study indicates that the G13513A transition is likely to be pathogenic, that it can cause an LHON/MELAS overlap syndrome, and that it may be a more frequent cause of MELAS than previously recognized.
Collapse
Affiliation(s)
- T Pulkes
- Department of Clinical Neurology, Institute of Neurology, Queen Square, London, England, UK
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Krebs W, Steuber J, Gemperli AC, Dimroth P. Na+ translocation by the NADH:ubiquinone oxidoreductase (complex I) from Klebsiella pneumoniae. Mol Microbiol 1999; 33:590-8. [PMID: 10417649 DOI: 10.1046/j.1365-2958.1999.01506.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Complex I is the site for electrons entering the respiratory chain and therefore of prime importance for the conservation of cell energy. It is generally accepted that the complex I-catalysed oxidation of NADH by ubiquinone is coupled specifically to proton translocation across the membrane. In variance to this view, we show here that complex I of Klebsiella pneumoniae operates as a primary Na+ pump. Membranes from Klebsiella pneumoniae catalysed Na+-stimulated electron transfer from NADH or deaminoNADH to ubiquinone-1 (0.1-0.2 micromol min-1 mg-1). Upon NADH or deaminoNADH oxidation, Na+ ions were transported into the lumen of inverted membrane vesicles. Rate and extent of Na+ transport were significantly enhanced by the uncoupler carbonylcyanide-m-chlorophenylhydrazone (CCCP) to values of approximately 0.2 micromol min-1 mg-1 protein. This characterizes the responsible enzyme as a primary Na+ pump. The uptake of sodium ions was severely inhibited by the complex I-specific inhibitor rotenone with deaminoNADH or NADH as substrate. N-terminal amino acid sequence analyses of the partially purified Na+-stimulated NADH:ubiquinone oxidoreductase from K. pneumoniae revealed that two polypeptides were highly similar to the NuoF and NuoG subunits from the H+-translocating NADH:ubiquinone oxidoreductases from enterobacteria.
Collapse
Affiliation(s)
- W Krebs
- Mikrobiologisches Institut der Eidgenössischen Technischen Hochschule, ETH-Zentrum, Schmelzbergstr. 7, CH-8092 Zürich, Switzerland
| | | | | | | |
Collapse
|