1
|
Arvaniti M, Gaballa A, Orsi RH, Skandamis P, Wiedmann M. Deciphering the Molecular Mechanism of Peracetic Acid Response in Listeria monocytogenes. J Food Prot 2025; 88:100401. [PMID: 39515609 DOI: 10.1016/j.jfp.2024.100401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 11/03/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
Peracetic acid (PAA), a strong oxidizing agent, has been widely used as a disinfectant in food processing settings as it does not produce harmful chlorinated by-products. In the present study, the transcriptional response of Listeria monocytogenes to a sub-lethal concentration of PAA (2.5 ppm) was assessed using RNA-sequencing (RNA-seq). Our analysis revealed 12 differentially expressed protein-coding genes, of which nine were upregulated (ohrR, ohrA, rpsN, lmo0637, lmo1973, fur, lmo2492, zurM, and lmo1007), and three were down-regulated (argG, lmo0604 and lmo2156) in PAA-treated samples compared to the control samples. A non-coding small RNA gene (rli32) was also found to be down-regulated. In detail, the organic peroxide toxicity protection (OhrA-OhrR) system, the metal homeostasis genes fur and zurM, the SbrE-regulated lmo0636-lmo0637 operon and a carbohydrate phosphotransferase system (PTS) operon component were induced under exposure of L. monocytogenes to PAA. Hence, this study identified key elements involved in the primary response of L. monocytogenes to oxidative stress caused by PAA, including the expression of the peroxide detoxification system and fine-tuning the levels of redox-active metals in the cell. The investigation of the molecular mechanism of PAA response in L. monocytogenes is of utmost importance for the food industry, as residual PAA can lead to stress tolerance in pathogens.
Collapse
Affiliation(s)
- Marianna Arvaniti
- Laboratory of Food Quality Control and Hygiene, Department of Food Science and Human Nutrition, Agricultural University of Athens, Athens, Greece.
| | - Ahmed Gaballa
- Food Safety Laboratory, Department of Food Science, Cornell University, Ithaca, NY 14853, USA
| | - Renato H Orsi
- Food Safety Laboratory, Department of Food Science, Cornell University, Ithaca, NY 14853, USA
| | - Panagiotis Skandamis
- Laboratory of Food Quality Control and Hygiene, Department of Food Science and Human Nutrition, Agricultural University of Athens, Athens, Greece
| | - Martin Wiedmann
- Food Safety Laboratory, Department of Food Science, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
2
|
Milzarek TM, Stevanovic M, Milivojevic D, Vojnovic S, Iliasov D, Wolf D, Mascher T, Nikodinovic-Runic J, Gulder TAM. Antibiotic Potential of the Ambigol Cyanobacterial Natural Product Class and Simplified Synthetic Analogs. ACS Infect Dis 2023; 9:1941-1948. [PMID: 37655776 DOI: 10.1021/acsinfecdis.3c00232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
The ambigols are cyanobacterial natural products characterized by three polychlorinated aromatic building blocks connected by biaryl and biaryl ether bridges. All ambigols known to date possess promising biological activities. Most significantly, ambigol A was reported to have antibacterial activity against Gram-positive bacteria, such as Bacillus megaterium and B. subtilis. We established a diverse compound library for in-depth biological evaluation building on our previous bio- and total synthetic research on this natural product family. To explore the antimicrobial potential in detail and to determine initial structure-activity relationships of this product class, a large set of dimeric and trimeric compounds were screened against selected bacterial and Candida target strains. Our results reveal exceptional antibiotic activity of the ambigols, especially against challenging clinical isolates.
Collapse
Affiliation(s)
- Tobias M Milzarek
- Chair of Technical Biochemistry, Technische Universität Dresden, Bergstraße 66, 01069 Dresden, Germany
| | - Milena Stevanovic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11000 Belgrade, Serbia
| | - Dusan Milivojevic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11000 Belgrade, Serbia
| | - Sandra Vojnovic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11000 Belgrade, Serbia
| | - Denis Iliasov
- Chair of General Microbiology, Technische Universität Dresden, Zellescher Weg 20b, 01217 Dresden, Germany
| | - Diana Wolf
- Chair of General Microbiology, Technische Universität Dresden, Zellescher Weg 20b, 01217 Dresden, Germany
| | - Thorsten Mascher
- Chair of General Microbiology, Technische Universität Dresden, Zellescher Weg 20b, 01217 Dresden, Germany
| | - Jasmina Nikodinovic-Runic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11000 Belgrade, Serbia
| | - Tobias A M Gulder
- Chair of Technical Biochemistry, Technische Universität Dresden, Bergstraße 66, 01069 Dresden, Germany
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Department of Natural Product Biotechnology, Helmholtz Centre for Infection Research (HZI), Saarland University, 66123 Saarbrücken, Germany
- Department of Pharmacy, Saarland University, 66123 Saarbrücken, Germany
| |
Collapse
|
3
|
Milton ME, Cavanagh J. The Biofilm Regulatory Network from Bacillus subtilis: A Structure-Function Analysis. J Mol Biol 2023; 435:167923. [PMID: 36535428 DOI: 10.1016/j.jmb.2022.167923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/02/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022]
Abstract
Bacterial biofilms are notorious for their ability to protect bacteria from environmental challenges, most importantly the action of antibiotics. Bacillus subtilis is an extensively studied model organism used to understand the process of biofilm formation. A complex network of principal regulatory proteins including Spo0A, AbrB, AbbA, Abh, SinR, SinI, SlrR, and RemA, work in concert to transition B. subtilis from the free-swimming planktonic state to the biofilm state. In this review, we explore, connect, and summarize decades worth of structural and biochemical studies that have elucidated this protein signaling network. Since structure dictates function, unraveling aspects of protein molecular mechanisms will allow us to devise ways to exploit critical features of the biofilm regulatory pathway, such as possible therapeutic intervention. This review pools our current knowledge base of B. subtilis biofilm regulatory proteins and highlights potential therapeutic intervention points.
Collapse
Affiliation(s)
- Morgan E Milton
- Department of Biochemistry and Molecular Biology, The Brody School of Medicine, East Carolina University, NC 27834, USA.
| | - John Cavanagh
- Department of Biochemistry and Molecular Biology, The Brody School of Medicine, East Carolina University, NC 27834, USA.
| |
Collapse
|
4
|
Crystal structure and biochemical analysis suggest that YjoB ATPase is a putative substrate-specific molecular chaperone. Proc Natl Acad Sci U S A 2022; 119:e2207856119. [PMID: 36191235 PMCID: PMC9565160 DOI: 10.1073/pnas.2207856119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
AAA+ ATPases are ubiquitous proteins associated with most cellular processes, including DNA unwinding and protein unfolding. Their functional and structural properties are typically determined by domains and motifs added to the conserved ATPases domain. Currently, the molecular function and structure of many ATPases remain elusive. Here, we report the crystal structure and biochemical analyses of YjoB, a Bacillus subtilis AAA+ protein. The crystal structure revealed that the YjoB hexamer forms a bucket hat-shaped structure with a porous chamber. Biochemical analyses showed that YjoB prevents the aggregation of vegetative catalase KatA and gluconeogenesis-specific glyceraldehyde-3 phosphate dehydrogenase GapB but not citrate synthase, a conventional substrate. Structural and biochemical analyses further showed that the internal chamber of YjoB is necessary for inhibition of substrate aggregation. Our results suggest that YjoB, conserved in the class Bacilli, is a potential molecular chaperone acting in the starvation/stationary phases of B. subtilis growth.
Collapse
|
5
|
Willdigg JR, Helmann JD. Mini Review: Bacterial Membrane Composition and Its Modulation in Response to Stress. Front Mol Biosci 2021; 8:634438. [PMID: 34046426 PMCID: PMC8144471 DOI: 10.3389/fmolb.2021.634438] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 04/13/2021] [Indexed: 11/13/2022] Open
Abstract
Antibiotics and other agents that perturb the synthesis or integrity of the bacterial cell envelope trigger compensatory stress responses. Focusing on Bacillus subtilis as a model system, this mini-review summarizes current views of membrane structure and insights into how cell envelope stress responses remodel and protect the membrane. Altering the composition and properties of the membrane and its associated proteome can protect cells against detergents, antimicrobial peptides, and pore-forming compounds while also, indirectly, contributing to resistance against compounds that affect cell wall synthesis. Many of these regulatory responses are broadly conserved, even where the details of regulation may differ, and can be important in the emergence of antibiotic resistance in clinical settings.
Collapse
Affiliation(s)
| | - John D. Helmann
- Department of Microbiology, Cornell University, Ithaca, NY, United States
| |
Collapse
|
6
|
Hou Q, Kolodkin-Gal I. Harvesting the complex pathways of antibiotic production and resistance of soil bacilli for optimizing plant microbiome. FEMS Microbiol Ecol 2021; 96:5872479. [PMID: 32672816 DOI: 10.1093/femsec/fiaa142] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 07/13/2020] [Indexed: 01/04/2023] Open
Abstract
A sustainable future increasing depends on our capacity to utilize beneficial plant microbiomes to meet our growing needs. Plant microbiome symbiosis is a hallmark of the beneficial interactions between bacteria and their host. Specifically, colonization of plant roots by biocontrol agents and plant growth-promoting bacteria can play an important role in maintaining the optimal rhizosphere environment, supporting plant growth and promoting its fitness. Rhizosphere communities confer immunity against a wide range of foliar diseases by secreting antibiotics and activating plant defences. At the same time, the rhizosphere is a highly competitive niche, with multiple microbial species competing for space and resources, engaged in an arms race involving the production of a vast array of antibiotics and utilization of a variety of antibiotic resistance mechanisms. Therefore, elucidating the mechanisms that govern antibiotic production and resistance in the rhizosphere is of great significance for designing beneficial communities with enhanced biocontrol properties. In this review, we used Bacillus subtilis and B. amyloliquefaciens as models to investigate the genetics of antibiosis and the potential for its translation of into improved plant microbiome performance.
Collapse
Affiliation(s)
- Qihui Hou
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Ilana Kolodkin-Gal
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
7
|
Willdigg JR, Helmann JD. Mini Review: Bacterial Membrane Composition and Its Modulation in Response to Stress. Front Mol Biosci 2021. [PMID: 34046426 DOI: 10.3389/fmolb.2021.634438/bibtex] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2023] Open
Abstract
Antibiotics and other agents that perturb the synthesis or integrity of the bacterial cell envelope trigger compensatory stress responses. Focusing on Bacillus subtilis as a model system, this mini-review summarizes current views of membrane structure and insights into how cell envelope stress responses remodel and protect the membrane. Altering the composition and properties of the membrane and its associated proteome can protect cells against detergents, antimicrobial peptides, and pore-forming compounds while also, indirectly, contributing to resistance against compounds that affect cell wall synthesis. Many of these regulatory responses are broadly conserved, even where the details of regulation may differ, and can be important in the emergence of antibiotic resistance in clinical settings.
Collapse
Affiliation(s)
- Jessica R Willdigg
- Department of Microbiology, Cornell University, Ithaca, NY, United States
| | - John D Helmann
- Department of Microbiology, Cornell University, Ithaca, NY, United States
| |
Collapse
|
8
|
Zhao X, Zheng H, Zhen J, Shu W, Yang S, Xu J, Song H, Ma Y. Multiplex genetic engineering improves endogenous expression of mesophilic α-amylase gene in a wild strain Bacillus amyloliquefaciens 205. Int J Biol Macromol 2020; 165:609-618. [PMID: 33010275 DOI: 10.1016/j.ijbiomac.2020.09.210] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 09/22/2020] [Accepted: 09/23/2020] [Indexed: 12/17/2022]
Abstract
A wild strain Bacillus amyloliquefaciens 205 was screened for its high activity of α-amylase. A mesophilic α-amylase encoding gene amyE-205 was revealed and analyzed by genome sequencing. In order to facilitate plasmid transformation to strain 205, an interspecific plasmid transformation method was improved with 5-13 times higher in transformants than that of electronic transformation. A series of CRISPR genome editing tools have been successfully constructed for gene knockout, transcript repression and activation in 205 genome. At this basis, sporulation related genes spo0A and spoIIAC were knockout and suppressed with CRISPR/Cas9 and CRISPR/dCas9 respectively. The double knockout strain 205spo- was eliminated sporulation with 22.8% increasing of α-amylase activity. The optimal binding site G8 for dCas9-ω has been confirmed in the transcript activation. When amyE-205 was over-expressed with high copy plasmid pUC980-2, its whole upstream sequences containing G8 were also cloned. Whereafter, dCas9-ω was used to activate amyE-205 expression both at genome and plasmid. The final engineered strain 205PG8spo- achieved 784.3% promotion on α-amylase activity than the starting strain 205. The novel genetic tool box containing an efficient interspecific transformation method and functional CRISPR systems, superadded the multiplex regulation strategies used in strain modification would be also applicative in many Bacillus species.
Collapse
Affiliation(s)
- Xingya Zhao
- Industrial Enzymes National Engineering Laboratory, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Hongchen Zheng
- Industrial Enzymes National Engineering Laboratory, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; Tianjin Key Laboratory for Industrial Biological Systems and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.
| | - Jie Zhen
- Tianjin Key Laboratory for Industrial Biological Systems and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Wenju Shu
- Industrial Enzymes National Engineering Laboratory, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Shibin Yang
- Industrial Enzymes National Engineering Laboratory, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Jianyong Xu
- Tianjin Key Laboratory for Industrial Biological Systems and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Hui Song
- Industrial Enzymes National Engineering Laboratory, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; Tianjin Key Laboratory for Industrial Biological Systems and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.
| | - Yanhe Ma
- Industrial Enzymes National Engineering Laboratory, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.
| |
Collapse
|
9
|
Cambré A, Aertsen A. Bacterial Vivisection: How Fluorescence-Based Imaging Techniques Shed a Light on the Inner Workings of Bacteria. Microbiol Mol Biol Rev 2020; 84:e00008-20. [PMID: 33115939 PMCID: PMC7599038 DOI: 10.1128/mmbr.00008-20] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The rise in fluorescence-based imaging techniques over the past 3 decades has improved the ability of researchers to scrutinize live cell biology at increased spatial and temporal resolution. In microbiology, these real-time vivisections structurally changed the view on the bacterial cell away from the "watery bag of enzymes" paradigm toward the perspective that these organisms are as complex as their eukaryotic counterparts. Capitalizing on the enormous potential of (time-lapse) fluorescence microscopy and the ever-extending pallet of corresponding probes, initial breakthroughs were made in unraveling the localization of proteins and monitoring real-time gene expression. However, later it became clear that the potential of this technique extends much further, paving the way for a focus-shift from observing single events within bacterial cells or populations to obtaining a more global picture at the intra- and intercellular level. In this review, we outline the current state of the art in fluorescence-based vivisection of bacteria and provide an overview of important case studies to exemplify how to use or combine different strategies to gain detailed information on the cell's physiology. The manuscript therefore consists of two separate (but interconnected) parts that can be read and consulted individually. The first part focuses on the fluorescent probe pallet and provides a perspective on modern methodologies for microscopy using these tools. The second section of the review takes the reader on a tour through the bacterial cell from cytoplasm to outer shell, describing strategies and methods to highlight architectural features and overall dynamics within cells.
Collapse
Affiliation(s)
- Alexander Cambré
- KU Leuven, Department of Microbial and Molecular Systems, Faculty of Bioscience Engineering, Leuven, Belgium
| | - Abram Aertsen
- KU Leuven, Department of Microbial and Molecular Systems, Faculty of Bioscience Engineering, Leuven, Belgium
| |
Collapse
|
10
|
Zielińska A, Savietto A, de Sousa Borges A, Martinez D, Berbon M, Roelofsen JR, Hartman AM, de Boer R, Van der Klei IJ, Hirsch AKH, Habenstein B, Bramkamp M, Scheffers DJ. Flotillin-mediated membrane fluidity controls peptidoglycan synthesis and MreB movement. eLife 2020; 9:e57179. [PMID: 32662773 PMCID: PMC7360373 DOI: 10.7554/elife.57179] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 06/12/2020] [Indexed: 01/07/2023] Open
Abstract
The bacterial plasma membrane is an important cellular compartment. In recent years it has become obvious that protein complexes and lipids are not uniformly distributed within membranes. Current hypotheses suggest that flotillin proteins are required for the formation of complexes of membrane proteins including cell-wall synthetic proteins. We show here that bacterial flotillins are important factors for membrane fluidity homeostasis. Loss of flotillins leads to a decrease in membrane fluidity that in turn leads to alterations in MreB dynamics and, as a consequence, in peptidoglycan synthesis. These alterations are reverted when membrane fluidity is restored by a chemical fluidizer. In vitro, the addition of a flotillin increases membrane fluidity of liposomes. Our data support a model in which flotillins are required for direct control of membrane fluidity rather than for the formation of protein complexes via direct protein-protein interactions.
Collapse
Affiliation(s)
- Aleksandra Zielińska
- Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of GroningenGroningenNetherlands
| | - Abigail Savietto
- Biozentrum, Ludwig-Maximilians-Universität MünchenMünchenGermany
- Institute for General Microbiology, Christian-Albrechts-UniversityKielGermany
| | - Anabela de Sousa Borges
- Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of GroningenGroningenNetherlands
| | - Denis Martinez
- Institute of Chemistry & Biology of Membranes & Nanoobjects (UMR5248 CBMN), IECB, CNRS, Université Bordeaux, Institut Polytechnique BordeauxPessacFrance
| | - Melanie Berbon
- Institute of Chemistry & Biology of Membranes & Nanoobjects (UMR5248 CBMN), IECB, CNRS, Université Bordeaux, Institut Polytechnique BordeauxPessacFrance
| | - Joël R Roelofsen
- Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of GroningenGroningenNetherlands
| | - Alwin M Hartman
- Department of Drug Design and Optimization (DDOP), Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI)SaarbrückenGermany
- Department of Pharmacy, Saarland UniversitySaarbrückenGermany
- Stratingh Institute for Chemistry, University of GroningenGroningenNetherlands
| | - Rinse de Boer
- Molecular Cell Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of GroningenGroningenNetherlands
| | - Ida J Van der Klei
- Molecular Cell Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of GroningenGroningenNetherlands
| | - Anna KH Hirsch
- Department of Drug Design and Optimization (DDOP), Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI)SaarbrückenGermany
- Department of Pharmacy, Saarland UniversitySaarbrückenGermany
- Stratingh Institute for Chemistry, University of GroningenGroningenNetherlands
| | - Birgit Habenstein
- Institute of Chemistry & Biology of Membranes & Nanoobjects (UMR5248 CBMN), IECB, CNRS, Université Bordeaux, Institut Polytechnique BordeauxPessacFrance
| | - Marc Bramkamp
- Biozentrum, Ludwig-Maximilians-Universität MünchenMünchenGermany
- Institute for General Microbiology, Christian-Albrechts-UniversityKielGermany
| | - Dirk-Jan Scheffers
- Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of GroningenGroningenNetherlands
| |
Collapse
|
11
|
Kobayashi K, Ikemoto Y. Biofilm-associated toxin and extracellular protease cooperatively suppress competitors in Bacillus subtilis biofilms. PLoS Genet 2019; 15:e1008232. [PMID: 31622331 PMCID: PMC6818787 DOI: 10.1371/journal.pgen.1008232] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 10/29/2019] [Accepted: 10/04/2019] [Indexed: 12/17/2022] Open
Abstract
In nature, most bacteria live in biofilms where they compete with their siblings and other species for space and nutrients. Some bacteria produce antibiotics in biofilms; however, since the diffusion of antibiotics is generally hindered in biofilms by extracellular polymeric substances, i.e., the biofilm matrix, their function remains unclear. The Bacillus subtilis yitPOM operon is a paralog of the sdpABC operon, which produces the secreted peptide toxin SDP. Unlike sdpABC, yitPOM is induced in biofilms by the DegS-DegU two-component regulatory system. High yitPOM expression leads to the production of a secreted toxin called YIT. Expression of yitQ, which lies upstream of yitPOM, confers resistance to the YIT toxin, suggesting that YitQ is an anti-toxin protein for the YIT toxin. The alternative sigma factor SigW also contributes to YIT toxin resistance. In a mutant lacking yitQ and sigW, the YIT toxin specifically inhibits biofilm formation, and the extracellular neutral protease NprB is required for this inhibition. The requirement for NprB is eliminated by Δeps and ΔbslA mutations, either of which impairs production of biofilm matrix polymers. Overexpression of biofilm matrix polymers prevents the action of the SDP toxin but not the YIT toxin. These results indicate that, unlike the SDP toxin and many conventional antibiotics, the YIT toxin can pass through layers of biofilm matrix polymers to attack cells within biofilms with assistance from NprB. When the wild-type strain and the YIT-sensitive mutant were grown together on a solid medium, the wild-type strain formed biofilms that excluded the YIT-sensitive mutant. This observation suggests that the YIT toxin protects B. subtilis biofilms against competitors. Several bacteria are known to produce antibiotics in biofilms. We propose that some bacteria including B. subtilis may have evolved specialized antibiotics that can function within biofilms. Biofilms are multicellular aggregates of bacteria that are formed on various living and non-living surfaces. Biofilms often cause serious problems, including food contamination and infectious diseases. Since bacteria in biofilms exhibit increased tolerance or resistance to antimicrobials, new agents and treatments for combating biofilm-related problems are required. In this study, we demonstrated that B. subtilis produces a secreted peptide antibiotic called the YIT toxin and its resistant proteins in biofilms. A mutant lacking the resistance genes was defective in biofilm formation. This effect resulted from the ability of the YIT toxin to pass through the biofilm defense barrier and to attack biofilm cells. Thus, unlike many conventional antibiotics, the YIT toxin can penetrate biofilms and suppress the growth of YIT toxin-sensitive cells within biofilms. Some bacteria produce antibiotics in biofilms, some of which can alter the bacterial composition in the biofilms. Taking these observations into consideration, our findings suggest that some bacteria produce special antibiotics that are effective against bacteria in biofilms, and these antibiotics might serve as anti-biofilm agents.
Collapse
Affiliation(s)
- Kazuo Kobayashi
- Division of Biological Science, Nara Institute of Science & Technology, Ikoma, Nara, Japan
- * E-mail:
| | - Yukako Ikemoto
- Division of Biological Science, Nara Institute of Science & Technology, Ikoma, Nara, Japan
| |
Collapse
|
12
|
Helmann JD. Where to begin? Sigma factors and the selectivity of transcription initiation in bacteria. Mol Microbiol 2019; 112:335-347. [PMID: 31119812 DOI: 10.1111/mmi.14309] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Transcription is the fundamental process that enables the expression of genetic information. DNA-directed RNA polymerase (RNAP) uses one strand of the DNA duplex as template to produce complementary RNA molecules that serve in translation (rRNA, tRNA), protein synthesis (mRNA) and regulation (sRNA). Although the RNAP core is catalytically competent for RNA synthesis, the selectivity of transcription initiation requires a sigma (σ) factor for promoter recognition and opening. Expression of alternative σ factors provides a powerful mechanism to control the expression of discrete sets of genes (a σ regulon) in response to specific nutritional, developmental or stress-related signals. Here, I review the key insights that led to the original discovery of σ factor 50 years ago and the subsequent discovery of alternative σ factors as a ubiquitous mechanism of bacterial gene regulation. These studies form a prelude to the more recent, genomics-enabled insights into the vast diversity of σ factors in bacteria.
Collapse
Affiliation(s)
- John D Helmann
- Department of Microbiology, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
13
|
Richts B, Rosenberg J, Commichau FM. A Survey of Pyridoxal 5'-Phosphate-Dependent Proteins in the Gram-Positive Model Bacterium Bacillus subtilis. Front Mol Biosci 2019; 6:32. [PMID: 31134210 PMCID: PMC6522883 DOI: 10.3389/fmolb.2019.00032] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 04/18/2019] [Indexed: 11/13/2022] Open
Abstract
The B6 vitamer pyridoxal 5′-phosphate (PLP) is a co-factor for proteins and enzymes that are involved in diverse cellular processes. Therefore, PLP is essential for organisms from all kingdoms of life. Here we provide an overview about the PLP-dependent proteins from the Gram-positive soil bacterium Bacillus subtilis. Since B. subtilis serves as a model system in basic research and as a production host in industry, knowledge about the PLP-dependent proteins could facilitate engineering the bacteria for biotechnological applications. The survey revealed that the majority of the PLP-dependent proteins are involved in metabolic pathways like amino acid biosynthesis and degradation, biosynthesis of antibacterial compounds, utilization of nucleotides as well as in iron and carbon metabolism. Many PLP-dependent proteins participate in de novo synthesis of the co-factors biotin, folate, heme, and NAD+ as well as in cell wall metabolism, tRNA modification, regulation of gene expression, sporulation, and biofilm formation. A surprisingly large group of PLP-dependent proteins (29%) belong to the group of poorly characterized proteins. This review underpins the need to characterize the PLP-dependent proteins of unknown function to fully understand the “PLP-ome” of B. subtilis.
Collapse
Affiliation(s)
- Björn Richts
- Department of General Microbiology, University of Goettingen, Göttingen, Germany
| | - Jonathan Rosenberg
- Department of General Microbiology, University of Goettingen, Göttingen, Germany
| | - Fabian M Commichau
- Department of General Microbiology, University of Goettingen, Göttingen, Germany
| |
Collapse
|
14
|
Bucher T, Keren-Paz A, Hausser J, Olender T, Cytryn E, Kolodkin-Gal I. An active β-lactamase is a part of an orchestrated cell wall stress resistance network of Bacillus subtilis and related rhizosphere species. Environ Microbiol 2019; 21:1068-1085. [PMID: 30637927 DOI: 10.1111/1462-2920.14526] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 12/12/2018] [Indexed: 11/29/2022]
Abstract
A hallmark of the Gram-positive bacteria, such as the soil-dwelling bacterium Bacillus subtilis, is their cell wall. Here, we report that d-leucine and flavomycin, biofilm inhibitors targeting the cell wall, activate the β-lactamase PenP. This β-lactamase contributes to ampicillin resistance in B. subtilis under all conditions tested. In contrast, both Spo0A, a master regulator of nutritional stress, and the general cell wall stress response, differentially contribute to β-lactam resistance under different conditions. To test whether β-lactam resistance and β-lactamase genes are widespread in other Bacilli, we isolated Bacillus species from undisturbed soils, and found that their genomes can encode up to five β-lactamases with differentiated activity spectra. Surprisingly, the activity of environmental β-lactamases and PenP, as well as the general stress response, resulted in a similarly reduced lag phase of the culture in the presence of β-lactam antibiotics, with little or no impact on the logarithmic growth rate. The length of the lag phase may determine the outcome of the competition between β-lactams and β-lactamases producers. Overall, our work suggests that antibiotic resistance genes in B. subtilis and related species are ancient and widespread, and could be selected by interspecies competition in undisturbed soils.
Collapse
Affiliation(s)
- Tabitha Bucher
- Department of Molecular Genetics, Weizmann Institute of Science, 234 Herzl Street, Rehovot, 76100, Israel
| | - Alona Keren-Paz
- Department of Molecular Genetics, Weizmann Institute of Science, 234 Herzl Street, Rehovot, 76100, Israel
| | - Jean Hausser
- Department of Molecular Cell Biology, Weizmann Institute of Science, 234 Herzl Street, Rehovot, 76100, Israel
| | - Tsviya Olender
- Department of Molecular Genetics, Weizmann Institute of Science, 234 Herzl Street, Rehovot, 76100, Israel
| | - Eddie Cytryn
- Institute of Soil and Water and Environmental Sciences, Volcani Research Center, 68 HaMakabim Road, 7505101, Rishon Lezion, Israel
| | - Ilana Kolodkin-Gal
- Department of Molecular Genetics, Weizmann Institute of Science, 234 Herzl Street, Rehovot, 76100, Israel
| |
Collapse
|
15
|
Park J, Dies M, Lin Y, Hormoz S, Smith-Unna SE, Quinodoz S, Hernández-Jiménez MJ, Garcia-Ojalvo J, Locke JCW, Elowitz MB. Molecular Time Sharing through Dynamic Pulsing in Single Cells. Cell Syst 2018; 6:216-229.e15. [PMID: 29454936 PMCID: PMC6070344 DOI: 10.1016/j.cels.2018.01.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 09/04/2017] [Accepted: 01/10/2018] [Indexed: 11/19/2022]
Abstract
In cells, specific regulators often compete for limited amounts of a core enzymatic resource. It is typically assumed that competition leads to partitioning of core enzyme molecules among regulators at constant levels. Alternatively, however, different regulatory species could time share, or take turns utilizing, the core resource. Using quantitative time-lapse microscopy, we analyzed sigma factor activity dynamics, and their competition for RNA polymerase, in individual Bacillus subtilis cells under energy stress. Multiple alternative sigma factors were activated in ~1-hr pulses in stochastic and repetitive fashion. Pairwise analysis revealed that two sigma factors rarely pulse simultaneously and that some pairs are anti-correlated, indicating that RNAP utilization alternates among different sigma factors. Mathematical modeling revealed how stochastic time-sharing dynamics can emerge from pulse-generating sigma factor regulatory circuits actively competing for RNAP. Time sharing provides a mechanism for cells to dynamically control the distribution of cell states within a population. Since core molecular components are limiting in many other systems, time sharing may represent a general mode of regulation.
Collapse
Affiliation(s)
- Jin Park
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Marta Dies
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona Biomedical Research Park, 08003 Barcelona, Spain; Department of Physics and Nuclear Engineering, Universitat Politecnica de Catalunya, 08222 Terrassa, Spain; Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, PA 18015, USA
| | - Yihan Lin
- Center for Quantitative Biology, and Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Sahand Hormoz
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | | | - Sofia Quinodoz
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | | | - Jordi Garcia-Ojalvo
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona Biomedical Research Park, 08003 Barcelona, Spain.
| | - James C W Locke
- Sainsbury Laboratory, Cambridge University, Bateman Street, Cambridge CB2 1LR, UK; Microsoft Research, Cambridge, UK.
| | - Michael B Elowitz
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
16
|
Woods EC, McBride SM. Regulation of antimicrobial resistance by extracytoplasmic function (ECF) sigma factors. Microbes Infect 2017; 19:238-248. [PMID: 28153747 DOI: 10.1016/j.micinf.2017.01.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 01/20/2017] [Accepted: 01/21/2017] [Indexed: 11/27/2022]
Abstract
Extracytoplasmic function (ECF) sigma factors are a subfamily of σ70 sigma factors that activate genes involved in stress-response functions. In many bacteria, ECF sigma factors regulate resistance to antimicrobial compounds. This review will summarize the ECF sigma factors that regulate antimicrobial resistance in model organisms and clinically relevant pathogens.
Collapse
Affiliation(s)
- Emily C Woods
- Department of Microbiology and Immunology, Emory Antibiotic Resistance Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Shonna M McBride
- Department of Microbiology and Immunology, Emory Antibiotic Resistance Center, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
17
|
Role of Autoregulation and Relative Synthesis of Operon Partners in Alternative Sigma Factor Networks. PLoS Comput Biol 2016; 12:e1005267. [PMID: 27977677 PMCID: PMC5207722 DOI: 10.1371/journal.pcbi.1005267] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 01/03/2017] [Accepted: 11/23/2016] [Indexed: 01/23/2023] Open
Abstract
Despite the central role of alternative sigma factors in bacterial stress response and virulence their regulation remains incompletely understood. Here we investigate one of the best-studied examples of alternative sigma factors: the σB network that controls the general stress response of Bacillus subtilis to uncover widely relevant general design principles that describe the structure-function relationship of alternative sigma factor regulatory networks. We show that the relative stoichiometry of the synthesis rates of σB, its anti-sigma factor RsbW and the anti-anti-sigma factor RsbV plays a critical role in shaping the network behavior by forcing the σB network to function as an ultrasensitive negative feedback loop. We further demonstrate how this negative feedback regulation insulates alternative sigma factor activity from competition with the housekeeping sigma factor for RNA polymerase and allows multiple stress sigma factors to function simultaneously with little competitive interference. Understanding the regulation of bacterial stress response holds the key to tackling the problems of emerging resistance to anti-bacteria’s and antibiotics. To this end, here we study one of the longest serving model systems of bacterial stress response: the σB pathway of Bacillus subtilis. The sigma factor σB controls the general stress response of Bacillus subtilis to a variety of stress conditions including starvation, antibiotics and harmful environmental perturbations. Recent studies have demonstrated that an increase in stress triggers pulsatile activation of σB. Using mathematical modeling we identify the core structural design feature of the network that are responsible for its pulsatile response. We further demonstrate how the same core design features are common to a variety of stress response pathways. As a result of these features, cells can respond to multiple simultaneous stresses without interference or competition between the different pathways.
Collapse
|
18
|
Helmann JD. Bacillus subtilis extracytoplasmic function (ECF) sigma factors and defense of the cell envelope. Curr Opin Microbiol 2016; 30:122-132. [PMID: 26901131 DOI: 10.1016/j.mib.2016.02.002] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 01/29/2016] [Accepted: 02/02/2016] [Indexed: 01/20/2023]
Abstract
Bacillus subtilis provides a model for investigation of the bacterial cell envelope, the first line of defense against environmental threats. Extracytoplasmic function (ECF) sigma factors activate genes that confer resistance to agents that threaten the integrity of the envelope. Although their individual regulons overlap, σ(W) is most closely associated with membrane-active agents, σ(X) with cationic antimicrobial peptide resistance, and σ(V) with resistance to lysozyme. Here, I highlight the role of the σ(M) regulon, which is strongly induced by conditions that impair peptidoglycan synthesis and includes the core pathways of envelope synthesis and cell division, as well as stress-inducible alternative enzymes. Studies of these cell envelope stress responses provide insights into how bacteria acclimate to the presence of antibiotics.
Collapse
Affiliation(s)
- John D Helmann
- Department of Microbiology, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
19
|
Experimental evolution of enhanced growth by Bacillus subtilis at low atmospheric pressure: genomic changes revealed by whole-genome sequencing. Appl Environ Microbiol 2015; 81:7525-32. [PMID: 26296725 DOI: 10.1128/aem.01690-15] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 08/14/2015] [Indexed: 01/25/2023] Open
Abstract
Knowledge of how microorganisms respond and adapt to low-pressure (LP) environments is limited. Previously, Bacillus subtilis strain WN624 was grown at the near-inhibitory LP of 5 kPa for 1,000 generations and strain WN1106, which exhibited increased relative fitness at 5 kPa, was isolated. Genomic sequence differences between ancestral strain WN624 and LP-evolved strain WN1106 were identified using whole-genome sequencing. LP-evolved strain WN1106 carried amino acid-altering mutations in the coding sequences of only seven genes (fliI, parC, ytoI, bacD, resD, walK, and yvlD) and a single 9-nucleotide in-frame deletion in the rnjB gene that encodes RNase J2, a component of the RNA degradosome. By using a collection of frozen stocks of the LP-evolved culture taken at 50-generation intervals, it was determined that (i) the fitness increase at LP occurred rapidly, while (ii) mutation acquisition exhibited complex kinetics. A knockout mutant of rnjB was shown to increase the competitive fitness of B. subtilis at both LP and standard atmospheric pressure.
Collapse
|
20
|
Schneider J, Mielich-Süss B, Böhme R, Lopez D. In vivo characterization of the scaffold activity of flotillin on the membrane kinase KinC of Bacillus subtilis. MICROBIOLOGY-SGM 2015; 161:1871-1887. [PMID: 26297017 DOI: 10.1099/mic.0.000137] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Scaffold proteins are ubiquitous chaperones that bind to proteins and facilitate the physical interaction of the components of signal transduction pathways or multi-enzymic complexes. In this study, we used a biochemical approach to dissect the molecular mechanism of a membrane-associated scaffold protein, FloT, a flotillin-homologue protein that is localized in functional membrane microdomains of the bacterium Bacillus subtilis. This study provides unambiguous evidence that FloT physically binds to and interacts with the membrane-bound sensor kinase KinC. This sensor kinase activates biofilm formation in B. subtilis in response to the presence of the self-produced signal surfactin. Furthermore, we have characterized the mechanism by which the interaction of FloT with KinC benefits the activity of KinC. Two separate and synergistic effects constitute this mechanism: first, the scaffold activity of FloT promotes more efficient self-interaction of KinC and facilitates dimerization into its active form. Second, the selective binding of FloT to KinC prevents the occurrence of unspecific aggregation between KinC and other proteins that may generate dead-end intermediates that could titrate the activity of KinC. Flotillin proteins appear to play an important role in prokaryotes in promoting effective binding of signalling proteins with their correct protein partners.
Collapse
Affiliation(s)
- Johannes Schneider
- Research Centre for Infectious Diseases (ZINF), University of Würzburg, Würzburg 97080, Germany
- Institute for Molecular Infection Biology (IMIB), University of Würzburg, Würzburg 97080, Germany
| | - Benjamin Mielich-Süss
- Research Centre for Infectious Diseases (ZINF), University of Würzburg, Würzburg 97080, Germany
- Institute for Molecular Infection Biology (IMIB), University of Würzburg, Würzburg 97080, Germany
| | - Richard Böhme
- Research Centre for Infectious Diseases (ZINF), University of Würzburg, Würzburg 97080, Germany
- Institute for Molecular Infection Biology (IMIB), University of Würzburg, Würzburg 97080, Germany
| | - Daniel Lopez
- Institute for Molecular Infection Biology (IMIB), University of Würzburg, Würzburg 97080, Germany
- National Center for Biotechnology (CNB), Spanish Research Council (CSIC), Madrid 28050, Spain
- Research Centre for Infectious Diseases (ZINF), University of Würzburg, Würzburg 97080, Germany
| |
Collapse
|
21
|
Zachow C, Jahanshah G, de Bruijn I, Song C, Ianni F, Pataj Z, Gerhardt H, Pianet I, Lämmerhofer M, Berg G, Gross H, Raaijmakers JM. The Novel Lipopeptide Poaeamide of the Endophyte Pseudomonas poae RE*1-1-14 Is Involved in Pathogen Suppression and Root Colonization. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2015; 28:800-10. [PMID: 25761208 DOI: 10.1094/mpmi-12-14-0406-r] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Endophytic Pseudomonas poae strain RE*1-1-14 was originally isolated from internal root tissue of sugar beet plants and shown to suppress growth of the fungal pathogen Rhizoctonia solani both in vitro and in the field. To identify genes involved in its biocontrol activity, RE*1-1-14 random mutagenesis and sequencing led to the identification of a nonribosomal peptide synthetase (NRPS) gene cluster predicted to encode a lipopeptide (LP) with a 10-amino-acid peptide moiety. The two unlinked gene clusters consisted of three NRPS genes, designated poaA (cluster 1) and poaB and poaC (cluster 2), spanning approximately 33.7 kb. In silico analysis followed by chemical analyses revealed that the encoded LP, designated poaeamide, is a structurally new member of the orfamide family. Poaeamide inhibited mycelial growth of R. solani and different oomycetes, including Phytophthora capsici, P. infestans, and Pythium ultimum. The novel LP was shown to be essential for swarming motility of strain RE*1-1-14 and had an impact on root colonization of sugar beet seedlings The poaeamide-deficient mutant colonized the rhizosphere and upper plant cortex at higher densities and with more scattered colonization patterns than the wild type. Collectively, these results indicate that Pseudomonas poae RE*1-1-14 produces a structurally new LP that is relevant for its antagonistic activity against soilborne plant pathogens and for colonization of sugar beet roots.
Collapse
Affiliation(s)
- Christin Zachow
- 1 Austrian Centre of Industrial Biotechnology (ACIB GmbH), 8010 Graz, Austria
| | - Ghazaleh Jahanshah
- 2 Pharmaceutical Institute, Department of Pharmaceutical Biology, University of Tübingen, 72076 Tübingen, Germany
| | - Irene de Bruijn
- 3 Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB Wageningen, The Netherlands
| | - Chunxu Song
- 3 Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB Wageningen, The Netherlands
| | - Federica Ianni
- 4 Pharmaceutical Institute, Department of Pharmaceutical Analysis and Bioanalysis, University of Tübingen
| | - Zoltán Pataj
- 4 Pharmaceutical Institute, Department of Pharmaceutical Analysis and Bioanalysis, University of Tübingen
| | - Heike Gerhardt
- 4 Pharmaceutical Institute, Department of Pharmaceutical Analysis and Bioanalysis, University of Tübingen
| | - Isabelle Pianet
- 5 CESAMO-ISM, UMR 5255, CNRS, Université Bordeaux I, 351 Cours de la Libération, F-33405 Talence, France
| | - Michael Lämmerhofer
- 4 Pharmaceutical Institute, Department of Pharmaceutical Analysis and Bioanalysis, University of Tübingen
| | - Gabriele Berg
- 6 Institute of Environmental Biotechnology, Graz University of Technology, 8010 Graz, Austria
| | - Harald Gross
- 2 Pharmaceutical Institute, Department of Pharmaceutical Biology, University of Tübingen, 72076 Tübingen, Germany
| | - Jos M Raaijmakers
- 3 Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB Wageningen, The Netherlands
| |
Collapse
|
22
|
İrigül-Sönmez Ö, Köroğlu TE, Öztürk B, Kovács ÁT, Kuipers OP, Yazgan-Karataş A. In Bacillus subtilis LutR is part of the global complex regulatory network governing the adaptation to the transition from exponential growth to stationary phase. Microbiology (Reading) 2014; 160:243-260. [DOI: 10.1099/mic.0.064675-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The lutR gene, encoding a product resembling a GntR-family transcriptional regulator, has previously been identified as a gene required for the production of the dipeptide antibiotic bacilysin in Bacillus subtilis. To understand the broader regulatory roles of LutR in B. subtilis, we studied the genome-wide effects of a lutR null mutation by combining transcriptional profiling studies using DNA microarrays, reverse transcription quantitative PCR, lacZ fusion analyses and gel mobility shift assays. We report that 65 transcriptional units corresponding to 23 mono-cistronic units and 42 operons show altered expression levels in lutR mutant cells, as compared with lutR
+ wild-type cells in early stationary phase. Among these, 11 single genes and 25 operons are likely to be under direct control of LutR. The products of these genes are involved in a variety of physiological processes associated with the onset of stationary phase in B. subtilis, including degradative enzyme production, antibiotic production and resistance, carbohydrate utilization and transport, nitrogen metabolism, phosphate uptake, fatty acid and phospholipid biosynthesis, protein synthesis and translocation, cell-wall metabolism, energy production, transfer of mobile genetic elements, induction of phage-related genes, sporulation, delay of sporulation and cannibalism, and biofilm formation. Furthermore, an electrophoretic mobility shift assay performed in the presence of both SinR and LutR revealed a close overlap between the LutR and SinR targets. Our data also revealed a significant overlap with the AbrB regulon. Together, these findings reveal that LutR is part of the global complex, interconnected regulatory systems governing adaptation of bacteria to the transition from exponential growth to stationary phase.
Collapse
Affiliation(s)
- Öykü İrigül-Sönmez
- Molecular Biology, Biotechnology and Genetics Research Center (MOBGAM) and Molecular Biology and Genetics Department, 34469, Istanbul Technical University, Istanbul, Turkey
| | - Türkan E. Köroğlu
- Molecular Biology, Biotechnology and Genetics Research Center (MOBGAM) and Molecular Biology and Genetics Department, 34469, Istanbul Technical University, Istanbul, Turkey
| | - Büşra Öztürk
- Molecular Biology, Biotechnology and Genetics Research Center (MOBGAM) and Molecular Biology and Genetics Department, 34469, Istanbul Technical University, Istanbul, Turkey
| | - Ákos T. Kovács
- Molecular Genetics Group, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Oscar P. Kuipers
- Molecular Genetics Group, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Ayten Yazgan-Karataş
- Molecular Biology, Biotechnology and Genetics Research Center (MOBGAM) and Molecular Biology and Genetics Department, 34469, Istanbul Technical University, Istanbul, Turkey
| |
Collapse
|
23
|
Parsons JB, Rock CO. Bacterial lipids: metabolism and membrane homeostasis. Prog Lipid Res 2013; 52:249-76. [PMID: 23500459 PMCID: PMC3665635 DOI: 10.1016/j.plipres.2013.02.002] [Citation(s) in RCA: 321] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Revised: 02/27/2013] [Accepted: 02/28/2013] [Indexed: 11/29/2022]
Abstract
Membrane lipid homeostasis is a vital facet of bacterial cell physiology. For decades, research in bacterial lipid synthesis was largely confined to the Escherichia coli model system. This basic research provided a blueprint for the biochemistry of lipid metabolism that has largely defined the individual steps in bacterial fatty acid and phospholipids synthesis. The advent of genomic sequencing has revealed a surprising amount of diversity in the genes, enzymes and genetic organization of the components responsible for bacterial lipid synthesis. Although the chemical steps in fatty acid synthesis are largely conserved in bacteria, there are surprising differences in the structure and cofactor requirements for the enzymes that perform these reactions in Gram-positive and Gram-negative bacteria. This review summarizes how the explosion of new information on the diversity of biochemical and genetic regulatory mechanisms has impacted our understanding of bacterial lipid homeostasis. The potential and problems of developing therapeutics that block pathogen phospholipid synthesis are explored and evaluated. The study of bacterial lipid metabolism continues to be a rich source for new biochemistry that underlies the variety and adaptability of bacterial life styles.
Collapse
Affiliation(s)
- Joshua B Parsons
- Department of Infectious Diseases, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | | |
Collapse
|
24
|
Vlamakis H, Chai Y, Beauregard P, Losick R, Kolter R. Sticking together: building a biofilm the Bacillus subtilis way. Nat Rev Microbiol 2013; 11:157-68. [PMID: 23353768 DOI: 10.1038/nrmicro2960] [Citation(s) in RCA: 615] [Impact Index Per Article: 51.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Biofilms are ubiquitous communities of tightly associated bacteria encased in an extracellular matrix. Bacillus subtilis has long served as a robust model organism to examine the molecular mechanisms of biofilm formation, and a number of studies have revealed that this process is regulated by several integrated pathways. In this Review, we focus on the molecular mechanisms that control B. subtilis biofilm assembly, and then briefly summarize the current state of knowledge regarding biofilm disassembly. We also discuss recent progress that has expanded our understanding of B. subtilis biofilm formation on plant roots, which are a natural habitat for this soil bacterium.
Collapse
Affiliation(s)
- Hera Vlamakis
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | |
Collapse
|
25
|
Zweers JC, Nicolas P, Wiegert T, van Dijl JM, Denham EL. Definition of the σ(W) regulon of Bacillus subtilis in the absence of stress. PLoS One 2012; 7:e48471. [PMID: 23155385 PMCID: PMC3498285 DOI: 10.1371/journal.pone.0048471] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Accepted: 09/26/2012] [Indexed: 01/05/2023] Open
Abstract
Bacteria employ extracytoplasmic function (ECF) sigma factors for their responses to environmental stresses. Despite intensive research, the molecular dissection of ECF sigma factor regulons has remained a major challenge due to overlaps in the ECF sigma factor-regulated genes and the stimuli that activate the different ECF sigma factors. Here we have employed tiling arrays to single out the ECF σW regulon of the Gram-positive bacterium Bacillus subtilis from the overlapping ECF σX, σY, and σM regulons. For this purpose, we profiled the transcriptome of a B. subtilis sigW mutant under non-stress conditions to select candidate genes that are strictly σW-regulated. Under these conditions, σW exhibits a basal level of activity. Subsequently, we verified the σW-dependency of candidate genes by comparing their transcript profiles to transcriptome data obtained with the parental B. subtilis strain 168 grown under 104 different conditions, including relevant stress conditions, such as salt shock. In addition, we investigated the transcriptomes of rasP or prsW mutant strains that lack the proteases involved in the degradation of the σW anti-sigma factor RsiW and subsequent activation of the σW-regulon. Taken together, our studies identify 89 genes as being strictly σW-regulated, including several genes for non-coding RNAs. The effects of rasP or prsW mutations on the expression of σW-dependent genes were relatively mild, which implies that σW-dependent transcription under non-stress conditions is not strictly related to RasP and PrsW. Lastly, we show that the pleiotropic phenotype of rasP mutant cells, which have defects in competence development, protein secretion and membrane protein production, is not mirrored in the transcript profile of these cells. This implies that RasP is not only important for transcriptional regulation via σW, but that this membrane protease also exerts other important post-transcriptional regulatory functions.
Collapse
Affiliation(s)
- Jessica C. Zweers
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Pierre Nicolas
- INRA, UR1077, Mathématique Informatique et Génome, Jouy-en-Josas, France
| | - Thomas Wiegert
- Hochschule Zittau/Görlitz, FN/Biotechnologie, Zittau, Germany
| | - Jan Maarten van Dijl
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- * E-mail:
| | - Emma L. Denham
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
26
|
de Jong IG, Veening JW, Kuipers OP. Single cell analysis of gene expression patterns during carbon starvation in Bacillus subtilis reveals large phenotypic variation. Environ Microbiol 2012; 14:3110-21. [PMID: 23033921 DOI: 10.1111/j.1462-2920.2012.02892.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Revised: 08/30/2012] [Accepted: 09/02/2012] [Indexed: 11/30/2022]
Abstract
How cells dynamically respond to fluctuating environmental conditions depends on the architecture and noise of the underlying genetic circuits. Most work characterizing stress pathways in the model bacterium Bacillus subtilis has been performed on bulk cultures using ensemble assays. However, investigating the single cell response to stress is important since noise might generate significant phenotypic heterogeneity. Here, we study the stress response to carbon source starvation and compare both population and single cell data. Using a top-down approach, we investigate the transcriptional dynamics of various stress-related genes of B. subtilis in response to carbon source starvation and to increased cell density. Our data reveal that most of the tested gene-regulatory networks respond highly heterogeneously to starvation and cells show a large degree of variation in gene expression. The level of highly dynamic diversification within B. subtilis populations under changing environments reflects the necessity to study cells at the single cell level.
Collapse
Affiliation(s)
- Imke G de Jong
- Molecular Genetics Group, Groningen Biomolecular Sciences and Biotechnology Institute, Centre for Synthetic Biology, University of Groningen, Nijenborgh 7, 9747, AG, Groningen, The Netherlands
| | | | | |
Collapse
|
27
|
Yepes A, Schneider J, Mielich B, Koch G, García-Betancur JC, Ramamurthi KS, Vlamakis H, López D. The biofilm formation defect of a Bacillus subtilis flotillin-defective mutant involves the protease FtsH. Mol Microbiol 2012; 86:457-71. [PMID: 22882210 DOI: 10.1111/j.1365-2958.2012.08205.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/04/2012] [Indexed: 11/30/2022]
Abstract
Biofilm formation in Bacillus subtilis requires the differentiation of a subpopulation of cells responsible for the production of the extracellular matrix that structures the biofilm. Differentiation of matrix-producing cells depends, among other factors, on the FloT and YqfA proteins. These proteins are present exclusively in functional membrane microdomains of B. subtilis and are homologous to the eukaryotic lipid raft-specific flotillin proteins. In the absence of FloT and YqfA, diverse proteins normally localized to the membrane microdomains of B. subtilis are not functional. Here we show that the absence of FloT and YqfA reduces the level of the septal-localized protease FtsH. The flotillin homologues FloT and YqfA are occasionally present at the midcell in exponentially growing cells and the absence of FloT and YqfA negatively affects FtsH concentration. Biochemical experiments indicate a direct interaction between FloT/YqfA and FtsH. Moreover, FtsH is essential for the differentiation of matrix producers and hence, biofilm formation. This molecular trigger of biofilm formation may therefore be used as a target for the design of new biofilm inhibitors. Accordingly, we show that the small protein SpoVM, known to bind to and inhibit FtsH activity, inhibits biofilm formation in B. subtilis and other distantly related bacteria.
Collapse
Affiliation(s)
- Ana Yepes
- Research Center for Infectious Diseases ZINF, Würzburg University, 97080, Würzburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Liu J, Li J, Wu Z, Pei H, Zhou J, Xiang H. Identification and characterization of the cognate anti-sigma factor and specific promoter elements of a T. tengcongensis ECF sigma factor. PLoS One 2012; 7:e40885. [PMID: 22815853 PMCID: PMC3397946 DOI: 10.1371/journal.pone.0040885] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Accepted: 06/14/2012] [Indexed: 11/18/2022] Open
Abstract
Extracytoplasmic function (ECF) σ factors, the largest group of alternative σ factors, play important roles in response to environmental stresses. Tt-RpoE1 is annotated as an ECF σ factor in Thermoanaerobacter tengcongensis. In this study, we revealed that the Tt-tolB gene located downstream of the Tt-rpoE1 gene encoded the cognate anti-σ factor, which could inhibit the transcription activity of Tt-RpoE1 by direct interaction with Tt-RpoE1 via its N-terminal domain. By in vitro transcription assay, the auto-regulation ability of Tt-RpoE1 was determined, and band shift assay showed that Tt-RpoE1 preferred to bind a fork-junction promoter DNA. With truncation or base-specific scanning mutations, the contribution of the nucleotides in −35 and −10 regions to interaction between Tt-RpoE1 and promoter DNA was explored. The promoter recognition pattern of Tt-RpoE1 was determined as 5′ tGTTACN16CGTC 3′, which was further confirmed by in vitro transcription assays. This result showed that the Tt-RpoE1-recognized promoter possessed a distinct −10 motif (−13CGTC−10) as the recognition determinant, which is distinguished from the −10 element recognized by σ70. Site-directed mutagenesis in Region 2.4 of Tt-RpoE1 indicated that the “D” residue of DXXR motif was responsible for recognizing the −12G nucleotide. Our results suggested that distinct −10 motif may be an efficient and general strategy used by ECF σ factors in adaptive response regulation of the related genes.
Collapse
Affiliation(s)
- Jingfang Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Jie Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Zhenfang Wu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Huadong Pei
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Jian Zhou
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Hua Xiang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, People’s Republic of China
- * E-mail:
| |
Collapse
|
29
|
Synthetic motility and cell shape defects associated with deletions of flotillin/reggie paralogs in Bacillus subtilis and interplay of these proteins with NfeD proteins. J Bacteriol 2012; 194:4652-61. [PMID: 22753055 DOI: 10.1128/jb.00910-12] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Flotillin/reggie proteins are membrane-associated proteins present in all kinds of cells and belong to the family of proteins carrying the SPFH (stomatin, prohibitin, flotillin, and HflK/HflC) domain. In addition to this domain of unknown function, flotillin proteins are characterized by the flotillin domain, which is rich in heptad repeats. Bacterial flotillin orthologs have recently been shown to be part of lipid rafts, like their eukaryotic counterparts, and to be involved in signaling events. Double deletions of floT and the gene encoding the second flotillin-like protein in Bacillus subtilis, floA, show strong synthetic defects in cell morphology, motility, and transformation efficiency. The lack of FloT resulted in a marked defect in motility. Using total internal reflection fluorescence (TIRF) microscopy, we show that both proteins localize in characteristic focal structures within the cell membrane, which move in a highly dynamic and random manner but localize independently of each other. Thus, flotillin paralogs act in a spatially distinct manner. Flotillin domains in both FloA and FloT are essential for focal assemblies and for the proper function of flotillins. Both flotillin genes are situated next to genes encoding NfeD proteins. FloT dramatically affects the localization of NfeD2: FloT apparently recruits NfeD2 into the focal assemblies, documenting a close interaction between flotillins and NfeDs in bacteria. In contrast, the localization of NfeD1b is not affected by FloA, FloT, or NfeD2. FloA does not show a spatial connection with the upstream-encoded NfeD1b (YqeZ). Our work establishes that bacterial flotillin-like proteins have overlapping functions in a variety of membrane-associated processes and that flotillin domain-mediated assembly and NfeD proteins play important roles in setting up the flotillin raft-like structures in vivo.
Collapse
|
30
|
Mendez R, Gutierrez A, Reyes J, Márquez-Magaña L. The extracytoplasmic function sigma factor SigY is important for efficient maintenance of the Spβ prophage that encodes sublancin in Bacillus subtilis. DNA Cell Biol 2012; 31:946-55. [PMID: 22400495 DOI: 10.1089/dna.2011.1513] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
Many strains of the soil bacterium Bacillus subtilis are capable of producing and being resistant to the antibiotic sublancin because they harbor the Spβ prophage. This 135 kb viral genome is integrated into the circular DNA chromosome of B. subtilis, and contains genes for the production of and resistance to sublancin. We investigated the role of SigY in sublancin production and resistance, finding that it is important for efficient maintenance of the Spβ prophage. We were unable to detect the prophage in mutants lacking SigY. Additionally, these mutants were no longer able to produce sublancin, were sensitive to killing by this factor, and displayed a delay in sporulation. Wild-type cells with normal SigY activity were found to partially lose the Spβ prophage during growth and early sporulation, suggesting a mechanism for the bistable outcome of sibling cells capable of killing and of being killed. The appropriate regulation of SigY appears to be essential for growth as evidenced by the inability to disrupt the gene for its putative antisigma. Our results confirm a role for SigY in antibiotic production and resistance, as has been found for other members of the extracytoplasmic function sigma factor family in B. subtilis, and shows that this role is achieved by affecting maintenance of the Spβ prophage.
Collapse
Affiliation(s)
- Rebecca Mendez
- Department of Biology, San Francisco State University, San Francisco, California 94132, USA
| | | | | | | |
Collapse
|
31
|
Glutamate dehydrogenase affects resistance to cell wall antibiotics in Bacillus subtilis. J Bacteriol 2011; 194:993-1001. [PMID: 22178969 DOI: 10.1128/jb.06547-11] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The glutamate dehydrogenase RocG of Bacillus subtilis is a bifunctional protein with both enzymatic and regulatory functions. Here we show that the rocG null mutant is sensitive to β-lactams, including cefuroxime (CEF), and to fosfomycin but that resistant mutants arise due to gain-of-function mutations in gudB, which encodes an otherwise inactive glutamate dehydrogenase. In the presence of CEF, ΔrocG ΔgudB mutant cells exhibit growth arrest when they reach mid-exponential phase. Using microarray-based transcriptional profiling, we found that the σ(W) regulon was downregulated in the ΔrocG ΔgudB null mutant. A survey of σ(W)-controlled genes for effects on CEF resistance identified both the NfeD protein YuaF and the flotillin homologue YuaG (FloT). Notably, overexpression of yuaFG in the rocG null mutant prevents the growth arrest induced by CEF. The YuaG flotillin has been shown previously to localize to defined lipid microdomains, and we show here that the yuaFGI operon contributes to a σ(W)-dependent decrease in membrane fluidity. We conclude that glutamate dehydrogenase activity affects the expression of the σ(W) regulon, by pathways that are yet unclear, and thereby influences resistance to CEF and other antibiotics.
Collapse
|
32
|
Wecke T, Bauer T, Harth H, Mäder U, Mascher T. The rhamnolipid stress response of Bacillus subtilis. FEMS Microbiol Lett 2011; 323:113-23. [PMID: 22092710 DOI: 10.1111/j.1574-6968.2011.02367.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Revised: 07/20/2011] [Accepted: 07/21/2011] [Indexed: 12/29/2022] Open
Abstract
Rhamnolipids are biosurfactants produced by the soil bacterium P seudomonas aeruginosa. In addition to their high industrial potential as surface-active molecules, rhamnolipids also have antimicrobial properties. In densely populated habitats, such as the soil, production of antimicrobial compounds is important to inhibit growth of competitors. For the latter, it is crucial for survival to sense and respond to the presence of those antibiotics. To gain a first insight into the biological competition involving biosurfactants, we investigated the cellular response of the model organism B acillus subtilis upon exposure to rhamnolipids by genome-wide transcriptional profiling. Most of the differentially expressed genes can be assigned to two different regulatory networks: the cell envelope stress response mediated by the two-component system LiaRS and the extracytoplasmic function σ factor σ(M) and the CssRS-dependent secretion stress response. Subsequent phenotypic analysis demonstrated a protective function of LiaRS and σ(M) against cell lysis caused by rhamnolipids. Taken together, we present the first evidence that a single antimicrobial compound can simultaneously induce genes from two independent stress stimulons.
Collapse
Affiliation(s)
- Tina Wecke
- Department of Biology I, Ludwig-Maximilians-University, Munich, Germany
| | | | | | | | | |
Collapse
|
33
|
Delumeau O, Lecointe F, Muntel J, Guillot A, Guédon E, Monnet V, Hecker M, Becher D, Polard P, Noirot P. The dynamic protein partnership of RNA polymerase in Bacillus subtilis. Proteomics 2011; 11:2992-3001. [PMID: 21710567 DOI: 10.1002/pmic.201000790] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Revised: 03/11/2011] [Accepted: 04/13/2011] [Indexed: 11/10/2022]
Abstract
In prokaryotes, transcription results from the activity of a 400 kDa RNA polymerase (RNAP) protein complex composed of at least five subunits (2α, β, β', ω). To ensure adequate responses to changing environmental cues, RNAP activity is tightly controlled by means of interacting regulatory proteins. Here, we report the affinity-purification of the Bacillus subtilis RNAP complexes from cells in different growth states and stress conditions, and the quantitative assessment by mass spectrometry of the dynamic changes in the composition of the RNAP complex. The stoichiometry of RNA polymerase was determined by a comparison of two mass spectrometry-based quantification methods: a label-based and a label-free method. The validated label-free method was then used to quantify the proteins associated with RNAP. The levels of sigma factors bound to RNAP varied during growth and exposure to stress. Elongation factors, helicases such as HelD and PcrA, and novel unknown proteins were also associated with RNAP complexes. The content in 6S RNAs of purified RNAP complexes increased at the onset of the stationary phase. These quantitative variations in the protein and RNA composition of the RNAP complexes well correlate with the known physiology of B. subtilis cells under different conditions.
Collapse
|
34
|
Kingston AW, Subramanian C, Rock CO, Helmann JD. A σW-dependent stress response in Bacillus subtilis that reduces membrane fluidity. Mol Microbiol 2011; 81:69-79. [PMID: 21542858 DOI: 10.1111/j.1365-2958.2011.07679.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Bacteria respond to physical and chemical stresses that affect the integrity of the cell wall and membrane by activating an intricate cell envelope stress response. The ability of cells to regulate the biophysical properties of the membrane by adjusting fatty acid composition is known as homeoviscous adaptation. Here, we identify a homeoviscous adaptation mechanism in Bacillus subtilis regulated by the extracytoplasmic function σ factor σ(W). Cell envelope active compounds, including detergents, activate a sense-oriented, σ(W)-dependent promoter within the first gene of the fabHa fabF operon. Activation leads to a decrease in the amount of FabHa coupled with an increase in FabF, the initiation and elongation condensing enzymes of fatty acid biosynthesis respectively. Downregulation of FabHa results in an increased reliance on the FabHb paralogue leading to a greater proportion of straight chain fatty acids in the membrane, and the upregulation of FabF increases the average fatty acid chain length. The net effect is to reduce membrane fluidity. The inactivation of the σ(W)-dependent promoter within fabHa increased sensitivity to detergents and to antimicrobial compounds produced by other Bacillus spp. Thus, the σ(W) stress response provides a mechanism to conditionally decrease membrane fluidity through the opposed regulation of FabHa and FabF.
Collapse
Affiliation(s)
- Anthony W Kingston
- Department of Microbiology, Cornell University, Ithaca, NY 14853-8101, USA
| | | | | | | |
Collapse
|
35
|
Petráčková D, Semberová L, Halada P, Svoboda P, Svobodová J. Stress proteins in the cytoplasmic membrane fraction of Bacillus subtilis. Folia Microbiol (Praha) 2010; 55:427-34. [PMID: 20941576 DOI: 10.1007/s12223-010-0072-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2009] [Revised: 04/27/2010] [Indexed: 10/19/2022]
Abstract
Stress proteomes of the cytoplasmic membrane fraction of Bacillus subtilis trp (C2)-exposed to acid pH and ethanol were characterized. Although these stress factors impair the cell function in a specific manner, they share the ability to denature proteins. Therefore, specific and general stress proteins in the membranes were investigated. Both ethanol (3 %) and pH 5.0 increase the doubling time from 17 to 25 min. Isolated cytoplasmic membranes were subjected to an optimized 2D PAGE analysis which permitted the separation and analysis of ≈450 distinct protein spots. Two alternative methods of protein detection were compared, i.e. silver staining and (35)S-L-methionine pulse labeling; the stress induced proteins were identified by MALDI-TOF MS. After ethanol stress, five proteins were increased, viz. YdaP, Ctc, YfhM, YjcH and YwaC. Acid stress proteins were AcoB, YkwC, SodA, YjcH and YwaC. Proteins YjcH and YwaC were increased after ethanol as well as acid pH treatment.
Collapse
Affiliation(s)
- D Petráčková
- Department of Genetics and Microbiology, Faculty of Science, Charles University in Prague, 120 00 Prague, Czech Republic.
| | | | | | | | | |
Collapse
|
36
|
Stress-responsive systems set specific limits to the overproduction of membrane proteins in Bacillus subtilis. Appl Environ Microbiol 2009; 75:7356-64. [PMID: 19820159 DOI: 10.1128/aem.01560-09] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Essential membrane proteins are generally recognized as relevant potential drug targets due to their exposed localization in the cell envelope. Unfortunately, high-level production of membrane proteins for functional and structural analyses is often problematic. This is mainly due to their high overall hydrophobicity. To develop new concepts for membrane protein overproduction, we investigated whether the biogenesis of overproduced membrane proteins is affected by stress response-related proteolytic systems in the membrane. For this purpose, the well-established expression host Bacillus subtilis was used to overproduce eight essential membrane proteins from B. subtilis and Staphylococcus aureus. The results show that the sigma(W) regulon (responding to cell envelope perturbations) and the CssRS two-component regulatory system (responding to unfolded exported proteins) set critical limits to membrane protein production in large quantities. The identified sigW or cssRS mutant B. subtilis strains with significantly improved capacity for membrane protein production are interesting candidate expression hosts for fundamental research and biotechnological applications. Importantly, our results pinpoint the interdependent expression and function of membrane-associated proteases as key parameters in bacterial membrane protein production.
Collapse
|
37
|
Hecker M, Reder A, Fuchs S, Pagels M, Engelmann S. Physiological proteomics and stress/starvation responses in Bacillus subtilis and Staphylococcus aureus. Res Microbiol 2009; 160:245-58. [PMID: 19403106 DOI: 10.1016/j.resmic.2009.03.008] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2009] [Revised: 03/20/2009] [Accepted: 03/23/2009] [Indexed: 10/20/2022]
Abstract
Gel-based proteomics is a useful approach for visualizing the responses of bacteria to stress and starvation stimuli. In order to face stress/starvation, bacteria have developed very complicated gene expression networks. A proteomic view of stress/starvation responses, however, is only a starting point which should promote follow-up studies aimed at the comprehensive description of single regulons, their signal transduction pathways on the one hand, and their adaptive functions on the other, and finally their integration into complex gene expression networks. This "road map of physiological proteomics" will be demonstrated for the general stress regulon controlled by sigma(B) in Bacillus subtilis and the oxygen starvation response with Rex as a master regulator in Staphylococcus aureus.
Collapse
Affiliation(s)
- Michael Hecker
- Institute for Microbiology, Ernst-Moritz-Arndt-University Greifswald, Jahnstrasse 15A, 17487 Greifswald, Germany.
| | | | | | | | | |
Collapse
|
38
|
Donovan C, Bramkamp M. Characterization and subcellular localization of a bacterial flotillin homologue. MICROBIOLOGY-SGM 2009; 155:1786-1799. [PMID: 19383680 DOI: 10.1099/mic.0.025312-0] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The process of endospore formation in Bacillus subtilis is complex, requiring the generation of two distinct cell types, a forespore and larger mother cell. The development of these cell types is controlled and regulated by cell type-specific gene expression, activated by a sigma-factor cascade. Activation of these cell type-specific sigma factors is coupled with the completion of polar septation. Here, we describe a novel protein, YuaG, a eukaryotic reggie/flotillin homologue that is involved in the early stages of sporulation of the Gram-positive model organism B. subtilis. YuaG localizes in discrete foci in the membrane and is highly dynamic. Purification of detergent-resistant membranes revealed that YuaG is associated with negatively charged phospholipids, e.g. phosphatidylglycerol (PG) or cardiolipin (CL). However, localization of YuaG is not always dependent on PG/CL in vivo. A yuaG disruption strain shows a delay in the onset of sporulation along with reduced sporulation efficiency, where the spores develop to a certain stage and then appear to be trapped at this stage. Our results indicate that YuaG is involved in the early stage of spore development, probably playing a role in the signalling cascade at the onset of sporulation.
Collapse
Affiliation(s)
- Catriona Donovan
- Institut für Biochemie, Universität zu Köln, Zülpicher Str. 47, D-50674 Köln, Germany
| | - Marc Bramkamp
- Institut für Biochemie, Universität zu Köln, Zülpicher Str. 47, D-50674 Köln, Germany
| |
Collapse
|
39
|
Matsumoto T, Nakanishi K, Asai K, Sadaie Y. Transcriptional analysis of the ylaABCD operon of Bacillus subtilis encoding a sigma factor of extracytoplasmic function family. Genes Genet Syst 2009; 80:385-93. [PMID: 16501307 DOI: 10.1266/ggs.80.385] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The ylaABCD operon of Bacillus subtilis contains four predicted ORFs in the order ylaA, ylaB, ylaC and ylaD, where ylaC is assumed to code for a sigma factor of the extracytoplasmic function (ECF) family. Predicted YlaD may function as the anti-YlaC factor as it has an oxidative stress sensing domain similar to that of the RsrA, which is the anti-sigma factor of SigR, an ECF sigma of Streptomyces coelicolor. Northern blot analysis of the ylaABCD operon revealed two transcriptional products resulting from a distal promoter upstream of ylaA and from an internal promoter located at the first codon of ylaC. Both transcription start sites were determine by primer extension and 5'-RACE PCR. The transcription from the distal promoter was initiated by over-expression of YlaC on a multi-copy plasmid and depended on YlaC. DNA sequences of the -35 and -10 regions were similar to those recognized by other ECF sigmas of B. subtilis. On the other hand the transcription from the internal promoter was induced by oxidative stress and depended on Spx, which is an oxidative stress responding factor interacting with the alpha subunit of RNA polymerase core enzyme. The latter transcription depended possibly on SigA. We could not detect translation of YlaC from this transcript. Experiments with ylaD-disruption or co-overexpression of ylaD with ylaC suggested that YlaD functions as the anti-YlaC factor. Although YlaD has an oxidative stress sensing domain, oxidative stress did not induce the whole ylaABCD operon.
Collapse
Affiliation(s)
- Takashi Matsumoto
- Department of Biochemistry and Molecular Biology, Faculty of Science, Saitama University, Japan
| | | | | | | |
Collapse
|
40
|
Genetic analysis of factors affecting susceptibility of Bacillus subtilis to daptomycin. Antimicrob Agents Chemother 2009; 53:1598-609. [PMID: 19164152 DOI: 10.1128/aac.01329-08] [Citation(s) in RCA: 131] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Daptomycin is the first of a new class of cyclic lipopeptide antibiotics used against multidrug-resistant, gram-positive pathogens. The proposed mechanism of action involves disruption of the functional integrity of the bacterial membrane in a Ca(2+)-dependent manner. We have used transcriptional profiling to demonstrate that treatment of Bacillus subtilis with daptomycin strongly induces the lia operon including the autoregulatory LiaRS two-component system (homologous to Staphylococcus aureus VraSR). The lia operon protects against daptomycin, and deletion of liaH, encoding a phage-shock protein A (PspA)-like protein, leads to threefold increased susceptibility. Since daptomycin interacts with the membrane, we tested mutants with altered membrane composition for effects on susceptibility. Deletion mutations of mprF (lacking lysyl-phosphatidylglycerol) or des (lipid desaturase) increased daptomycin susceptibility, whereas overexpression of MprF decreased susceptibility. Conversely, depletion of the cell for the anionic lipid phosphatidylglycerol led to increased resistance. Fluorescently labeled daptomycin localized to the septa and in a helical pattern around the cell envelope and was delocalized upon the depletion of phosphatidylglycerol. Together, these results indicate that the daptomycin-Ca(2+) complex interacts preferentially with regions enriched in anionic phospholipids and leads to membrane stresses that can be ameliorated by PspA family proteins.
Collapse
|
41
|
Acid and base stress and transcriptomic responses in Bacillus subtilis. Appl Environ Microbiol 2008; 75:981-90. [PMID: 19114526 DOI: 10.1128/aem.01652-08] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Acid and base environmental stress responses were investigated in Bacillus subtilis. B. subtilis AG174 cultures in buffered potassium-modified Luria broth were switched from pH 8.5 to pH 6.0 and recovered growth rapidly, whereas cultures switched from pH 6.0 to pH 8.5 showed a long lag time. Log-phase cultures at pH 6.0 survived 60 to 100% at pH 4.5, whereas cells grown at pH 7.0 survived <15%. Cells grown at pH 9.0 survived 40 to 100% at pH 10, whereas cells grown at pH 7.0 survived <5%. Thus, growth in a moderate acid or base induced adaptation to a more extreme acid or base, respectively. Expression indices from Affymetrix chip hybridization were obtained for 4,095 protein-encoding open reading frames of B. subtilis grown at external pH 6, pH 7, and pH 9. Growth at pH 6 upregulated acetoin production (alsDS), dehydrogenases (adhA, ald, fdhD, and gabD), and decarboxylases (psd and speA). Acid upregulated malate metabolism (maeN), metal export (czcDO and cadA), oxidative stress (catalase katA; OYE family namA), and the SigX extracytoplasmic stress regulon. Growth at pH 9 upregulated arginine catabolism (roc), which generates organic acids, glutamate synthase (gltAB), polyamine acetylation and transport (blt), the K(+)/H(+) antiporter (yhaTU), and cytochrome oxidoreductases (cyd, ctaACE, and qcrC). The SigH, SigL, and SigW regulons were upregulated at high pH. Overall, greater genetic adaptation was seen at pH 9 than at pH 6, which may explain the lag time required for growth shift to high pH. Low external pH favored dehydrogenases and decarboxylases that may consume acids and generate basic amines, whereas high external pH favored catabolism-generating acids.
Collapse
|
42
|
Extracytoplasmic function sigma factors regulate expression of the Bacillus subtilis yabE gene via a cis-acting antisense RNA. J Bacteriol 2008; 191:1101-5. [PMID: 19047346 DOI: 10.1128/jb.01530-08] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Bacillus subtilis yabE encodes a predicted resuscitation-promoting factor/stationary-phase survival (Rpf/Sps) family autolysin. Here, we demonstrate that yabE is negatively regulated by a cis-acting antisense RNA which, in turn, is regulated by two extracytoplasmic function sigma factors: sigma(X) and sigma(M).
Collapse
|
43
|
Palomino MM, Sanchez-Rivas C, Ruzal SM. High salt stress in Bacillus subtilis: involvement of PBP4* as a peptidoglycan hydrolase. Res Microbiol 2008; 160:117-24. [PMID: 19063962 DOI: 10.1016/j.resmic.2008.10.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2008] [Revised: 10/21/2008] [Accepted: 10/29/2008] [Indexed: 11/19/2022]
Abstract
The study was focused on the role of the penicillin binding protein PBP4* of Bacillus subtilis during growth in high salinity rich media. Using pbpE-lacZ fusion, we found that transcription of the pbpE gene is induced in stationary phase and by increased salinity. This increase was also corroborated at the translation level for PBP4* by western blot. Furthermore, we showed that a strain harboring gene disruption in the structural gene (pbpE) for the PBP4* endopeptidase resulted in a salt-sensitive phenotype and increased sensitivity to cell envelope active antibiotics (vancomycin, penicillin and bacitracin). Since the pbpE gene seems to be part of a two-gene operon with racX, a racX::pRV300 mutant was obtained. This mutant behaved like the wild-type strain with respect to high salt. Electron microscopy showed that high salt and mutation of pbpE resulted in cell wall defects. Whole cells or purified peptidoglycan from WT cultures grown in high salt medium showed increased autolysis and susceptibility to mutanolysin. We demonstrate through zymogram analysis that PBP4* has murein hydrolyze activity. All these results support the hypothesis that peptidoglycan is modified in response to high salt and that PBP4* contributes to this modification.
Collapse
Affiliation(s)
- María Mercedes Palomino
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Ciudad Universitaria Pabellón II 4 piso, Buenos Aires, Argentina
| | | | | |
Collapse
|
44
|
ROMA: an in vitro approach to defining target genes for transcription regulators. Methods 2008; 47:73-7. [PMID: 18948201 DOI: 10.1016/j.ymeth.2008.10.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2008] [Revised: 10/14/2008] [Accepted: 10/14/2008] [Indexed: 01/05/2023] Open
Abstract
We describe an in vitro transcription-based method called ROMA (run-off transcription-microarray analysis) for the genome-wide analysis of transcription regulated by sigma factors and other transcriptional regulators. ROMA uses purified RNA polymerase with and without a regulatory protein to monitor products of transcription from a genomic DNA template. Transcribed RNA is converted to cDNA and hybridized to gene arrays allowing for the identification of genes that are specifically activated by the regulator. We discuss the use of ROMA to define sigma factor regulons in Bacillus subtilis and its broad application to defining regulons for other transcriptional regulators in various species.
Collapse
|
45
|
Heinrich J, Lundén T, Kontinen VP, Wiegert T. The Bacillus subtilis ABC transporter EcsAB influences intramembrane proteolysis through RasP. MICROBIOLOGY-SGM 2008; 154:1989-1997. [PMID: 18599827 DOI: 10.1099/mic.0.2008/018648-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The Bacillus subtilis sigma(W) regulon is induced by different stresses that most probably affect integrity of the cell envelope. The activity of the extracytoplasmic function (ECF) sigma factor sigma(W) is modulated by the transmembrane anti-sigma factor RsiW, which undergoes stress-induced degradation in a process known as regulated intramembrane proteolysis, finally resulting in the release of sigma(W) and the transcription of sigma(W)-controlled genes. Mutations in the ecsA gene, which encodes an ATP binding cassette (ABC) of an ABC transporter of unknown function, block site-2 proteolysis of RsiW by the intramembrane cleaving protease RasP (YluC). In addition, degradation of the cell division protein FtsL, which represents a second RasP substrate, is blocked in an ecsA-negative strain. The defect in sigma(W) induction of an ecsA-knockout strain could be partly suppressed by overproducing RasP. A B. subtilis rasP-knockout strain displayed the same pleiotropic phenotype as an ecsA knockout, namely defects in processing alpha-amylase, in competence development, and in formation of multicellular structures known as biofilms.
Collapse
Affiliation(s)
- Janine Heinrich
- Institute of Genetics, University of Bayreuth, Bayreuth, Germany
| | - Tuula Lundén
- Infection Pathogenesis Laboratory, Department of Viral Diseases and Immunology, National Public Health Institute, Helsinki, Finland
| | - Vesa P Kontinen
- Infection Pathogenesis Laboratory, Department of Viral Diseases and Immunology, National Public Health Institute, Helsinki, Finland
| | - Thomas Wiegert
- Institute of Genetics, University of Bayreuth, Bayreuth, Germany
| |
Collapse
|
46
|
Dreisbach A, Otto A, Becher D, Hammer E, Teumer A, Gouw JW, Hecker M, Völker U. Monitoring of changes in the membrane proteome during stationary phase adaptation of
Bacillus subtilis
using
in vivo
labeling techniques. Proteomics 2008; 8:2062-76. [DOI: 10.1002/pmic.200701081] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
47
|
Nam YH, Ahn YC, Park SM, Cho MH, Seo JW, Yoon IK, Park SB, Kim JG. Comparison of Chip-Base Real-Time PCR and Tube-Base Real-Time PCR Methods for Detection of B. cereus. JOURNAL OF THE KOREAN CHEMICAL SOCIETY-DAEHAN HWAHAK HOE JEE 2008. [DOI: 10.5012/jkcs.2008.52.2.203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
48
|
Eiamphungporn W, Helmann JD. The Bacillus subtilis sigma(M) regulon and its contribution to cell envelope stress responses. Mol Microbiol 2008; 67:830-48. [PMID: 18179421 DOI: 10.1111/j.1365-2958.2007.06090.x] [Citation(s) in RCA: 151] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The Bacillus subtilis extracytoplasmic function (ECF) sigma(M) factor is activated by cell envelope stress elicited by antibiotics, and by acid, heat, ethanol and superoxide stresses. Here, we have used several complementary approaches to identify genes controlled by sigma(M). In many cases, expression is only partially dependent on sigma(M) because of both overlapping promoter recognition with other ECF sigma factors and the presence of additional promoter elements. Genes regulated by sigma(M) have a characteristic pattern of induction in response to cell envelope-acting antibiotics as evidenced by hierarchical clustering analysis. sigma(M) also contributes to the expression of the Spx transcription factor and thereby indirectly regulates genes of the Spx regulon. Cell envelope stress responses also include regulons controlled by sigma(W), sigma(B) and several two-component regulatory systems (e.g. LiaRS, YycFG, BceRS). Activation of the sigma(M) regulon increases expression of proteins functioning in transcriptional control, cell wall synthesis and shape determination, cell division, DNA damage monitoring, recombinational repair and detoxification.
Collapse
|
49
|
Jordan S, Hutchings MI, Mascher T. Cell envelope stress response in Gram-positive bacteria. FEMS Microbiol Rev 2008; 32:107-46. [PMID: 18173394 DOI: 10.1111/j.1574-6976.2007.00091.x] [Citation(s) in RCA: 278] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Affiliation(s)
- Sina Jordan
- Department of General Microbiology, Georg-August-University, Grisebachstrasse 8, Göttingen, Germany
| | | | | |
Collapse
|
50
|
Jervis AJ, Thackray PD, Houston CW, Horsburgh MJ, Moir A. SigM-responsive genes of Bacillus subtilis and their promoters. J Bacteriol 2007; 189:4534-8. [PMID: 17434969 PMCID: PMC1913368 DOI: 10.1128/jb.00130-07] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Promoters of nine Bacillus subtilis genes (bcrC, yacK, ydaH, yfnI, yjbD, ypbG, ypuA, yraA, and ysxA), all responsive to artificially induced increases in the stress-responsive extracytoplasmic function sigma factor, SigM, were mapped by rapid amplification of cDNA ends-PCR. The resulting promoter consensus suggests that overlapping control by SigX or SigW is common.
Collapse
Affiliation(s)
- Adrian J Jervis
- Department of Molecular Biology and Biotechnology, University of Sheffield, Western Bank, Sheffield S10 2TN, England
| | | | | | | | | |
Collapse
|