1
|
Gasser C, Faurie JM, Rul F. Regulation of lactose, glucose and sucrose metabolisms in S. thermophilus. Food Microbiol 2024; 121:104487. [PMID: 38637064 DOI: 10.1016/j.fm.2024.104487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 02/02/2024] [Accepted: 02/04/2024] [Indexed: 04/20/2024]
Abstract
Streptococcus thermophilus is a bacterium widely used in the production of yogurts and cheeses, where it efficiently ferments lactose, the saccharide naturally present in milk. It is also employed as a starter in dairy- or plant-based fermented foods that contain saccharides other than lactose (e.g., sucrose, glucose). However, little is known about how saccharide use is regulated, in particular when saccharides are mixed. Here, we determine the effect of the 5 sugars that S. thermophilus is able to use, at different concentration and when they are mixed on the promoter activities of the C-metabolism genes. Using a transcriptional fusion approach, we discovered that lactose and glucose modulated the activity of the lacS and scrA promoters in a concentration-dependent manner. When mixed with lactose, glucose also repressed the two promoter activities; when mixed with sucrose, lactose still repressed scrA promoter activity. We determined that catabolite control protein A (CcpA) played a key role in these dynamics. We also showed that promoter activity was linked with glycolytic flux, which varied depending on saccharide type and concentration. Overall, this study identified key mechanisms in carbohydrate metabolism - autoregulation and partial hierarchical control - and demonstrated that they are partly mediated by CcpA.
Collapse
Affiliation(s)
- C Gasser
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France; Danone Nutricia Research, Avenue de la Vauve, 91120, Palaiseau, France; Yeasty, 4 rue Pierre Fontaine Génopole, 91000, Évry Courcouronnes, France
| | - J M Faurie
- Danone Nutricia Research, Avenue de la Vauve, 91120, Palaiseau, France; Procelys by Lesaffre, 103 Rue Jean Jaurès, 94704, Maisons-Alfort Cedex, France
| | - F Rul
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France.
| |
Collapse
|
2
|
Douwenga S, van Olst B, Boeren S, Luo Y, Lai X, Teusink B, Vervoort J, Kleerebezem M, Bachmann H. The hierarchy of sugar catabolization in Lactococcus cremoris. Microbiol Spectr 2023; 11:e0224823. [PMID: 37888986 PMCID: PMC10715065 DOI: 10.1128/spectrum.02248-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 09/21/2023] [Indexed: 10/28/2023] Open
Abstract
IMPORTANCE The availability of nutrients to microorganisms varies considerably between different environments, and changes can occur rapidly. As a general rule, a fast growth rate-typically growth on glucose-is associated with the repression of other carbohydrate utilization genes, but it is not clear to what extent catabolite repression is exerted by other sugars. We investigated the hierarchy of sugar utilization after substrate transitions in Lactococcus cremoris. For this, we determined the proteome and carbohydrate utilization capacity after growth on different sugars. The results show that the preparedness of cells for the utilization of "slower" sugars is not strictly determined by the growth rate. The data point to individual proteins relevant for various sugar transitions and suggest that the evolutionary history of the organism might be responsible for deviations from a strictly growth rate-related sugar catabolization hierarchy.
Collapse
Affiliation(s)
- Sieze Douwenga
- TI Food and Nutrition, Wageningen, the Netherlands
- Systems Biology Lab, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Berdien van Olst
- TI Food and Nutrition, Wageningen, the Netherlands
- Host-Microbe Interactomics, Wageningen University & Research, Wageningen, the Netherlands
- Laboratory of Biochemistry, Wageningen University & Research, Wageningen, the Netherlands
| | - Sjef Boeren
- TI Food and Nutrition, Wageningen, the Netherlands
- Laboratory of Biochemistry, Wageningen University & Research, Wageningen, the Netherlands
| | - Yanzhang Luo
- MAGNEtic resonance research FacilitY (MAGNEFY), Wageningen University & Research, Wageningen, the Netherlands
| | - Xin Lai
- Systems Biology Lab, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Bas Teusink
- TI Food and Nutrition, Wageningen, the Netherlands
- Systems Biology Lab, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Jacques Vervoort
- TI Food and Nutrition, Wageningen, the Netherlands
- Laboratory of Biochemistry, Wageningen University & Research, Wageningen, the Netherlands
| | - Michiel Kleerebezem
- TI Food and Nutrition, Wageningen, the Netherlands
- Host-Microbe Interactomics, Wageningen University & Research, Wageningen, the Netherlands
| | - Herwig Bachmann
- TI Food and Nutrition, Wageningen, the Netherlands
- Systems Biology Lab, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Microbiology Department, NIZO Food Research, Ede, the Netherlands
| |
Collapse
|
3
|
Zhao X, Zhang Y, He B, Han Y, Shen B, Zang Y, Wang H. Transcriptional control of carbohydrate catabolism by the CcpA protein in the ruminal bacterium Streptococcus bovis. Appl Environ Microbiol 2023; 89:e0047423. [PMID: 37823652 PMCID: PMC10617382 DOI: 10.1128/aem.00474-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 07/23/2023] [Indexed: 10/13/2023] Open
Abstract
As a potent, pleiotropic regulatory protein in Gram-positive bacteria, catabolite control protein A (CcpA) mediates the transcriptional control of carbohydrate metabolism in Streptococcus bovis, a lactate-producing bacterium that plays an essential role in rumen acidosis in dairy cows. Although the rumen uptake of carbohydrates is multi-substrate, the focus of S. bovis research thus far has been on the glucose. With the aid of gene deletion, whole-genome sequencing, and transcriptomics, we have unraveled the role of CcpA in carbohydrate metabolism, on the one hand, and acidosis, on the other, and we show that the S. bovis strain S1 encodes "Carbohydrate-Active Enzymes" and that ccpA deletion slows the organism's growth rate and modulates the organic acid fermentation pathways toward lower lactate, higher formate, and acetate in the maltose and cellobiose. Furthermore, this study revealed the different regulatory functions of the CcpA protein in rumen metabolism and acidosis.IMPORTANCEThis study is important as it illustrates the varying regulatory role of the Streptococcus bovis catabolite control protein A protein in carbohydrate metabolism and the onset of acidosis in dairy cattle.
Collapse
Affiliation(s)
- Xiujuan Zhao
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Ying Zhang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Banglin He
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Yu Han
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Ben Shen
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Yu Zang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Hongrong Wang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| |
Collapse
|
4
|
Fei Y, Huang L, Wang H, Liang J, Liu G, Bai W. Adaptive mechanism of Lactobacillus amylolyticus L6 in soymilk environment based on metabolism of nutrients and related gene-expression profiles. Food Sci Nutr 2022; 10:1548-1563. [PMID: 35592287 PMCID: PMC9094474 DOI: 10.1002/fsn3.2779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 01/20/2022] [Accepted: 01/22/2022] [Indexed: 11/10/2022] Open
Abstract
Lactobacillus amylolyticus L6 isolated from naturally fermented tofu-whey was characterized as potential probiotics. To give insight into the adaptive mechanism of L. amylolyticus L6 in soymilk, the gene-expression profiles of this strain and changes of chemical components in fermented soymilk were investigated. The viable counts of L. amylolyticus L6 in soymilk reached 1012 CFU/mL in the stationary phase (10 hr). The main sugars reduced gradually while the acidity value significantly increased from 45.33° to 95.88° during fermentation. About 50 genes involved in sugar metabolization and lactic acid production were highly induced during soymilk fermentation. The concentration of total amino acid increased to 668.38 mg/L in the logarithmic phase, and 45 differentially expressed genes (DEGs) in terms of nitrogen metabolism and biosynthesis of amino acid were detected. Other genes related to lipid metabolism, inorganic ion transport, and stress response were also highly induced. Besides, the concentration of isoflavone aglycones with high bioactivity increased from 14.51 mg/L to 36.09 mg/L during the fermentation, and the expression of 6-phospho-β-glucosidase gene was also synchronously induced. This study revealed the adaptive mechanism of L. amylolyticus L6 in the soymilk-based ecosystem, which gives the theoretical guidance for the application of this strain in other soybean-derived products.
Collapse
Affiliation(s)
- Yongtao Fei
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology Zhongkai University of Agriculture and Engineering Guangzhou China.,College of Light Industry and Food Science Zhongkai University of Agriculture and Engineering Guangzhou China.,Academy of Contemporary Agricultural Engineering Innovations Zhongkai University of Agriculture and Engineering Guangzhou China
| | - Li Huang
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology Zhongkai University of Agriculture and Engineering Guangzhou China
| | - Hong Wang
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology Zhongkai University of Agriculture and Engineering Guangzhou China.,College of Light Industry and Food Science Zhongkai University of Agriculture and Engineering Guangzhou China
| | - Jinglong Liang
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology Zhongkai University of Agriculture and Engineering Guangzhou China.,Academy of Contemporary Agricultural Engineering Innovations Zhongkai University of Agriculture and Engineering Guangzhou China
| | - Gongliang Liu
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology Zhongkai University of Agriculture and Engineering Guangzhou China.,College of Light Industry and Food Science Zhongkai University of Agriculture and Engineering Guangzhou China.,Academy of Contemporary Agricultural Engineering Innovations Zhongkai University of Agriculture and Engineering Guangzhou China
| | - Weidong Bai
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology Zhongkai University of Agriculture and Engineering Guangzhou China.,College of Light Industry and Food Science Zhongkai University of Agriculture and Engineering Guangzhou China.,Academy of Contemporary Agricultural Engineering Innovations Zhongkai University of Agriculture and Engineering Guangzhou China
| |
Collapse
|
5
|
Regulation of CcpA on the growth and organic acid production characteristics of ruminal Streptococcus bovis at different pH. BMC Microbiol 2021; 21:344. [PMID: 34911440 PMCID: PMC8672513 DOI: 10.1186/s12866-021-02404-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 11/26/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Catabolite control protein A (CcpA) regulates the transcription of lactate dehydrogenase and pyruvate formate-lyase in Streptococcus bovis, but knowledge of its role in response to different pH is still limited. In this study, a ccpA-knockout strain of S. bovis S1 was constructed and then used to examine the effects of ccpA gene deletion on the growth and fermentation characteristics of S. bovis S1 at pH 5.5 or 6.5. RESULTS There was a significant interaction between strain and pH for the maximum specific growth rate (μmax) and growth lag period (λ), which caused a lowest μmax and a longest λ in ccpA-knockout strain at pH 5.5. Deletion of ccpA decreased the concentration and molar percentage of lactic acid, while increased those of formic acid. Strains at pH 5.5 had decreased concentrations of lactic acid and formic acid compared to pH 6.5. The significant interaction between strain and pH caused the highest production of total organic acids and acetic acid in ccpA-knockout strain at pH 6.5. The activities of α-amylase and lactate dehydrogenase decreased in ccpA-knockout strain compared to the wild-type strain, and increased at pH 5.5 compared to pH 6.5. There was a significant interaction between strain and pH for the activity of acetate kinase, which was the highest in the ccpA-knockout strain at pH 6.5. The expression of pyruvate formate-lyase and acetate kinase was higher in the ccpA-knockout strain compared to wild-type strain. The lower pH improved the relative expression of pyruvate formate-lyase, while had no effect on the relative expression of acetate kinase. The strain × pH interaction was significant for the relative expression of lactate dehydrogenase and α-amylase, both of which were highest in the wild-type strain at pH 5.5 and lowest in the ccpA-knockout strain at pH 6.5. CONCLUSIONS Overall, low pH inhibited the growth of S. bovis S1, but did not affect the fermentation pattern. CcpA regulated S. bovis S1 growth and organic acid fermentation pattern. Moreover, there seemed to be an interaction effect between pH and ccpA deletion on regulating the growth and organic acids production of S. bovis S1.
Collapse
|
6
|
Jin Y, Fan Y, Sun H, Zhang Y, Wang H. Transcriptome Analysis Reveals Catabolite Control Protein A Regulatory Mechanisms Underlying Glucose-Excess or -Limited Conditions in a Ruminal Bacterium, Streptococcus bovis. Front Microbiol 2021; 12:767769. [PMID: 34867900 PMCID: PMC8637274 DOI: 10.3389/fmicb.2021.767769] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/20/2021] [Indexed: 12/05/2022] Open
Abstract
Ruminants may suffer from rumen acidosis when fed with high-concentrate diets due to the higher proliferation and overproduction of lactate by Streptococcus bovis. The catabolite control protein A (CcpA) regulates the transcription of lactate dehydrogenase (ldh) and pyruvate formate-lyase (pfl) in S. bovis, but its role in response to different carbon concentrations remains unclear. To characterize the regulatory mechanisms of CcpA in S. bovis S1 at different levels of carbon, herein, we analyzed the transcriptomic and physiological characteristics of S. bovis S1 and its ccpA mutant strain grown in glucose-excess and glucose-limited conditions. A reduced growth rate and a shift in fermentation pattern from homofermentation to heterofermentation were observed under glucose-limited condition as compared to glucose-excess condition, in S. bovis S1. Additionally, the inactivation of ccpA significantly affected the growth and end metabolites in both conditions. For the glycolytic intermediate, fructose 1,6-bisphosphate (FBP), the concentration significantly reduced at lower glucose conditions; its concentration decreased significantly in the ccpA mutant strain. Transcriptomic results showed that about 46% of the total genes were differentially transcribed between the wild-type strain and ccpA mutant strain grown in glucose-excess conditions; while only 12% genes were differentially transcribed in glucose-limited conditions. Different glucose concentrations led to the differential expression of 38% genes in the wild-type strain, while only half of these were differentially expressed in the ccpA-knockout strain. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses showed that the substrate glucose concentration significantly affected the gene expression in histidine metabolism, nitrogen metabolism, and some carbohydrate metabolism pathways. The deletion of ccpA affected several genes involved in carbohydrate metabolism, such as glycolysis, pyruvate metabolism, fructose and mannose metabolism, as well as in fatty acid biosynthesis pathways in bacteria grown in glucose-excess conditions; this effect was attenuated under glucose-limited conditions. Overall, these findings provide new information on gene transcription and metabolic mechanisms associated with substrate glucose concentration and validate the important role of CcpA in the regulation of carbon metabolism in S. bovis S1 at differential glucose availability.
Collapse
Affiliation(s)
- Yaqian Jin
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Yaotian Fan
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Hua Sun
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Ying Zhang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Hongrong Wang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| |
Collapse
|
7
|
Kleerebezem M, Bachmann H, van Pelt-KleinJan E, Douwenga S, Smid EJ, Teusink B, van Mastrigt O. Lifestyle, metabolism and environmental adaptation in Lactococcus lactis. FEMS Microbiol Rev 2021; 44:804-820. [PMID: 32990728 DOI: 10.1093/femsre/fuaa033] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 09/28/2020] [Indexed: 12/14/2022] Open
Abstract
Lactococcus lactis serves as a paradigm organism for the lactic acid bacteria (LAB). Extensive research into the molecular biology, metabolism and physiology of several model strains of this species has been fundamental for our understanding of the LAB. Genomic studies have provided new insights into the species L. lactis, including the resolution of the genetic basis of its subspecies division, as well as the control mechanisms involved in the fine-tuning of growth rate and energy metabolism. In addition, it has enabled novel approaches to study lactococcal lifestyle adaptations to the dairy application environment, including its adjustment to near-zero growth rates that are particularly relevant in the context of cheese ripening. This review highlights various insights in these areas and exemplifies the strength of combining experimental evolution with functional genomics and bacterial physiology research to expand our fundamental understanding of the L. lactis lifestyle under different environmental conditions.
Collapse
Affiliation(s)
- Michiel Kleerebezem
- Host-Microbe Interactomics Group, Animal Sciences Department, Wageningen University, De Elst 1, 6708 WD Wageningen, the Netherlands
| | - Herwig Bachmann
- Systems Bioinformatics, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, the Netherlands.,NIZO food research, Kernhemseweg 2, 6718 ZB Ede, the Netherlands
| | - Eunice van Pelt-KleinJan
- Systems Bioinformatics, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, the Netherlands.,TiFN Food & Nutrition, Nieuwe Kanaal 9A, 6709 PA Wageningen, the Netherlands
| | - Sieze Douwenga
- Systems Bioinformatics, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, the Netherlands.,TiFN Food & Nutrition, Nieuwe Kanaal 9A, 6709 PA Wageningen, the Netherlands
| | - Eddy J Smid
- Laboratory of Food Microbiology, Wageningen University, Bornse Weilanden 9, 6708 WG Wageningen, the Netherlands
| | - Bas Teusink
- Systems Bioinformatics, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, the Netherlands
| | - Oscar van Mastrigt
- Laboratory of Food Microbiology, Wageningen University, Bornse Weilanden 9, 6708 WG Wageningen, the Netherlands
| |
Collapse
|
8
|
Nugroho ADW, Kleerebezem M, Bachmann H. A Novel Method for Long-Term Analysis of Lactic Acid and Ammonium Production in Non-growing Lactococcus lactis Reveals Pre-culture and Strain Dependence. Front Bioeng Biotechnol 2020; 8:580090. [PMID: 33163481 PMCID: PMC7580867 DOI: 10.3389/fbioe.2020.580090] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 09/15/2020] [Indexed: 01/25/2023] Open
Abstract
In various (industrial) conditions, cells are in a non-growing but metabolically active state in which de novo protein synthesis capacity is limited. The production of a metabolite by such non-growing cells is dependent on the cellular condition and enzyme activities, such as the amount, stability, and degradation of the enzyme(s). For industrial fermentations in which the metabolites of interest are mainly formed after cells enter the stationary phase, the investigation of prolonged metabolite production is of great importance. However, current batch model systems do not allow prolonged measurements due to metabolite accumulation driving product-inhibition. Here we developed a protocol that allows high-throughput metabolic measurements to be followed in real-time over extended periods (weeks). As a validation model, sugar utilization and arginine consumption by a low density of translationally blocked Lactococcus lactis was designed in a defined medium. In this system L. lactis MG1363 was compared with its derivative HB60, a strain described to achieve higher metabolic yield through a shift toward heterofermentative metabolism. The results showed that in a non-growing state HB60 is able to utilize more arginine than MG1363, and for both strains the decay of the measured activities were dependent on pre-culture conditions. During the first 5 days of monitoring a ∼25-fold decrease in acidification rate was found for strain HB60 as compared to a ∼20-fold decrease for strain MG1363. Such measurements are relevant for the understanding of microbial metabolism and for optimizing applications in which cells are frequently exposed to long-term suboptimal conditions, such as microbial cell factories, fermentation ripening, and storage survival.
Collapse
Affiliation(s)
- Avis Dwi Wahyu Nugroho
- TiFN, Wageningen, Netherlands.,Health Department, NIZO Food Research, Ede, Netherlands.,Laboratory of Host-Microbe Interactomics, Wageningen University and Research Centers, Wageningen, Netherlands
| | - Michiel Kleerebezem
- TiFN, Wageningen, Netherlands.,Laboratory of Host-Microbe Interactomics, Wageningen University and Research Centers, Wageningen, Netherlands
| | - Herwig Bachmann
- TiFN, Wageningen, Netherlands.,Health Department, NIZO Food Research, Ede, Netherlands.,Systems Biology Lab, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
9
|
Gaudu P, Yamamoto Y, Jensen PR, Hammer K, Lechardeur D, Gruss A. Genetics of Lactococci. Microbiol Spectr 2019; 7:10.1128/microbiolspec.gpp3-0035-2018. [PMID: 31298208 PMCID: PMC10957224 DOI: 10.1128/microbiolspec.gpp3-0035-2018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Indexed: 11/20/2022] Open
Abstract
Lactococcus lactis is the best characterized species among the lactococci, and among the most consumed food-fermenting bacteria worldwide. Thanks to their importance in industrialized food production, lactococci are among the lead bacteria understood for fundamental metabolic pathways that dictate growth and survival properties. Interestingly, lactococci belong to the Streptococcaceae family, which includes food, commensal and virulent species. As basic metabolic pathways (e.g., respiration, metal homeostasis, nucleotide metabolism) are now understood to underlie virulence, processes elucidated in lactococci could be important for understanding pathogen fitness and synergy between bacteria. This chapter highlights major findings in lactococci and related bacteria, and covers five themes: distinguishing features of lactococci, metabolic capacities including the less known respiration metabolism in Streptococcaceae, factors and pathways modulating stress response and fitness, interbacterial dialogue via metabolites, and novel applications in health and biotechnology.
Collapse
Affiliation(s)
| | - Yuji Yamamoto
- Laboratory of Cellular Microbiology, School of Veterinary Medicine, Kitasato University, Towada, 034-8628, Aomori Japan
| | - Peter Ruhdal Jensen
- National Food Institute, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | - Karin Hammer
- DTU Bioengineering, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | | | | |
Collapse
|
10
|
Spangler JR, Caruana JC, Phillips DA, Walper SA. Broad range shuttle vector construction and promoter evaluation for the use of Lactobacillus plantarum WCFS1 as a microbial engineering platform. Synth Biol (Oxf) 2019; 4:ysz012. [PMID: 32995537 DOI: 10.1093/synbio/ysz012] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 05/06/2019] [Accepted: 05/07/2019] [Indexed: 11/13/2022] Open
Abstract
As the field of synthetic biology grows, efforts to deploy complex genetic circuits in nonlaboratory strains of bacteria will continue to be a focus of research laboratories. Members of the Lactobacillus genus are good targets for synthetic biology research as several species are already used in many foods and as probiotics. Additionally, Lactobacilli offer a relatively safe vehicle for microbiological treatment of various health issues considering these commensals are often minor constituents of the gut microbial community and maintain allochthonous behavior. In order to generate a foundation for engineering, we developed a shuttle vector for subcloning in Escherichia coli and used it to characterize the transcriptional and translational activities of a number of promoters native to Lactobacillus plantarum WCFS1. Additionally, we demonstrated the use of this vector system in multiple Lactobacillus species, and provided examples of non-native promoter recognition by both L. plantarum and E. coli strains that might allow a shortcut assessment of circuit outputs. A variety of promoter activities were observed covering a range of protein expression levels peaking at various times throughout growth, and subsequent directed mutations were demonstrated and suggested to further increase the degree of output tuning. We believe these data show the potential for L. plantarum WCFS1 to be used as a nontraditional synthetic biology chassis and provide evidence that our system can be transitioned to other probiotic Lactobacillus species as well.
Collapse
Affiliation(s)
| | - Julie C Caruana
- American Society for Engineering Education, Washington, DC, United States
| | - Daniel A Phillips
- American Society for Engineering Education, Washington, DC, United States
| | - Scott A Walper
- Center for Bio/Molecular Science and Engineering, US Naval Research Laboratory, Overlook Avenue, Washington, DC, USA
| |
Collapse
|
11
|
Liu J, Chan SHJ, Chen J, Solem C, Jensen PR. Systems Biology - A Guide for Understanding and Developing Improved Strains of Lactic Acid Bacteria. Front Microbiol 2019; 10:876. [PMID: 31114552 PMCID: PMC6503107 DOI: 10.3389/fmicb.2019.00876] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 04/04/2019] [Indexed: 12/15/2022] Open
Abstract
Lactic Acid Bacteria (LAB) are extensively employed in the production of various fermented foods, due to their safe status, ability to affect texture and flavor and finally due to the beneficial effect they have on shelf-life. More recently, LAB have also gained interest as production hosts for various useful compounds, particularly compounds with sensitive applications, such as food ingredients and therapeutics. As for all industrial microorganisms, it is important to have a good understanding of the physiology and metabolism of LAB in order to fully exploit their potential, and for this purpose, many systems biology approaches are available. Systems metabolic engineering, an approach that combines optimization of metabolic enzymes/pathways at the systems level, synthetic biology as well as in silico model simulation, has been used to build microbial cell factories for production of biofuels, food ingredients and biochemicals. When developing LAB for use in foods, genetic engineering is in general not an accepted approach. An alternative is to screen mutant libraries for candidates with desirable traits using high-throughput screening technologies or to use adaptive laboratory evolution to select for mutants with special properties. In both cases, by using omics data and data-driven technologies to scrutinize these, it is possible to find the underlying cause for the desired attributes of such mutants. This review aims to describe how systems biology tools can be used for obtaining both engineered as well as non-engineered LAB with novel and desired properties.
Collapse
Affiliation(s)
- Jianming Liu
- National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Champaign, IL, United States
| | - Siu Hung Joshua Chan
- Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, CO, United States
| | - Jun Chen
- National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Christian Solem
- National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Peter Ruhdal Jensen
- National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| |
Collapse
|
12
|
Presence of galactose in precultures induces lacS and leads to short lag phase in lactose-grown Lactococcus lactis cultures. J Ind Microbiol Biotechnol 2018; 46:33-43. [PMID: 30413923 PMCID: PMC6339885 DOI: 10.1007/s10295-018-2099-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 10/26/2018] [Indexed: 11/29/2022]
Abstract
Lactose conversion by lactic acid bacteria is of high industrial relevance and consistent starter culture quality is of outmost importance. We observed that Lactococcus lactis using the high-affinity lactose-phosphotransferase system excreted galactose towards the end of the lactose consumption phase. The excreted galactose was re-consumed after lactose depletion. The lacS gene, known to encode a lactose permease with affinity for galactose, a putative galactose–lactose antiporter, was upregulated under the conditions studied. When transferring cells from anaerobic to respiration-permissive conditions, lactose-assimilating strains exhibited a long and non-reproducible lag phase. Through systematic preculture experiments, the presence of galactose in the precultures was correlated to short and reproducible lag phases in respiration-permissive main cultivations. For starter culture production, the presence of galactose during propagation of dairy strains can provide a physiological marker for short culture lag phase in lactose-grown cultures.
Collapse
|
13
|
Cao ZL, Tan TT, Zhang YL, Han L, Hou XY, Ma HY, Cai J. NagR Bt Is a Pleiotropic and Dual Transcriptional Regulator in Bacillus thuringiensis. Front Microbiol 2018; 9:1899. [PMID: 30254611 PMCID: PMC6141813 DOI: 10.3389/fmicb.2018.01899] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 07/27/2018] [Indexed: 12/11/2022] Open
Abstract
NagR, belonging to the GntR/HutC family, is a negative regulator that directly represses the nagP and nagAB genes, which are involved in GlcNAc transport and utilization in Bacillus subtilis. Our previous work confirmed that the chitinase B gene (chiB) of Bacillus thuringiensis strain Bti75 is also negatively controlled by YvoABt, the ortholog of NagR from B. subtilis. In this work, we investigated its regulatory network in Bti75 and found that YvoABt is an N-acetylglucosamine utilization regulator primarily involved in GlcNAc catabolism; therefore YvoABt is renamed as NagRBt. The RNA-seq data revealed that 27 genes were upregulated and 14 genes were downregulated in the ΔnagR mutant compared with the wild-type strain. The regulon (exponential phase) was characterized by RNA-seq, bioinformatics software, electrophoretic mobility shift assays, and quantitative real-time reverse transcription PCR. In the Bti75 genome, 19 genes that were directly regulated and 30 genes that were indirectly regulated by NagRBt were identified. We compiled in silico, in vitro, and in vivo evidence that NagRBt behaves as a repressor and activator to directly or indirectly influence major biological processes involved in amino sugar metabolism, nucleotide metabolism, fatty acid metabolism, phosphotransferase system, and the Embden-Meyerhof-Parnas pathway.
Collapse
Affiliation(s)
- Zhang-Lei Cao
- Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Tong-Tong Tan
- Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Yan-Li Zhang
- Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Lu Han
- Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Xiao-Yue Hou
- Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Hui-Yong Ma
- Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Jun Cai
- Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China.,Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, China.,Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin, China
| |
Collapse
|
14
|
Aleksandrzak-Piekarczyk T, Szatraj K, Kosiorek K. GlaR (YugA)-a novel RpiR-family transcription activator of the Leloir pathway of galactose utilization in Lactococcus lactis IL1403. Microbiologyopen 2018; 8:e00714. [PMID: 30099846 PMCID: PMC6528599 DOI: 10.1002/mbo3.714] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 07/12/2018] [Accepted: 07/12/2018] [Indexed: 01/27/2023] Open
Abstract
Bacteria can utilize diverse sugars as carbon and energy source, but the regulatory mechanisms directing the choice of the preferred substrate are often poorly understood. Here, we analyzed the role of the YugA protein (now designated GlaR—Galactose–lactose operon Regulatory protein) of the RpiR family as a transcriptional activator of galactose (gal genes) and lactose (lac genes) utilization genes in Lactococcus lactis IL1403. In this bacterium, gal genes forming the Leloir operon are combined with lac genes in a single so‐called gal–lac operon. The first gene of this operon is the lacS gene encoding galactose permease. The glaR gene encoding GlaR lies directly upstream of the gal–lac gene cluster and is transcribed in the same direction. This genetic layout and the presence of glaR homologues in the closest neighborhood to the Leloir or gal–lac operons are highly conserved only among Lactococcus species. Deletion of glaR disabled galactose utilization and abrogated or decreased expression of the gal–lac genes. The GlaR‐dependent regulation of the gal–lac operon depends on its specific binding to a DNA region upstream of the lacS gene activating lacS expression and increasing the expression of the operon genes localized downstream. Notably, expression of lacS‐downstream genes, namely galMKTE, thgA and lacZ, is partially independent of the GlaR‐driven activation likely due to the presence of additional promoters. The glaR transcription itself is not subject to catabolite control protein A (CcpA) carbon catabolite repression (CRR) and is induced by galactose. Up to date, no similar mechanism has been reported in other lactic acid bacteria species. These results reveal a novel regulatory protein and shed new light on the regulation of carbohydrate catabolism in L. lactis IL1403, and by similarity, probably also in other lactococci.
Collapse
Affiliation(s)
| | - Katarzyna Szatraj
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences (IBB PAS), Warsaw, Poland
| | - Katarzyna Kosiorek
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences (IBB PAS), Warsaw, Poland
| |
Collapse
|
15
|
Giaretta S, Treu L, Vendramin V, da Silva Duarte V, Tarrah A, Campanaro S, Corich V, Giacomini A. Comparative Transcriptomic Analysis of Streptococcus thermophilus TH1436 and TH1477 Showing Different Capability in the Use of Galactose. Front Microbiol 2018; 9:1765. [PMID: 30131781 PMCID: PMC6090898 DOI: 10.3389/fmicb.2018.01765] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 07/16/2018] [Indexed: 12/03/2022] Open
Abstract
Streptococcus thermophilus is a species widely used in the dairy industry for its capability to rapidly ferment lactose and lower the pH. The capability to use galactose produced from lactose hydrolysis is strain dependent and most of commercial S. thermophilus strains are galactose-negative (Gal−), although galactose-positive (Gal+) would be more technologically advantageous because this feature could provide additional metabolic products and prevent galactose accumulation in foods. In this study, a next generation sequencing transcriptome approach was used to compare for the first time a Gal+ and a Gal− strain to characterize their whole metabolism and shed light on their different properties, metabolic performance and gene regulation. Transcriptome analysis revealed that all genes of the gal operon were expressed very differently in Gal+ and in the Gal− strains. The expression of several genes involved in mixed acid fermentation, PTS sugars transporter and stress response were found enhanced in Gal+. Conversely, genes related to amino acids, proteins metabolism and CRISPR associated proteins were under-expressed. In addition, the strains showed a diverse series of predicted genes controlled by the transcriptional factor catabolite control protein A (CcpA). Overall, transcriptomic analysis suggests that the Gal+ strain underwent a metabolic remodeling to cope with the changed environmental conditions.
Collapse
Affiliation(s)
- Sabrina Giaretta
- Department of Agronomy Food Natural Resources Animal and Environment, University of Padova, Padova, Italy
| | - Laura Treu
- Department of Agronomy Food Natural Resources Animal and Environment, University of Padova, Padova, Italy.,Department of Environmental Engineering, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Veronica Vendramin
- Department of Agronomy Food Natural Resources Animal and Environment, University of Padova, Padova, Italy
| | | | - Armin Tarrah
- Department of Agronomy Food Natural Resources Animal and Environment, University of Padova, Padova, Italy
| | | | - Viviana Corich
- Department of Agronomy Food Natural Resources Animal and Environment, University of Padova, Padova, Italy
| | - Alessio Giacomini
- Department of Agronomy Food Natural Resources Animal and Environment, University of Padova, Padova, Italy
| |
Collapse
|
16
|
Sidooski T, Brandelli A, Bertoli SL, Souza CKD, Carvalho LFD. Physical and nutritional conditions for optimized production of bacteriocins by lactic acid bacteria – A review. Crit Rev Food Sci Nutr 2018; 59:2839-2849. [DOI: 10.1080/10408398.2018.1474852] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Thiago Sidooski
- Chemical Engineering Department, University of Blumenau, São Paulo, Blumenau, SC, Brazil
| | - Adriano Brandelli
- Laboratory of Biochemistry and Applied Microbiology, Institute of Food Science and Technology, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Sávio Leandro Bertoli
- Chemical Engineering Department, University of Blumenau, São Paulo, Blumenau, SC, Brazil
| | | | | |
Collapse
|
17
|
Contribution of YthA, a PspC Family Transcriptional Regulator of Lactococcus lactis F44 Acid Tolerance and Nisin Yield: a Transcriptomic Approach. Appl Environ Microbiol 2018. [PMID: 29305506 DOI: 10.1128/aem.02483-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023] Open
Abstract
To overcome the adverse impacts of environmental stresses during growth, different adaptive regulation mechanisms can be activated in Lactococcus lactis In this study, the transcription levels of eight transcriptional regulators of L. lactis subsp. lactis F44 under acid stress were analyzed using quantitative reverse transcription-PCR. Eight gene-overexpressing strains were then constructed to examine their influences on acid-resistant capability. Overexpressing ythA, a PspC family transcriptional regulator, increased the survival rate by 3.2-fold compared to the control at the lethal pH 3.0 acid shock. Moreover, the nisin yield was increased by 45.50%. The ythA-overexpressing strain FythA appeared to have higher intracellular pH stability and nisin-resistant ability. Subsequently, transcriptome analysis revealed that the vast majority of genes associated with amino acid biosynthesis, including arginine, serine, phenylalanine, and tyrosine, were predominantly upregulated in FythA. Arginine biosynthesis (argG and argH), arginine deiminase pathway, and polar amino acid transport (ysfE and ysfF) were proposed to be the main regulation mechanisms of YthA. Furthermore, the transcription of genes associated with pyrimidine and exopolysaccharide biosynthesis were upregulated. The transcriptional levels of nisIPRKFEG genes were substantially higher in FythA, which directly contributed to the yield and resistance of nisin. Three potential DNA-binding sequences were predicted by computer analysis using the upstream regions of genes with prominent changes. This study showed that YthA could increase acid resistance and nisin yield and revealed a putative regulation mechanism of YthA.IMPORTANCE Nisin, produced by Lactococcus lactis subsp. lactis, is widely used as a safe food preservative. Acid stress becomes the primary restrictive factor of cell growth and nisin yield. In this research, we found that the transcriptional regulator YthA was conducive to enhancing the acid resistance of L. lactis F44. Overexpressing ythA could significantly improve the survival rate and nisin yield. The stability of intracellular pH and nisin resistance were also increased. Transcriptome analysis showed that nisin immunity and the biosynthesis of some amino acids, pyrimidine, and exopolysaccharides were enhanced in the engineered strain. This study elucidates the regulation mechanism of YthA and provides a novel strategy for constructing robust industrial L. lactis strains.
Collapse
|
18
|
Contribution of YthA, a PspC Family Transcriptional Regulator of Lactococcus lactis F44 Acid Tolerance and Nisin Yield: a Transcriptomic Approach. Appl Environ Microbiol 2018; 84:AEM.02483-17. [PMID: 29305506 DOI: 10.1128/aem.02483-17] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 12/22/2017] [Indexed: 11/20/2022] Open
Abstract
To overcome the adverse impacts of environmental stresses during growth, different adaptive regulation mechanisms can be activated in Lactococcus lactis In this study, the transcription levels of eight transcriptional regulators of L. lactis subsp. lactis F44 under acid stress were analyzed using quantitative reverse transcription-PCR. Eight gene-overexpressing strains were then constructed to examine their influences on acid-resistant capability. Overexpressing ythA, a PspC family transcriptional regulator, increased the survival rate by 3.2-fold compared to the control at the lethal pH 3.0 acid shock. Moreover, the nisin yield was increased by 45.50%. The ythA-overexpressing strain FythA appeared to have higher intracellular pH stability and nisin-resistant ability. Subsequently, transcriptome analysis revealed that the vast majority of genes associated with amino acid biosynthesis, including arginine, serine, phenylalanine, and tyrosine, were predominantly upregulated in FythA. Arginine biosynthesis (argG and argH), arginine deiminase pathway, and polar amino acid transport (ysfE and ysfF) were proposed to be the main regulation mechanisms of YthA. Furthermore, the transcription of genes associated with pyrimidine and exopolysaccharide biosynthesis were upregulated. The transcriptional levels of nisIPRKFEG genes were substantially higher in FythA, which directly contributed to the yield and resistance of nisin. Three potential DNA-binding sequences were predicted by computer analysis using the upstream regions of genes with prominent changes. This study showed that YthA could increase acid resistance and nisin yield and revealed a putative regulation mechanism of YthA.IMPORTANCE Nisin, produced by Lactococcus lactis subsp. lactis, is widely used as a safe food preservative. Acid stress becomes the primary restrictive factor of cell growth and nisin yield. In this research, we found that the transcriptional regulator YthA was conducive to enhancing the acid resistance of L. lactis F44. Overexpressing ythA could significantly improve the survival rate and nisin yield. The stability of intracellular pH and nisin resistance were also increased. Transcriptome analysis showed that nisin immunity and the biosynthesis of some amino acids, pyrimidine, and exopolysaccharides were enhanced in the engineered strain. This study elucidates the regulation mechanism of YthA and provides a novel strategy for constructing robust industrial L. lactis strains.
Collapse
|
19
|
Ravcheev DA, Thiele I. Comparative Genomic Analysis of the Human Gut Microbiome Reveals a Broad Distribution of Metabolic Pathways for the Degradation of Host-Synthetized Mucin Glycans and Utilization of Mucin-Derived Monosaccharides. Front Genet 2017; 8:111. [PMID: 28912798 PMCID: PMC5583593 DOI: 10.3389/fgene.2017.00111] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 08/11/2017] [Indexed: 12/27/2022] Open
Abstract
The colonic mucus layer is a dynamic and complex structure formed by secreted and transmembrane mucins, which are high-molecular-weight and heavily glycosylated proteins. Colonic mucus consists of a loose outer layer and a dense epithelium-attached layer. The outer layer is inhabited by various representatives of the human gut microbiota (HGM). Glycans of the colonic mucus can be used by the HGM as a source of carbon and energy when dietary fibers are not sufficiently available. Both commensals and pathogens can utilize mucin glycans. Commensals are mostly involved in the cleavage of glycans, while pathogens mostly utilize monosaccharides released by commensals. This HGM-derived degradation of the mucus layer increases pathogen susceptibility and causes many other health disorders. Here, we analyzed 397 individual HGM genomes to identify pathways for the cleavage of host-synthetized mucin glycans to monosaccharides as well as for the catabolism of the derived monosaccharides. Our key results are as follows: (i) Genes for the cleavage of mucin glycans were found in 86% of the analyzed genomes, which significantly higher than a previous estimation. (ii) Genes for the catabolism of derived monosaccharides were found in 89% of the analyzed genomes. (iii) Comparative genomic analysis identified four alternative forms of the monosaccharide-catabolizing enzymes and four alternative forms of monosaccharide transporters. (iv) Eighty-five percent of the analyzed genomes may be involved in potential feeding pathways for the monosaccharides derived from cleaved mucin glycans. (v) The analyzed genomes demonstrated different abilities to degrade known mucin glycans. Generally, the ability to degrade at least one type of mucin glycan was predicted for 81% of the analyzed genomes. (vi) Eighty-two percent of the analyzed genomes can form mutualistic pairs that are able to degrade mucin glycans and are not degradable by any of the paired organisms alone. Taken together, these findings provide further insight into the inter-microbial communications of the HGM as well as into host-HGM interactions.
Collapse
Affiliation(s)
- Dmitry A Ravcheev
- Luxembourg Centre for Systems Biomedicine, University of LuxembourgEsch-sur-Alzette, Luxembourg
| | - Ines Thiele
- Luxembourg Centre for Systems Biomedicine, University of LuxembourgEsch-sur-Alzette, Luxembourg
| |
Collapse
|
20
|
Zhang C, Guo T, Xin Y, Gao X, Kong J. Catabolite responsive element deficiency of xyl
operon resulting in carbon catabolite derepression in Lactobacillus fermentum
1001. J Appl Microbiol 2015; 120:126-37. [DOI: 10.1111/jam.12990] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 04/09/2015] [Accepted: 10/21/2015] [Indexed: 11/25/2022]
Affiliation(s)
- C. Zhang
- State Key Laboratory of Microbial Technology; Shandong University; Jinan China
| | - T. Guo
- State Key Laboratory of Microbial Technology; Shandong University; Jinan China
| | - Y. Xin
- State Key Laboratory of Microbial Technology; Shandong University; Jinan China
| | - X. Gao
- State Key Laboratory of Microbial Technology; Shandong University; Jinan China
| | - J. Kong
- State Key Laboratory of Microbial Technology; Shandong University; Jinan China
| |
Collapse
|
21
|
Morabbi Heravi K, Rigi G, Rezaei Arjomand M, Rostami A, Ahmadian G. An Alternative Bacterial Expression System Using Bacillus pumilus SG2 Chitinase Promoter. IRANIAN JOURNAL OF BIOTECHNOLOGY 2015; 13:17-24. [PMID: 28959305 DOI: 10.15171/ijb.1175] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Chitin is an abundant natural polysaccharide found in fungi, algae, and exoskeleton of insects. Several bacterial species are capable of utilizing chitin as their carbon source. These bacteria produce chitinases for degradation of chitin into N-acetyl-D-glucosamine. So far, regulation of the chitinase encoding genes has been studied in different bacterial species. Among Bacillus species, B. pumilus strain SG2 encodes two chitinases, ChiS and ChiL. The promoter region of chiSL genes (P chiS ) is mainly regulated by the general carbon catabolite repression (CCR) system in B. subtilis due to the presence of a catabolite responsive element (cre). OBJECTIVES Use of P chiS in constructing an inducible expression system in B. subtilis was investigated. MATERIALS AND METHODS In the first step, complete and shortened versions of P chiS were inserted upstream of the lacZ on a pBS72/pUC18 shuttle plasmid. The β-galactosidase activity of B. subtilis carrying one of the relevant plasmids was measured in the presence of different carbon sources. RESULTS An expression system based on the chitinase promoter of B. pumilus SG2 was established. Modification of P chiS and the culture medium resulted in production of β-galactosidase in B. subtilis up to 1,800 Miller unit (MU) activity. CONCLUSIONS The chitinase promoter developed in this study, has potential to be used in an expression vector that could be induced by chitin. In addition, compared to the other inducers like IPTG and lactose, chitin is definitely cheaper and more available as an inducer.
Collapse
Affiliation(s)
- Kambiz Morabbi Heravi
- Institut für Industrielle Genetik, Universität Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | - Garshasb Rigi
- Department of Biology, Faculty of Science, Behbahan Khatam Alanbia University of Technology, Behbahan, Iran
| | - Maryam Rezaei Arjomand
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Amin Rostami
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Gholamreza Ahmadian
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| |
Collapse
|
22
|
Zhai Z, An H, Wang G, Luo Y, Hao Y. Functional role of pyruvate kinase from Lactobacillus bulgaricus in acid tolerance and identification of its transcription factor by bacterial one-hybrid. Sci Rep 2015; 5:17024. [PMID: 26581248 PMCID: PMC4652205 DOI: 10.1038/srep17024] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 10/23/2015] [Indexed: 12/17/2022] Open
Abstract
Lactobacillus delbrueckii subsp. bulgaricus develops acid tolerance response when subjected to acid stress conditions, such as the induction of enzymes associated with carbohydrate metabolism. In this study, pyk gene encoding pyruvate kinase was over-expressed in heterologous host Lactococcus lactis NZ9000, and SDS-PAGE analysis revealed the successful expression of this gene in NZ9000. The survival rate of Pyk-overproducing strain was 45-fold higher than the control under acid stress condition (pH 4.0). In order to determine the transcription factor (TF) which regulates the expression of pyk by bacterial one-hybrid, we constructed a TF library including 65 TFs of L. bulgaricus. Western blotting indicated that TFs in this library could be successfully expressed in host strains. Subsequently, the promoter of pfk-pyk operon in L. bulgaricus was identified by 5′-RACE PCR. The bait plasmid pH3U3-p01 carrying the deletion fragment of pfk-pyk promoter captured catabolite control protein A (CcpA) which could regulate the expression of pyk by binding to a putative catabolite-responsive element (5′-TGTAAGCCCTAACA-3′) upstream the -35 region. Real-time qPCR analysis revealed the transcription of pyk was positively regulated by CcpA. This is the first report about identifying the TF of pyk in L. bulgaricus, which will provide new insight into the regulatory network.
Collapse
Affiliation(s)
- Zhengyuan Zhai
- Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Municipality, College of Food Science &Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Haoran An
- Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Municipality, College of Food Science &Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Guohong Wang
- Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Municipality, College of Food Science &Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yunbo Luo
- Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Municipality, College of Food Science &Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yanling Hao
- Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Municipality, College of Food Science &Nutritional Engineering, China Agricultural University, Beijing 100083, China
| |
Collapse
|
23
|
Li C, Sun JW, Zhang GF, Liu LB. Effect of the absence of the CcpA gene on growth, metabolic production, and stress tolerance in Lactobacillus delbrueckii ssp. bulgaricus. J Dairy Sci 2015; 99:104-11. [PMID: 26585479 DOI: 10.3168/jds.2015-10321] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 09/28/2015] [Indexed: 11/19/2022]
Abstract
The catabolite control protein A (CcpA) is a kind of multi-effect regulatory protein. In the study, the effect of the inactivation of CcpA and aerobic conditions on the growth, metabolic production, and stress tolerance to heat, oxidative, and cold stresses in Lactobacillus delbrueckii ssp. bulgaricus was investigated. Results showed that inactivation of CcpA distinctly hindered growth. Total lactic acid concentration was significantly lower in aerobiosis for both strains and was lower for the mutant strain than L. bulgaricus. Acetic acid production from the mutant strain was higher than L. bulgaricus in aerobiosis compared with anaerobiosis. Enzyme activities, lactate dehydrogenase (LDH), phosphate fructose kinase (PFK), pyruvate kinase (PK), and pyruvic dehydrogenase (PDH), were significantly lower in the mutant strain than L. bulgaricus. The diameters of inhibition zone were 13.59 ± 0.02 mm and 9.76 ± 0.02 mm for L. bulgaricus in anaerobiosis and aerobiosis, respectively; and 8.12 ± 0.02 mm and 7.38 ± 0.02 mm for the mutant in anaerobiosis and aerobiosis, respectively. For both strains, cells grown under aerobic environment possess more stress tolerance. This is the first study in which the CcpA-negative mutant of L. bulgaricus is constructed and the effect of aerobic growth on stress tolerance of L. bulgaricus is evaluated. Although aerobic cultivation does not significantly improve growth, it does improve stress tolerance.
Collapse
Affiliation(s)
- C Li
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China 150030
| | - J W Sun
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China 150030
| | - G F Zhang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China 150030
| | - L B Liu
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China 150030.
| |
Collapse
|
24
|
Aeration and fermentation strategies on nisin production. Biotechnol Lett 2015; 37:2039-45. [PMID: 26087947 DOI: 10.1007/s10529-015-1886-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Accepted: 06/11/2015] [Indexed: 10/23/2022]
Abstract
OBJECTIVES To optimize nisin production in Lactococcus lactis by using different aeration and fermentation strategies. RESULTS The nisin titer and specific nisin production rate reached maximum values of 11,900 IU/ml and 4110 IU/g/h, respectively, in aerobic batch fermentation with glucose as C source. These values were higher than in anaerobic batch fermentation (10,700 IU/ml and 3260 IU/g/h, respectively). The maximum specific nisin production rates appeared earlier in aerobic batch fermentation, which suggests that nisin production is stimulated by aeration. Different fermentation strategies were compared: maximum nisin production (15,400 IU/ml) was achieved with fed-batch fermentation with a variable rate of feeding under aerobic conditions. CONCLUSION Nisin production can be stimulated by aeration, which goes against the typical conditions involving strict anaerobiosis.
Collapse
|
25
|
|
26
|
Molecular and metabolic adaptations of Lactococcus lactis at near-zero growth rates. Appl Environ Microbiol 2014; 81:320-31. [PMID: 25344239 DOI: 10.1128/aem.02484-14] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
This paper describes the molecular and metabolic adaptations of Lactococcus lactis during the transition from a growing to a near-zero growth state by using carbon-limited retentostat cultivation. Transcriptomic analyses revealed that metabolic patterns shifted between lactic- and mixed-acid fermentations during retentostat cultivation, which appeared to be controlled at the level of transcription of the corresponding pyruvate dissipation-encoding genes. During retentostat cultivation, cells continued to consume several amino acids but also produced specific amino acids, which may derive from the conversion of glycolytic intermediates. We identify a novel motif containing CTGTCAG in the upstream regions of several genes related to amino acid conversion, which we propose to be the target site for CodY in L. lactis KF147. Finally, under extremely low carbon availability, carbon catabolite repression was progressively relieved and alternative catabolic functions were found to be highly expressed, which was confirmed by enhanced initial acidification rates on various sugars in cells obtained from near-zero-growth cultures. The present integrated transcriptome and metabolite (amino acids and previously reported fermentation end products) study provides molecular understanding of the adaptation of L. lactis to conditions supporting low growth rates and expands our earlier analysis of the quantitative physiology of this bacterium at near-zero growth rates toward gene regulation patterns involved in zero-growth adaptation.
Collapse
|
27
|
ClaR--a novel key regulator of cellobiose and lactose metabolism in Lactococcus lactis IL1403. Appl Microbiol Biotechnol 2014; 99:337-47. [PMID: 25239037 PMCID: PMC4286628 DOI: 10.1007/s00253-014-6067-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 08/11/2014] [Accepted: 08/31/2014] [Indexed: 11/21/2022]
Abstract
In a number of previous studies, our group has discovered an alternative pathway for lactose utilization in Lactococcus lactis that, in addition to a sugar-hydrolyzing enzyme with both P-β-glucosidase and P-β-galactosidase activity (BglS), engages chromosomally encoded components of cellobiose-specific PTS (PTSCel-Lac), including PtcA, PtcB, and CelB. In this report, we show that this system undergoes regulation via ClaR, a novel activator protein from the RpiR family of transcriptional regulators. Although RpiR proteins are widely distributed among lactic acid bacteria, their roles have yet to be confirmed by functional assays. Here, we show that ClaR activity depends on intracellular cellobiose-6-phosphate availability, while other sugars such as glucose or galactose have no influence on it. We also show that ClaR is crucial for activation of the bglS and celB expression in the presence of cellobiose, with some limited effects on ptcA and ptcB activation. Among 190 of carbon sources tested, the deletion of claR reduces L. lactis growth only in lactose- and/or cellobiose-containing media, suggesting a narrow specificity of this regulator within the context of sugar metabolism.
Collapse
|
28
|
Abstract
Genome analysis using next generation sequencing technologies has revolutionized the characterization of lactic acid bacteria and complete genomes of all major groups are now available. Comparative genomics has provided new insights into the natural and laboratory evolution of lactic acid bacteria and their environmental interactions. Moreover, functional genomics approaches have been used to understand the response of lactic acid bacteria to their environment. The results have been instrumental in understanding the adaptation of lactic acid bacteria in artisanal and industrial food fermentations as well as their interactions with the human host. Collectively, this has led to a detailed analysis of genes involved in colonization, persistence, interaction and signaling towards to the human host and its health. Finally, massive parallel genome re-sequencing has provided new opportunities in applied genomics, specifically in the characterization of novel non-GMO strains that have potential to be used in the food industry. Here, we provide an overview of the state of the art of these functional genomics approaches and their impact in understanding, applying and designing lactic acid bacteria for food and health.
Collapse
|
29
|
Transcription profiling of interactions between Lactococcus lactis subsp. cremoris SK11 and Lactobacillus paracasei ATCC 334 during Cheddar cheese simulation. Int J Food Microbiol 2014; 178:76-86. [PMID: 24674930 DOI: 10.1016/j.ijfoodmicro.2014.03.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 02/27/2014] [Accepted: 03/03/2014] [Indexed: 01/17/2023]
Abstract
The starter cultures (Lactococcus sp.) and non-starter lactic acid bacteria (mostly Lactobacillus spp.) are essential to flavor development of Cheddar cheese. The aim of this study was to elucidate the transcriptional interaction between Lactococcus lactis subsp. cremoris SK11 and Lactobacillus paracasei ATCC 334 in mixed cultures during simulated Cheddar cheese manufacture (Pearce activity test) and ripening (slurry). Reverse transcription quantitative PCR (RT-qPCR) was used to quantify the expression of 34 genes common to both bacteria and for eight genes specific to either L. lactis subsp. cremoris SK11 or L. paracasei ATCC 334. The multifactorial analysis (MFA) performed on fold change results for each gene revealed that the genes linked to stress, protein and peptide degradation as well as carbohydrate metabolism of L. paracasei ATCC 334 were especially overexpressed in mixed culture with L. lactis subsp. cremoris SK11 during the ripening simulation. For L. lactis subsp. cremoris SK11, genes coding for amino acid metabolism were more expressed during the cheese manufacture simulation, especially in single culture. These results show how complementary functions of starter and NSLAB contribute to activities useful for flavor development.
Collapse
|
30
|
From physiology to systems metabolic engineering for the production of biochemicals by lactic acid bacteria. Biotechnol Adv 2013; 31:764-88. [DOI: 10.1016/j.biotechadv.2013.03.011] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Revised: 03/28/2013] [Accepted: 03/31/2013] [Indexed: 11/21/2022]
|
31
|
The putrescine biosynthesis pathway in Lactococcus lactis is transcriptionally regulated by carbon catabolic repression, mediated by CcpA. Int J Food Microbiol 2013; 165:43-50. [DOI: 10.1016/j.ijfoodmicro.2013.04.021] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Revised: 04/15/2013] [Accepted: 04/17/2013] [Indexed: 11/19/2022]
|
32
|
Picard F, Milhem H, Loubière P, Laurent B, Cocaign-Bousquet M, Girbal L. Bacterial translational regulations: high diversity between all mRNAs and major role in gene expression. BMC Genomics 2012; 13:528. [PMID: 23036066 PMCID: PMC3543184 DOI: 10.1186/1471-2164-13-528] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Accepted: 09/25/2012] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND In bacteria, the weak correlations at the genome scale between mRNA and protein levels suggest that not all mRNAs are translated with the same efficiency. To experimentally explore mRNA translational level regulation at the systemic level, the detailed translational status (translatome) of all mRNAs was measured in the model bacterium Lactococcus lactis in exponential phase growth. RESULTS Results demonstrated that only part of the entire population of each mRNA species was engaged in translation. For transcripts involved in translation, the polysome size reached a maximum of 18 ribosomes. The fraction of mRNA engaged in translation (ribosome occupancy) and ribosome density were not constant for all genes. This high degree of variability was analyzed by bioinformatics and statistical modeling in order to identify general rules of translational regulation. For most of the genes, the ribosome density was lower than the maximum value revealing major control of translation by initiation. Gene function was a major translational regulatory determinant. Both ribosome occupancy and ribosome density were particularly high for transcriptional regulators, demonstrating the positive role of translational regulation in the coordination of transcriptional networks. mRNA stability was a negative regulatory factor of ribosome occupancy and ribosome density, suggesting antagonistic regulation of translation and mRNA stability. Furthermore, ribosome occupancy was identified as a key component of intracellular protein levels underlining the importance of translational regulation. CONCLUSIONS We have determined, for the first time in a bacterium, the detailed translational status for all mRNAs present in the cell. We have demonstrated experimentally the high diversity of translational states allowing individual gene differentiation and the importance of translation-level regulation in the complex process linking gene expression to protein synthesis.
Collapse
Affiliation(s)
- Flora Picard
- Université de Toulouse; INSA, UPS, INP; LISBP, 135 Avenue de Rangueil, Toulouse, F-31077, France
| | | | | | | | | | | |
Collapse
|
33
|
Mazzeo MF, Cacace G, Peluso A, Zotta T, Muscariello L, Vastano V, Parente E, Siciliano RA. Effect of inactivation of ccpA and aerobic growth in Lactobacillus plantarum: A proteomic perspective. J Proteomics 2012; 75:4050-61. [PMID: 22634038 DOI: 10.1016/j.jprot.2012.05.019] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Revised: 04/18/2012] [Accepted: 05/13/2012] [Indexed: 10/28/2022]
Abstract
Lactobacillus plantarum is a facultative heterofermentative lactic acid bacterium widely used in the production of most fermented food due to its ability to thrive in several environmental niches, including the human gut. In order to cope with different growth conditions, it has developed complex molecular response mechanisms, characterized by the induction of a large set of proteins mainly regulated by HrcA and CtsR repressors as well as by global regulators such as carbon catabolite control protein A (CcpA). In this study, the role of CcpA in the regulation of growth under anaerobiosis and aerobiosis, and the adaptation to aeration in L. plantarum WCFS1 were comprehensively investigated by differential proteomics. The inactivation of ccpA, in both growth conditions, significantly changed the expression level of 76 proteins, mainly associated with carbohydrate and energy metabolism, membrane transport, nucleotide metabolism, protein biosynthesis and folding. The role of CcpA as pleiotropic regulator was particularly evident at the shift from homolactic fermentation to mixed fermentation. Proteomic results also indicated that the mutant strain was more responsive to aerobic growth condition.
Collapse
Affiliation(s)
- Maria F Mazzeo
- Centro di Spettrometria di Massa Proteomica e Biomolecolare, Istituto di Scienze dell'Alimentazione, CNR, Avellino, Italy
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Recent advances in engineering the central carbon metabolism of industrially important bacteria. Microb Cell Fact 2012; 11:50. [PMID: 22545791 PMCID: PMC3461431 DOI: 10.1186/1475-2859-11-50] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Accepted: 04/30/2012] [Indexed: 01/19/2023] Open
Abstract
This paper gives an overview of the recent advances in engineering the central carbon metabolism of the industrially important bacteria Escherichia coli, Bacillus subtilis, Corynobacterium glutamicum, Streptomyces spp., Lactococcus lactis and other lactic acid bacteria. All of them are established producers of important classes of products, e.g. proteins, amino acids, organic acids, antibiotics, high-value metabolites for the food industry and also, promising producers of a large number of industrially or therapeutically important chemicals. Optimization of existing or introduction of new cellular processes in these microorganisms is often achieved through manipulation of targets that reside at major points of central metabolic pathways, such as glycolysis, gluconeogenesis, the pentose phosphate pathway and the tricarboxylic acid cycle with the glyoxylate shunt. Based on the huge progress made in recent years in biochemical, genetic and regulatory studies, new fascinating engineering approaches aim at ensuring an optimal carbon and energy flow within central metabolism in order to achieve optimized metabolite production.
Collapse
|
35
|
The maltose ABC transporter in Lactococcus lactis facilitates high-level sensitivity to the circular bacteriocin garvicin ML. Antimicrob Agents Chemother 2012; 56:2908-15. [PMID: 22411612 DOI: 10.1128/aac.00314-12] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
We generated and characterized a series of spontaneous mutants of Lactococcus lactis IL1403 with average 6- to 11-fold-lowered sensitivities to the circular bacteriocin garvicin ML (GarML). Carbohydrate fermentation assays highlighted changes in carbohydrate metabolism, specifically loss of the ability to metabolize starch and maltose, in these mutants. PCR and sequencing showed that a 13.5-kb chromosomal deletion encompassing 12 open reading frames, mainly involved in starch and maltose utilization, had spontaneously occurred in the GarML-resistant mutants. Growth experiments revealed a correlation between sensitivity to GarML and carbon catabolite repression (CCR); i.e., sensitivity to GarML increased significantly when wild-type cells were grown on maltose and galactose as sole carbohydrates, an effect which was alleviated by the presence of glucose. Among the genes deleted in the mutants were malEFG, which encode a CCR-regulated membrane-bound maltose ABC transporter. The complementation of mutants with these three genes recovered normal sensitivity to the bacteriocin, suggesting an essential role of the maltose ABC transporter in the antimicrobial activity of GarML. This notion was supported by the fact that the level of sensitivity to GarML was dose dependent, increasing with higher expression levels of malEFG over a 50-fold range. To our knowledge, this is the first time a specific protein complex has been demonstrated to be involved in sensitivity to a circular bacteriocin.
Collapse
|
36
|
Price CE, Zeyniyev A, Kuipers OP, Kok J. From meadows to milk to mucosa - adaptation of Streptococcus and Lactococcus species to their nutritional environments. FEMS Microbiol Rev 2012; 36:949-71. [PMID: 22212109 DOI: 10.1111/j.1574-6976.2011.00323.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Revised: 12/20/2011] [Accepted: 12/21/2011] [Indexed: 01/20/2023] Open
Abstract
Lactic acid bacteria (LAB) are indigenous to food-related habitats as well as associated with the mucosal surfaces of animals. The LAB family Streptococcaceae consists of the genera Lactococcus and Streptococcus. Members of the family include the industrially important species Lactococcus lactis, which has a long history safe use in the fermentative food industry, and the disease-causing streptococci Streptococcus pneumoniae and Streptococcus pyogenes. The central metabolic pathways of the Streptococcaceae family have been extensively studied because of their relevance in the industrial use of some species, as well as their influence on virulence of others. Recent developments in high-throughput proteomic and DNA-microarray techniques, in in vivo NMR studies, and importantly in whole-genome sequencing have resulted in new insights into the metabolism of the Streptococcaceae family. The development of cost-effective high-throughput sequencing has resulted in the publication of numerous whole-genome sequences of lactococcal and streptococcal species. Comparative genomic analysis of these closely related but environmentally diverse species provides insight into the evolution of this family of LAB and shows that the relatively small genomes of members of the Streptococcaceae family have been largely shaped by the nutritionally rich environments they inhabit.
Collapse
Affiliation(s)
- Claire E Price
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands; Biochemistry Department, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands; Kluyver Centre for Genomics of Industrial Fermentation, Delft, The Netherlands; Netherlands Consortium for Systems Biology, Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
37
|
Zotta T, Ricciardi A, Guidone A, Sacco M, Muscariello L, Mazzeo MF, Cacace G, Parente E. Inactivation of ccpA and aeration affect growth, metabolite production and stress tolerance in Lactobacillus plantarum WCFS1. Int J Food Microbiol 2012; 155:51-9. [PMID: 22326142 DOI: 10.1016/j.ijfoodmicro.2012.01.017] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Revised: 11/30/2011] [Accepted: 01/18/2012] [Indexed: 11/28/2022]
Abstract
The growth of Lactobacillus plantarum WCFS1 and of its ΔccpA ery mutant, WCFS1-2, was compared in batch fermentations in a complex medium at controlled pH (6.5) and temperature (30°C) with or without aeration, in order to evaluate the effect of ccpA inactivation and aeration on growth, metabolism and stress resistance. Inactivation of ccpA and, to a lesser extent, aeration, significantly affected growth, expression of proteins related to pyruvate metabolism and stress, and tolerance to heat, oxidative and cold/starvation stresses. The specific growth rate of the mutant was ca. 60% of that of the wild type strain. Inactivation of ccpA and aerobic growth significantly affected yield and production of lactic and acetic acid. Stationary phase cells were more stress tolerant than exponential phase cells with little or no effect of inactivation of ccpA or aeration. On the other hand, for exponential phase cells inactivation of ccpA impaired both heat stress and cold/starvation stress, but increased oxidative stress tolerance. For both strains, aerobically grown cells were more tolerant of stresses. Evidence for entry in a viable but non-culturable status upon prolonged exposure to cold and starvation was found. Preliminary results of a differential proteomic study further confirmed the role of ccpA in the regulation of carbohydrate catabolism and class I stress response genes and allow to gain further insight on the role of this pleiotropic regulator in metabolism and stress. This is the first study in which the impact of aerobic growth on stress tolerance of L. plantarum is evaluated. Although aerobic cultivation in batch fermentations does not improve growth it does improve stress tolerance, and may have significant technological relevance for the preservation of starter and probiotic cultures.
Collapse
Affiliation(s)
- Teresa Zotta
- Dipartimento di Biologia, Difesa e Biotecnologie Agro-forestali, Università degli Studi della Basilicata, Potenza, Italy
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Wang JC, Zhang WY, Zhong Z, Wei AB, Bao QH, Zhang Y, Sun TS, Postnikoff A, Meng H, Zhang HP. Transcriptome analysis of probiotic Lactobacillus casei Zhang during fermentation in soymilk. ACTA ACUST UNITED AC 2012; 39:191-206. [DOI: 10.1007/s10295-011-1015-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2011] [Accepted: 06/25/2011] [Indexed: 12/01/2022]
Abstract
Abstract
Lactobacillus casei Zhang is a widely recognized probiotic bacterium, which is being commercially used in China. To study the gene expression dynamics of L. casei Zhang during fermentation in soymilk, a whole genome microarray was used to screen for differentially expressed genes when grown to the lag phase, the late logarithmic phase, and the stationary phase. Comparisons of different transcripts next to each other revealed 162 and 63 significantly induced genes in the late logarithmic phase and stationary phase, of which the expression was at least threefold up-regulated and down-regulated, respectively. Approximately 38.4% of the up-regulated genes were associated with amino acid transport and metabolism notably for histidine and lysine biosynthesis, followed by genes/gene clusters involved in carbohydrate transport and metabolism, lipid transport and metabolism, and inorganic ion transport and metabolism. The analysis results suggest a complex stimulatory effect of soymilk-based ecosystem on the L. casei Zhang growth. On the other hand, it provides the very first insight into the molecular mechanism of L. casei strain for how it will adapt to the protein-rich environment.
Collapse
Affiliation(s)
- Ji-Cheng Wang
- grid.411638.9 0000000417569607 Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, School of Food Science and Engineering Inner Mongolia Agricultural University 010018 Huhhot China
| | - Wen-Yi Zhang
- grid.411638.9 0000000417569607 Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, School of Food Science and Engineering Inner Mongolia Agricultural University 010018 Huhhot China
| | - Zhi Zhong
- grid.411638.9 0000000417569607 Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, School of Food Science and Engineering Inner Mongolia Agricultural University 010018 Huhhot China
| | - Ai-Bin Wei
- grid.411638.9 0000000417569607 Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, School of Food Science and Engineering Inner Mongolia Agricultural University 010018 Huhhot China
| | - Qiu-Hua Bao
- grid.411638.9 0000000417569607 Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, School of Food Science and Engineering Inner Mongolia Agricultural University 010018 Huhhot China
| | - Yong Zhang
- grid.411638.9 0000000417569607 Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, School of Food Science and Engineering Inner Mongolia Agricultural University 010018 Huhhot China
| | - Tian-Song Sun
- grid.411638.9 0000000417569607 Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, School of Food Science and Engineering Inner Mongolia Agricultural University 010018 Huhhot China
| | - Andrew Postnikoff
- grid.411638.9 0000000417569607 Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, School of Food Science and Engineering Inner Mongolia Agricultural University 010018 Huhhot China
| | - He Meng
- grid.16821.3c 0000000403688293 School of Agriculture and Biology Shanghai Jiao Tong University 200240 Shanghai China
| | - He-Ping Zhang
- grid.411638.9 0000000417569607 Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, School of Food Science and Engineering Inner Mongolia Agricultural University 010018 Huhhot China
| |
Collapse
|
39
|
Petrova P, Petrov K. Direct starch conversion intoL-(+)-lactic acid by a novel amylolytic strain ofLactobacillus paracaseiB41. STARCH-STARKE 2011. [DOI: 10.1002/star.201100074] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
40
|
Identification of a conserved sequence in flavoproteins essential for the correct conformation and activity of the NADH oxidase NoxE of Lactococcus lactis. J Bacteriol 2011; 193:3000-8. [PMID: 21498647 DOI: 10.1128/jb.01466-10] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Water-forming NADH oxidases (encoded by noxE, nox2, or nox) are flavoproteins generally implicated in the aerobic survival of microaerophilic bacteria, such as lactic acid bacteria. However, some natural Lactococcus lactis strains produce an inactive NoxE. We examined the role of NoxE in the oxygen tolerance of L. lactis in the rich synthetic medium GM17. Inactivation of noxE suppressed 95% of NADH oxidase activity but only slightly affected aerobic growth, oxidative stress resistance, and NAD regeneration. However, noxE inactivation strongly impaired oxygen consumption and mixed-acid fermentation. We found that the A303T mutation is responsible for the loss of activity of a naturally occurring variant of NoxE. Replacement of A303 with T or G or of G307 with S or A by site-directed mutagenesis led to NoxE aggregation and the total loss of activity. We demonstrated that L299 is involved in NoxE activity, probably contributing to positioning flavin adenine dinucleotide (FAD) in the active site. These residues are part of the strongly conserved sequence LA(T)XXAXXXG included in an alpha helix that is present in other flavoprotein disulfide reductase (FDR) family flavoproteins that display very similar three-dimensional structures.
Collapse
|
41
|
Rud I, Naterstad K, Bongers RS, Molenaar D, Kleerebezem M, Axelsson L. Functional analysis of the role of CggR (central glycolytic gene regulator) in Lactobacillus plantarum by transcriptome analysis. Microb Biotechnol 2010; 4:345-56. [PMID: 21375718 PMCID: PMC3818993 DOI: 10.1111/j.1751-7915.2010.00223.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The level of the central glycolytic gene regulator (CggR) was engineered in Lactobacillus plantarum NC8 and WCFS1 by overexpression and in‐frame mutation of the cggR gene in order to evaluate its regulatory role on the glycolytic gap operon and the glycolytic flux. The repressor role of CggR on the gap operon was indicated through identification of a putative CggR operator and transcriptome analysis, which coincided with decreased growth rate and glycolytic flux when cggR was overexpressed in NC8 and WCFS1. The mutation of cggR did not affect regulation of the gap operon, indicating a more prominent regulatory role of CggR on the gap operon under other conditions than tested (e.g. fermentation of other sugars than glucose or ribose) and when the level of the putative effector molecule FBP is reduced. Interestingly, the mutation of cggR had several effects in NC8, i.e. increased growth rate and glycolytic flux and regulation of genes with functions associated with glycerol and pyruvate metabolism; however, no effects were observed in WCFS1. The affected genes in NC8 are presumably regulated by CcpA, since putative CRE sites were identified in their upstream regions. The interconnection with CggR and CcpA‐mediated control on growth and metabolism needs to be further elucidated.
Collapse
Affiliation(s)
- Ida Rud
- Nofima Mat, Osloveien 1, N-1430 Ås, Norway
| | | | | | | | | | | |
Collapse
|
42
|
Abstract
Accumulation of galactose in dairy products due to partial lactose fermentation by lactic acid bacteria yields poor-quality products and precludes their consumption by individuals suffering from galactosemia. This study aimed at extending our knowledge of galactose metabolism in Lactococcus lactis, with the final goal of tailoring strains for enhanced galactose consumption. We used directed genetically engineered strains to examine galactose utilization in strain NZ9000 via the chromosomal Leloir pathway (gal genes) or the plasmid-encoded tagatose 6-phosphate (Tag6P) pathway (lac genes). Galactokinase (GalK), but not galactose permease (GalP), is essential for growth on galactose. This finding led to the discovery of an alternative route, comprising a galactose phosphotransferase system (PTS) and a phosphatase, for galactose dissimilation in NZ9000. Introduction of the Tag6P pathway in a galPMK mutant restored the ability to metabolize galactose but did not sustain growth on this sugar. The latter strain was used to prove that lacFE, encoding the lactose PTS, is necessary for galactose metabolism, thus implicating this transporter in galactose uptake. Both PTS transporters have a low affinity for galactose, while GalP displays a high affinity for the sugar. Furthermore, the GalP/Leloir route supported the highest galactose consumption rate. To further increase this rate, we overexpressed galPMKT, but this led to a substantial accumulation of α-galactose 1-phosphate and α-glucose 1-phosphate, pointing to a bottleneck at the level of α-phosphoglucomutase. Overexpression of a gene encoding α-phosphoglucomutase alone or in combination with gal genes yielded strains with galactose consumption rates enhanced up to 50% relative to that of NZ9000. Approaches to further improve galactose metabolism are discussed.
Collapse
|
43
|
Opsata M, Nes IF, Holo H. Class IIa bacteriocin resistance in Enterococcus faecalis V583: the mannose PTS operon mediates global transcriptional responses. BMC Microbiol 2010; 10:224. [PMID: 20738841 PMCID: PMC2941500 DOI: 10.1186/1471-2180-10-224] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2010] [Accepted: 08/25/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The class IIa bacteriocin, pediocin PA-1, has clear potential as food preservative and in the medical field to be used against Gram negative pathogen species as Enterococcus faecalis and Listeria monocytogenes. Resistance towards class IIa bacteriocins appear in laboratory and characterization of these phenotypes is important for their application. To gain insight into bacteriocin resistance we studied mutants of E. faecalis V583 resistant to pediocin PA-1 by use of transcriptomic analyses. RESULTS Mutants of E. faecalis V583 resistant to pediocin PA-1 were isolated, and their gene expression profiles were analyzed and compared to the wild type using whole-genome microarray. Significantly altered transcription was detected from about 200 genes; most of them encoding proteins involved in energy metabolism and transport. Glycolytic genes were down-regulated in the mutants, but most of the genes showing differential expression were up-regulated. The data indicate that the mutants were relieved from glucose repression and putative catabolic responsive elements (cre) could be identified in the upstream regions of 70% of the differentially expressed genes. Bacteriocin resistance was caused by reduced expression of the mpt operon encoding the mannose-specific phosphoenolpyruvate:carbohydrate phosphotransferase system (PTS), and the same transcriptional changes were seen in a mptD-inactivated mutant. This mutant also had decreased transcription of the whole mpt operon, showing that the PTS is involved in its own transcriptional regulation. CONCLUSION Our data confirm the important role of mannose PTS in class IIa bacteriocin sensitivity and we demonstrate its importance involving global carbon catabolite control.
Collapse
Affiliation(s)
- Mona Opsata
- Laboratory of Microbial Gene Technology and Food Microbiology, Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Norway.
| | | | | |
Collapse
|
44
|
Genome sequences of Lactococcus lactis MG1363 (revised) and NZ9000 and comparative physiological studies. J Bacteriol 2010; 192:5806-12. [PMID: 20639323 DOI: 10.1128/jb.00533-10] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Lactococcus lactis NZ9000 and its parent MG1363 are the most commonly used lactic acid bacteria for expression and physiological studies. We noted unexpected but significant differences in the growth behaviors of both strains. We sequenced the entire genomes of the original NZ9000 and MG1363 strains using an ultradeep sequencing strategy. The analysis of the L. lactis NZ9000 genome yielded 79 differences, mostly point mutations, with the annotated genome sequence of L. lactis MG1363. Resequencing of the MG1363 strain revealed that 73 out of the 79 differences were due to errors in the published sequence. Comparative transcriptomic studies revealed several differences in the regulation of genes involved in sugar fermentation, which can be explained by two specific mutations in a region of the ptcC promoter with a key role in the regulation of cellobiose and glucose uptake.
Collapse
|
45
|
Proteomic analyses to reveal the protective role of glutathione in resistance of Lactococcus lactis to osmotic stress. Appl Environ Microbiol 2010; 76:3177-86. [PMID: 20348298 DOI: 10.1128/aem.02942-09] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Previously, we have shown that glutathione can protect Lactococcus lactis against oxidative stress and acid stress. In this study, we show that glutathione taken up by L. lactis SK11 can protect this organism against osmotic stress. When exposed to 5 M NaCl, L. lactis SK11 cells containing glutathione exhibited significantly improved survival compared to the control cells. Transmission electron microscopy showed that the integrity of L. lactis SK11 cells containing glutathione was maintained for at least 24 h, whereas autolysis of the control cells occurred within 2 h after exposure to this osmotic stress. Comparative proteomic analyses using SK11 cells containing or not containing glutathione that were exposed or not exposed to osmotic stress were performed. The results revealed that 21 of 29 differentially expressed proteins are involved in metabolic pathways, mainly sugar metabolism. Several glycolytic enzymes of L. lactis were significantly upregulated in the presence of glutathione, which might be the key for improving the general stress resistance of a strain. Together with the results of previous studies, the results of this study demonstrated that glutathione plays important roles in protecting L. lactis against multiple environmental stresses; thus, glutathione can be considered a general protectant for improving the robustness and stability of dairy starter cultures.
Collapse
|
46
|
Bachmann H, de Wilt L, Kleerebezem M, van Hylckama Vlieg JET. Time-resolved genetic responses of Lactococcus lactis to a dairy environment. Environ Microbiol 2010; 12:1260-70. [PMID: 20192965 DOI: 10.1111/j.1462-2920.2010.02168.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Lactococcus lactis is one of main bacterial species found in mixed dairy starter cultures for the production of semi-hard cheese. Despite the appreciation that mixed cultures are essential for the eventual properties of the manufactured cheese the vast majority of studies on L. lactis were carried out in laboratory media with a pure culture. In this study we applied an advanced recombinant in vivo expression technology (R-IVET) assay in combination with a high-throughput cheese-manufacturing protocol for the identification and subsequent validation of promoter sequences specifically induced during the manufacturing and ripening of cheese. The system allowed gene expression measurements in an undisturbed product environment without the use of antibiotics and in combination with a mixed strain starter culture. The utilization of bacterial luciferase as reporter enabled the real-time monitoring of gene expression in cheese for up to 200 h after the cheese-manufacturing process was initiated. The results revealed a number of genes that were clearly induced in cheese such as cysD, bcaP, dppA, hisC, gltA, rpsE, purL, amtB as well as a number of hypothetical genes, pseudogenes and notably genetic elements located on the non-coding strand of annotated open reading frames. Furthermore genes that are likely to be involved in interactions with bacteria used in the mixed strain starter culture were identified.
Collapse
|
47
|
Qian Z, Meng B, Wang Q, Wang Z, Zhou C, Wang Q, Tu S, Lin L, Ma Y, Liu S. Systematic characterization of a novel gal operon in Thermoanaerobacter tengcongensis. MICROBIOLOGY-SGM 2009; 155:1717-1725. [PMID: 19372161 DOI: 10.1099/mic.0.025536-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
On the basis of the Thermoanaerobacter tengcongensis genome, a novel type of gal operon was deduced. The gene expression and biochemical properties of this operon were further characterized. RT-PCR analysis of the intergenic regions suggested that the transcription of the gal operon was continuous. With gene cloning and enzyme activity assays, TTE1929, TTE1928 and TTE1927 were identified to be GalT, GalK and GalE, respectively. Results elicited from polarimetry assays revealed that TTE1925, a hypothetical protein, was a novel mutarotase, termed MR-Tt. TTE1926 was identified as a regulator that could bind to two operators in the operon promoter. The transcriptional start sites were mapped, and this suggested that there are two promoters in this operon. Expression of the gal genes was significantly induced by galactose, whereas only MR-Tt expression was detected in glucose-cultured T. tengcongensis at both the mRNA and the protein level. In addition, the abundance of gal proteins was examined at different temperatures. At temperatures ranging from 60 to 80 degrees C, the level of MR-Tt protein was relatively stable, but that of the other gal proteins was dramatically decreased. The operator-binding complexes were isolated and identified by electrophoretic mobility shift assay-liquid chromatography (EMSA-LC) MS-MS, which suggested that several regulatory proteins, such as GalR and a sensory histidine kinase, participate in the regulation of the gal operon.
Collapse
Affiliation(s)
- Zhong Qian
- Beijing Proteomics Institute, Beijing 101318, PR China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 101318, PR China
| | - Bo Meng
- Beijing Proteomics Institute, Beijing 101318, PR China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 101318, PR China
| | - Quanhui Wang
- Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Zhuowei Wang
- Beijing Proteomics Institute, Beijing 101318, PR China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 101318, PR China
| | - Chuanqi Zhou
- Beijing Proteomics Institute, Beijing 101318, PR China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 101318, PR China
| | - Qian Wang
- Beijing Proteomics Institute, Beijing 101318, PR China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 101318, PR China
| | - Shuyang Tu
- Beijing Proteomics Institute, Beijing 101318, PR China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 101318, PR China
| | - Liang Lin
- Beijing Proteomics Institute, Beijing 101318, PR China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 101318, PR China
| | - Yanhe Ma
- Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Siqi Liu
- Beijing Proteomics Institute, Beijing 101318, PR China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 101318, PR China
| |
Collapse
|
48
|
Zhang XJ, Duan G, Zhang R, Fan Q. Optimized Expression of Helicobacter pylori ureB Gene in the Lactococcus lactis Nisin-Controlled Gene Expression (NICE) System and Experimental Study of Its Immunoreactivity. Curr Microbiol 2009; 58:308-14. [DOI: 10.1007/s00284-008-9349-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2008] [Revised: 11/07/2008] [Accepted: 12/08/2008] [Indexed: 12/18/2022]
|
49
|
Multiple control of the acetate pathway in Lactococcus lactis under aeration by catabolite repression and metabolites. Appl Microbiol Biotechnol 2009; 82:1115-22. [PMID: 19214497 DOI: 10.1007/s00253-009-1897-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2008] [Revised: 01/25/2009] [Accepted: 01/26/2009] [Indexed: 10/21/2022]
Abstract
To explore the factors controlling metabolite formation under aeration in Lactococcus lactis, metabolic patterns, enzymatic activities, and transcriptional profiles of genes involved in the aerobic pathway for acetate anabolism were compared between a parental L. lactis strain and its NADH-oxidase-overproducer derivative. Deregulated catabolite repression mutans in the ccpA or pstH genes, encoding CcpA or its co-activator HPr, respectively, were compared with a parental strain, as well. Although the NADH-oxidase activity was derepressed in ccpA, but not in the pstH background, a mixed fermentation was displayed by either mutant, with a higher acetate production in the pstH variant. Moreover, transcription of genes encoding phosphotransacetylase and acetate kinase were derepressed, and the corresponding enzymatic activities increased, in both catabolite repression mutants. These results and the dependence on carbon source for acetate production in the NADH-oxidase-overproducer support the conclusion that catabolite repression, rather than NADH oxidation, plays a critical role to control acetate production. Furthermore, fructose 1,6-bisphosphate influenced the in vitro phosphotransacetylase and acetate kinase activities, while the former was sensitive to diacetyl. Our study strongly supports the model that, under aerobic conditions, the homolactic fermentation in L. lactis MG1363 is maintained by CcpA-mediated repression of mixed acid fermentation.
Collapse
|
50
|
Görke B, Stülke J. Carbon catabolite repression in bacteria: many ways to make the most out of nutrients. Nat Rev Microbiol 2008; 6:613-24. [PMID: 18628769 DOI: 10.1038/nrmicro1932] [Citation(s) in RCA: 1097] [Impact Index Per Article: 64.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Most bacteria can selectively use substrates from a mixture of different carbon sources. The presence of preferred carbon sources prevents the expression, and often also the activity, of catabolic systems that enable the use of secondary substrates. This regulation, called carbon catabolite repression (CCR), can be achieved by different regulatory mechanisms, including transcription activation and repression and control of translation by an RNA-binding protein, in different bacteria. Moreover, CCR regulates the expression of virulence factors in many pathogenic bacteria. In this Review, we discuss the most recent findings on the different mechanisms that have evolved to allow bacteria to use carbon sources in a hierarchical manner.
Collapse
Affiliation(s)
- Boris Görke
- Department of General Microbiology, Institute of Microbiology and Genetics, Georg-August University Göttingen, Grisebachstr 8, D-37077 Göttingen, Germany
| | | |
Collapse
|