1
|
Zhou X, Li Z, Chen K, Wei Y, Cao Z, Yu D. The expansion of oligopeptide transporters in Melampsora larici-populina may reflect its adaptation to a phytoparasitic lifestyle. Gene 2024; 920:148506. [PMID: 38670390 DOI: 10.1016/j.gene.2024.148506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 04/13/2024] [Accepted: 04/23/2024] [Indexed: 04/28/2024]
Abstract
The acquisition of nutrients from host plants by phytopathogenic fungi is critically important for their invasion success. Melampsora larici-populina, an obligate biotrophic pathogenic fungus, causes the poplar leaf rust disease and can severely damage host poplar plants. Previously, we found that oligopeptide transporters (OPTs) have undergone a convergent expansion, which might reflect adaptation to a phytoparasitic lifestyle. Here, we used various methods to evaluate this hypothesis, including conserved motif identification, positive selection signal mining, expression pattern clustering analysis, and neutral selection tests. The motif composition of the five clades in the OPT family differed, and positive selection was observed during clade differentiation. This suggests that OPTs in these five clades may be functionally differentiated, which would increase the range of transported substrates and promote the absorption of more types of nitrogen compounds from the hosts. According to clustering analysis of gene expression patterns, the expression of most genes from the two expanded clades (clade 2 and 4) was up-regulated during the infection of poplar trees, indicating that the expansion of OPTs likely occurred to promote the uptake of oligopeptides from host poplar plants. The MellpOPT4g gene was determined to be under significant balancing selection based on the neutral selection tests, suggesting that it plays a role in the pathogenic process. In conclusion, these three observations provide preliminary evidence supporting our hypothesis, as they indicate that the expansion of OPTs in M. larici-populina has aided the ability of this pathogen to acquire nutrients from host plants.
Collapse
Affiliation(s)
- Xianzhen Zhou
- College of Forestry, Northwest A&F University, No. 3 Taicheng Road, Yangling, Shaanxi 712100, China.
| | - Ziye Li
- College of Forestry, Northwest A&F University, No. 3 Taicheng Road, Yangling, Shaanxi 712100, China.
| | - Kaiyue Chen
- College of Forestry, Northwest A&F University, No. 3 Taicheng Road, Yangling, Shaanxi 712100, China.
| | - Yefan Wei
- College of Forestry, Northwest A&F University, No. 3 Taicheng Road, Yangling, Shaanxi 712100, China.
| | - Zhimin Cao
- College of Forestry, Northwest A&F University, No. 3 Taicheng Road, Yangling, Shaanxi 712100, China.
| | - Dan Yu
- College of Forestry, Northwest A&F University, No. 3 Taicheng Road, Yangling, Shaanxi 712100, China.
| |
Collapse
|
2
|
Berg HY, Arju G, Becerra-Rodríguez C, Galeote V, Nisamedtinov I. Unlocking the secrets of peptide transport in wine yeast: insights into oligopeptide transporter functions and nitrogen source preferences. Appl Environ Microbiol 2023; 89:e0114123. [PMID: 37843270 PMCID: PMC10686055 DOI: 10.1128/aem.01141-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 08/27/2023] [Indexed: 10/17/2023] Open
Abstract
IMPORTANCE Limited nitrogen supply can prevent the completion of alcoholic fermentation. Supplementation through peptides as an alternative, natural source of nitrogen for yeast offers an interesting solution for this issue. In this work, the S. cerevisiae peptide transporters of the Opt and Fot families were studied. We demonstrated that Fot and Opt2 have a broader peptide length preference than previously reported, enabling yeasts to acquire sufficient nitrogen from peptides without requiring additional ammonia or amino acids to complete fermentation. On the contrary, Opt1 was unable to consume any peptide in the given conditions, whereas it has been described elsewhere as the main peptide transporter for peptides longer than three amino acid residues in experiments in laboratory conditions. This controversy signifies the need in applied sciences for approaching experimental conditions to those prevalent in the industry for its more accurate characterization. Altogether, this work provides further evidence of the importance of peptides as a nitrogen source for yeast and their consequent positive impact on fermentation kinetics.
Collapse
Affiliation(s)
- Hidde Yaël Berg
- Department of Chemistry and Biotechnology, School of Science, Tallinn University of Technology, Tallinn, Estonia
- Center of Food and Fermentation Technologies, Tallinn, Estonia
| | - Georg Arju
- Institute of Chemistry, University of Tartu, Tartu, Estonia
| | | | - Virginie Galeote
- SPO, Univ. Montpellier, INRAE, Institut Agro, Montpellier, France
| | - Ildar Nisamedtinov
- Department of Chemistry and Biotechnology, School of Science, Tallinn University of Technology, Tallinn, Estonia
- Lallemand, Inc., Montreal, Canada
| |
Collapse
|
3
|
Methodology for Analysis of Peptide Consumption by Yeast during Fermentation of Enzymatic Protein Hydrolysate Supplemented Synthetic Medium Using UPLC-IMS-HRMS. FERMENTATION 2022. [DOI: 10.3390/fermentation8040145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Several studies have shown the ability of yeast to consume peptides as a nitrogen source in single-peptide containing media. However, a suitable and cost-effective methodology to study the utilization of peptides by yeast and other microorganisms in a complex peptide mixture has yet to be put forward. This article addresses this issue by presenting a screening methodology for tracking the consumption of peptides by yeast during alcoholic fermentation. As a peptide source, the methodology makes use of an in-house prepared peptide-mapped bovine serum albumin (BSA) proteolytic digest, which was applied to a synthetic grape must. The peptide uptake was analyzed using high-throughput ultra-high-pressure liquid chromatography coupled to data-independent acquisition-based ion mobility separation-enabled high-resolution mass spectrometry (UPLC-DIA-IMS-HRMS) analysis. The relative changes of abundance of 123 di- to hexapeptides were monitored and reported during fermentations with three commercial wine strains, demonstrating different uptake kinetics for individual peptides. Using the same peptide-mapped BSA hydrolysate, the applicability of an untargeted workflow was additionally assessed for peptide profiling in unelucidated matrixes. The comparison of the results from peptide mapping and untargeted analysis experiments highlighted the ability of untargeted analysis to consistently identify small molecular weight peptides on the length and amino acid composition. The proposed method, in combination with other analytical techniques, such as gene or protein expression analysis, can be a useful tool for different metabolic studies related to the consumption of complex nitrogen sources by yeast or other microorganisms.
Collapse
|
4
|
Becerra-Rodríguez C, Taghouti G, Portier P, Dequin S, Casal M, Paiva S, Galeote V. Yeast Plasma Membrane Fungal Oligopeptide Transporters Display Distinct Substrate Preferences despite Their High Sequence Identity. J Fungi (Basel) 2021; 7:jof7110963. [PMID: 34829250 PMCID: PMC8625066 DOI: 10.3390/jof7110963] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/03/2021] [Accepted: 11/04/2021] [Indexed: 01/10/2023] Open
Abstract
Fungal Oligopeptide Transporters (Fot) Fot1, Fot2 and Fot3 have been found in Saccharomyces cerevisiae wine strains, but not in strains from other environments. In the S. cerevisiae wine strain EC1118, Fot1 and Fot2 are responsible for a broader range of oligopeptide utilization in comparison with strains not containing any Fot. This leads to better fermentation efficiency and an increased production of desirable organoleptic compounds in wine. Despite the benefits associated with Fot activity in S. cerevisiae within the wine environment, little is known about this family of transporters in yeast. The presence of Fot1, Fot2 and Fot3 in S. cerevisiae wine strains is due to horizontal gene transfer from the yeast Torulaspora microellipsoides, which harbors Fot2Tm, FotX and FotY proteins. Sequence analyses revealed that Fot family members have a high sequence identity in these yeast species. In this work, we aimed to further characterize the different Fot family members in terms of subcellular localization, gene expression in enological fermentation and substrate specificity. Using CRISPR/Cas9, we constructed S. cerevisiae wine strains containing each different Fot as the sole oligopeptide transporter to analyze their oligopeptide preferences by phenotype microarrays. The results of oligopeptide consumption show that Fot counterparts have different di-/tripeptide specificities, suggesting that punctual sequence divergence between FOT genes can be crucial for substrate recognition, binding and transport activity. FOT gene expression levels in different S. cerevisiae wine strains during enological fermentation, together with predicted binding motifs for transcriptional regulators in nitrogen metabolism, indicate that these transporters may be under the control of the Nitrogen Catabolite Repression (NCR) system. Finally, we demonstrated that Fot1 is located in the yeast plasma membrane. This work contributes to a better understanding of this family of oligopeptide transporters, which have demonstrated a key role in the utilization of oligopeptides by S. cerevisiae in enological fermentation.
Collapse
Affiliation(s)
- Carmen Becerra-Rodríguez
- SPO, Univ. Montpellier, INRAE, Institut Agro, F-34060 Montpellier, France; (C.B.-R.); (S.D.)
- Centre of Environmental and Molecular Biology, Department of Biology, Campus of Gualtar, University of Minho, 4710-057 Braga, Portugal; (M.C.); (S.P.)
| | - Géraldine Taghouti
- Univ. Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, CIRM-CFBP, F-49000 Angers, France; (G.T.); (P.P.)
| | - Perrine Portier
- Univ. Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, CIRM-CFBP, F-49000 Angers, France; (G.T.); (P.P.)
| | - Sylvie Dequin
- SPO, Univ. Montpellier, INRAE, Institut Agro, F-34060 Montpellier, France; (C.B.-R.); (S.D.)
| | - Margarida Casal
- Centre of Environmental and Molecular Biology, Department of Biology, Campus of Gualtar, University of Minho, 4710-057 Braga, Portugal; (M.C.); (S.P.)
| | - Sandra Paiva
- Centre of Environmental and Molecular Biology, Department of Biology, Campus of Gualtar, University of Minho, 4710-057 Braga, Portugal; (M.C.); (S.P.)
| | - Virginie Galeote
- SPO, Univ. Montpellier, INRAE, Institut Agro, F-34060 Montpellier, France; (C.B.-R.); (S.D.)
- Correspondence:
| |
Collapse
|
5
|
Becerra-Rodríguez C, Marsit S, Galeote V. Diversity of Oligopeptide Transport in Yeast and Its Impact on Adaptation to Winemaking Conditions. Front Genet 2020; 11:602. [PMID: 32587604 PMCID: PMC7298112 DOI: 10.3389/fgene.2020.00602] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 05/18/2020] [Indexed: 12/20/2022] Open
Abstract
Nitrogen is an essential nutrient for yeasts and its relative abundance is an important modulator of fermentation kinetics. The main sources of nitrogen in food are ammonium and free amino acids, however, secondary sources such as oligopeptides are also important contributors to the nitrogen supply. In yeast, oligopeptide uptake is driven by different families of proton–coupled transporters whose specificity depends on peptide length. Proton-dependent Oligopeptide Transporters (POT) are specific to di- and tri-peptides, whereas the Oligopeptide Transport (OPT) family members import tetra- and pentapeptides. Recently, the novel family of Fungal Oligopeptide Transporters (FOT) has been identified in Saccharomyces cerevisiae wine strains as a result of a horizontal gene transfer from Torulaspora microellipsoides. In natural grape must fermentations with S. cerevisiae, Fots have a broader range of oligopeptide utilization in comparison with non-Fot strains, leading to higher biomass production and better fermentation efficiency. In this review we present the current knowledge on the diversity of oligopeptide transporters in yeast, also discussing how the consumption of oligopeptides provides an adaptive advantage to yeasts within the wine environment.
Collapse
Affiliation(s)
| | - Souhir Marsit
- Institut de Biologie Intégrative et des Systèmes, Regroupement Québécois de Recherche sur la Fonction, l'Ingénierie et les Applications des Protéines, (PROTEO), Département de Biologie, Université Laval, Québec City, QC, Canada
| | - Virginie Galeote
- SPO, INRAE, Université de Montpellier, Montpellier SupAgro, Montpellier, France
| |
Collapse
|
6
|
Xie XL, Wei Y, Song YY, Pan GM, Chen LN, Wang G, Zhang SH. Genetic Analysis of Four Sexual Differentiation Process Proteins (isp4/SDPs) in Chaetomium thermophilum and Thermomyces lanuginosus Reveals Their Distinct Roles in Development. Front Microbiol 2020; 10:2994. [PMID: 31969873 PMCID: PMC6956688 DOI: 10.3389/fmicb.2019.02994] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 12/10/2019] [Indexed: 12/29/2022] Open
Abstract
Fungal sexual development requires the involvement of a large number of functional genes. Fungal genes encoding sexual differentiation process proteins (SDPs), isps, have been known for decades. isp4/SDP and its homologs function as oligopeptide transporters (OPTs), yet their roles in reproduction are unknown. Here, we genetically analyzed all four isp4/SDP homologs in the sexual species Chaetomium thermophilum and asexual species Thermomyces lanuginosus. Using single gene deletion mutants, we found that T. lanuginosus SDP (TlSDP) participated in asexual sporulation, whereas the other homologs participated in sexual morphogenesis. In complementary tests, C. thermophilum SDPs (CtSDP1-3) restored sporulation defects in TlSDP deletion strains (ΔTlSDP), and their translated proteins, which were localized onto the cytomembrane, possessed OPT activity. Interestingly, CtSDP2 accumulated at the top of the hyphae played a distinct role in determining the sexual cycle, glutathione transport, and lifespan shortening. A unique 72nt-insertion fragment (72INS) was discovered in CtSDP2. Biological analysis of the 72INS deletion and DsRED-tagged fusion strains implied the involvement of 72INS in fungal growth and development. In contrast to TlSDP, which only contributes to conidial production, the three CtSDPs play important roles in sexual and asexual reproduction, and CtSDP2 harbors a unique functional 72INS that initiates sexual morphogenesis.
Collapse
Affiliation(s)
- Xiang-Li Xie
- College of Plant Sciences, Jilin University, Changchun, China
| | - Yi Wei
- College of Plant Sciences, Jilin University, Changchun, China
| | - Yan-Yue Song
- College of Plant Sciences, Jilin University, Changchun, China
| | - Guan-Ming Pan
- College of Plant Sciences, Jilin University, Changchun, China
| | - Li-Na Chen
- College of Plant Sciences, Jilin University, Changchun, China
| | - Gang Wang
- School of Life Sciences, Henan University, Kaifeng, China
| | - Shi-Hong Zhang
- College of Plant Sciences, Jilin University, Changchun, China
| |
Collapse
|
7
|
Genome-Wide Identification and Comparative Analysis for OPT Family Genes in Panax ginseng and Eleven Flowering Plants. Molecules 2018; 24:molecules24010015. [PMID: 30577553 PMCID: PMC6337337 DOI: 10.3390/molecules24010015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 12/06/2018] [Accepted: 12/17/2018] [Indexed: 02/06/2023] Open
Abstract
Herb genomics and comparative genomics provide a global platform to explore the genetics and biology of herbs at the genome level. Panax ginseng C.A. Meyer is an important medicinal plant for a variety of bioactive chemical compounds of which the biosynthesis may involve transport of a wide range of substrates mediated by oligopeptide transporters (OPT). However, information about the OPT family in the plant kingdom is still limited. Only 17 and 18 OPT genes have been characterized for Oryza sativa and Arabidopsisthaliana, respectively. Additionally, few comprehensive studies incorporating the phylogeny, gene structure, paralogs evolution, expression profiling, and co-expression network between transcription factors and OPT genes have been reported for ginseng and other species. In the present study, we performed those analyses comprehensively with both online tools and standalone tools. As a result, we identified a total of 268 non-redundant OPT genes from 12 flowering plants of which 37 were from ginseng. These OPT genes were clustered into two distinct clades in which clade-specific motif compositions were considerably conservative. The distribution of OPT paralogs was indicative of segmental duplication and subsequent structural variation. Expression patterns based on two sources of RNA-Sequence datasets suggested that some OPT genes were expressed in both an organ-specific and tissue-specific manner and might be involved in the functional development of plants. Further co-expression analysis of OPT genes and transcription factors indicated 141 positive and 11 negative links, which shows potent regulators for OPT genes. Overall, the data obtained from our study contribute to a better understanding of the complexity of the OPT gene family in ginseng and other flowering plants. This genetic resource will help improve the interpretation on mechanisms of metabolism transportation and signal transduction during plant development for Panax ginseng.
Collapse
|
8
|
Kitamura K, Kinsui EZB. The benefits and risks of expressing the POT and FOT family of oligopeptide transporters in Saccharomyces cerevisiae. Biosci Biotechnol Biochem 2018; 82:540-546. [PMID: 29447073 DOI: 10.1080/09168451.2018.1433994] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
In the yeast Saccharomyces cerevisiae, all strains possess a gene for the evolutionarily conserved POT family peptide transporter, Ptr2; however, the genes for a novel FOT family transporter were found only in some wine brewing strains. The substrate specificity of the POT and FOT family of transporters was compared. Among the naturally occurring oligopeptides that were tested, Lys-Leu and Arg-Phe were Ptr2-specific substrates. Artificial dipeptide aspartame was imported specifically through the FOT transporter, but the structurally similar Asp-Phe was a substrate of both FOT and Ptr2 transporters. Furthermore, only the FOT transporter was important for high sensitivity to an antibiotic puromycin. These results demonstrate that the POT and FOT family of transporters have distinct substrate preferences although both transporters import overlapping dipeptide substrates. Having POT and FOT transporters is advantageous for cells to acquire nutrients, but also detrimental when these cells are exposed to the toxic molecules of their substrates.
Collapse
Affiliation(s)
- Kenji Kitamura
- a Center for Gene Science , Hiroshima University , Higashi-Hiroshima , Japan
| | | |
Collapse
|
9
|
Xiang Q, Shen K, Yu X, Zhao K, Gu Y, Zhang X, Chen X, Chen Q. Analysis of the oligopeptide transporter gene family in Ganoderma lucidum: structure, phylogeny, and expression patterns. Genome 2017; 60:293-302. [DOI: 10.1139/gen-2016-0120] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Oligopeptide transporters (OPTs) are believed to transport broad ranges of substrates across the plasma membrane from the extracellular environment into the cell and are thought to contribute to various biological processes. In the present study, 13 putative OPTs (Gl-OPT1 to Gl-OPT13) were identified through extensive search of Ganoderma lucidum genome database. Phylogenetic analysis with OPTs from other fungi and plants indicates that these genes can be further divided into five groups. Motif compositions of OPT members are highly conserved in each group, indicative of functional conservation. Expression profile analysis of the 13 Gl-OPT genes indicated that, with the exception of Gl-OPT7–Gl-OPT9, for which no transcripts were detected, all paralogues were differentially expressed, suggesting their potential involvement in stress response and functional development of fungi. Overall, the analyses in this study provide a starting point for elucidating the functions of OPT in G. lucidum, and for understanding the complexities of metabolic regulation.
Collapse
Affiliation(s)
- Quanju Xiang
- College of Resource, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Keyu Shen
- College of Resource, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Xiumei Yu
- College of Resource, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Ke Zhao
- College of Resource, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Yunfu Gu
- College of Resource, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Xiaoping Zhang
- College of Resource, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Xiaoqiong Chen
- Rice Research Institute of Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Qiang Chen
- College of Resource, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| |
Collapse
|
10
|
Wong WC, Yap CK, Eisenhaber B, Eisenhaber F. dissectHMMER: a HMMER-based score dissection framework that statistically evaluates fold-critical sequence segments for domain fold similarity. Biol Direct 2015; 10:39. [PMID: 26228544 PMCID: PMC4521371 DOI: 10.1186/s13062-015-0068-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 07/20/2015] [Indexed: 11/10/2022] Open
Abstract
Background Annotation transfer for function and structure within the sequence homology concept essentially requires protein sequence similarity for the secondary structural blocks forming the fold of a protein. A simplistic similarity approach in the case of non-globular segments (coiled coils, low complexity regions, transmembrane regions, long loops, etc.) is not justified and a pertinent source for mistaken homologies. The latter is either due to positional sequence conservation as a result of a very simple, physically induced pattern or integral sequence properties that are critical for function. Furthermore, against the backdrop that the number of well-studied proteins continues to grow at a slow rate, it necessitates for a search methodology to dive deeper into the sequence similarity space to connect the unknown sequences to the well-studied ones, albeit more distant, for biological function postulations. Results Based on our previous work of dissecting the hidden markov model (HMMER) based similarity score into fold-critical and the non-globular contributions to improve homology inference, we propose a framework-dissectHMMER, that identifies more fold-related domain hits from standard HMMER searches. Subsequent statistical stratification of the fold-related hits into cohorts of functionally-related domains allows for the function postulation of the query sequence. Briefly, the technical problems as to how to recognize non-globular parts in the domain model, resolve contradictory HMMER2/HMMER3 results and evaluate fold-related domain hits for homology, are addressed in this work. The framework is benchmarked against a set of SCOP-to-Pfam domain models. Despite being a sequence-to-profile method, dissectHMMER performs favorably against a profile-to-profile based method-HHsuite/HHsearch. Examples of function annotation using dissectHMMER, including the function discovery of an uncharacterized membrane protein Q9K8K1_BACHD (WP_010899149.1) as a lactose/H+ symporter, are presented. Finally, dissectHMMER webserver is made publicly available at http://dissecthmmer.bii.a-star.edu.sg. Conclusions The proposed framework-dissectHMMER, is faithful to the original inception of the sequence homology concept while improving upon the existing HMMER search tool through the rescue of statistically evaluated false-negative yet fold-related domain hits to the query sequence. Overall, this translates into an opportunity for any novel protein sequence to be functionally characterized. Reviewers This article was reviewed by Masanori Arita, Shamil Sunyaev and L. Aravind. Electronic supplementary material The online version of this article (doi:10.1186/s13062-015-0068-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wing-Cheong Wong
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, #07-01, Matrix, Singapore, 138671, Singapore.
| | - Choon-Kong Yap
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, #07-01, Matrix, Singapore, 138671, Singapore.
| | - Birgit Eisenhaber
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, #07-01, Matrix, Singapore, 138671, Singapore.
| | - Frank Eisenhaber
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, #07-01, Matrix, Singapore, 138671, Singapore. .,Department of Biological Sciences (DBS), National University of Singapore (NUS), 8 Medical Drive, Singapore, 117597, Singapore. .,School of Computer Engineering (SCE), Nanyang Technological University (NTU), 50 Nanyang Drive, Singapore, 637553, Singapore.
| |
Collapse
|
11
|
Cordente AG, Capone DL, Curtin CD. Unravelling glutathione conjugate catabolism in Saccharomyces cerevisiae: the role of glutathione/dipeptide transporters and vacuolar function in the release of volatile sulfur compounds 3-mercaptohexan-1-ol and 4-mercapto-4-methylpentan-2-one. Appl Microbiol Biotechnol 2015; 99:9709-22. [PMID: 26227410 DOI: 10.1007/s00253-015-6833-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 07/07/2015] [Accepted: 07/11/2015] [Indexed: 11/29/2022]
Abstract
Sulfur-containing aroma compounds are key contributors to the flavour of a diverse range of foods and beverages, such as wine. The tropical fruit characters of Sauvignon Blanc wines are attributed to the presence of the aromatic thiols 3-mercaptohexan-1-ol (3-MH), its acetate ester 3-mercaptohexyl acetate (3-MHA), and 4-mercapto-4-methylpentan-2-one (4-MMP). These aromatic thiols are not detectable in grape juice to any significant extent but are released by yeast during alcoholic fermentation. While the processes involved in the release of 3-MH and 4-MMP from their cysteinylated precursors have been studied extensively, degradation pathways for glutathione S-conjugates (GSH-3-MH and GSH-4-MMP) have not. In this study, a candidate gene approach was taken, focusing on genes known to play a role in glutathione and glutathione-S-conjugate turnover in Saccharomyces cerevisiae. Our results confirm the role of Opt1p as the major transporter responsible for uptake of GSH-3-MH and GSH-4-MMP, and identify vacuolar Ecm38p as a key determinant of 3-MH release from GSH-3-MH. ECM38 was unimportant, on the other hand, for release of 4-MMP, and abolition of vacuolar biogenesis caused an increase in the amount of 4-MMP released. The alternative cytosolic glutathione degradation pathway was not involved in release of either thiol from their glutathionylated precursors. Finally, cycling of GSH-3-MH and/or its breakdown intermediates between the cytosol and the vacuole or extracellular space was implicated in modulation of 3-MH formation. Together, these results provide new targets for development of yeast strains that optimize release of these potent volatile sulfur compounds, and further our understanding of the processes involved in glutathione-S-conjugate turnover.
Collapse
Affiliation(s)
- Antonio G Cordente
- The Australian Wine Research Institute, P.O. Box 197, Glen Osmond, Adelaide, SA, 5064, Australia
| | - Dimitra L Capone
- The Australian Wine Research Institute, P.O. Box 197, Glen Osmond, Adelaide, SA, 5064, Australia
| | - Chris D Curtin
- The Australian Wine Research Institute, P.O. Box 197, Glen Osmond, Adelaide, SA, 5064, Australia.
| |
Collapse
|
12
|
Dugat-Bony E, Straub C, Teissandier A, Onésime D, Loux V, Monnet C, Irlinger F, Landaud S, Leclercq-Perlat MN, Bento P, Fraud S, Gibrat JF, Aubert J, Fer F, Guédon E, Pons N, Kennedy S, Beckerich JM, Swennen D, Bonnarme P. Overview of a surface-ripened cheese community functioning by meta-omics analyses. PLoS One 2015; 10:e0124360. [PMID: 25867897 PMCID: PMC4395090 DOI: 10.1371/journal.pone.0124360] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Accepted: 03/02/2015] [Indexed: 11/18/2022] Open
Abstract
Cheese ripening is a complex biochemical process driven by microbial communities composed of both eukaryotes and prokaryotes. Surface-ripened cheeses are widely consumed all over the world and are appreciated for their characteristic flavor. Microbial community composition has been studied for a long time on surface-ripened cheeses, but only limited knowledge has been acquired about its in situ metabolic activities. We applied metagenomic, metatranscriptomic and biochemical analyses to an experimental surface-ripened cheese composed of nine microbial species during four weeks of ripening. By combining all of the data, we were able to obtain an overview of the cheese maturation process and to better understand the metabolic activities of the different community members and their possible interactions. Furthermore, differential expression analysis was used to select a set of biomarker genes, providing a valuable tool that can be used to monitor the cheese-making process.
Collapse
Affiliation(s)
- Eric Dugat-Bony
- INRA, UMR 782 Génie et Microbiologie des Procédés Alimentaires, F-78850, Thiverval-Grignon, France
- AgroParisTech, UMR 782 Génie et microbiologie des procédés alimentaires, F-78850, Thiverval-Grignon, France
| | - Cécile Straub
- INRA, UMR 782 Génie et Microbiologie des Procédés Alimentaires, F-78850, Thiverval-Grignon, France
- AgroParisTech, UMR 782 Génie et microbiologie des procédés alimentaires, F-78850, Thiverval-Grignon, France
| | - Aurélie Teissandier
- AgroParisTech, UMR 518 Mathématiques et Informatiques Appliquées, F-75231, Paris, France
- INRA, UMR 518 Mathématiques et Informatiques Appliquées, F-75231, Paris, France
| | - Djamila Onésime
- INRA, Institut Micalis, F-78352, Jouy-en-Josas, France
- AgroParisTech, Institut Micalis, F-78352, Jouy-en-Josas, France
| | - Valentin Loux
- INRA, UR1404 Mathématiques et Informatique Appliquées du Génome à l’Environnement, F-78352, Jouy-en-Josas, France
| | - Christophe Monnet
- INRA, UMR 782 Génie et Microbiologie des Procédés Alimentaires, F-78850, Thiverval-Grignon, France
- AgroParisTech, UMR 782 Génie et microbiologie des procédés alimentaires, F-78850, Thiverval-Grignon, France
| | - Françoise Irlinger
- INRA, UMR 782 Génie et Microbiologie des Procédés Alimentaires, F-78850, Thiverval-Grignon, France
- AgroParisTech, UMR 782 Génie et microbiologie des procédés alimentaires, F-78850, Thiverval-Grignon, France
| | - Sophie Landaud
- INRA, UMR 782 Génie et Microbiologie des Procédés Alimentaires, F-78850, Thiverval-Grignon, France
- AgroParisTech, UMR 782 Génie et microbiologie des procédés alimentaires, F-78850, Thiverval-Grignon, France
| | - Marie-Noëlle Leclercq-Perlat
- INRA, UMR 782 Génie et Microbiologie des Procédés Alimentaires, F-78850, Thiverval-Grignon, France
- AgroParisTech, UMR 782 Génie et microbiologie des procédés alimentaires, F-78850, Thiverval-Grignon, France
| | - Pascal Bento
- INRA, UR1404 Mathématiques et Informatique Appliquées du Génome à l’Environnement, F-78352, Jouy-en-Josas, France
| | | | - Jean-François Gibrat
- INRA, UR1404 Mathématiques et Informatique Appliquées du Génome à l’Environnement, F-78352, Jouy-en-Josas, France
| | - Julie Aubert
- AgroParisTech, UMR 518 Mathématiques et Informatiques Appliquées, F-75231, Paris, France
- INRA, UMR 518 Mathématiques et Informatiques Appliquées, F-75231, Paris, France
| | - Frédéric Fer
- INRA, UMR 782 Génie et Microbiologie des Procédés Alimentaires, F-78850, Thiverval-Grignon, France
- AgroParisTech, UMR 782 Génie et microbiologie des procédés alimentaires, F-78850, Thiverval-Grignon, France
- AgroParisTech, UMR 518 Mathématiques et Informatiques Appliquées, F-75231, Paris, France
- INRA, UMR 518 Mathématiques et Informatiques Appliquées, F-75231, Paris, France
| | - Eric Guédon
- INRA, Institut Micalis, F-78352, Jouy-en-Josas, France
- AgroParisTech, Institut Micalis, F-78352, Jouy-en-Josas, France
| | - Nicolas Pons
- INRA, US 1367 Metagenopolis, F-78352, Jouy-en-Josas, France
| | - Sean Kennedy
- INRA, US 1367 Metagenopolis, F-78352, Jouy-en-Josas, France
| | - Jean-Marie Beckerich
- INRA, UMR 782 Génie et Microbiologie des Procédés Alimentaires, F-78850, Thiverval-Grignon, France
- AgroParisTech, UMR 782 Génie et microbiologie des procédés alimentaires, F-78850, Thiverval-Grignon, France
| | - Dominique Swennen
- INRA, UMR 782 Génie et Microbiologie des Procédés Alimentaires, F-78850, Thiverval-Grignon, France
- AgroParisTech, UMR 782 Génie et microbiologie des procédés alimentaires, F-78850, Thiverval-Grignon, France
| | - Pascal Bonnarme
- INRA, UMR 782 Génie et Microbiologie des Procédés Alimentaires, F-78850, Thiverval-Grignon, France
- AgroParisTech, UMR 782 Génie et microbiologie des procédés alimentaires, F-78850, Thiverval-Grignon, France
- * E-mail:
| |
Collapse
|
13
|
Yamauchi S, Obara K, Uchibori K, Kamimura A, Azumi K, Kihara A. Opt2 mediates the exposure of phospholipids during cellular adaptation to altered lipid asymmetry. J Cell Sci 2014; 128:61-9. [PMID: 25359886 DOI: 10.1242/jcs.153890] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Plasma membrane lipid asymmetry is important for various membrane-associated functions and is regulated by membrane proteins termed flippases and floppases. The Rim101 pathway senses altered lipid asymmetry in the yeast plasma membrane. The mutant lem3Δ cells, in which lipid asymmetry is disturbed owing to the inactivation of the plasma membrane flippases, showed a severe growth defect when the Rim101 pathway was impaired. To identify factors involved in the Rim101-pathway-dependent adaptation to altered lipid asymmetry, we performed DNA microarray analysis and found that Opt2 induced by the Rim101 pathway plays an important role in the adaptation to altered lipid asymmetry. Biochemical investigation of Opt2 revealed its localization to the plasma membrane and the Golgi, and provided several lines of evidence for the Opt2-mediated exposure of phospholipids. In addition, Opt2 was found to be required for the maintenance of vacuolar morphology and polarized cell growth. These results suggest that Opt2 is a novel factor involved in cell homeostasis by regulating lipid asymmetry.
Collapse
Affiliation(s)
- Saori Yamauchi
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Keisuke Obara
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Kenya Uchibori
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Akiko Kamimura
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Kaoru Azumi
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Akio Kihara
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| |
Collapse
|
14
|
Grillet L, Mari S, Schmidt W. Iron in seeds - loading pathways and subcellular localization. FRONTIERS IN PLANT SCIENCE 2014; 4:535. [PMID: 24427161 PMCID: PMC3877777 DOI: 10.3389/fpls.2013.00535] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Accepted: 12/11/2013] [Indexed: 05/04/2023]
Abstract
Iron (Fe) is one of the most abundant elements on earth, but its limited bioavailability poses a major constraint for agriculture and constitutes a serious problem in human health. Due to an improved understanding of the mechanisms that control Fe homeostasis in plants, major advances toward engineering biofortified crops have been made during the past decade. Examples of successful biofortification strategies are, however, still scarce and the process of Fe loading into seeds is far from being well understood in most crop species. In particular in grains where the embryo represents the main storage compartment such as legumes, increasing the seed Fe content remains a challenging task. This review aims at placing the recently identified actors in Fe transport into the unsolved puzzle of grain filling, taking the differences of Fe distribution between various species into consideration. We summarize the current knowledge on Fe transport between symplasmic and apoplasmic compartments, and provide models for Fe trafficking and localization in different seed types that may help to develop high seed Fe germplasms.
Collapse
Affiliation(s)
- Louis Grillet
- Institute of Plant and Microbial BiologyAcademia Sinica, Taipei, Taiwan
| | - Stéphane Mari
- Plant Biology, Institut National pour la Recherche AgronomiqueMontpellier, France
| | - Wolfgang Schmidt
- Institute of Plant and Microbial BiologyAcademia Sinica, Taipei, Taiwan
- *Correspondence: Wolfgang Schmidt, Institute of Plant and Microbial Biology, Academia Sinica, Academia Road 128, Taipei 11529, Taiwan e-mail:
| |
Collapse
|
15
|
Xiang Q, Wang Z, Zhang Y, Wang H. An oligopeptide transporter gene family in Phanerochaete chrysosporium. Gene 2013; 522:133-41. [DOI: 10.1016/j.gene.2013.03.069] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Revised: 02/21/2013] [Accepted: 03/16/2013] [Indexed: 10/27/2022]
|
16
|
Roles of different peptide transporters in nutrient acquisition in Candida albicans. EUKARYOTIC CELL 2013; 12:520-8. [PMID: 23376942 DOI: 10.1128/ec.00008-13] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Fungi possess two distinct proton-coupled peptide transport systems, the dipeptide/tripeptide transporters (PTR) and the oligopeptide transporters (OPT), which enable them to utilize peptides as nutrients. In the pathogenic yeast Candida albicans, peptide transporters are encoded by gene families consisting of two PTR genes and eight OPT genes. To gain insight into the functions and importance of specific peptide transporters, we generated mutants lacking the two dipeptide/tripeptide transporters Ptr2 and Ptr22, as well as the five major oligopeptide transporters Opt1 to Opt5. These mutants were unable to grow in media containing peptides as the sole nitrogen source. Forced expression of individual peptide transporters in the septuple mutants showed that Ptr2 and Ptr22 could utilize all tested dipeptides as substrates but differed in their abilities to transport specific tripeptides. Interestingly, several oligopeptide transporters, which are thought to transport peptides consisting of more than three amino acids, also mediated the uptake of tripeptides. Opt1 especially turned out to be a highly flexible transporter that enabled growth on all tripeptides tested and could even utilize a dipeptide, a function that has never been ascribed to this family of peptide transporters. Despite their inability to grow on proteins or peptides, the opt1Δ opt2Δ opt3Δ opt4Δ opt5Δ ptr2Δ ptr22Δ septuple mutants had no in vivo fitness defect in a mouse model of gastrointestinal colonization. Therefore, the nutritional versatility of C. albicans enables it to utilize alternative nitrogen sources in this host niche, which probably contributes to its success as a commensal and pathogen in mammalian hosts.
Collapse
|
17
|
Liu T, Zeng J, Xia K, Fan T, Li Y, Wang Y, Xu X, Zhang M. Evolutionary expansion and functional diversification of oligopeptide transporter gene family in rice. RICE (NEW YORK, N.Y.) 2012; 5:12. [PMID: 27234238 PMCID: PMC5520842 DOI: 10.1186/1939-8433-5-12] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Accepted: 06/22/2012] [Indexed: 05/10/2023]
Abstract
BACKGROUND Oligopeptide transporters (OPTs) play important roles in the mobilization of organic nitrogenous compounds and usually associate with tissues that show signs of rapid protein hydrolysis, such as germinating seeds and senescing leaves. This study is to investigate rice OPT genes. RESULTS A total of sixteen OsOPT genes (Os for Oryza sative L.) were identified in the rice genome, which were then classified into six sections that belong to two subfamilies (the PT and YSL subfamily). The major mechanisms for evolutionary expansion of the sixteen genes during the rice genome evolution include segmental and tandem duplication. Calculation of the duplication event dates indicated that the sixteen genes originated from nine original OsOPT genes, and the duplication events could be classified into three evolutionary stages. The first evolutionary stage occurred approximately 50 million years ago (Mya) and involved the evolution of four new genes. The second evolutionary stage was approximately 20 Mya and was marked by the appearance of two new genes, and the third evolutionary stage was approximately 9 Mya when two new genes evolved. Mining of the expression database and RT-PCR analysis indicated that the expression of most duplicated OsOPT genes showed high tissue specificities. Diverse expression patterns for the sixteen genes were evaluated using both semi-quantitative RT-PCR and the MPSS data. Expression levels of some OsOPT genes were regulated by abiotic and biotic stresses suggesting the potential involvement of these gene products in rice stress adaptation. Five OsOPT gene mutants showed abnormal development and growth, the primary analysis of five OsOPT gene mutants suggested that they may be necessary for rice development. CONCLUSIONS These results suggested that rice-specific OsOPT genes might be potentially useful in improving rice.
Collapse
Affiliation(s)
- Tao Liu
- Key Laboratory of South China Agricultural Plant Genetics and Breeding, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650 People's Republic of China
- Graduate University of Chinese Academy of Sciences, Beijing, 100049 People's Republic of China
| | - Jiqing Zeng
- Key Laboratory of South China Agricultural Plant Genetics and Breeding, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650 People's Republic of China
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650 People's Republic of China
| | - Kuaifei Xia
- Key Laboratory of South China Agricultural Plant Genetics and Breeding, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650 People's Republic of China
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650 People's Republic of China
| | - Tian Fan
- Key Laboratory of South China Agricultural Plant Genetics and Breeding, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650 People's Republic of China
- Graduate University of Chinese Academy of Sciences, Beijing, 100049 People's Republic of China
| | - Yuge Li
- Key Laboratory of South China Agricultural Plant Genetics and Breeding, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650 People's Republic of China
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650 People's Republic of China
| | - Yaqin Wang
- Guangdong Key Lab of Biotechnology for Plant Development, College of Life Science, South China Normal University, Guangzhou, 510631 People's Republic of China
| | - Xinlan Xu
- Key Laboratory of South China Agricultural Plant Genetics and Breeding, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650 People's Republic of China
| | - Mingyong Zhang
- Key Laboratory of South China Agricultural Plant Genetics and Breeding, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650 People's Republic of China
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650 People's Republic of China
| |
Collapse
|
18
|
Hu YT, Ming F, Chen WW, Yan JY, Xu ZY, Li GX, Xu CY, Yang JL, Zheng SJ. TcOPT3, a member of oligopeptide transporters from the hyperaccumulator Thlaspi caerulescens, is a novel Fe/Zn/Cd/Cu transporter. PLoS One 2012; 7:e38535. [PMID: 22761683 PMCID: PMC3382247 DOI: 10.1371/journal.pone.0038535] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Accepted: 05/06/2012] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Thlaspi caerulescens is a natural selected heavy metal hyperaccumulator that can not only tolerate but also accumulate extremely high levels of heavy metals in the shoots. Thus, to identify the transportors involved in metal long-distance transportation is very important for understanding the mechanism of heavy metal accumulation in this hyperaccumulator. METHODOLOGY/PRINCIPAL FINDINGS We cloned and characterized a novel gene TcOPT3 of OPT family from T. caerulescens. TcOPT3 was pronouncedly expressed in aerial parts, including stem and leaf. Moreover, in situ hybridization analyses showed that TcOPT3 expressed in the plant vascular systems, especially in the pericycle cells that may be involved in the long-distance transportation. The expression of TcOPT3 was highly induced by iron (Fe) and zinc (Zn) deficiency, especially in the stem and leaf. Sub-cellular localization showed that TcOPT3 was a plasma membrane-localized protein. Furthermore, heterogonous expression of TcOPT3 by mutant yeast (Saccharomyces cerevisiae) complementation experiments demonstrated that TcOPT3 could transport Fe(2+) and Zn(2+). Moreover, expression of TcOPT3 in yeast increased metal (Fe, Zn, Cu and Cd) accumulation and resulted in an increased sensitivity to cadmium (Cd) and copper (Cu). CONCLUSIONS Our data demonstrated that TcOPT3 might encode an Fe/Zn/Cd/Cu influx transporter with broad-substrate. This is the first report showing that TcOPT3 may be involved in metal long-distance transportation and contribute to the heavy metal hyperaccumulation.
Collapse
Affiliation(s)
- Yi Ting Hu
- College of Environmental and Resource Sciences, Zhejiang University, Hanzhou, China
- Key Laboratory of Conservation Biology for Endangered Wildlife, Ministry of Education, College of Life Science, Zhejiang University, Hanzhou, China
| | - Feng Ming
- Institute of Plant Biology, School of Life Science, Fudan University, Shanghai, China
| | - Wei Wei Chen
- Key Laboratory of Conservation Biology for Endangered Wildlife, Ministry of Education, College of Life Science, Zhejiang University, Hanzhou, China
| | - Jing Ying Yan
- Key Laboratory of Conservation Biology for Endangered Wildlife, Ministry of Education, College of Life Science, Zhejiang University, Hanzhou, China
| | - Zheng Yu Xu
- The Anhui Provincial Lab of Nutrient Cycling, Resources and Environment; Institute of Soil and Fertilizer, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Gui Xin Li
- College of Agronomy and Biotechnology, Zhejiang University, Hanzhou, China
| | - Chun Yan Xu
- State Environmental Protection Administration of Radiation Environmental Monitoring Technology Center, Hanghzou, China
| | - Jian Li Yang
- Key Laboratory of Conservation Biology for Endangered Wildlife, Ministry of Education, College of Life Science, Zhejiang University, Hanzhou, China
| | - Shao Jian Zheng
- College of Environmental and Resource Sciences, Zhejiang University, Hanzhou, China
- Key Laboratory of Conservation Biology for Endangered Wildlife, Ministry of Education, College of Life Science, Zhejiang University, Hanzhou, China
| |
Collapse
|
19
|
Soanes DM, Chakrabarti A, Paszkiewicz KH, Dawe AL, Talbot NJ. Genome-wide transcriptional profiling of appressorium development by the rice blast fungus Magnaporthe oryzae. PLoS Pathog 2012; 8:e1002514. [PMID: 22346750 PMCID: PMC3276559 DOI: 10.1371/journal.ppat.1002514] [Citation(s) in RCA: 125] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Accepted: 12/16/2011] [Indexed: 11/19/2022] Open
Abstract
The rice blast fungus Magnaporthe oryzae is one of the most significant pathogens affecting global food security. To cause rice blast disease the fungus elaborates a specialised infection structure called an appressorium. Here, we report genome wide transcriptional profile analysis of appressorium development using next generation sequencing (NGS). We performed both RNA-Seq and High-Throughput SuperSAGE analysis to compare the utility of these procedures for identifying differential gene expression in M. oryzae. We then analysed global patterns of gene expression during appressorium development. We show evidence for large-scale gene expression changes, highlighting the role of autophagy, lipid metabolism and melanin biosynthesis in appressorium differentiation. We reveal the role of the Pmk1 MAP kinase as a key global regulator of appressorium-associated gene expression. We also provide evidence for differential expression of transporter-encoding gene families and specific high level expression of genes involved in quinate uptake and utilization, consistent with pathogen-mediated perturbation of host metabolism during plant infection. When considered together, these data provide a comprehensive high-resolution analysis of gene expression changes associated with cellular differentiation that will provide a key resource for understanding the biology of rice blast disease.
Collapse
Affiliation(s)
- Darren M. Soanes
- College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Apratim Chakrabarti
- College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Konrad H. Paszkiewicz
- College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Angus L. Dawe
- College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
- Department of Biology, New Mexico State University, Las Cruces, New Mexico, United States of America
| | - Nicholas J. Talbot
- College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
- * E-mail:
| |
Collapse
|
20
|
The Ubiquitin ligase Ubr11 is essential for oligopeptide utilization in the fission yeast Schizosaccharomyces pombe. EUKARYOTIC CELL 2012; 11:302-10. [PMID: 22226946 DOI: 10.1128/ec.05253-11] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Uptake of extracellular oligopeptides in yeast is mediated mainly by specific transporters of the peptide transporter (PTR) and oligopeptide transporter (OPT) families. Here, we investigated the role of potential peptide transporters in the yeast Schizosaccharomyces pombe. Utilization of naturally occurring dipeptides required only Ptr2/SPBC13A2.04c and none of the other 3 OPT proteins (Isp4, Pgt1, and Opt3), whereas only Isp4 was indispensable for tetrapeptide utilization. Both Ptr2 and Isp4 localized to the cell surface, but under rich nutrient conditions Isp4 localized in the Golgi apparatus through the function of the ubiquitin ligase Pub1. Furthermore, the ubiquitin ligase Ubr11 played a significant role in oligopeptide utilization. The mRNA levels of both the ptr2 and isp4 genes were significantly reduced in ubr11Δ cells, and the dipeptide utilization defect in the ubr11Δ mutant was rescued by the forced expression of Ptr2. Consistent with its role in transcriptional regulation of peptide transporter genes, the Ubr11 protein was accumulated in the nucleus. Unlike the situation in Saccharomyces cerevisiae, the oligopeptide utilization defect in the S. pombe ubr11Δ mutant was not rescued by inactivation of the Tup11/12 transcriptional corepressors, suggesting that the requirement for the Ubr ubiquitin ligase in the upregulation of peptide transporter mRNA levels is conserved in both yeasts; however, the actual mechanism underlying the control appears to be different. We also found that the peptidomimetic proteasome inhibitor MG132 was still operative in a strain lacking all known PTR and OPT peptide transporters. Therefore, irrespective of its peptide-like structure, MG132 is carried into cells independently of the representative peptide transporters.
Collapse
|
21
|
Hartmann T, Cairns TC, Olbermann P, Morschhäuser J, Bignell EM, Krappmann S. Oligopeptide transport and regulation of extracellular proteolysis are required for growth of Aspergillus fumigatus on complex substrates but not for virulence. Mol Microbiol 2011; 82:917-35. [DOI: 10.1111/j.1365-2958.2011.07868.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
22
|
Cao J, Huang J, Yang Y, Hu X. Analyses of the oligopeptide transporter gene family in poplar and grape. BMC Genomics 2011; 12:465. [PMID: 21943393 PMCID: PMC3188535 DOI: 10.1186/1471-2164-12-465] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2011] [Accepted: 09/26/2011] [Indexed: 11/12/2022] Open
Abstract
Background Oligopeptide transporters (OPTs) are a group of membrane-localized proteins that have a broad range of substrate transport capabilities and that are thought to contribute to many biological processes. The OPT proteins belong to a small gene family in plants, which includes about 25 members in Arabidopsis and rice. However, no comprehensive study incorporating phylogeny, chromosomal location, gene structure, expression profiling, functional divergence and selective pressure analysis has been reported thus far for Populus and Vitis. Results In the present study, a comprehensive analysis of the OPT gene family in Populus (P. trichocarpa) and Vitis (V. vinifera) was performed. A total of 20 and 18 full-length OPT genes have been identified in Populus and Vitis, respectively. Phylogenetic analyses indicate that these OPT genes consist of two classes that can be further subdivided into 11 groups. Gene structures are considerably conserved among the groups. The distribution of OPT genes was found to be non-random across chromosomes. A high proportion of the genes are preferentially clustered, indicating that tandem duplications may have contributed significantly to the expansion of the OPT gene family. Expression patterns based on our analyses of microarray data suggest that many OPT genes may be important in stress response and functional development of plants. Further analyses of functional divergence and adaptive evolution show that, while purifying selection may have been the main force driving the evolution of the OPTs, some of critical sites responsible for the functional divergence may have been under positive selection. Conclusions Overall, the data obtained from our investigation contribute to a better understanding of the complexity of the Populus and Vitis OPT gene family and of the function and evolution of the OPT gene family in higher plants.
Collapse
Affiliation(s)
- Jun Cao
- Key Laboratory of Biodiversity and Biogeography, Kunming Institute of Botany, Institute of Tibet Plateau Research at Kunming, Chinese Academy of Sciences, Kunming, 650204, China
| | | | | | | |
Collapse
|
23
|
Lubkowitz M. The oligopeptide transporters: a small gene family with a diverse group of substrates and functions? MOLECULAR PLANT 2011; 4:407-15. [PMID: 21310763 DOI: 10.1093/mp/ssr004] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Genes in the Oligopeptide Transport family encode integral membrane proteins that are believed to translocate their substrates from either the extracellular environment or an organelle into the cytosol. Phylogenetic analyses of plant transporters have revealed two distant clades: the Yellow Stripe-Like (YSL) proteins and the so-called Oligopeptide Transporters (OPTs), for which the family was named. Three categories of substrates have been identified for this family: small peptides, secondary amino acids bound to metals, and glutathione. Notably, the YSL transporters are involved in metal homeostasis through the translocation of metal-chelates, indicating a level of conservation both in biological function as well as substrates. In contrast, the functions of OPT proteins seem to be less defined and, in this review, I will examine the supporting and contradictory evidence for the proposed roles of OPTs in such diverse functions as long-distance sulfur distribution, nitrogen mobilization, metal homeostasis, and heavy metal sequestration through the transport of glutathione, metal-chelates, and peptides.
Collapse
Affiliation(s)
- Mark Lubkowitz
- Department of Biology, Saint Michael's College, 1 Winooski Park, Colchester, VT 05439, USA.
| |
Collapse
|
24
|
Gomolplitinant KM, Saier MH. Evolution of the oligopeptide transporter family. J Membr Biol 2011; 240:89-110. [PMID: 21347612 PMCID: PMC3061005 DOI: 10.1007/s00232-011-9347-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Accepted: 01/21/2011] [Indexed: 12/31/2022]
Abstract
The oligopeptide transporter (OPT) family of peptide and iron-siderophore transporters includes members from both prokaryotes and eukaryotes but with restricted distribution in the latter domain. Eukaryotic members were found only in fungi and plants with a single slime mold homologue clustering with the fungal proteins. All functionally characterized eukaryotic peptide transporters segregate from the known iron-siderophore transporters on a phylogenetic tree. Prokaryotic members are widespread, deriving from many different phyla. Although they belong only to the iron-siderophore subdivision, genome context analyses suggest that many of them are peptide transporters. OPT family proteins have 16 or occasionally 17 transmembrane-spanning α-helical segments (TMSs). We provide statistical evidence that the 16-TMS topology arose via three sequential duplication events followed by a gene-fusion event for proteins with a seventeenth TMS. The proposed pathway is as follows: 2 TMSs → 4 TMSs → 8 TMSs → 16 TMSs → 17 TMSs. The seventeenth C-terminal TMS, which probably arose just once, is found in just one phylogenetic group of these homologues. Analyses for orthology revealed that a few phylogenetic clusters consist exclusively of orthologues but most have undergone intermixing, suggestive of horizontal transfer. It appears that in this family horizontal gene transfer was frequent among prokaryotes, rare among eukaryotes and largely absent between prokaryotes and eukaryotes as well as between plants and fungi. These observations provide guides for future structural and functional analyses of OPT family members.
Collapse
Affiliation(s)
- Kenny M Gomolplitinant
- Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093-0116, USA
| | | |
Collapse
|
25
|
ZmGT1 Transports Glutathione Conjugates and Its Expression Is Induced by Herbicide Atrazine. PROG BIOCHEM BIOPHYS 2010. [DOI: 10.3724/sp.j.1206.2010.00188] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
26
|
The role of transmembrane domain 9 in substrate recognition by the fungal high-affinity glutathione transporters. Biochem J 2010; 429:593-602. [DOI: 10.1042/bj20100240] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Hgt1p, a high-affinity glutathione transporter from Saccharomyces cerevisiae belongs to the recently described family of OPTs (oligopeptide transporters), the majority of whose members still have unknown substrate specificity. To obtain insights into substrate recognition and translocation, we have subjected all 21 residues of TMD9 (transmembrane domain 9) to alanine-scanning mutagenesis. Phe523 was found to be critical for glutathione recognition, since F523A mutants showed a 4-fold increase in Km without affecting expression or localization. Phe523 and the previously identified polar residue Gln526 were on the same face of the helix suggesting a joint participation in glutathione recognition, whereas two other polar residues, Ser519 and Asn522, of TMD9, although also orientated on the same face, did not appear to be involved. The size and hydrophobicity of Phe523 were both key features of its functionality, as seen from mutational analysis. Sequence alignments revealed that Phe523 and Gln526 were conserved in a cluster of OPT homologues from different fungi. A second cluster contained isoleucine and glutamate residues in place of phenylalanine and glutamine residues, residues that are best tolerated in Hgt1p for glutathione transporter activity, when introduced together. The critical nature of the residues at these positions in TMD9 for substrate recognition was exploited to assign substrate specificities of several putative fungal orthologues present in these and other clusters. The presence of either phenylalanine and glutamine or isoleucine and glutamate residues at these positions correlated with their function as high-affinity glutathione transporters based on genetic assays and the Km of these transporters towards glutathione.
Collapse
|
27
|
Aouida M, Khodami-Pour A, Ramotar D. Novel role for the Saccharomyces cerevisiae oligopeptide transporter Opt2 in drug detoxification. Biochem Cell Biol 2009; 87:653-61. [PMID: 19767828 DOI: 10.1139/o09-045] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Saccharomyces cerevisiae Opt2 is a member of the oligopeptide transporter family that was initially identified to transport tetra- and pentapeptides. Mutants deleted for the OPT2 gene exhibit no growth defects under normal culture conditions. We identified OPT2 from a high-throughput screen that when deleted results in mutants that displayed sensitivity to the anticancer agent bleomycin. The opt2Delta mutant was also reisolated in two additional genome-wide screens designed to identify mutants that are sensitive to the immunosuppressant rapamycin and the divalent metal ion zinc. However, the role of Opt2 in protecting cells against these agents was not investigated. Herein, we show that opt2Delta mutants are also sensitive to a wide variety of toxic agents that are typically detoxified by the vacuoles. Mutants lacking two other related oligopeptide transporters, Opt1 and Ygl114w, showed no significant sensitivities to these drugs, indicating a specific role for Opt2 in drug detoxification. The sensitivities of the opt2Delta mutants were not related to an increased drug uptake but rather to the presence of several small vesicles instead of a functional large vacuole. We propose that Opt2 has a novel function involving the fusion of vesicles to form a mature vacuole.
Collapse
Affiliation(s)
- Mustapha Aouida
- Maisonneuve-Rosemont Hospital, Research Center, 5415 Boul. de l'Assomption, Montreal, QC H1T 2M4, Canada
| | | | | |
Collapse
|
28
|
Pike S, Patel A, Stacey G, Gassmann W. Arabidopsis OPT6 is an oligopeptide transporter with exceptionally broad substrate specificity. PLANT & CELL PHYSIOLOGY 2009; 50:1923-32. [PMID: 19808809 DOI: 10.1093/pcp/pcp136] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Oligopeptide transporters (OPTs) are found in fungi, bacteria and plants. The nine Arabidopsis thaliana OPT genes are expressed mainly in the vasculature and are thought to transport tetra- and pentapeptides, and peptide-like substrates such as glutathione. Expression of AtOPT6 in Xenopus laevis oocytes demonstrated that AtOPT6 transports many tetra- and pentapeptides. In addition, AtOPT6 transported reduced glutathione (GSH), a tripeptide, but not oxidized glutathione (GSSG). Recent data showed that Candida albicans OPTs can transport peptides up to eight amino acids in length. AtOPT6 transported mammalian signaling peptides up to 10 amino acids in length and, in addition, known plant development- and nematode pathogenesis-associated peptides up to 13 amino acids long. AtOPT6 displayed high affinity for penta- and dodecapeptides, but low affinity for GSH. In comparison the Saccharomyces cerevisiae ScOPT1 was incapable of transporting any of the longer peptides tested. These data demonstrate the necessity of experimentally determining substrate specificity of individual OPTs, and lay a foundation for structure/function studies. Characterization of the AtOPT6 substrate range provides a basis for investigating the possible physiological function of AtOPT6 in peptide signaling and thiol transport in response to stress.
Collapse
Affiliation(s)
- Sharon Pike
- Division of Plant Sciences and Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211-7310, USA
| | | | | | | |
Collapse
|
29
|
Casagrande F, Harder D, Schenk A, Meury M, Ucurum Z, Engel A, Weitz D, Daniel H, Fotiadis D. Projection structure of DtpD (YbgH), a prokaryotic member of the peptide transporter family. J Mol Biol 2009; 394:708-17. [PMID: 19782088 DOI: 10.1016/j.jmb.2009.09.048] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2009] [Revised: 09/09/2009] [Accepted: 09/18/2009] [Indexed: 10/20/2022]
Abstract
Cellular uptake of di- and tripeptides has been characterized in numerous organisms, and various transporters have been identified. In contrast, structural information on peptide transporters is very sparse. Here, we have cloned, overexpressed, purified, and biochemically characterized DtpD (YbgH) from Escherichia coli, a prokaryotic member of the peptide transporter family. Its homologues in mammals, PEPT1 (SLC15A1) and PEPT2 (SLC15A2), not only transport peptides but also are of relevance for uptake of drugs as they accept a large spectrum of peptidomimetics such as beta-lactam antibiotics, antivirals, peptidase inhibitors, and others as substrates. Uptake experiments indicated that DtpD functions as a canonical peptide transporter and is, therefore, a valid model for structural studies of this family of proteins. Blue native polyacrylamide gel electrophoresis, gel filtration, and transmission electron microscopy of single-DtpD particles suggest that the transporter exists in a monomeric form when solubilized in detergent. Two-dimensional crystallization of DtpD yielded first tubular crystals that allowed the determination of a projection structure at better than 19 A resolution. This structure of DtpD represents the first structural view of a member of the peptide transporter family.
Collapse
Affiliation(s)
- Fabio Casagrande
- Department of Chemistry and Biochemistry, University of California, 9500 Gilman Drive, San Diego, La Jolla, CA 92093, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Kaur J, Srikanth CV, Bachhawat AK. Differential roles played by the native cysteine residues of the yeast glutathione transporter, Hgt1p. FEMS Yeast Res 2009; 9:849-66. [DOI: 10.1111/j.1567-1364.2009.00529.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
31
|
Kaur J, Bachhawat AK. Gln-222 in transmembrane domain 4 and Gln-526 in transmembrane domain 9 are critical for substrate recognition in the yeast high affinity glutathione transporter, Hgt1p. J Biol Chem 2009; 284:23872-84. [PMID: 19589778 PMCID: PMC2749159 DOI: 10.1074/jbc.m109.029728] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2009] [Revised: 07/02/2009] [Indexed: 11/06/2022] Open
Abstract
Hgt1p, a member of the oligopeptide transporter family, is a high affinity glutathione transporter from the yeast Saccharomyces cerevisiae. We have explored the role of polar or charged residues in the putative transmembrane domains of Hgt1p to obtain insights into the structural features of Hgt1p that govern its substrate specificity. A total of 22 charged and polar residues in the predicted transmembrane domains and other conserved regions were subjected to alanine mutagenesis. Functional characterization of these 22 mutants identified 11 mutants which exhibited significant loss in functional activity. All 11 mutants except T114A had protein expression levels comparable with wild type, and all except E744A were proficient in trafficking to the cell surface. Kinetic analyses revealed differential contributions toward the functional activity of Hgt1p by these residues and identified Asn-124 in transmembrane domain 1 (TMD1), Gln-222 in TMD4, Gln-526 in TMD9, and Glu-544, Arg-554, and Lys-562 in the intracellular loop region 537-568 containing the highly conserved proline-rich motif to be essential for the transport activity of the protein. Furthermore, mutants Q222A and Q526A exhibited a nearly 4- and 8-fold increase in the K(m) for glutathione. Interestingly, although Gln-222 is widely conserved among other functionally characterized oligopeptide transporter family members including those having a different substrate specificity, Gln-526 is present only in Hgt1p and Pgt1, the only two known high affinity glutathione transporters. These results provide the first insights into the substrate recognition residues of a high affinity glutathione transporter and on residues/helices involved in substrate translocation in the structurally uncharacterized oligopeptide transporter family.
Collapse
Affiliation(s)
- Jaspreet Kaur
- From the Institute of Microbial Technology, Sector 39-A, Chandigarh 160 036, India
| | - Anand K. Bachhawat
- From the Institute of Microbial Technology, Sector 39-A, Chandigarh 160 036, India
| |
Collapse
|
32
|
Chagué V, Maor R, Sharon A. CgOpt1, a putative oligopeptide transporter from Colletotrichum gloeosporioides that is involved in responses to auxin and pathogenicity. BMC Microbiol 2009; 9:173. [PMID: 19698103 PMCID: PMC2769210 DOI: 10.1186/1471-2180-9-173] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2008] [Accepted: 08/21/2009] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND The fungus Colletotrichum gloeosporioides f. sp. aeschynomene produces high levels of indole-3-acetic acid (IAA) in axenic cultures and during plant infection. We generated a suppression subtractive hybridization library enriched for IAA-induced genes and identified a clone, which was highly expressed in IAA-containing medium. RESULTS The corresponding gene showed similarity to oligopeptide transporters of the OPT family and was therefore named CgOPT1. Expression of CgOPT1 in mycelia was low, and was enhanced by external application of IAA. cgopt1-silenced mutants produced less spores, had reduced pigmentation, and were less pathogenic to plants than the wild-type strain. IAA enhanced spore formation and caused changes in colony morphology in the wild-type strain, but had no effect on spore formation or colony morphology of the cgopt1-silenced mutants. CONCLUSION Our results show that IAA induces developmental changes in C. gloeosporioides. These changes are blocked in cgopt1-silenced mutants, suggesting that this protein is involved in regulation of fungal response to IAA. CgOPT1 is also necessary for full virulence, but it is unclear whether this phenotype is related to auxin.
Collapse
Affiliation(s)
- Véronique Chagué
- Department of Plant Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Rudy Maor
- Department of Plant Sciences, Tel Aviv University, Tel Aviv 69978, Israel
- Current address: Rosetta Genomics, 10 Plaut Street, Rehovot, 76706, Israel
| | - Amir Sharon
- Department of Plant Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
33
|
Hauser M, Narita V, Donhardt AM, Naider F, Becker JM. Multiplicity and regulation of genes encoding peptide transporters inSaccharomyces cerevisiae. Mol Membr Biol 2009. [DOI: 10.1080/09687680010029374] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
34
|
Subileau M, Schneider R, Salmon JM, Degryse E. New insights on 3-mercaptohexanol (3MH) biogenesis in Sauvignon Blanc wines: Cys-3MH and (E)-hexen-2-al are not the major precursors. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2008; 56:9230-9235. [PMID: 18788709 DOI: 10.1021/jf801626f] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The molar conversion yield of Cys-3MH into 3MH, during alcoholic fermentation, was traced using a deuterated isotope of the precursor added to different Sauvignon Blanc musts. This yield is close to that found in synthetic media supplemented with synthetic Cys-3MH, that is, below 1%. Yet, this represents only 3-7% of the total 3MH production in wine. This clearly shows that Cys-3MH is a precursor of 3MH, but not the main one in the different musts tested. The contribution of ( E)-hex-2-enal, which has been suggested as another potential precursor of 3MH, was discarded as well, as shown using also a deuterated analogue. The third suggested precursor of 3MH is a glutathionyl-3MH (G-3MH), which upon proteolytic degradation could release Cys-3MH. The knockout of the OPT1 gene, which encodes the major glutathione transporter, reduces 3MH accumulation by a 2-fold factor in grape must as compared to the wild type strain. Consequently, it is deduced that major 3MH precursor(s) are transported into yeast via Opt1p, which is in favor of G-3MH being a 3MH precursor. This work opens the search for the major natural precursor(s) of 3MH in Sauvignon Blanc must.
Collapse
Affiliation(s)
- Maeva Subileau
- UMR Sciences Pour l'Oenologie, INRA, bât 28, 2 Place Viala, 34060 Montpellier Cedex 1, France.
| | | | | | | |
Collapse
|
35
|
Thakur A, Kaur J, Bachhawat AK. Pgt1, a glutathione transporter from the fission yeastSchizosaccharomyces pombe. FEMS Yeast Res 2008; 8:916-29. [DOI: 10.1111/j.1567-1364.2008.00423.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
36
|
Ogihara F, Kitagaki H, Wang Q, Shimoi H. Common industrial sake yeast strains have three copies of the AQY1-ARR3 region of chromosome XVI in their genomes. Yeast 2008; 25:419-32. [PMID: 18509847 DOI: 10.1002/yea.1596] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Genomic analysis of industrial yeast strains is important for exploitation of their potential. We analysed the genomic structure of the most widely used sake yeast strain, Kyokai no. 7 (K7), by DNA microarray. Since the analysis suggested that the copy number of the AQY1-ARR3 region in the right arm of chromosome XVI was amplified, we performed Southern blot analysis using the AQY1 gene as a probe. The probe hybridized to three bands in the widely used sake strains derived from K7, but only to one band of 1.4 kb in the laboratory strains. Since the extra two bands were not observed in old sake strains, or in other industrial strains, the amplification of this region appeared to be specific for the widely used sake strains. The copy number of the AQY1-ARR3 region appeared to have increased by chromosomal translocation, since chromosomal Southern blot analysis revealed that the AQY1 probe hybridized to chromosomes IV and XIII, in addition to chromosome XVI, in which AQY1 of the laboratory strain is encoded. The chromosomal translocation was also confirmed by PCR analysis using primers that amplify the region containing the breakpoint. Cloning and sequencing of cosmids that encode the AQY1-ARR3 region revealed that this region is flanked by TG(1-3) repeats on the centromere-proximal side in chromosomes IV and XIII, suggesting that amplification of this region occurred by homologous recombination through TG(1-3) repeats. These results demonstrate the genomic characteristics of the modern widely used sake strains that discriminate them from other strains.
Collapse
Affiliation(s)
- Fukashi Ogihara
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, 1-3-1 Kagamiyama, Higashihiroshima 739-8530, Japan
| | | | | | | |
Collapse
|
37
|
Hsu YF, Wang CS, Raja R. Gene expression pattern at desiccation in the anther of Lilium longiflorum. PLANTA 2007; 226:311-22. [PMID: 17394013 DOI: 10.1007/s00425-007-0483-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2006] [Accepted: 01/19/2007] [Indexed: 05/03/2023]
Abstract
Although gene expression profile of pollen has been described, there is limited information regarding a particular phase during anther/pollen development. This work characterizes gene expression pattern at desiccation in lily (Lilium longiflorum Thunb. cv Snow Queen) anthers. We have applied a suppression-subtractive hybridization (SSH) strategy, through which 90 clones were identified and sequenced. These clones resulted in the identification of 42 individual cDNAs among which 33 genes were specifically expressed at the desiccation phase of anthers of >150-mm buds. Fourteen cDNAs were chosen for further examination. Six genes were both dehydration- and abscisic acid (ABA)-inducible whereas the other eight genes were apparently dehydration-irrelevant. The group of dehydration- and ABA-induced genes was also induced by desiccation that developmentally occurs in the anther. The application of fluridone has a significant effect of inhibition on mRNA accumulation of these genes in maturing anthers during which desiccation occurs. Pollen germination analysis indicated that, of those dehydration-irrelevant genes, three were ABA-responsive and the other five were not. Thus, three separate signal pathways that function in the activation of late genes at desiccation during anther development are established. The first is the ABA-dependent pathway induced by environmental stress of dehydration. The other two pathways of signaling triggered by developmental cues, through which one is ABA-dependent and another is ABA-independent. The 14 gene proteins showed spatial and temporal expression patterns and may participate in membrane/cell wall synthesis, cytoskeletal organization, signaling, RNA binding, ubiquitin-mediated degradation and transportation during germination and tube growth.
Collapse
Affiliation(s)
- Yi-Feng Hsu
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan 40227
| | | | | |
Collapse
|
38
|
Wiles AM, Cai H, Naider F, Becker JM. Nutrient regulation of oligopeptide transport in Saccharomyces cerevisiae. MICROBIOLOGY-SGM 2007; 152:3133-3145. [PMID: 17005992 DOI: 10.1099/mic.0.29055-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Small peptides (2-5 amino acid residues) are transported into Saccharomyces cerevisiae via two transport systems: PTR (Peptide TRansport) for di-/tripeptides and OPT (OligoPeptide Transport) for oligopeptides of 4-5 amino acids in length. Although regulation of the PTR system has been studied in some detail, neither the regulation of the OPT family nor the environmental conditions under which family members are normally expressed have been well studied in S. cerevisiae. Using a lacZ reporter gene construct fused to 1 kb DNA from upstream of the genes OPT1 and OPT2, which encode the two S. cerevisiae oligopeptide transporters, the relative expression levels of these genes were measured in a variety of environmental conditions. Uptake assays were also conducted to measure functional protein levels at the plasma membrane. It was found that OPT1 was up-regulated in sulfur-free medium, and that Ptr3p and Ssy1p, proteins involved in regulating the di-/tripeptide transporter encoding gene PTR2 via amino acid sensing, were required for OPT1 expression in a sulfur-free environment. In contrast, as measured by response to toxic tetrapeptide and by real-time PCR, OPT1 was not regulated through Cup9p, which is a repressor for PTR2 expression, although Cup9p did repress OPT2 expression. In addition, all of the 20 naturally occurring amino acids, except the sulfur-containing amino acids methionine and cysteine, up-regulated OPT1, with the greatest change in expression observed when cells were grown in sulfur-free medium. These data demonstrate that regulation of the OPT system has both similarities and differences to regulation of the PTR system, allowing the yeast cell to adapt its utilization of small peptides to various environmental conditions.
Collapse
Affiliation(s)
- Amy M Wiles
- Department of Biochemistry, Cell and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Houjian Cai
- Department of Microbiology, University of Tennessee, Knoxville, TN 37996, USA
| | - Fred Naider
- Department of Chemistry, College of Staten Island, CUNY, Staten Island, NY 10301, USA
| | - Jeffrey M Becker
- Department of Microbiology, University of Tennessee, Knoxville, TN 37996, USA
| |
Collapse
|
39
|
Daniel H, Spanier B, Kottra G, Weitz D. From bacteria to man: archaic proton-dependent peptide transporters at work. Physiology (Bethesda) 2006; 21:93-102. [PMID: 16565475 DOI: 10.1152/physiol.00054.2005] [Citation(s) in RCA: 130] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Uptake of nutrients into cells is essential to life and occurs in all organisms at the expense of energy. Whereas in most prokaryotic and simple eukaryotic cells electrochemical transmembrane proton gradients provide the central driving force for nutrient uptake, in higher eukaryotes it is more frequently coupled to sodium movement along the transmembrane sodium gradient, occurs via uniport mechanisms driven by the substrate gradient only, or is linked to the countertransport of a similar organic solute. With the cloning of a large number of mammalian nutrient transport proteins, it became obvious that a few "archaic'' transporters that utilize a transmembrane proton gradient for nutrient transport into cells can still be found in mammals. The present review focuses on the electrogenic peptide transporters as the best studied examples of proton-dependent nutrient transporters in mammals and summarizes the most recent findings on their physiological importance. Taking peptide transport as a general phenomenon found in nature, we also include peptide transport mechanisms in bacteria, yeast, invertebrates, and lower vertebrates, which are not that often addressed in physiology journals.
Collapse
Affiliation(s)
- Hannelore Daniel
- Department of Food and Nutrition, Molecular Nutrition Unit, Technical University of Munich, Freising-Weihenstephan, Germany.
| | | | | | | |
Collapse
|
40
|
Ribichich KF, Georg RC, Gomes SL. Comparative EST analysis provides insights into the basal aquatic fungus Blastocladiella emersonii. BMC Genomics 2006; 7:177. [PMID: 16836762 PMCID: PMC1550239 DOI: 10.1186/1471-2164-7-177] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2006] [Accepted: 07/12/2006] [Indexed: 11/23/2022] Open
Abstract
Background Blastocladiella emersonii is an aquatic fungus of the Chytridiomycete class, which is at the base of the fungal phylogenetic tree. In this sense, some ancestral characteristics of fungi and animals or fungi and plants could have been retained in this aquatic fungus and lost in members of late-diverging fungal species. To identify in B. emersonii sequences associated with these ancestral characteristics two approaches were followed: (1) a large-scale comparative analysis between putative unigene sequences (uniseqs) from B. emersonii and three databases constructed ad hoc with fungal proteins, animal proteins and plant unigenes deposited in Genbank, and (2) a pairwise comparison between B. emersonii full-length cDNA sequences and their putative orthologues in the ascomycete Neurospora crassa and the basidiomycete Ustilago maydis. Results Comparative analyses of B. emersonii uniseqs with fungi, animal and plant databases through the two approaches mentioned above produced 166 B. emersonii sequences, which were identified as putatively absent from other fungi or not previously described. Through these approaches we found: (1) possible orthologues of genes previously identified as specific to animals and/or plants, and (2) genes conserved in fungi, but with a large difference in divergence rate in B. emersonii. Among these sequences, we observed cDNAs encoding enzymes from coenzyme B12-dependent propionyl-CoA pathway, a metabolic route not previously described in fungi, and validated their expression in Northern blots. Conclusion Using two different approaches involving comparative sequence analyses, we could identify sequences from the early-diverging fungus B. emersonii previously considered specific to animals or plants, and highly divergent sequences from the same fungus relative to other fungi.
Collapse
Affiliation(s)
- Karina F Ribichich
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, São Paulo, SP 05508-000, Brazil
| | - Raphaela C Georg
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, São Paulo, SP 05508-000, Brazil
| | - Suely L Gomes
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, São Paulo, SP 05508-000, Brazil
| |
Collapse
|
41
|
WATERWORTH WANDAM, BRAY CLIFFORDM. Enigma variations for peptides and their transporters in higher plants. ANNALS OF BOTANY 2006; 98:1-8. [PMID: 16735405 PMCID: PMC2803549 DOI: 10.1093/aob/mcl099] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
BACKGROUND Two families of proteins that transport small peptides, the oligopeptide transporters (OPTs) and the peptide transporters (PTRs), have been recognized in eukaryotes. Higher plants contain a far greater number of genes for these transporters than do other eukaryotes. This may be indicative of the relative importance of (oligo)peptides and their transport to plant growth and metabolism. RECENT PROGRESS Recent studies are now allowing us to assign functions to these transporters and are starting to identify their in-planta substrates, revealing unexpected and important contributions of the transporters to plant growth and developmental processes. This Botanical Briefing appraises recent findings that PTRs and OPTs have key roles to play in the control of plant cell growth and development. Evidence is presented that some of these transporters have functions outside that of nitrogen nutrition and that these carriers can also surprise us with their totally unexpected choice of substrates.
Collapse
|
42
|
Osawa H, Stacey G, Gassmann W. ScOPT1 and AtOPT4 function as proton-coupled oligopeptide transporters with broad but distinct substrate specificities. Biochem J 2006; 393:267-75. [PMID: 16149917 PMCID: PMC1383685 DOI: 10.1042/bj20050920] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A group of OPTs (oligopeptide transporters) exclusively identified in plants and fungi are proposed to transport oligopeptides and derivatives of three to six amino acids in length, but their transport mechanisms and biological functions are poorly understood. We expressed the Saccharomyces cerevisiae (yeast) OPT ScOPT1 and five Arabidopsis thaliana AtOPTs in Xenopus laevis oocytes for two-electrode voltage-clamp studies. ScOPT1 produced inward currents in response to GSH or GSSG, the phytochelatin (PC) PC2 and oligopeptides including the tetrapeptide GGFL, but not KLGL. Inward currents were dependent on the external proton and substrate concentrations, with high affinity for both. This and the inward currents evoked by substrates with net negative charges showed that ScOPT1 is a proton-coupled transporter. ScOPT1 displayed highest apparent affinity for PC2, with small differences in the maximal current among substrates. Glutathione transport by any of the tested AtOPTs, including AtOPT6, was not detected in yeast growth complementation assays. With AtOPT4, initially only small KLGL-dependent currents were recorded in batches of oocytes showing high ScOPT1 expression. AtOPT4 expression was optimized by swapping the 5'-untranslated region with that of ScOPT1. AtOPT4 displayed a higher affinity for KLGL than ScOPT1 did for any peptide. AtOPT4-mediated KLGL transport was detectable at pH 5.0, but not at pH 6.0 or 7.0. Taken together, our results demonstrate that ScOPT1 and AtOPT4 are proton-coupled OPTs with broad but distinct substrate specificities and affinities.
Collapse
Affiliation(s)
- Hiroki Osawa
- *Division of Plant Sciences, Life Sciences Center, University of Missouri, Columbia, MO 65211, U.S.A
| | - Gary Stacey
- *Division of Plant Sciences, Life Sciences Center, University of Missouri, Columbia, MO 65211, U.S.A
- †Division of Biochemistry, Life Sciences Center, University of Missouri, Columbia, MO 65211, U.S.A
| | - Walter Gassmann
- *Division of Plant Sciences, Life Sciences Center, University of Missouri, Columbia, MO 65211, U.S.A
- To whom correspondence should be addressed (email )
| |
Collapse
|
43
|
Larraya LM, Boyce KJ, So A, Steen BR, Jones S, Marra M, Kronstad JW. Serial analysis of gene expression reveals conserved links between protein kinase A, ribosome biogenesis, and phosphate metabolism in Ustilago maydis. EUKARYOTIC CELL 2006; 4:2029-43. [PMID: 16339721 PMCID: PMC1317500 DOI: 10.1128/ec.4.12.2029-2043.2005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The switch from budding to filamentous growth is a key aspect of invasive growth and virulence for the fungal phytopathogen Ustilago maydis. The cyclic AMP (cAMP) signaling pathway regulates dimorphism in U. maydis, as demonstrated by the phenotypes of mutants with defects in protein kinase A (PKA). Specifically, a mutant lacking the regulatory subunit of PKA encoded by the ubc1 gene displays a multiple-budded phenotype and fails to incite disease symptoms, although proliferation does occur in the plant host. A mutant with a defect in a catalytic subunit of PKA, encoded by adr1, has a constitutively filamentous phenotype and is nonpathogenic. We employed serial analysis of gene expression to examine the transcriptomes of a wild-type strain and the ubc1 and adr1 mutants to further define the role of PKA in U. maydis. The mutants displayed changes in the transcript levels for genes encoding ribosomal proteins, genes regulated by the b mating-type proteins, and genes for metabolic functions. Importantly, the ubc1 mutant displayed elevated transcript levels for genes involved in phosphate acquisition and storage, thus revealing a connection between cAMP and phosphate metabolism. Further experimentation indicated a phosphate storage defect and elevated acid phosphatase activity for the ubc1 mutant. Elevated phosphate levels in culture media also enhanced the filamentous growth of wild-type cells in response to lipids, a finding consistent with PKA regulation of morphogenesis in U. maydis. Overall, these findings extend our understanding of cAMP signaling in U. maydis and reveal a link between phosphate metabolism and morphogenesis.
Collapse
Affiliation(s)
- Luis M Larraya
- Michael Smith Laboratories, 2185 East Mall, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | | | | | | | | | | | | |
Collapse
|
44
|
Vizcaíno JA, Cardoza RE, Hauser M, Hermosa R, Rey M, Llobell A, Becker JM, Gutiérrez S, Monte E. ThPTR2, a di/tri-peptide transporter gene from Trichoderma harzianum. Fungal Genet Biol 2006; 43:234-46. [PMID: 16466953 DOI: 10.1016/j.fgb.2005.12.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2005] [Revised: 12/01/2005] [Accepted: 12/09/2005] [Indexed: 10/25/2022]
Abstract
The generation of a wide ESTs library and database from Trichoderma harzianum CECT 2413 was the base for identifying the gene ThPTR2, coding for a PTR family di/tri-peptide transporter. The deduced protein sequence of the ThPTR2 gene showed the conserved motifs and also the 12 transmembrane domains typical of the PTR transporters. The highest level of ThPTR2 expression was found when the fungus was grown in chitin as sole carbon source. We also found that ThPTR2 expression was increased when Trichoderma interacted directly in solid medium with the plant-pathogenic fungus Botrytis cinerea, showing that ThPTR2 is involved in the mycoparasitic process. Additionally, its expression was triggered by nitrogen starvation and a higher level of expression was also found when Trichoderma was grown in secondary nitrogen sources like allantoin, yeast extract, and urea. However, no difference was found when Trichoderma was grown in presence or absence of glucose as carbon source. Strain T34-15, a transformant that overexpressed the ThPTR2 gene, showed about a 2-fold increase in the uptake of the dipeptide Leu-Leu. Additionally, two transformants from the strain Trichoderma longibrachiatum T52 that overexpressed ThPTR2 were also studied, confirming the role of this gene in peptide transport. Other homologous genes to ThPTR2 were identified in other Trichoderma strains. ThPTR2 is the first experimentally confirmed PTR family transporter gene from filamentous fungi.
Collapse
Affiliation(s)
- J A Vizcaíno
- Spanish-Portuguese Center of Agricultural Research (CIALE), Departamento de Microbiología y Genética, Universidad de Salamanca, Edificio Departamental lab 208, Plaza Doctores de la Reina s/n, 37007 Salamanca, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Stacey MG, Osawa H, Patel A, Gassmann W, Stacey G. Expression analyses of Arabidopsis oligopeptide transporters during seed germination, vegetative growth and reproduction. PLANTA 2006; 223:291-305. [PMID: 16151844 DOI: 10.1007/s00425-005-0087-x] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2005] [Accepted: 07/14/2005] [Indexed: 05/04/2023]
Abstract
AtOPT promoter-GUS fusions were constructed for six of the nine known, putative oligopeptide transporters (OPTs) in Arabidopsis thaliana and used to examine AtOPT expression at various stages of plant development. AtOPT1, AtOPT3, AtOPT4, AtOPT6 and AtOPT7 were expressed in the embryonic cotyledons prior to root radicle emergence. Except for AtOPT8, which gave weak expression, all AtOPTs were strongly expressed in post-germinative seedlings with strongest expression in vascular tissues of cotyledons and hypocotyls. Preferential expression of AtOPTs in vascular tissues was also observed in cotyledons, leaves, hypocotyls, roots, flowers, siliques, and seed funiculi of seedlings and adult plants. Differential tissue-specific expression was observed for specific AtOPTs. For example, AtOPT1, AtOPT3 and AtOPT8 were uniquely expressed in pollen. Only AtOPT1 was expressed in growing pollen tubes, while only AtOPT6 was observed in ovules. AtOPT8 was transiently expressed in seeds during early stages of embryogenesis. Iron limitation was found to enhance expression of AtOPT3. These data suggest distinct cellular roles for specific AtOPTs including nitrogen mobilization during germination and senescence, pollen tube growth, pollen and ovule development, seed formation and metal transport.
Collapse
Affiliation(s)
- Minviluz G Stacey
- Division of Plant Sciences, The University of Missouri, Columbia, MO 65211, USA
| | | | | | | | | |
Collapse
|
46
|
Lubkowitz M. The OPT family functions in long-distance peptide and metal transport in plants. GENETIC ENGINEERING 2006; 27:35-55. [PMID: 16382870 DOI: 10.1007/0-387-25856-6_3] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The OPT family was first described six years ago, and much progress has been made in understanding the role these transporters play in their respective organisms. Plants are the only organisms in which both YS- and PT-type transporters have been characterized, and all of these OPTs appear to be plasma membrane-bound proteins, suggesting that they import substrates from the apoplasm or the environment. YS1 is the only OPT known to translocate substrates from the rhizosphere, whereas all the other OPTs seem to function in long-distance transport of peptides or metals. The sum of all the studies covered in this review suggest the model for OPT function in plants depicted in Figure 4. Peptides, metal-NA, and metal-MAs complexes (Strategy II plants only) are loaded into the xylem stream in the root for long-distance transport. OPTs unload the xylem by importing substrates into sink tissues such as leaves and by transloading the phloem. Peptides and metal-NA complexes exit the leaf symplasmically or by importation into the phloem from the apoplasm by OPTs. The filial tissues (endosperm and embryo) are apoplasmically separated from the maternal tissues, and OPTs may also function in loading the developing seed. Similarly, seedlings are symplasmically disconnected from the endosperm and OPTs may help move nutrients to the growing plant. Much progress has been made in the last two years toward understanding OPTs in plants, although several fundamental questions remain unanswered. Namely, what is the level of redundancy? Is there any substrate overlap between YS and PT OPTs? How crucial are their respective roles? Are there additional functions beyond peptide and metal transport? Given the recent pace of discovery, we may not have to wait long to find out the answers.
Collapse
Affiliation(s)
- Mark Lubkowitz
- Biology Department, Saint Michael's College, Colchester, Vermont 05477, USA
| |
Collapse
|
47
|
Divon HH, Rothan-Denoyes B, Davydov O, DI Pietro A, Fluhr R. Nitrogen-responsive genes are differentially regulated in planta during Fusarium oxyspsorum f. sp. lycopersici infection. MOLECULAR PLANT PATHOLOGY 2005; 6:459-470. [PMID: 20565671 DOI: 10.1111/j.1364-3703.2005.00297.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
SUMMARY Nitrogen is an essential growth component whose availability will limit microbial spread, and as such it serves as a key control point in dictating an organism's adaptation to various environments. Little is known about fungal nutrition in planta. To enhance our understanding of this process we examined the transcriptional adaptation of Fusarium oxysporum f. sp. lycopersici, the causal agent for vascular wilt in tomato, during nutritional stress and plant colonization. Using RT-PCR and microarray technology we compared fungal gene expression in planta to axenic nitrogen starvation culture. Several expressed sequence tags, representing at least four genes, were identified that are concomitantly induced during nitrogen starvation and in planta growth. Three of these genes show similarity to a general amino acid permease, a peptide transporter and an uricase, all functioning in organic nitrogen acquisition. We further show that these genes represent a distinguishable subset of the nitrogen-responsive transcripts that respond to amino acids commonly available in the plant. Our results indicate that nitrogen starvation partially mimics in planta growth conditions, and further suggest that minute levels of organic nitrogen sources dictate the final outcome of fungal gene expression in planta. The nature of the identified transcripts suggests modes of nutrient uptake and survival for Fusarium during colonization.
Collapse
Affiliation(s)
- Hege H Divon
- Department of Plant Science, Weizmann Institute of Science, 76100 Rehovot, Israel
| | | | | | | | | |
Collapse
|
48
|
Schaaf G, Schikora A, Häberle J, Vert G, Ludewig U, Briat JF, Curie C, von Wirén N. A putative function for the arabidopsis Fe-Phytosiderophore transporter homolog AtYSL2 in Fe and Zn homeostasis. PLANT & CELL PHYSIOLOGY 2005; 46:762-74. [PMID: 15753101 DOI: 10.1093/pcp/pci081] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Although Arabidopsis thaliana does not produce phytosiderophores (PS) under Fe deficiency, it contains eight homologs of the metal-PS/metal-nicotianamine (NA) transporter ZmYS1 from maize. This study aimed to investigate whether one of the closest Arabidopsis homologs to ZmYS1, AtYSL2, is involved in metal-chelate transport. Northern analysis revealed high expression levels of AtYSL2 in Fe-sufficient or Fe-resupplied roots, while under Fe deficiency transcript levels decreased. Quantitative real-time polymerase chain reaction (PCR) and analysis of transgenic plants expressing an AtYSL2 promoter::beta-glucuronidase gene further allowed the detection of down-regulated AtYSL2 gene expression under Zn and Fe deficiency. In contrast to ZmYS1, AtYSL2 did not mediate metal-PS or metal-NA transport in yeast mutants defective in Cu or Fe uptake, nor did AtYSL2 mediate Fe(II)-NA-, Fe(III)-NA- or Ni(II)-NA-inducible currents when assayed by two-electrode voltage clamp in Xenopus oocytes. Moreover, truncation of the N-terminus to remove putative phosphorylation sites that might trigger autoinhibition did not confer functionality to AtYSL2. A direct growth comparison of yeast cells transformed with AtYSL2 in two different yeast expression vectors showed that transformation with empty pFL61 repressed growth even under non-limiting Fe supply. We therefore conclude that the yeast complementation assay previously employed does not allow the identification of AtYSL2 as an Fe-NA transporter. Transgenic plants expressing an AtYSL2 promoter::beta-glucuronidase gene showed expression in root endodermis and pericycle cells facing the meta-xylem tubes. Taken together, our investigations support an involvement of AtYSL2 in Fe and Zn homeostasis, although functionality or substrate specificity are likely to differ between AtYSL2 and ZmYS1.
Collapse
Affiliation(s)
- Gabriel Schaaf
- Institut für Pflanzenernährung, Universität Hohenheim, D-70593 Stuttgart, Germany
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Srikanth CV, Vats P, Bourbouloux A, Delrot S, Bachhawat AK. Multiple cis-regulatory elements and the yeast sulphur regulatory network are required for the regulation of the yeast glutathione transporter, Hgt1p. Curr Genet 2005; 47:345-58. [PMID: 15821937 DOI: 10.1007/s00294-005-0571-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2004] [Revised: 02/11/2005] [Accepted: 02/20/2005] [Indexed: 10/25/2022]
Abstract
HGT1 encodes a high-affinity glutathione transporter in the yeast Saccharomyces cerevisiae that is induced under sulphur limitation. The present work demonstrates that repression by organic sulphur sources is under the control of the classic sulphur regulatory network, as seen by the absence of expression in a met4delta background. Cysteine appeared to be the principal regulatory molecule, since elevated levels were seen in str4delta strains (deficient in cysteine biosynthesis) that could be repressed by elevated levels of cysteine, but not by methionine or glutathione. Investigations into cis-regulatory elements revealed that the previously described motif, a 9-bp cis element, CCGCCACAC, located at the -356 to -364 region of the promoter could in fact be refined to a 7-bp CGCCACA motif that is also repeated at -333 to -340. The second copy of this motif was essential for activity, since mutations in the core region of the second copy completely abolished activity and regulation by sulphur sources. Activity, but not regulation, could be restored by reintroducing an additional copy upstream of the first copy. A third region, GCCGTCTGCAAGGCA, conserved in the HGT1 promoters of the different Saccharomyces spp, was observed at -300 to -285 but, while mutations in this region did not lead to any loss in repression, the basal and induced levels were significantly increased. In contrast to a previous report, no evidence was found for regulation by the VDE endonuclease. The strong repression at the transport level by glutathione seen in strains overexpressing HGT1 was due to a glutathione-dependent toxicity in these cells.
Collapse
Affiliation(s)
- Chittur V Srikanth
- Institute of Microbial Technology, Sector 39-A, Chandigarh, 160 036, India
| | | | | | | | | |
Collapse
|
50
|
Dietrich D, Hammes U, Thor K, Suter-Grotemeyer M, Flückiger R, Slusarenko AJ, Ward JM, Rentsch D. AtPTR1, a plasma membrane peptide transporter expressed during seed germination and in vascular tissue of Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2004; 40:488-99. [PMID: 15500465 DOI: 10.1111/j.1365-313x.2004.02224.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
For the efficient translocation of organic nitrogen, small peptides of two to three amino acids are posited as an important alternative to amino acids. A new transporter mediating the uptake of di- and tripeptides was isolated from Arabidopsis thaliana by heterologous complementation of a peptide transport-deficient Saccharomyces cerevisiae mutant. AtPTR1 mediated growth of S. cerevisiae cells on different di- and tripeptides and caused sensitivity to the phytotoxin phaseolotoxin. The spectrum of substrates recognized by AtPTR1 was determined in Xenopus laevis oocytes injected with AtPTR1 cRNA under voltage clamp conditions. AtPTR1 not only recognized a broad spectrum of di- and tripeptides, but also substrates lacking a peptide bond. However, amino acids, omega-amino fatty acids or peptides with more than three amino acid residues did not interact with AtPTR1. At pH 5.5 AtPTR1 had an apparent lower affinity (K(0.5) = 416 microm) for Ala-Asp compared with Ala-Ala (K(0.5) = 54 microm) and Ala-Lys (K(0.5) = 112 microm). Transient expression of AtPTR1/GFP fusion proteins in tobacco protoplasts showed that AtPTR1 is localized at the plasma membrane. In addition, transgenic plants expressing the beta-glucuronidase (uidA) gene under control of the AtPTR1 promoter demonstrated expression in the vascular tissue throughout the plant, indicative of a role in long-distance transport of di- and tripeptides.
Collapse
Affiliation(s)
- Daniela Dietrich
- Molecular Plant Physiology, Institute of Plant Sciences, University of Berne, 3013 Berne, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|