1
|
Rocha RF, Martins PGA, D'Muniz Pereira H, Brandão-Neto J, Thiemann OH, Terenzi H, Menegatti ACO. Crystal structure of the Cys-NO modified YopH tyrosine phosphatase. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2022; 1870:140754. [PMID: 34995802 DOI: 10.1016/j.bbapap.2022.140754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/21/2021] [Accepted: 01/01/2022] [Indexed: 06/14/2023]
Abstract
Protein tyrosine phosphatases (PTPs) are key virulence factors in pathogenic bacteria, consequently, they have become important targets for new approaches against these pathogens, especially in the fight against antibiotic resistance. Among these targets of interest YopH (Yersinia outer protein H) from virulent species of Yersinia is an example. PTPs can be reversibly inhibited by nitric oxide (NO) since the oxidative modification of cysteine residues may influence the protein structure and catalytic activity. We therefore investigated the effects of NO on the structure and enzymatic activity of Yersinia enterocolitica YopH in vitro. Through phosphatase activity assays, we observe that in the presence of NO YopH activity was inhibited by 50%, and that this oxidative modification is partially reversible in the presence of DTT. Furthermore, YopH S-nitrosylation was clearly confirmed by a biotin switch assay, high resolution mass spectrometry (MS) and X-ray crystallography approaches. The crystal structure confirmed the S-nitrosylation of the catalytic cysteine residue, Cys403, while the MS data provide evidence that Cys221 and Cys234 might also be modified by NO. Interestingly, circular dichroism spectroscopy shows that the S-nitrosylation affects secondary structure of wild type YopH, though to a lesser extent on the catalytic cysteine to serine YopH mutant. The data obtained demonstrate that S-nitrosylation inhibits the catalytic activity of YopH, with effects beyond the catalytic cysteine. These findings are helpful for designing effective YopH inhibitors and potential therapeutic strategies to fight this pathogen or others that use similar mechanisms to interfere in the signal transduction pathways of their hosts.
Collapse
Affiliation(s)
- Ruth F Rocha
- Laboratório de Biologia Molecular Estrutural, Departamento de Bioquímica, CCB, Universidade Federal de Santa Catarina, Florianópolis 88040-900, Brazil
| | - Priscila G A Martins
- Laboratório de Biologia Molecular Estrutural, Departamento de Bioquímica, CCB, Universidade Federal de Santa Catarina, Florianópolis 88040-900, Brazil
| | | | - José Brandão-Neto
- Diamond Light Source, Diamond House, Harwell Science and Innovation Campus, Didcot OX110DE, United Kingdom
| | - Otavio Henrique Thiemann
- São Carlos Institute of Physics, University of São Paulo, São Carlos, Brazil; Department of Genetics and Evolution, Federal University of São Carlos, São Carlos, Brazil
| | - Hernán Terenzi
- Laboratório de Biologia Molecular Estrutural, Departamento de Bioquímica, CCB, Universidade Federal de Santa Catarina, Florianópolis 88040-900, Brazil.
| | - Angela C O Menegatti
- Department of Molecular Biology, Federal University of Paraiba, João Pessoa 58051-900, Brazil.
| |
Collapse
|
2
|
Role of the Yersinia pseudotuberculosis Virulence Plasmid in Pathogen-Phagocyte Interactions in Mesenteric Lymph Nodes. EcoSal Plus 2021; 9:eESP00142021. [PMID: 34910573 DOI: 10.1128/ecosalplus.esp-0014-2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Yersinia pseudotuberculosis is an Enterobacteriaceae family member that is commonly transmitted by the fecal-oral route to cause infections. From the small intestine, Y. pseudotuberculosis can invade through Peyer's patches and lymph vessels to infect the mesenteric lymph nodes (MLNs). Infection of MLNs by Y. pseudotuberculosis results in the clinical presentation of mesenteric lymphadenitis. MLNs are important for immune responses to intestinal pathogens and microbiota in addition to their clinical relevance to Y. pseudotuberculosis infections. A characteristic of Y. pseudotuberculosis infection in MLNs is the formation of pyogranulomas. Pyogranulomas are composed of neutrophils, inflammatory monocytes, and lymphocytes surrounding extracellular microcolonies of Y. pseudotuberculosis. Key elements of the complex pathogen-host interaction in MLNs have been identified using mouse infection models. Y. pseudotuberculosis requires the virulence plasmid pYV to induce the formation of pyogranulomas in MLNs. The YadA adhesin and the Ysc-Yop type III secretion system (T3SS) are encoded on pYV. YadA mediates bacterial binding to host receptors, which engages the T3SS to preferentially translocate seven Yop effectors into phagocytes. The effectors promote pathogenesis by blocking innate immune defenses such as superoxide production, degranulation, and inflammasome activation, resulting in survival and growth of Y. pseudotuberculosis. On the other hand, certain effectors can trigger immune defenses in phagocytes. For example, YopJ triggers activation of caspase-8 and an apoptotic cell death response in monocytes within pyogranulomas that limits dissemination of Y. pseudotuberculosis from MLNs to the bloodstream. YopE can be processed as an antigen by phagocytes in MLNs, resulting in T and B cell responses to Y. pseudotuberculosis. Immune responses to Y. pseudotuberculosis in MLNs can also be detrimental to the host in the form of chronic lymphadenopathy. This review focuses on interactions between Y. pseudotuberculosis and phagocytes mediated by pYV that concurrently promote pathogenesis and host defense in MLNs. We propose that MLN pyogranulomas are immunological arenas in which opposing pYV-driven forces determine the outcome of infection in favor of the pathogen or host.
Collapse
|
3
|
Abstract
At the intestinal host-microbe interface, the transmembrane mucin MUC1 can function as a physical barrier as well as a receptor for bacteria. MUC1 also influences epithelial cell morphology and receptor function. Various bacterial pathogens can exploit integrins to infect eukaryotic cells. It is yet unclear whether MUC1 influences the interaction of bacteria with integrins. We used Escherichia coli expressing the invasin (inv) protein of Yersinia pseudotuberculosis (E. coli inv) to assess the effects of MUC1 on β1 integrin (ITGB1)-mediated bacterial invasion. Our results show that expression of full-length MUC1 does not yield a physical barrier but slightly enhances E. coli inv uptake. Enzymatic removal of the MUC1 extracellular domain (ED) using a secreted protease of C1 esterase inhibitor (StcE) of pathogenic Escherichia coli had no additional effect on E. coli inv invasion. In contrast, expression of a truncated MUC1 that lacks the cytoplasmic tail (CT) reduced bacterial entry substantially. Substitution of tyrosine residues in the MUC1 CT also reduced bacterial uptake, while deletion of the C-terminal half of the cytoplasmic tail only had a minor effect, pointing to a regulatory role of tyrosine phosphorylation and the N-terminal region of the MUC1 CT in integrin-mediated uptake process. Unexpectedly, StcE removal of the ED in MUC1-ΔCT cells reversed the block in bacterial invasion. Together, these findings indicate that MUC1 can facilitate β1-integrin-mediated bacterial invasion by a concerted action of the large glycosylated extracellular domain and the membrane-juxtaposed cytoplasmic tail region.IMPORTANCE Bacteria can exploit membrane receptor integrins for cellular invasion, either by direct binding of bacterial adhesins or utilizing extracellular matrix components. MUC1 is a large transmembrane glycoprotein expressed by most epithelial cells that can have direct defensive or receptor functions at the host-microbe interface and is involved in facilitating integrin clustering. We investigated the role of epithelial MUC1 on β1 integrin-mediated bacterial invasion. We discovered that MUC1 does not act as a barrier but facilitates bacterial entry through β1 integrins. This process involves a concerted action of the MUC1 O-glycosylated extracellular domain and cytoplasmic tail. Our findings add a new dimension to the complexity of bacterial invasion mechanisms and provide novel insights into the distinct functions of MUC1 domains at the host-microbe interface.
Collapse
|
4
|
Manipulation of Focal Adhesion Signaling by Pathogenic Microbes. Int J Mol Sci 2021; 22:ijms22031358. [PMID: 33572997 PMCID: PMC7866387 DOI: 10.3390/ijms22031358] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/25/2021] [Accepted: 01/27/2021] [Indexed: 12/22/2022] Open
Abstract
Focal adhesions (FAs) serve as dynamic signaling hubs within the cell. They connect intracellular actin to the extracellular matrix (ECM) and respond to environmental cues. In doing so, these structures facilitate important processes such as cell-ECM adhesion and migration. Pathogenic microbes often modify the host cell actin cytoskeleton in their pursuit of an ideal replicative niche or during invasion to facilitate uptake. As actin-interfacing structures, FA dynamics are also intimately tied to actin cytoskeletal organization. Indeed, exploitation of FAs is another avenue by which pathogenic microbes ensure their uptake, survival and dissemination. This is often achieved through the secretion of effector proteins which target specific protein components within the FA. Molecular mimicry of the leucine-aspartic acid (LD) motif or vinculin-binding domains (VBDs) commonly found within FA proteins is a common microbial strategy. Other effectors may induce post-translational modifications to FA proteins through the regulation of phosphorylation sites or proteolytic cleavage. In this review, we present an overview of the regulatory mechanisms governing host cell FAs, and provide examples of how pathogenic microbes have evolved to co-opt them to their own advantage. Recent technological advances pose exciting opportunities for delving deeper into the mechanistic details by which pathogenic microbes modify FAs.
Collapse
|
5
|
Yersinia pseudotuberculosis YopH targets SKAP2-dependent and independent signaling pathways to block neutrophil antimicrobial mechanisms during infection. PLoS Pathog 2020; 16:e1008576. [PMID: 32392230 PMCID: PMC7241846 DOI: 10.1371/journal.ppat.1008576] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 05/21/2020] [Accepted: 04/23/2020] [Indexed: 02/06/2023] Open
Abstract
Yersinia suppress neutrophil responses by using a type 3 secretion system (T3SS) to inject 6–7 Yersinia effector proteins (Yops) effectors into their cytoplasm. YopH is a tyrosine phosphatase that causes dephosphorylation of the adaptor protein SKAP2, among other targets in neutrophils. SKAP2 functions in reactive oxygen species (ROS) production, phagocytosis, and integrin-mediated migration by neutrophils. Here we identify essential neutrophil functions targeted by YopH, and investigate how the interaction between YopH and SKAP2 influence Yersinia pseudotuberculosis (Yptb) survival in tissues. The growth defect of a ΔyopH mutant was restored in mice defective in the NADPH oxidase complex, demonstrating that YopH is critical for protecting Yptb from ROS during infection. The growth of a ΔyopH mutant was partially restored in Skap2-deficient (Skap2KO) mice compared to wild-type (WT) mice, while induction of neutropenia further enhanced the growth of the ΔyopH mutant in both WT and Skap2KO mice. YopH inhibited both ROS production and degranulation triggered via integrin receptor, G-protein coupled receptor (GPCR), and Fcγ receptor (FcγR) stimulation. SKAP2 was required for integrin receptor and GPCR-mediated ROS production, but dispensable for degranulation under all conditions tested. YopH blocked SKAP2-independent FcγR-stimulated phosphorylation of the proximal signaling proteins Syk, SLP-76, and PLCγ2, and the more distal signaling protein ERK1/2, while only ERK1/2 phosphorylation was dependent on SKAP2 following integrin receptor activation. These findings reveal that YopH prevents activation of both SKAP2-dependent and -independent neutrophilic defenses, uncouple integrin- and GPCR-dependent ROS production from FcγR responses based on their SKAP2 dependency, and show that SKAP2 is not required for degranulation. Pathogenic Yersinia species carry a virulence plasmid encoding a type 3 secretion system that translocates 6–7 effector Yops into host cells. We demonstrate that YopH protects Yersinia pseudotuberculosis from neutrophil-produced reactive oxygen species (ROS) and degranulation by interfering with signaling pathways downstream of three major receptor classes in neutrophils. We show that a previously identified target of YopH, SKAP2, controls some of the pathways essential for YopH to inactivate during infection. SKAP2 is essential in mediating ROS production downstream of two major receptors; however, it is dispensable for degranulation from the three major receptors tested. Our study illustrates that YopH protects Y. pseudotuberculosis by blocking both SKAP2-dependent and independent signaling pathways that regulate several neutrophil functions.
Collapse
|
6
|
Redundant and Cooperative Roles for Yersinia pestis Yop Effectors in the Inhibition of Human Neutrophil Exocytic Responses Revealed by Gain-of-Function Approach. Infect Immun 2020; 88:IAI.00909-19. [PMID: 31871100 DOI: 10.1128/iai.00909-19] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 12/16/2019] [Indexed: 12/13/2022] Open
Abstract
Yersinia pestis causes a rapid, lethal disease referred to as plague. Y. pestis actively inhibits the innate immune system to generate a noninflammatory environment during early stages of infection to promote colonization. The ability of Y. pestis to create this early noninflammatory environment is in part due to the action of seven Yop effector proteins that are directly injected into host cells via a type 3 secretion system (T3SS). While each Yop effector interacts with specific host proteins to inhibit their function, several Yop effectors either target the same host protein or inhibit converging signaling pathways, leading to functional redundancy. Previous work established that Y. pestis uses the T3SS to inhibit neutrophil respiratory burst, phagocytosis, and release of inflammatory cytokines. Here, we show that Y. pestis also inhibits release of granules in a T3SS-dependent manner. Moreover, using a gain-of-function approach, we discovered previously hidden contributions of YpkA and YopJ to inhibition and that cooperative actions by multiple Yop effectors are required to effectively inhibit degranulation. Independent from degranulation, we also show that multiple Yop effectors can inhibit synthesis of leukotriene B4 (LTB4), a potent lipid mediator released by neutrophils early during infection to promote inflammation. Together, inhibition of these two arms of the neutrophil response likely contributes to the noninflammatory environment needed for Y. pestis colonization and proliferation.
Collapse
|
7
|
Gannoun-Zaki L, Pätzold L, Huc-Brandt S, Baronian G, Elhawy MI, Gaupp R, Martin M, Blanc-Potard AB, Letourneur F, Bischoff M, Molle V. PtpA, a secreted tyrosine phosphatase from Staphylococcus aureus, contributes to virulence and interacts with coronin-1A during infection. J Biol Chem 2018; 293:15569-15580. [PMID: 30131335 DOI: 10.1074/jbc.ra118.003555] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 08/16/2018] [Indexed: 11/06/2022] Open
Abstract
Secretion of bacterial signaling proteins and adaptation to the host, especially during infection, are processes that are often linked in pathogenic bacteria. The human pathogen Staphylococcus aureus is equipped with a large arsenal of immune-modulating factors, allowing it to either subvert the host immune response or to create permissive niches for its survival. Recently, we showed that one of the low-molecular-weight protein tyrosine phosphatases produced by S. aureus, PtpA, is secreted during growth. Here, we report that deletion of ptpA in S. aureus affects intramacrophage survival and infectivity. We also observed that PtpA is secreted during macrophage infection. Immunoprecipitation assays identified several host proteins as putative intracellular binding partners for PtpA, including coronin-1A, a cytoskeleton-associated protein that is implicated in a variety of cellular processes. Of note, we demonstrated that coronin-1A is phosphorylated on tyrosine residues upon S. aureus infection and that its phosphorylation profile is linked to PtpA expression. Our results confirm that PtpA has a critical role during infection as a bacterial effector protein that counteracts host defenses.
Collapse
Affiliation(s)
- Laila Gannoun-Zaki
- From the Laboratoire de Dynamique des Interactions Membranaires Normales et Pathologiques, Université de Montpellier, CNRS, UMR 5235, Montpellier 34000, France and
| | - Linda Pätzold
- the Institute of Medical Microbiology and Hygiene, University of Saarland, 66421 Homburg/Saar, Germany
| | - Sylvaine Huc-Brandt
- From the Laboratoire de Dynamique des Interactions Membranaires Normales et Pathologiques, Université de Montpellier, CNRS, UMR 5235, Montpellier 34000, France and
| | - Grégory Baronian
- From the Laboratoire de Dynamique des Interactions Membranaires Normales et Pathologiques, Université de Montpellier, CNRS, UMR 5235, Montpellier 34000, France and
| | - Mohamed Ibrahem Elhawy
- the Institute of Medical Microbiology and Hygiene, University of Saarland, 66421 Homburg/Saar, Germany
| | - Rosmarie Gaupp
- the Institute of Medical Microbiology and Hygiene, University of Saarland, 66421 Homburg/Saar, Germany
| | - Marianne Martin
- From the Laboratoire de Dynamique des Interactions Membranaires Normales et Pathologiques, Université de Montpellier, CNRS, UMR 5235, Montpellier 34000, France and
| | - Anne-Béatrice Blanc-Potard
- From the Laboratoire de Dynamique des Interactions Membranaires Normales et Pathologiques, Université de Montpellier, CNRS, UMR 5235, Montpellier 34000, France and
| | - François Letourneur
- From the Laboratoire de Dynamique des Interactions Membranaires Normales et Pathologiques, Université de Montpellier, CNRS, UMR 5235, Montpellier 34000, France and
| | - Markus Bischoff
- the Institute of Medical Microbiology and Hygiene, University of Saarland, 66421 Homburg/Saar, Germany
| | - Virginie Molle
- From the Laboratoire de Dynamique des Interactions Membranaires Normales et Pathologiques, Université de Montpellier, CNRS, UMR 5235, Montpellier 34000, France and
| |
Collapse
|
8
|
van der Flier S, van der Kwast T, Claassen C, Timmermans M, Brinkman A, Henzen-Logmans S, Foekens J, Dorssers L. Immunohistochemical Study of the BCAR1/p130Cas Protein in Non-Malignant and Malignant Human Breast Tissue. Int J Biol Markers 2018. [DOI: 10.1177/172460080101600303] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BCAR1/p130Cas is a docking protein involved in intracellular signaling pathways and in vitro resistance of estrogen-dependent breast cancer cells to antiestrogens. The BCAR1/p130Cas protein level in primary breast cancer cytosols was found to correlate with rapid recurrence of disease. A high BCAR1/p130Cas level was also associated with a higher likelihood of resistance to first-line tamoxifen treatment in patients with advanced breast cancer. Using antibodies raised against the rat p130Cas protein, we determined by immunohistochemical methods the BCAR1/p130Cas localization in primary breast carcinomas, in tumors of stromal origin, and in non-neoplastic breast tissues. The BCAR1/p130Cas protein was detected in the cytoplasm of non-malignant and neoplastic epithelial cells and in the vascular compartment of all tissue sections analyzed. Immunohistochemistry demonstrated variable intensity of BCAR1/p130Cas staining and variation in the proportion of BCAR1/p130Cas-positive epithelial tumor cells for the different breast carcinomas. Double immunohistochemical staining for BCAR1/p130Cas and estrogen receptor confirmed coexpression in non-malignant luminal epithelial cells and malignant breast tumor cells. The stromal cells in non-malignant tissues and tumor tissues as well as breast tumors of mesodermal origin did not stain for BCAR1/p130Cas. This immunohistochemical study demonstrates a variable expression of BCAR1/p130Cas in malignant and non-malignant breast epithelial cells, which may be of benefit for diagnostic purposes.
Collapse
Affiliation(s)
- S. van der Flier
- Department of Pathology/ Division of Molecular Biology, University Hospital Rotterdam/Daniel den Hoed Cancer Center, Rotterdam
- Josephine Nefkens Institute, University Hospital Rotterdam/Daniel den Hoed Cancer Center, Rotterdam
| | - T.H. van der Kwast
- Department of Pathology, University Hospital Rotterdam/Daniel den Hoed Cancer Center, Rotterdam
| | - C.J.C. Claassen
- Department of Pathology, University Hospital Rotterdam/Daniel den Hoed Cancer Center, Rotterdam
- Department of Medical Oncology/Division of Endocrine Oncology, University Hospital Rotterdam/Daniel den Hoed Cancer Center, Rotterdam
| | - M. Timmermans
- Department of Medical Oncology/Division of Endocrine Oncology, University Hospital Rotterdam/Daniel den Hoed Cancer Center, Rotterdam
| | - A. Brinkman
- Department of Pathology/ Division of Molecular Biology, University Hospital Rotterdam/Daniel den Hoed Cancer Center, Rotterdam
| | - S.C. Henzen-Logmans
- Department of Pathology, University Hospital Rotterdam/Daniel den Hoed Cancer Center, Rotterdam
- present address: N.V. Organon, Oss
| | - J.A. Foekens
- Department of Medical Oncology/Division of Endocrine Oncology, University Hospital Rotterdam/Daniel den Hoed Cancer Center, Rotterdam
| | - L.C.J. Dorssers
- Department of Pathology/ Division of Molecular Biology, University Hospital Rotterdam/Daniel den Hoed Cancer Center, Rotterdam
| |
Collapse
|
9
|
Grabowski B, Schmidt MA, Rüter C. Immunomodulatory Yersinia outer proteins (Yops)-useful tools for bacteria and humans alike. Virulence 2017; 8:1124-1147. [PMID: 28296562 DOI: 10.1080/21505594.2017.1303588] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Human-pathogenic Yersinia produce plasmid-encoded Yersinia outer proteins (Yops), which are necessary to down-regulate anti-bacterial responses that constrict bacterial survival in the host. These Yops are effectively translocated directly from the bacterial into the target cell cytosol by the type III secretion system (T3SS). Cell-penetrating peptides (CPPs) in contrast are characterized by their ability to autonomously cross cell membranes and to transport cargo - independent of additional translocation systems. The recent discovery of bacterial cell-penetrating effector proteins (CPEs) - with the prototype being the T3SS effector protein YopM - established a new class of autonomously translocating immunomodulatory proteins. CPEs represent a vast source of potential self-delivering, anti-inflammatory therapeutics. In this review, we give an update on the characteristic features of the plasmid-encoded Yops and, based on recent findings, propose the further development of these proteins for potential therapeutic applications as natural or artificial cell-penetrating forms of Yops might be of value as bacteria-derived biologics.
Collapse
Affiliation(s)
- Benjamin Grabowski
- a Institute of Infectiology - Centre for Molecular Biology of Inflammation (ZMBE), University of Münster , Münster , Germany
| | - M Alexander Schmidt
- a Institute of Infectiology - Centre for Molecular Biology of Inflammation (ZMBE), University of Münster , Münster , Germany
| | - Christian Rüter
- a Institute of Infectiology - Centre for Molecular Biology of Inflammation (ZMBE), University of Münster , Münster , Germany
| |
Collapse
|
10
|
Yersinia enterocolitica YopH-Deficient Strain Activates Neutrophil Recruitment to Peyer's Patches and Promotes Clearance of the Virulent Strain. Infect Immun 2016; 84:3172-3181. [PMID: 27550935 DOI: 10.1128/iai.00568-16] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 08/18/2016] [Indexed: 01/06/2023] Open
Abstract
Yersinia enterocolitica evades the immune response by injecting Yersinia outer proteins (Yops) into the cytosol of host cells. YopH is a tyrosine phosphatase critical for Yersinia virulence. However, the mucosal immune mechanisms subverted by YopH during in vivo orogastric infection with Y. enterocolitica remain elusive. The results of this study revealed neutrophil recruitment to Peyer's patches (PP) after infection with a YopH-deficient mutant strain (Y. enterocolitica ΔyopH). While the Y. enterocolitica wild-type (WT) strain in PP induced the major neutrophil chemoattractant CXCL1 mRNA and protein levels, infection with the Y. enterocolitica ΔyopH mutant strain exhibited a higher expression of the CXCL1 receptor, CXCR2, in blood neutrophils, leading to efficient neutrophil recruitment to the PP. In contrast, migration of neutrophils into PP was impaired upon infection with Y. enterocolitica WT strain. In vitro infection of blood neutrophils revealed the involvement of YopH in CXCR2 expression. Depletion of neutrophils during Y. enterocolitica ΔyopH infection raised the bacterial load in PP. Moreover, the clearance of WT Y. enterocolitica was improved when an equal mixture of Y. enterocolitica WT and Y. enterocolitica ΔyopH strains was used in infecting the mice. This study indicates that Y. enterocolitica prevents early neutrophil recruitment in the intestine and that the effector protein YopH plays an important role in the immune evasion mechanism. The findings highlight the potential use of the Y. enterocolitica YopH-deficient strain as an oral vaccine carrier.
Collapse
|
11
|
Pha K, Navarro L. Yersinia type III effectors perturb host innate immune responses. World J Biol Chem 2016; 7:1-13. [PMID: 26981193 PMCID: PMC4768113 DOI: 10.4331/wjbc.v7.i1.1] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 09/02/2015] [Accepted: 11/04/2015] [Indexed: 02/05/2023] Open
Abstract
The innate immune system is the first line of defense against invading pathogens. Innate immune cells recognize molecular patterns from the pathogen and mount a response to resolve the infection. The production of proinflammatory cytokines and reactive oxygen species, phagocytosis, and induced programmed cell death are processes initiated by innate immune cells in order to combat invading pathogens. However, pathogens have evolved various virulence mechanisms to subvert these responses. One strategy utilized by Gram-negative bacterial pathogens is the deployment of a complex machine termed the type III secretion system (T3SS). The T3SS is composed of a syringe-like needle structure and the effector proteins that are injected directly into a target host cell to disrupt a cellular response. The three human pathogenic Yersinia spp. (Y. pestis, Y. enterocolitica, and Y. pseudotuberculosis) are Gram-negative bacteria that share in common a 70 kb virulence plasmid which encodes the T3SS. Translocation of the Yersinia effector proteins (YopE, YopH, YopT, YopM, YpkA/YopO, and YopP/J) into the target host cell results in disruption of the actin cytoskeleton to inhibit phagocytosis, downregulation of proinflammatory cytokine/chemokine production, and induction of cellular apoptosis of the target cell. Over the past 25 years, studies on the Yersinia effector proteins have unveiled tremendous knowledge of how the effectors enhance Yersinia virulence. Recently, the long awaited crystal structure of YpkA has been solved providing further insights into the activation of the YpkA kinase domain. Multisite autophosphorylation by YpkA to activate its kinase domain was also shown and postulated to serve as a mechanism to bypass regulation by host phosphatases. In addition, novel Yersinia effector protein targets, such as caspase-1, and signaling pathways including activation of the inflammasome were identified. In this review, we summarize the recent discoveries made on Yersinia effector proteins and their contribution to Yersinia pathogenesis.
Collapse
|
12
|
Bottini A, Wu B, Barile E, De SK, Leone M, Pellecchia M. High-Throughput Screening (HTS) by NMR Guided Identification of Novel Agents Targeting the Protein Docking Domain of YopH. ChemMedChem 2015; 11:919-27. [PMID: 26592695 DOI: 10.1002/cmdc.201500441] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Indexed: 11/08/2022]
Abstract
Recently we described a novel approach, named high-throughput screening (HTS) by NMR that allows the identification, from large combinatorial peptide libraries, of potent and selective peptide mimetics against a given target. Here, we deployed the "HTS by NMR" approach for the design of novel peptoid sequences targeting the N-terminal domain of Yersinia outer protein H (YopH-NT), a bacterial toxin essential for the virulence of Yersinia pestis. We aimed at disrupting the protein-protein interactions between YopH-NT and its cellular substrates, with the goal of inhibiting indirectly YopH enzymatic function. These studies resulted in a novel agent of sequence Ac-F-pY-cPG-d-P-NH2 (pY=phosphotyrosine; cPG=cyclopentyl glycine) with a Kd value against YopH-NT of 310 nm. We demonstrated that such a pharmacological inhibitor of YopH-NT results in the inhibition of the dephosphorylation by full-length YopH of a cellular substrate. Hence, potentially this agent represents a valuable stepping stone for the development of novel therapeutics against Yersinia infections. The data reported further demonstrate the utility of the HTS by NMR approach in deriving novel peptide mimetics targeting protein-protein interactions.
Collapse
Affiliation(s)
- Angel Bottini
- Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA.,Sanford Burnham Prebys Graduate School of Biomedical Sciences, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Bainan Wu
- Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Elisa Barile
- Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA.,Division of Biomedical Sciences, School of Medicine, University of California Riverside, 900 University Avenue, Riverside, CA, 92521, USA
| | - Surya K De
- Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA.,Division of Biomedical Sciences, School of Medicine, University of California Riverside, 900 University Avenue, Riverside, CA, 92521, USA
| | - Marilisa Leone
- Institute of Biostructures & Bioimaging, National Research Council (IBB-CNR), Via De Amicis 95, Naples, 80145, Italy
| | - Maurizio Pellecchia
- Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA. .,Division of Biomedical Sciences, School of Medicine, University of California Riverside, 900 University Avenue, Riverside, CA, 92521, USA.
| |
Collapse
|
13
|
Rolán HG, Durand EA, Mecsas J. Identifying Yersinia YopH-targeted signal transduction pathways that impair neutrophil responses during in vivo murine infection. Cell Host Microbe 2014; 14:306-17. [PMID: 24034616 DOI: 10.1016/j.chom.2013.08.013] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Revised: 07/10/2013] [Accepted: 08/19/2013] [Indexed: 12/23/2022]
Abstract
Identifying molecular targets of Yersinia virulence effectors, or Yops, during animal infection is challenging because few cells are targeted by Yops in an infected organ, and isolating these sparse effector-containing cells is difficult. YopH, a tyrosine phosphatase, is essential for full virulence of Yersinia. Investigating the YopH-targeted signal transduction pathway(s) in neutrophils during infection of a murine host, we find that several host proteins, including the essential signaling adaptor SLP-76, are dephosphorylated in the presence of YopH in neutrophils isolated from infected tissues. YopH inactivated PRAM-1/SKAP-HOM and the SLP-76/Vav/PLCγ2 signal transduction axes, leading to an inhibition of calcium response in isolated neutrophils. Consistent with a failure to mount a calcium response, IL-10 production was reduced in neutrophils containing YopH from infected tissues. Finally, a yopH mutant survived better in the absence of neutrophils, indicating that neutrophil inactivation by YopH by targeting PRAM-1/SKAP-HOM and SLP-76/Vav/PLCγ2 signaling hubs may be critical for Yersinia survival.
Collapse
Affiliation(s)
- Hortensia G Rolán
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, 145 Harrison Ave, Boston, MA 02111, USA
| | | | | |
Collapse
|
14
|
Abstract
The present review summarizes recently developed calixarene derivatives for protein surface recognition which are able to identify, inhibit, and separate specific proteins.
Collapse
Affiliation(s)
- Reza Zadmard
- Chemistry and Chemical Engineering
- Research Center of Iran
- , Iran
| | | |
Collapse
|
15
|
Subversion of trafficking, apoptosis, and innate immunity by type III secretion system effectors. Trends Microbiol 2013; 21:430-41. [DOI: 10.1016/j.tim.2013.06.008] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 05/08/2013] [Accepted: 06/18/2013] [Indexed: 11/17/2022]
|
16
|
Structural basis of eukaryotic cell targeting by type III secretion system (T3SS) effectors. Res Microbiol 2013; 164:605-19. [PMID: 23541478 DOI: 10.1016/j.resmic.2013.03.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Accepted: 02/27/2013] [Indexed: 02/06/2023]
Abstract
Type III secretion systems (T3SS) are macromolecular complexes that translocate a wide number of effector proteins into eukaryotic host cells. Once within the cytoplasm, many T3SS effectors mimic the structure and/or function of eukaryotic proteins in order to manipulate signaling cascades, and thus play pivotal roles in colonization, invasion, survival and virulence. Structural biology techniques have played key roles in the unraveling of bacterial strategies employed for mimicry and targeting. This review provides an overall view of our current understanding of structure and function of T3SS effectors, as well as of the different classes of eukaryotic proteins that are targeted and the consequences for the infected cell.
Collapse
|
17
|
Vujanac M, Stebbins CE. Context-dependent protein folding of a virulence peptide in the bacterial and host environments: structure of an SycH-YopH chaperone-effector complex. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2013; 69:546-54. [PMID: 23519663 DOI: 10.1107/s0907444912051086] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Accepted: 12/17/2012] [Indexed: 12/17/2022]
Abstract
Yersinia pestis injects numerous bacterial proteins into host cells through an organic nanomachine called the type 3 secretion system. One such substrate is the tyrosine phosphatase YopH, which requires an interaction with a cognate chaperone in order to be effectively injected. Here, the first crystal structure of a SycH-YopH complex is reported, determined to 1.9 Å resolution. The structure reveals the presence of (i) a nonglobular polypeptide in YopH, (ii) a so-called β-motif in YopH and (iii) a conserved hydrophobic patch in SycH that recognizes the β-motif. Biochemical studies establish that the β-motif is critical to the stability of this complex. Finally, since previous work has shown that the N-terminal portion of YopH adopts a globular fold that is functional in the host cell, aspects of how this polypeptide adopts radically different folds in the host and in the bacterial environments are analysed.
Collapse
Affiliation(s)
- Milos Vujanac
- Laboratory of Structural Microbiology, The Rockefeller University, New York, NY 10065, USA
| | | |
Collapse
|
18
|
Abstract
Protein phosphorylation on tyrosine has emerged as a key device in the control of numerous cellular functions in bacteria. In this article, we review the structure and function of bacterial tyrosine kinases and phosphatases. Phosphorylation is catalyzed by autophosphorylating adenosine triphosphate-dependent enzymes (bacterial tyrosine (BY) kinases) that are characterized by the presence of Walker motifs. The reverse reaction is catalyzed by three classes of enzymes: the eukaryotic-like phosphatases (PTPs) and dual-specific phosphatases; the low molecular weight protein-tyrosine phosphatases (LMW-PTPs); and the polymerase–histidinol phosphatases (PHP). Many BY kinases and tyrosine phosphatases can utilize host cell proteins as substrates, thereby contributing to bacterial pathogenicity. Bacterial tyrosine phosphorylation/dephosphorylation is also involved in biofilm formation and community development. The Porphyromonas gingivalis tyrosine phosphatase Ltp1 is involved in a restraint pathway that regulates heterotypic community development with Streptococcus gordonii. Ltp1 is upregulated by contact with S. gordonii and Ltp1 activity controls adhesin expression and levels of the interspecies signal AI-2.
Collapse
|
19
|
Leone M, Barile E, Dahl R, Pellecchia M. Design and NMR studies of cyclic peptides targeting the N-terminal domain of the protein tyrosine phosphatase YopH. Chem Biol Drug Des 2011; 77:12-9. [PMID: 21118379 PMCID: PMC3149900 DOI: 10.1111/j.1747-0285.2010.01058.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We report on the design and evaluation of novel cyclic peptides targeting the N-terminal domain of the protein tyrosine phosphatase YopH from Yersinia. Cyclic peptides have been designed based on a short sequence from the protein SKAP-HOM [DE(pY)DDPF (pY=phosphotyrosine)], and they all contain the motif DEZXDPfK (where Z is a phosphotyrosine or a non-hydrolyzable phosphotyrosine mimetic, X is an aspartic acid or a leucine and f is a d-phenylalanine). These peptides present a 'head to tail' architecture, enabling cyclization through formation of an amide bond in between the side chains of the first aspartic acid and the lysine residues. Chemical shift perturbation studies have been carried out to monitor the binding of these peptides to the N-terminal domain of YopH. Peptides containing a phosphotyrosine moiety exhibit binding affinities in the low micromolar range; substitution of the phosphotyrosine with one of its non-hydrolyzable derivatives dramatically reduces the binding affinities. These preliminary studies may pave the way for the discovery of more potent and selective peptide-based ligands of the YopH N-terminal domain which could be further investigated for their ability to inhibit Yersiniae infections.
Collapse
Affiliation(s)
- Marilisa Leone
- Infectious and Inflammatory Disease Center and Cancer Center, Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Rd, 92037 La Jolla, CA, USA
- Institute of Biostructures and Bioimaging-CNR, Via Mezzocannone 16, 80134 Naples, Italy
| | - Elisa Barile
- Infectious and Inflammatory Disease Center and Cancer Center, Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Rd, 92037 La Jolla, CA, USA
| | - Russell Dahl
- Infectious and Inflammatory Disease Center and Cancer Center, Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Rd, 92037 La Jolla, CA, USA
| | - Maurizio Pellecchia
- Infectious and Inflammatory Disease Center and Cancer Center, Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Rd, 92037 La Jolla, CA, USA
| |
Collapse
|
20
|
Leone M, Barile E, Vazquez J, Mei A, Guiney D, Dahl R, Pellecchia M. NMR-based design and evaluation of novel bidentate inhibitors of the protein tyrosine phosphatase YopH. Chem Biol Drug Des 2010; 76:10-6. [PMID: 20456369 PMCID: PMC2905849 DOI: 10.1111/j.1747-0285.2010.00982.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We describe the use of a furanyl salicyl nitroxide derivative ('spin-labeled' compound), as a paramagnetic phosphotyrosine mimetic, to carry out a second-site screening by NMR against the PTPase YopH from Yersinia pestis. Using such a fragment-based screening approach we identified several small molecules targeting YopH that bind at sites adjacent to the spin-labeled compound. These second-site fragments were subsequently used to design and synthesize bidentate YopH inhibitors with submicromolar in vitro inhibition, selectivity against the human PTPase PTP1B, and cellular activity against Y. pseudotuberculosis. These initial compounds could result useful in elucidating the structural determinants necessary for YopH inhibition and may help in the design of even more active, selective and cell permeable compounds for the development of novel therapies against Yersiniae.
Collapse
Affiliation(s)
- Marilisa Leone
- Infectious and inflammatory Disease Center and Cancer Center, Sanford | Burnham Medical Research Institute, 10901 North Torrey Pines Rd, 92037 La Jolla, CA, USA
- Institute of Biostructures and Bioimaging-CNR, Via Mezzocannone 16, 80134 Naples, Italy
| | - Elisa Barile
- Infectious and inflammatory Disease Center and Cancer Center, Sanford | Burnham Medical Research Institute, 10901 North Torrey Pines Rd, 92037 La Jolla, CA, USA
| | - Jesus Vazquez
- Infectious and inflammatory Disease Center and Cancer Center, Sanford | Burnham Medical Research Institute, 10901 North Torrey Pines Rd, 92037 La Jolla, CA, USA
| | - Angel Mei
- Infectious and inflammatory Disease Center and Cancer Center, Sanford | Burnham Medical Research Institute, 10901 North Torrey Pines Rd, 92037 La Jolla, CA, USA
| | - Donald Guiney
- Department of Medicine, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Russel Dahl
- Infectious and inflammatory Disease Center and Cancer Center, Sanford | Burnham Medical Research Institute, 10901 North Torrey Pines Rd, 92037 La Jolla, CA, USA
| | - Maurizio Pellecchia
- Infectious and inflammatory Disease Center and Cancer Center, Sanford | Burnham Medical Research Institute, 10901 North Torrey Pines Rd, 92037 La Jolla, CA, USA
| |
Collapse
|
21
|
Cantwell AM, Bubeck SS, Dube PH. YopH inhibits early pro-inflammatory cytokine responses during plague pneumonia. BMC Immunol 2010; 11:29. [PMID: 20565713 PMCID: PMC2894752 DOI: 10.1186/1471-2172-11-29] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2009] [Accepted: 06/16/2010] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Yersinia pestis is the causative agent of pneumonic plague; recently, we and others reported that during the first 24-36 hours after pulmonary infection with Y. pestis pro-inflammatory cytokine expression is undetectable in lung tissues. RESULTS Here, we report that, intranasal infection of mice with CO92 delta yopH mutant results in an early pro-inflammatory response in the lungs characterized by an increase in the pro-inflammatory cytokines Tumor Necrosis Factor-alpha and Interleukin one-beta 24 hours post-infection. CO92 delta yopH colonizes the lung but does not disseminate to the liver or spleen and is cleared from the host within 72 hours post-infection. This is different from what is observed in a wild-type CO92 infection, where pro-inflammatory cytokine expression and immune cell infiltration into the lungs is not detectable until 36-48 h post-infection. CO92 rapidly disseminates to the liver and spleen resulting in high bacterial burdens in these tissues ultimately cumulating in death 72-94 h post-infection. Mice deficient in TNF-alpha are more susceptible to CO92 delta yopH infection with 40% of the mice succumbing to infection. CONCLUSIONS Altogether, our results suggest that YopH can inhibit an early pro-inflammatory response in the lungs of mice and that this is an important step in the pathogenesis of infection.
Collapse
Affiliation(s)
- Angelene M Cantwell
- Department of Microbiology and Immunology, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | | | | |
Collapse
|
22
|
Vovk AI, Kononets LA, Tanchuk VY, Cherenok SO, Drapailo AB, Kalchenko VI, Kukhar VP. Inhibition of Yersinia protein tyrosine phosphatase by phosphonate derivatives of calixarenes. Bioorg Med Chem Lett 2010; 20:483-7. [DOI: 10.1016/j.bmcl.2009.11.126] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2009] [Revised: 11/20/2009] [Accepted: 11/21/2009] [Indexed: 01/22/2023]
|
23
|
Deuretzbacher A, Czymmeck N, Reimer R, Trülzsch K, Gaus K, Hohenberg H, Heesemann J, Aepfelbacher M, Ruckdeschel K. Beta1 integrin-dependent engulfment of Yersinia enterocolitica by macrophages is coupled to the activation of autophagy and suppressed by type III protein secretion. THE JOURNAL OF IMMUNOLOGY 2009; 183:5847-60. [PMID: 19812190 DOI: 10.4049/jimmunol.0804242] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Autophagy is a central lysosomal degradation process that is essential for the maintenance of cellular homeostasis. Autophagy has furthermore emerged as integral part of the host immune response. Autophagic processes promote the separation and degradation of intracellular microorganisms which contributes to the development of innate and adaptive immunity. Some pathogenic microbes have therefore evolved mechanisms to evade or impede autophagy. We analyzed the effects of the enteropathogenic bacterium Yersinia enterocolitica on autophagy in macrophages. Yersiniae use a number of defined adhesins and secreted proteins to manipulate host immune responses. Our results showed that Y. enterocolitica defective in type III protein secretion efficiently activated autophagy in macrophages. Autophagy was mediated by the Yersinia adhesins invasin and YadA and particularly depended on the engagement of beta(1) integrin receptors. Several autophagy-related events followed beta(1) integrin-mediated engulfment of the bacteria including the formation of autophagosomes, processing of the marker protein LC3, redistribution of GFP-LC3 to bacteria-containing vacuoles, and the segregation of intracellular bacteria by autophagosomal compartments. These results provide direct evidence for the linkage of beta(1) integrin-mediated phagocytosis and autophagy induction. Multiple microbes signal through integrin receptors, and our results suggest a general principle by which the sensing of an extracellular microbe triggers autophagy. Owing to the importance of autophagy as host defense response, wild-type Y. enterocolitica suppressed autophagy by mobilizing type III protein secretion. The subversion of autophagy may be part of the Y. enterocolitica virulence strategy that supports bacterial survival when beta(1) integrin-dependent internalization and autophagy activation by macrophages are deleterious for the pathogen.
Collapse
Affiliation(s)
- Anne Deuretzbacher
- Institute for Medical Microbiology, Virology, and Hygiene, University Medical Center Eppendorf, Hamburg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Matsumoto H, Young GM. Translocated effectors of Yersinia. Curr Opin Microbiol 2009; 12:94-100. [PMID: 19185531 DOI: 10.1016/j.mib.2008.12.005] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2008] [Revised: 12/09/2008] [Accepted: 12/10/2008] [Indexed: 12/15/2022]
Abstract
Currently, all known translocated effectors of Yersinia are delivered into host cells by type III secretion systems (T3SSs). Pathogenic Yersinia maintain the plasmid-encoded Ysc T3SS for the specific delivery of the well-studied Yop effectors. New horizons for effector biology have opened with the discovery of the Ysps of Y. enterocolitica Biovar 1B, which are translocated into host cells by the chromosome-endoded Ysa T3SS. The reported arsenal of effectors is likely to expand since genomic analysis has revealed gene-clusters in some Yersinia that code for other T3SSs. These efforts also revealed possible type VI secretion (T6S) systems, which may indicate that translocation of effectors occurs by multiple mechanisms.
Collapse
Affiliation(s)
- Hiroyuki Matsumoto
- Department of Food Science and Technology, Robert Mondavi South Laboratory Building, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA.
| | | |
Collapse
|
25
|
Matteoli G, Fahl E, Warnke P, Müller S, Bonin M, Autenrieth IB, Bohn E. Role of IFN-gamma and IL-6 in a protective immune response to Yersinia enterocolitica in mice. BMC Microbiol 2008; 8:153. [PMID: 18803824 PMCID: PMC2556677 DOI: 10.1186/1471-2180-8-153] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2008] [Accepted: 09/19/2008] [Indexed: 12/20/2022] Open
Abstract
Background Yersinia outer protein (Yop) H is a secreted virulence factor of Yersinia enterocolitica (Ye), which inhibits phagocytosis of Ye and contributes to the virulence of Ye in mice. The aim of this study was to address whether and how YopH affects the innate immune response to Ye in mice. Results For this purpose, mice were infected with wild type Ye (pYV+) or a YopH-deficient Ye mutant strain (ΔyopH). CD11b+ cells were isolated from the infected spleen and subjected to gene expression analysis using microarrays. Despite the attenuation of ΔyopH in vivo, by variation of infection doses we were able to achieve conditions that allow comparison of gene expression in pYV+ and ΔyopH infection, using either comparable infection courses or splenic bacterial burden. Gene expression analysis provided evidence that expression levels of several immune response genes, including IFN-γ and IL-6, are high after pYV+ infection but low after sublethal ΔyopH infection. In line with these findings, infection of IFN-γR-/- and IL-6-/- mice with pYV+ or ΔyopH revealed that these cytokines are not necessarily required for control of ΔyopH, but are essential for defense against infection with the more virulent pYV+. Consistently, IFN-γ pretreatment of bone marrow derived macrophages (BMDM) strongly enhanced their ability in killing intracellular Ye bacteria. Conclusion In conclusion, this data suggests that IFN-γ-mediated effector mechanisms can partially compensate virulence exerted by YopH. These results shed new light on the protective role of IFN-γ in Ye wild type infections.
Collapse
Affiliation(s)
- Gianluca Matteoli
- Institut für Medizinische Mikrobiologie und Hygiene, Universitätsklinikum Tübingen, Tübingen, Germany.
| | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
The pathogenic bacteria Yersinia spp. contain a virulence plasmid that encodes a type III secretion system and effectors. During infection, four of the effectors target the actin cytoskeleton, crippling the phagocytic machinery in the infected cell. The remaining two effectors dampen the innate immune response by targeting important signalling pathways. Although the biochemical activity for each of these effectors is known, the mechanisms involved in their ordered secretion and delivery remain elusive.
Collapse
Affiliation(s)
- Jennifer E Trosky
- Department of Microbiology and Immunology, Stanford University School of Medicine, Fairchild Science Building, D300, 299 Campus Drive, Stanford, CA 94305-5124, USA
| | | | | |
Collapse
|
27
|
Trülzsch K, Sporleder T, Leibiger R, Rüssmann H, Heesemann J. Yersinia as oral live carrier vaccine: influence of Yersinia outer proteins (Yops) on the T-cell response. Int J Med Microbiol 2007; 298:59-67. [PMID: 17897880 DOI: 10.1016/j.ijmm.2007.08.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Attenuated enteropathogenic Yersinia strains are attractive candidates for the development of oral live carrier vaccines. Yersiniae colonize the small intestine and invade lymphoid tissue of the terminal ileum where they replicate extracellularly. Yersiniae can be engineered to secrete or translocate heterologous antigens into the cytosol of antigen-presenting cells by their type 3 secretion system (T3SS). This results in the induction of both cellular and humoral immune responses to heterologous antigens of viral, bacterial and parasitic origin. In this review, we summarize the progress in developing Yersinia-based vaccine carrier strains by mutating the T3SS effector proteins of Yersinia called Yops (Yersinia outer proteins) to both attenuate the strains and to modulate the T-cell response.
Collapse
Affiliation(s)
- Konrad Trülzsch
- Max von Pettenkofer-Institut, LMU München, Pettenkoferstr. 9a, D-80336 München, Germany.
| | | | | | | | | |
Collapse
|
28
|
Abstract
Salmonella enterica is an enteric bacterial pathogen that causes a variety of food and water-borne diseases ranging from gastroenteritis to typhoid fever. Ingested bacteria colonize the intestinal epithelium by triggering their own phagocytosis, using a sophisticated array of effector proteins that are injected into the host cell cytoplasm through a type III secretion apparatus. The synergistic action of these secreted effectors leads to a dramatic reorganization of the host actin cytoskeleton, resulting in vigorous membrane protrusion and the engulfment of attached bacteria. Analysis of these effector proteins and identification of their cellular targets has provided insight into the molecular mechanisms by which bacteria can subvert the host signalling and cytoskeletal machinery for their own purposes. This review is intended to summarize our current understanding of the tools used by Salmonella to enter host cells, with a focus on effectors that modulate the actin cytoskeleton.
Collapse
Affiliation(s)
- Kim Thien Ly
- Department of Microbiology, University of Virginia Health System, Charlottesville, VA 22908-0732, USA
| | | |
Collapse
|
29
|
Park H, Teja K, O'Shea JJ, Siegel RM. The Yersinia effector protein YpkA induces apoptosis independently of actin depolymerization. THE JOURNAL OF IMMUNOLOGY 2007; 178:6426-34. [PMID: 17475872 DOI: 10.4049/jimmunol.178.10.6426] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The pathogenicity of the plague agent Yersinia pestis is largely due to the injection of effector proteins that potently block immune responses into host cells through a type III secretion apparatus. One Yersinia effector protein, YpkA, a putative serine/threonine kinase, has been reported to act by depolymerizing actin and disrupting actin microfilament organization. Using YpkA-GFP fusion proteins to directly visualize cells expressing YpkA, we found instead that YpkA triggered rapid cell death that can be blocked by caspase inhibitors and Bcl-xL, but was not dependent on caspase-8. The actin depolymerization promoted by YpkA was only seen in cells with other features of apoptosis, and was blocked by inhibiting apoptosis, indicating that actin filament disruption is likely to be a result, rather than a cause of YpkA-induced apoptosis. A region including aa 133-262 in YpkA was sufficient for inducing apoptosis independent of localization to the plasma membrane. These data suggest that YpkA can act as a direct inducer of cell death.
Collapse
Affiliation(s)
- Heiyoung Park
- Molecular Immunology and Inflammation Branch, Immunoregulation Unit, National Institute and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
30
|
Ouhara K, Komatsuzawa H, Shiba H, Uchida Y, Kawai T, Sayama K, Hashimoto K, Taubman MA, Kurihara H, Sugai M. Actinobacillus actinomycetemcomitans outer membrane protein 100 triggers innate immunity and production of beta-defensin and the 18-kilodalton cationic antimicrobial protein through the fibronectin-integrin pathway in human gingival epithelial cells. Infect Immun 2006; 74:5211-20. [PMID: 16926414 PMCID: PMC1594852 DOI: 10.1128/iai.00056-06] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Antimicrobial peptides, human beta-defensin (hBD), and the 18-kDa cationic antimicrobial protein (CAP18) are components of innate immunity. These peptides have antimicrobial activity against bacteria, fungi, and viruses. Actinobacillus actinomycetemcomitans is a gram-negative facultative anaerobe implicated in the initiation of periodontitis. The innate immunity peptides have antibacterial activity against A. actinomycetemcomitans. We investigated the molecular mechanism of human gingival epithelial cells (HGEC) responding to exposure to A. actinomycetemcomitans. HGEC constitutively express hBD1 and inducibly express hBD2, hBD3, and CAP18 on exposure to A. actinomycetemcomitans. The level of expression varies among clinical isolates. In the signaling pathway for hBD2 induction by the bacterial contact, we demonstrate that the mitogen-activated protein (MAP) kinase and not the NF-kappaB transcription factor pathway is used. We found the outer membrane protein 100 (Omp100; identified by molecular mass) is the component inducing the hBD2 response. Omp100 binds to fibronectin, an extracellular matrix inducing hBD2 via the MAP kinase pathway. Anti-integrin alpha(5)beta(1), antifibronectin, genistein, and PP2 suppress the Omp100-induced expression of hBD2, suggesting that Src kinase is involved through integrin alpha(5)beta(1). The inflammatory cytokines, tumor necrosis factor alpha (TNF-alpha), interleukin-1beta (IL-1beta), IL-6 and IL-8, produced by HGEC on contact with A. actinomycetemcomitans also stimulate expression of hBD2. Further, neutralizing antibody against TNF-alpha or IL-8 partially inhibits the induction of hBD2 on bacterial contact. Therefore, we found that the induction of the antimicrobial peptides is mediated by a direct response principally through an Omp100-fibronectin interaction, and using secondary stimulation by inflammatory cytokines induced by the bacterial exposure.
Collapse
Affiliation(s)
- Kazuhisa Ouhara
- Department of Bacteriology, Hiroshima University Graduate School of Biomedical Sciences, Kasumi 1-2-3, Minami-ku, Hiroshima City, Hiroshima 734-8553, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Viboud GI, Mejía E, Bliska JB. Comparison of YopE and YopT activities in counteracting host signalling responses to Yersinia pseudotuberculosis infection. Cell Microbiol 2006; 8:1504-15. [PMID: 16922868 DOI: 10.1111/j.1462-5822.2006.00729.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Pathogenic Yersinia species share a type III secretion system that translocates Yop effector proteins into host cells to counteract signalling responses during infection. Two of these effectors, YopE and YopT, downregulate Rho GTPases by different mechanisms. Here, we investigate whether YopT and YopE are functionally redundant by dissecting the contribution of these two effectors to the pathogenesis of Yersinia pseudotuberculosis in a mouse infection and tissue culture model. Four days after oral infection, a YopE(+) T (-) strain and a YopE(+) T (+) strain colonized spleens of mice at similar levels, suggesting that YopT is not required for virulence. In contrast, spleen colonization by a YopE(-)T(-) strain was significantly reduced. A YopE(-) T (+) strain colonized spleen at levels comparable to those of the YopE(+) T (-) strain, arguing that YopT can promote virulence in the absence of YopE. Infection of HeLa cells with a YopE(-) T(-)H(-)J(-) strain expressing either YopE or YopT showed that YopE had a stronger antiphagocytic activity than YopT. Expression of YopE strongly inhibited activation of JNK, ERK and NFkappaB, and prevented production of IL-8; whereas YopT moderately inhibited these responses. On the other hand, pore formation was inhibited equally by YopE or YopT. In conclusion, YopE is a potent inhibitor of infection-induced signalling cascades, and YopT can only partially compensate for the loss of YopE.
Collapse
Affiliation(s)
- Gloria I Viboud
- Department of Molecular Genetics and Microbiology, Center for Infectious Diseases, School of Medicine, State University of New York at Stony Brook, NY 11794-5222, USA.
| | | | | |
Collapse
|
32
|
Matsumoto H, Young GM. Proteomic and functional analysis of the suite of Ysp proteins exported by the Ysa type III secretion system of Yersinia enterocolitica Biovar 1B. Mol Microbiol 2006; 59:689-706. [PMID: 16390460 DOI: 10.1111/j.1365-2958.2005.04973.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Full virulence of Yersinia enterocolitica Biovar 1B requires two distinct and distantly related contact-dependent type III secretion (T3S) systems. The plasmid-encoded Ysc T3S system is essential for systemic stages of infection and the Yop effector proteins it translocates have been extensively studied. The chromosome-encoded Ysa T3S system contributes to gastrointestinal stages of infection, but the suite of Ysp effectors proteins it translocates into host cells remains obscure. Using a proteomics-based approach, the Ysa T3S system was analysed revealing a complex set of 15 secreted Ysp proteins. Seven of these proteins were previously described (YspA, YspB, YspC, YspD, YopE, YopN and YopP). Eight of these Ysps (YspK, YspI, YspE, YspF, YspP, YspY, YspN and YspL) had not previously been characterized. Several of the new Ysps are homologous to other virulence factors, including YspP with similarity to the Yersinia protein tyrosine phosphatase YopH and YspK with similarity to the Shigella serine/threonine kinase OspG. Biochemical analysis of purified hexa-histidine tagged YspK and YspP established that these proteins have kinase and phosphatase activity respectively. Infection of eukaryotic cells with Y. enterocolitica strains expressing a Ysp-CyaA chimeric protein resulted in Ysa T3S system-dependent increases in cytosolic levels of cAMP for six Ysps (YspK, YspI, YspE, YspF, YspP and YspL), but not two others (YspY and YspN). YspN, however, was required for translocation of effector proteins into eukaryotic cells by the Ysa T3S system. Competition assays in BALB/c mice revealed that mutants defective for the production of an individual Ysp are affected for colonization of gastrointestinal tissues. Collectively, the results of this study support the hypothesis that the Ysa T3S system targets a complex suite of effector proteins into host cells to affect the outcome of an infection. Identification of the suite of effectors delivered by the Ysa T3S system reveals that host cell signalling pathways are the probable targets of several Ysp effectors.
Collapse
Affiliation(s)
- Hiroyuki Matsumoto
- Department of Food Science and Technology, University of California, Davis, 95616, USA
| | | |
Collapse
|
33
|
Yuan M, Deleuil F, Fällman M. Interaction between the Yersinia Tyrosine Phosphatase YopH and Its Macrophage Substrate, Fyn-Binding Protein, Fyb. J Mol Microbiol Biotechnol 2006; 9:214-23. [PMID: 16415594 DOI: 10.1159/000089649] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Pathogenic Yersinia species can evade phagocytosis by injecting virulence effectors that interfere with the phagocytic machinery of host cells. One of these virulence effectors is the protein tyrosine phosphatase YopH. Through its enzymatic activity, YopH interferes with the initial phagocytic process by affecting signalling for cytoskeletal rearrangements. Fyb (Fyn-binding protein), which is an immune cell-specific adaptor protein, has been identified as a substrate of YopH in macrophages. In this study, the interaction between YopH and Fyb is studied. We show that YopH binds to Fyb via different regions in both phosphotyrosine-dependent and phosphotyrosine-independent ways. The phosphotyrosine substrate binding N-terminal part (1-130) of YopH as well as the C-terminal catalytic region binds to Fyb in a phosphotyrosine-dependent manner. We also show that a central part of YopH (130-260) interacts with the Fyb C-terminus (548-783) in a phosphotyrosine-independent manner. Further, we demonstrate that the N-terminal binding region of YopH is important for YopH-mediated functions on macrophages such as dephosphorylation of Fyb, blockage of phagocytosis, and cytotoxic effects.
Collapse
Affiliation(s)
- Ming Yuan
- Department of Molecular Biology, Umeå University, Umeå, Sweden
| | | | | |
Collapse
|
34
|
Abstract
Type III cytotoxins contribute to the ability of bacterial pathogens to subvert the host innate immune system. ExoS (453 amino acids) is a bifunctional type III cytotoxin produced by Pseudomonas aeruginosa. Residues 96 to 232 comprise a Rho GTPase activating protein domain, while residues 233 to 453 comprise a 14-3-3-dependent ADP-ribosyltransferase domain. An N-terminal domain (termed the membrane localization domain [MLD]) targets ExoS to the Golgi-endoplasmic reticulum (Golgi-ER) of mammalian cells. This study identifies an amino acid motif that is responsible for the membrane binding properties of the MLD. Deletion mapping showed that the MLD included a symmetrical leucine-rich motif within residues 51 to 77 of ExoS. The terminal dileucines and internal leucines and an isoleucine within the MLD, but not charged or other hydrophobic residues, targeted a reporter protein to the Golgi-ER region of HeLa cells. Mutations of the leucines within the MLD did not affect type III secretion or translocation into HeLa cells but limited the ability of ExoS to ADP-ribosylate Ras GTPases. Mutations of charged residues within the MLD did not affect type III secretion, delivery into HeLa cells, or the ability of ExoS to ADP-ribosylate Ras GTPases. The organization of the leucines within the MLD of ExoS is different from that of previously described leucine-rich motifs but is present in several other bacterial proteins. This implies a role for intracellular targeting in the efficient targeting of mammalian cells by type III cytotoxins.
Collapse
Affiliation(s)
- Yue Zhang
- Medical College of Wisconsin, Microbiology and Molecular Genetics, 8701 Watertown Plank Rd., Milwaukee, WI 53226, USA
| | | |
Collapse
|
35
|
Ivanov MI, Stuckey JA, Schubert HL, Saper MA, Bliska JB. Two substrate-targeting sites in the Yersinia protein tyrosine phosphatase co-operate to promote bacterial virulence. Mol Microbiol 2005; 55:1346-56. [PMID: 15720545 DOI: 10.1111/j.1365-2958.2005.04477.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
YopH is a protein tyrosine phosphatase and an essential virulence determinant of the pathogenic bacterium Yersinia. Yersinia delivers YopH into infected host cells using a type III secretion mechanism. YopH dephosphorylates several focal adhesion proteins including p130Cas in human epithelial cells, resulting in disruption of focal adhesions and cell detachment from the extracellular matrix. How the C-terminal protein tyrosine phosphatase domain of YopH targets specific substrates such as p130Cas in the complex milieu of the host cell has not been fully elucidated. An N-terminal non-catalytic domain of YopH binds p130Cas in a phosphotyrosine-dependent manner and functions as a novel substrate-targeting site. The structure of the YopH protein tyrosine phosphatase domain bound to a model phosphopeptide substrate was solved and the resulting structure revealed a second substrate-targeting site ('site 2') within the catalytic domain. Site 2 binds to p130Cas in a phosphotyrosine-dependent manner, and co-operates with the N-terminal domain ('site 1') to promote efficient recognition of p130Cas by YopH in epithelial cells. The identification of two substrate-targeting sites in YopH that co-operate to promote epithelial cell detachment and bacterial virulence reinforces the importance of protein-protein interactions for determining protein tyrosine phosphatase specificity in vivo, and highlights the sophisticated nature of microbial pathogenicity factors.
Collapse
Affiliation(s)
- Maya I Ivanov
- Department of Molecular Genetics and Microbiology and Center for Infectious Diseases, State University of New York at Stony Brook, Stony Brook, NY 11794-5222, USA
| | | | | | | | | |
Collapse
|
36
|
Gerke C, Falkow S, Chien YH. The adaptor molecules LAT and SLP-76 are specifically targeted by Yersinia to inhibit T cell activation. ACTA ACUST UNITED AC 2005; 201:361-71. [PMID: 15699071 PMCID: PMC2213036 DOI: 10.1084/jem.20041120] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
T cell responses are critical to the survival of Yersinia-infected animals. Yersinia have the ability to directly suppress T lymphocyte activation through the virulence factor YopH, a tyrosine phosphatase. Using single cell video microscopy and FACS analysis, here we show that even an average of one Yersinia per T cell is sufficient to inhibit or alter T cell responses. This efficient inhibition is traced to specific targeting by YopH of the adaptor proteins, linker for activation of T cells (LAT) and SH2-domain–containing leukocyte protein of 76 kD (SLP-76), which are crucial for T cell antigen receptor (TCR) signaling. A catalytically inactive YopH translocated via the type III secretory pathway from the bacteria into T cells primarily binds to LAT and SLP-76. Furthermore, among the proteins of the TCR signaling pathway, the tyrosine phosphorylation levels of LAT and SLP-76 are the most affected in T cells exposed to low numbers of Yersinia pseudotuberculosis. This is the first example showing that a pathogen targets these adaptor proteins in the TCR signaling pathway, suggesting a novel mechanism by which pathogens may efficiently alter T cell–mediated immune responses.
Collapse
Affiliation(s)
- Christiane Gerke
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | | |
Collapse
|
37
|
Navarro L, Alto NM, Dixon JE. Functions of the Yersinia effector proteins in inhibiting host immune responses. Curr Opin Microbiol 2005; 8:21-7. [PMID: 15694853 DOI: 10.1016/j.mib.2004.12.014] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The invasion strategies used by Yersinia species involve the 'hijacking' of host cellular signaling pathways, often involving microbial gene products that mimic the functions of the cellular proteins. Yersinia uses a type III secretion system to inject these microbial gene products, referred to as Yersinia effector proteins, into the host cytosol. Yersinia effector proteins can inhibit the host immune system through a diverse array of mechanisms including inhibition of the inflammatory response by interfering with cytokine production, inhibition of phagocytosis by disrupting the actin cytoskeleton, induction of apoptosis in macrophages and through the formation of novel signaling complexes.
Collapse
Affiliation(s)
- Lorena Navarro
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093-0721, USA
| | | | | |
Collapse
|
38
|
Mogemark L, McGee K, Yuan M, Deleuil F, Fällman M. Disruption of target cell adhesion structures by the Yersinia effector YopH requires interaction with the substrate domain of p130Cas. Eur J Cell Biol 2005; 84:477-89. [PMID: 15900707 DOI: 10.1016/j.ejcb.2004.11.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The docking protein p130Cas has, together with FAK, been found as a target of the Yersinia virulence effector YopH. YopH is a protein tyrosine phosphatase that is delivered into host cells via the bacterial type III secretion machinery, and the outcome of its activity is inhibition of host cell phagocytosis. In the present study using p130Cas-/- cells, and p130Cas-/- cells expressing variants of GFPp130Cas, we show that this docking protein, via its substrate domain, is responsible for subcellular targeting of YopH in eukaryotic cells. Since YopH inhibits phagocytosis, p130Cas was expected to be critical for signalling mediating bacterial internalization. However, p130Cas-/- cells did not exhibit reduced capacity to internalize Yersinia. On the other hand, when a dominant negative variant of p130Cas was expressed in these cells, the phagocytic capacity was severely impaired. Moreover, the p130Cas-/- cells displayed a marked reduced sensitivity towards YopH-mediated detachment compared to wild-type cells. Transfecting these cells with full-length p130Cas rendered cells hypersensitive to both mechanical and Yersinia-mediated detachment. This hypersensitivity was not seen upon transfection with the dominant negative substrate domain-deleted variant of p130Cas. This implicates p130Cas as a prominent regulator of cell adhesion, where its substrate-binding domain has a significant function.
Collapse
Affiliation(s)
- Lena Mogemark
- Department of Molecular Biology, Umeå University, S-901 87 Umeå, Sweden
| | | | | | | | | |
Collapse
|
39
|
Trülzsch K, Geginat G, Sporleder T, Ruckdeschel K, Hoffmann R, Heesemann J, Rüssmann H. YersiniaOuter Protein P Inhibits CD8 T Cell Priming in the Mouse Infection Model. THE JOURNAL OF IMMUNOLOGY 2005; 174:4244-51. [DOI: 10.4049/jimmunol.174.7.4244] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
40
|
Fällman M, Gustavsson A. Cellular mechanisms of bacterial internalization counteracted by Yersinia. INTERNATIONAL REVIEW OF CYTOLOGY 2005; 246:135-88. [PMID: 16164968 DOI: 10.1016/s0074-7696(05)46004-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Upon host-cell contact, human pathogenic Yersinia species inject Yop virulence effectors into the host through a Type III secretion-and-translocation system. These virulence effectors cause a block in phagocytosis (YopE, YopT, YpkA, and YopH) and suppression of inflammatory mediators (YopJ). The Yops that block phagocytosis either interfere with the host cell actin regulation of Rho GTPases (YopE, YopT, and YpkA) or specifically and rapidly inactivate host proteins involved in signaling from the receptor to actin (YopH). The block in uptake has been shown to be activated following binding to Fc, Complement, and beta1-integrin receptors in virtually any kind of host cell. Thus, the use of Yersinia as a model system to study Yersinia-host cell interactions provides a good tool to explore signaling pathways involved in phagocytosis.
Collapse
Affiliation(s)
- Maria Fällman
- Department of Molecular Biology, Umeå University, SE-90187 Umeå, Sweden
| | | |
Collapse
|
41
|
Tautz L, Bruckner S, Sareth S, Alonso A, Bogetz J, Bottini N, Pellecchia M, Mustelin T. Inhibition of Yersinia tyrosine phosphatase by furanyl salicylate compounds. J Biol Chem 2004; 280:9400-8. [PMID: 15615724 DOI: 10.1074/jbc.m413122200] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To avoid detection and targeting by the immune system, the plague-causing bacterium Yersinia pestis uses a type III secretion system to deliver a set of inhibitory proteins into the cytoplasm of immune cells. One of these proteins is an exceptionally active tyrosine phosphatase termed YopH, which paralyzes lymphocytes and macrophages by dephosphorylating critical tyrosine kinases and signal transduction molecules. Because Y. pestis strains lacking YopH are avirulent, we set out to develop small molecule inhibitors for YopH. We used a novel and cost-effective approach, in which leads from a chemical library screening were analyzed and computationally docked into the crystal structure of YopH. This resulted in the identification of a series of novel YopH inhibitors with nanomolar Ki values, as well as the structural basis for inhibition. Our inhibitors lack the polar phosphate-mimicking moiety of rationally designed tyrosine phosphatase inhibitors, and they readily entered live cells and rescued them from YopH-induced tyrosine dephosphorylation, signaling paralysis, and cell death. These inhibitors may become useful for treating the lethal infection by Y. pestis.
Collapse
Affiliation(s)
- Lutz Tautz
- Infectious and Inflammatory Disease Center, The Burnham Institute, La Jolla, California 92037, USA
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Abstract
The type III secretion system (TTSS) of gram-negative bacteria is responsible for delivering bacterial proteins, termed effectors, from the bacterial cytosol directly into the interior of host cells. The TTSS is expressed predominantly by pathogenic bacteria and is usually used to introduce deleterious effectors into host cells. While biochemical activities of effectors vary widely, the TTSS apparatus used to deliver these effectors is conserved and shows functional complementarity for secretion and translocation. This review focuses on proteins that constitute the TTSS apparatus and on mechanisms that guide effectors to the TTSS apparatus for transport. The TTSS apparatus includes predicted integral inner membrane proteins that are conserved widely across TTSSs and in the basal body of the bacterial flagellum. It also includes proteins that are specific to the TTSS and contribute to ring-like structures in the inner membrane and includes secretin family members that form ring-like structures in the outer membrane. Most prominently situated on these coaxial, membrane-embedded rings is a needle-like or pilus-like structure that is implicated as a conduit for effector translocation into host cells. A short region of mRNA sequence or protein sequence in effectors acts as a signal sequence, directing proteins for transport through the TTSS. Additionally, a number of effectors require the action of specific TTSS chaperones for efficient and physiologically meaningful translocation into host cells. Numerous models explaining how effectors are transported into host cells have been proposed, but understanding of this process is incomplete and this topic remains an active area of inquiry.
Collapse
Affiliation(s)
- Partho Ghosh
- Department of Chemistry & Biochemistry, University of California-San Diego, La Jolla, CA 92093-0314, USA.
| |
Collapse
|
43
|
Aepfelbacher M. Modulation of Rho GTPases by type III secretion system translocated effectors of Yersinia. Rev Physiol Biochem Pharmacol 2004; 152:65-77. [PMID: 15378389 DOI: 10.1007/s10254-004-0035-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Pathogenic species of the bacterial genus Yersinia subdue the immune system to proliferate and spread within the host organism. For this purpose yersiniae employ a type III secretion apparatus which governs injection of six effector proteins ( Y ersinia outer proteins; Yops) into host cells. Yops control various regulatory and signalling proteins in a unique and highly specific manner. YopE, YopT, and YpkA/YopO modulate the activity of Rho GTP-binding proteins, whereas YopH dephosphorylates phospho-tyrosine residues in focal adhesion proteins. Furthermore, YopP/YopJ and YopM affect cell survival/apoptosis and cell proliferation, respectively. In this review the focus will be on the biochemistry and cellular effects of YopT, YopE, YopO/YpkA, and YopH.
Collapse
Affiliation(s)
- M Aepfelbacher
- Max von Pettenkofer-Institut für Hygiene und Medizinische Mikrobiologie, Pettenkoferstr. 9a, 80336, München, Germany.
| |
Collapse
|
44
|
Trülzsch K, Sporleder T, Igwe EI, Rüssmann H, Heesemann J. Contribution of the major secreted yops of Yersinia enterocolitica O:8 to pathogenicity in the mouse infection model. Infect Immun 2004; 72:5227-34. [PMID: 15322017 PMCID: PMC517446 DOI: 10.1128/iai.72.9.5227-5234.2004] [Citation(s) in RCA: 129] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2004] [Revised: 03/22/2004] [Accepted: 06/01/2004] [Indexed: 12/30/2022] Open
Abstract
Pathogenic yersiniae (Yersinia pestis, Y. pseudotuberculosis, and Y. enterocolitica) harbor a 70-kb virulence plasmid (pYV) that encodes a type III secretion system and a set of at least six effector proteins (YopH, YopO, YopP, YopE, YopM, and YopT) that are injected into the host cell cytoplasm. Yops (Yersinia outer proteins) disturb the dynamics of the cytoskeleton, inhibit phagocytosis by macrophages, and downregulate the production of proinflammatory cytokines, which makes it possible for yersiniae to multiply extracellularly in lymphoid tissue. Y. enterocolitica serotype O:8 belongs to the highly mouse-pathogenic group of yersiniae in contrast to Y. enterocolitica serotype O:9. However, there has been no systematic study of the contribution of Yops to the pathogenicity of Y. enterocolitica O:8 in mice. We generated a set of yop gene deletion mutants of Y. enterocolitica O:8 by using the novel Red cloning procedure. We subsequently analyzed the contribution of yopH, -O, -P, -E, -M, -T, and -Q deletions to pathogenicity after oral and intravenous infection of mice. Here we showed for the first time that a DeltayopT deletion mutant colonizes mouse tissues to a greater extent than the parental strain. The DeltayopO, DeltayopP, and DeltayopE mutants were only slightly attenuated after oral infection since they were still able to colonize the spleen and liver and cause systemic infection. The DeltayopO mutant was lethal for mice, whereas DeltayopP and DeltayopE mutants were successfully eliminated from the spleen and liver 2 weeks after infection. In contrast the DeltayopH, DeltayopM, and DeltayopQ mutants were highly attenuated and not able to colonize the spleen and liver on any of the days tested. The DeltayopH, DeltayopO, DeltayopP, DeltayopE, DeltayopM, and DeltayopQ mutants had only modest defects in the colonization of the small intestine and Peyer's patches. The DeltayopE mutant was eliminated from the small intestine 3 weeks after infection, whereas the DeltayopH, DeltayopP, DeltayopM, and DeltayopQ mutants continued to colonize the small intestine at this time.
Collapse
Affiliation(s)
- Konrad Trülzsch
- Max von Pettenkofer Institute for Hygiene and Medical Microbiology, Ludwig Maximilians University, Munich, Germany.
| | | | | | | | | |
Collapse
|
45
|
Liang F, Huang Z, Lee SY, Liang J, Ivanov MI, Alonso A, Bliska JB, Lawrence DS, Mustelin T, Zhang ZY. Aurintricarboxylic acid blocks in vitro and in vivo activity of YopH, an essential virulent factor of Yersinia pestis, the agent of plague. J Biol Chem 2003; 278:41734-41. [PMID: 12888560 DOI: 10.1074/jbc.m307152200] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Yersinia are causative agents in human diseases ranging from gastrointestinal syndromes to Bubonic Plague. There is increasing risk of misuse of infectious agents, such as Yersinia pestis, as weapons of terror as well as instruments of warfare for mass destruction. YopH is an essential virulence factor whose protein-tyrosine phosphatase (PTP) activity is required for Yersinia pathogenicity. Consequently, there is considerable interest in developing potent and selective YopH inhibitors as novel anti-plague agents. We have screened a library of 720 structurally diverse commercially available carboxylic acids and identified 26 YopH inhibitors with IC50 values below 100 mum. The most potent and specific YopH inhibitor is aurintricarboxylic acid (ATA), which exhibits a Ki value of 5 nm for YopH and displays 6-120-fold selectivity in favor of YopH against a panel of mammalian PTPs. To determine whether ATA can block the activity of YopH in a cellular context, we have examined the effect of ATA on T-cell signaling in human Jurkat cells transfected with YopH. We show that YopH severely decreases the T-cell receptor-induced cellular tyrosine phosphorylation, ERK1/2 activity, and interleukin-2 transcriptional activity. We demonstrate that ATA can effectively block the inhibitory activity of YopH and restore normal T-cell function. These results provide a proof-of-concept for the hypothesis that small molecule inhibitors that selectively target YopH may be therapeutically useful. In addition, it is expected that potent and selective YopH inhibitors, such as ATA, should be useful reagents to delineate YopH's cellular targets in plague and other pathogenic conditions caused by Yersinia infection.
Collapse
Affiliation(s)
- Fubo Liang
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Viboud GI, So SSK, Ryndak MB, Bliska JB. Proinflammatory signalling stimulated by the type III translocation factor YopB is counteracted by multiple effectors in epithelial cells infected with Yersinia pseudotuberculosis. Mol Microbiol 2003; 47:1305-15. [PMID: 12603736 DOI: 10.1046/j.1365-2958.2003.03350.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Type III secretion systems are used by several pathogens to translocate effector proteins into host cells. Yersinia pseudotuberculosis delivers several Yop effectors (e.g. YopH, YopE and YopJ) to counteract signalling responses during infection. YopB, YopD and LcrV are components of the translocation machinery. Here, we demonstrate that a type III translocation protein stimulates proinflammatory signalling in host cells, and that multiple effector Yops counteract this response. To examine proinflammatory signalling by the type III translocation machinery, HeLa cells infected with wild-type or Yop-Y. pseudotuberculosis strains were assayed for interleukin (IL)-8 production. HeLa cells infected with a YopEHJ- triple mutant released significantly more IL-8 than HeLa cells infected with isogenic wild-type, YopE-, YopH- or YopJ- bacteria. Complementation analysis demonstrated that YopE, YopH or YopJ are sufficient to counteract IL-8 production. IL-8 production required YopB, but did not require YopD, pore formation or invasin-mediated adhesion. In addition, YopB was required for activation of nuclear factor kappa B, the mitogen-activated protein kinases ERK and JNK and the small GTPase Ras in HeLa cells infected with the YopEHJ- mutant. We conclude that interaction of the Yersinia type III translocator factor YopB with the host cell triggers a proinflammatory signalling response that is counteracted by multiple effectors in host cells.
Collapse
Affiliation(s)
- Gloria I Viboud
- Department of Molecular Genetics and Microbiology, Center for Infectious Diseases, School of Medicine, State University of New York at Stony Brook, Stony Brook, NY 11794-5222, USA
| | | | | | | |
Collapse
|
47
|
Deleuil F, Mogemark L, Francis MS, Wolf-Watz H, Fällman M. Interaction between the Yersinia protein tyrosine phosphatase YopH and eukaryotic Cas/Fyb is an important virulence mechanism. Cell Microbiol 2003; 5:53-64. [PMID: 12542470 DOI: 10.1046/j.1462-5822.2003.00236.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The tyrosine phosphatase YopH is an essential virulence factor produced by pathogenic Yersinia species. YopH is translocated into host cells via a type III secretion system and its dephosphorylating activity causes disruption of focal complex structures and blockage of the phagocytic process. Among the host cell targets of YopH are the focal adhesion proteins Crk-associated substrate (p130Cas) and focal adhesion kinase (FAK) in epithelial cells, and p130Cas and Fyn-binding protein (Fyb) in macrophages. Previous studies have shown that the N-terminal domain of YopH acts as a substrate-binding domain. In this study, the mechanism and biological importance of the targeting of YopH to focal complexes relative to its interaction with p130Cas/Fyb was elucidated. Mutants of YopH that were defective in p130Cas/Fyb binding but otherwise indistinguishable from wild type were constructed. Mutants unable to bind p130Cas did not localize to focal complex structures in infected cells, indicating that the association with p130Cas is critical for appropriate subcellular localization of YopH. These yopH mutants were also clearly attenuated in virulence, showing that binding to p130Cas and/or Fyb is biologically relevant in Yersinia infections.
Collapse
|
48
|
Abstract
'Type III secretion'--the mechanism by which some pathogenic bacteria inject proteins straight into the cytosol of eukaryotic cells to 'anaesthetize' or 'enslave' them--was discovered in 1994. Important progress has been made in this area during the past few years: the bacterial organelles responsible for this secretion--called 'injectisomes'--have been visualized, the structures of some of the bacterial protein 'effectors' have been determined, and considerable progress has been made in understanding the intracellular action of the effectors. Type III secretion is key to the pathogenesis of bacteria from the Yersinia genus.
Collapse
Affiliation(s)
- Guy R Cornelis
- Biozentrum der Universität Basel, Klingelbergstr. 50-70, CH-4056 Basel, Switzerland.
| |
Collapse
|
49
|
Grosdent N, Maridonneau-Parini I, Sory MP, Cornelis GR. Role of Yops and adhesins in resistance of Yersinia enterocolitica to phagocytosis. Infect Immun 2002; 70:4165-76. [PMID: 12117925 PMCID: PMC128122 DOI: 10.1128/iai.70.8.4165-4176.2002] [Citation(s) in RCA: 168] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Yersinia enterocolitica is a pathogen endowed with two adhesins, Inv and YadA, and with the Ysc type III secretion system, which allows extracellular adherent bacteria to inject Yop effectors into the cytosol of animal target cells. We tested the influence of all of these virulence determinants on opsonic and nonopsonic phagocytosis by PU5-1.8 and J774 mouse macrophages, as well as by human polymorphonuclear leukocytes (PMNs). The adhesins contributed to phagocytosis in the absence of opsonins but not in the presence of opsonins. In agreement with previous results, YadA counteracted opsonization. In every instance, the Ysc-Yop system conferred a significant level of resistance to phagocytosis. Nonopsonized single-mutant bacteria lacking either YopE, -H, -T, or -O were phagocytosed significantly more by J774 cells and by PMNs. Opsonized bacteria were phagocytosed more than nonopsonized bacteria, and mutant bacteria lacking either YopH, -T, or -O were phagocytosed significantly more by J774 cells and by PMNs than were wild-type (WT) bacteria. Opsonized mutants lacking only YopE were phagocytosed significantly more than were WT bacteria by PMNs but not by J774 cells. Thus, YopH, -T, and -O were involved in all of the phagocytic processes studied here but YopE did not play a clear role in guarding against opsonic phagocytosis by J774. Mutants lacking YopP and YopM were, in every instance, as resistant as WT bacteria. Overexpression of YopE, -H, -T, or -O alone did not confer resistance to phagocytosis, although it affected the cytoskeleton. These results show that YopH, YopT, YopO, and, in some instances, YopE act synergistically to increase the resistance of Y. enterocolitica to phagocytosis by macrophages and PMNs.
Collapse
Affiliation(s)
- Nadine Grosdent
- Microbial Pathogenesis Unit, Christian de Duve Institute of Cellular Pathology and Faculté de Médecine, Université Catholique de Louvain, B-1200 Brussels, Belgium
| | | | | | | |
Collapse
|
50
|
Bruce-Staskal PJ, Weidow CL, Gibson JJ, Bouton AH. Cas, Fak and Pyk2 function in diverse signaling cascades to promote Yersinia uptake. J Cell Sci 2002; 115:2689-700. [PMID: 12077360 DOI: 10.1242/jcs.115.13.2689] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The interplay between pathogen-encoded virulence factors and host cell signaling networks is critical for both the establishment and clearance of microbial infections. Yersinia uptake into host cells serves as an in vitro model for exploring how host cells respond to Yersinia adherence. In this study, we provide insight into the molecular nature and regulation of signaling networks that contribute to the uptake process. Using a reconstitution approach in Fak-/- fibroblasts, we have been able to specifically address the interplay between Fak, Cas and Pyk2 in this process. We show that both Fak and Cas play roles in the Yersinia uptake process and that Cas can function in a novel pathway that is independent of Fak. Fak-dependent Yersinia uptake does not appear to involve Cas-Crk signaling. By contrast, Cas-mediated uptake in the absence of Fak requires Crk as well as the protein tyrosine kinases Pyk2 and Src. In spite of these differences, the requirement for Rac1 activity is a common feature of both pathways. Furthermore, blocking the function of either Fak or Cas induces similar morphological defects in Yersinia internalization, which are manifested by incomplete membrane protrusive activity that is consistent with an inhibition of Rac1 activity. Pyk2 also functions in Yersinia uptake by macrophages, which are physiologically important for clearing Yersinia infections. Taken together, these data provide new insight into the host cellular signaling networks that are initiated upon infection with Y. pseudotuberculosis. Importantly, these findings also contribute to a better understanding of other cellular processes that involve actin remodeling, including the host response to other microbial pathogens, cell adhesion and migration.
Collapse
Affiliation(s)
- Pamela J Bruce-Staskal
- Department of Microbiology and Cancer Center, University of Virginia Health System, Charlottesville, VA 22908-0734, USA
| | | | | | | |
Collapse
|