1
|
Patel H, Rawat S. A genetic regulatory see-saw of biofilm and virulence in MRSA pathogenesis. Front Microbiol 2023; 14:1204428. [PMID: 37434702 PMCID: PMC10332168 DOI: 10.3389/fmicb.2023.1204428] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 05/30/2023] [Indexed: 07/13/2023] Open
Abstract
Staphylococcus aureus is one of the most common opportunistic human pathogens causing several infectious diseases. Ever since the emergence of the first methicillin-resistant Staphylococcus aureus (MRSA) strain decades back, the organism has been a major cause of hospital-acquired infections (HA-MRSA). The spread of this pathogen across the community led to the emergence of a more virulent subtype of the strain, i.e., Community acquired Methicillin resistant Staphylococcus aureus (CA-MRSA). Hence, WHO has declared Staphylococcus aureus as a high-priority pathogen. MRSA pathogenesis is remarkable because of the ability of this "superbug" to form robust biofilm both in vivo and in vitro by the formation of polysaccharide intercellular adhesin (PIA), extracellular DNA (eDNA), wall teichoic acids (WTAs), and capsule (CP), which are major components that impart stability to a biofilm. On the other hand, secretion of a diverse array of virulence factors such as hemolysins, leukotoxins, enterotoxins, and Protein A regulated by agr and sae two-component systems (TCS) aids in combating host immune response. The up- and downregulation of adhesion genes involved in biofilm formation and genes responsible for synthesizing virulence factors during different stages of infection act as a genetic regulatory see-saw in the pathogenesis of MRSA. This review provides insight into the evolution and pathogenesis of MRSA infections with a focus on genetic regulation of biofilm formation and virulence factors secretion.
Collapse
Affiliation(s)
| | - Seema Rawat
- Microbiology Laboratory, School of Life Sciences, Central University of Gujarat, Gandhinagar, Gujarat, India
| |
Collapse
|
2
|
Kinney KJ, Stach JM, Kulhankova K, Brown M, Salgado-Pabón W. Vegetation Formation in Staphylococcus Aureus Endocarditis Inversely Correlates With RNAIII and sarA Expression in Invasive Clonal Complex 5 Isolates. Front Cell Infect Microbiol 2022; 12:925914. [PMID: 35860377 PMCID: PMC9289551 DOI: 10.3389/fcimb.2022.925914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 06/14/2022] [Indexed: 01/29/2023] Open
Abstract
Infective endocarditis (IE) is one of the most feared and lethal diseases caused by Staphylococcus aureus. Once established, the infection is fast-progressing and tissue destructive. S. aureus of the clonal complex 5 (CC5) commonly cause IE yet are severely understudied. IE results from bacterial colonization and formation of tissue biofilms (known as vegetations) on injured or inflamed cardiac endothelium. S. aureus IE is promoted by adhesins, coagulases, and superantigens, with the exotoxins and exoenzymes likely contributing to tissue destruction and dissemination. Expression of the large repertoire of virulence factors required for IE and sequelae is controlled by complex regulatory networks. We investigated the temporal expression of the global regulators agr (RNAIII), rot, sarS, sarA, sigB, and mgrA in 8 invasive CC5 isolates and established intrinsic expression patterns associated with IE outcomes. We show that vegetation formation, as tested in the rabbit model of IE, inversely correlates with RNAIII and sarA expression during growth in Todd-Hewitt broth (TH). Large vegetations with severe sequelae arise from strains with high-level expression of colonization factors but slower transition towards expression of the exotoxins. Overall, strains proficient in vegetation formation, a hallmark of IE, exhibit lower expression of RNAIII and sarA. Simultaneous high expression of RNAIII, sarA, sigB, and mgrA is the one phenotype assessed in this study that fails to promote IE. Thus, RNAIII and sarA expression that provides for rheostat control of colonization and virulence genes, rather than an on and off switch, promote both vegetation formation and lethal sepsis.
Collapse
Affiliation(s)
- Kyle J. Kinney
- Department of Microbiology and Immunology, University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Jessica M. Stach
- Department of Microbiology and Immunology, University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Katarina Kulhankova
- Department of Microbiology and Immunology, University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Matthew Brown
- Department of Microbiology and Immunology, University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Wilmara Salgado-Pabón
- Department of Microbiology and Immunology, University of Iowa Carver College of Medicine, Iowa City, IA, United States
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
3
|
Abstract
SarA, a transcriptional regulator of Staphylococcus aureus, is a major global regulatory system that coordinates the expression of target genes involved in its pathogenicity. Various studies have identified a large number of SarA target genes, but an in-depth characterization of the sarA regulon, including small regulatory RNAs (sRNAs), has not yet been done. In this study, we utilized transcriptome sequencing (RNA-Seq) and chromatin immunoprecipitation sequencing (ChIP-Seq) to determine a comprehensive list of SarA-regulated targets, including both mRNAs and sRNAs. RNA-Seq analysis indicated 390 mRNAs and 51 sRNAs differentially expressed in a ΔsarA mutant, while ChIP-Seq revealed 354 mRNAs and 55 sRNA targets in the S. aureus genome. We confirmed the authenticity of several novel SarA targets by Northern blotting and electrophoretic mobility shift assays. Among them, we characterized repression of sprG2, a gene that encodes the toxin of a type I toxin-antitoxin system, indicating a multilayer lockdown of toxin expression by both SarA and its cognate antitoxin, SprF2. Finally, a novel SarA consensus DNA binding sequence was generated using the upstream promoter sequences of 15 novel SarA-regulated sRNA targets. A genome-wide scan with a deduced SarA motif enabled the discovery of new potential SarA target genes which were not identified in our RNA-Seq and ChIP-Seq analyses. The strength of this new consensus was confirmed with one predicted sRNA target. The RNA-Seq and ChIP-Seq combinatory analysis gives a snapshot of the regulation, whereas bioinformatic analysis reveals a permanent view of targets based on sequence. Altogether these experimental and in silico methodologies are effective to characterize transcriptional factor (TF) regulons and functions. IMPORTANCEStaphylococcus aureus, a commensal and opportunist pathogen, is responsible for a large number of human and animal infections, from benign to severe. Gene expression adaptation during infection requires a complex network of regulators, including transcriptional factors (TF) and sRNAs. TF SarA influences virulence, metabolism, biofilm formation, and resistance to some antibiotics. SarA directly regulates expression of around 20 mRNAs and a few sRNAs. Here, we combined high-throughput expression screening methods combined with binding assays and bioinformatics for an in-depth investigation of the SarA regulon. This combinatory approach allowed the identification of 85 unprecedented mRNAs and sRNAs targets, with at least 14 being primary. Among novel SarA direct targets, we characterized repression of sprG2, a gene that encodes the toxin of a toxin-antitoxin system, indicating a multilayer lockdown of toxin expression by both SarA and its cognate antitoxin, SprF2.
Collapse
|
4
|
Schulze A, Mitterer F, Pombo JP, Schild S. Biofilms by bacterial human pathogens: Clinical relevance - development, composition and regulation - therapeutical strategies. MICROBIAL CELL (GRAZ, AUSTRIA) 2021; 8:28-56. [PMID: 33553418 PMCID: PMC7841849 DOI: 10.15698/mic2021.02.741] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 01/08/2021] [Accepted: 01/12/2021] [Indexed: 12/19/2022]
Abstract
Notably, bacterial biofilm formation is increasingly recognized as a passive virulence factor facilitating many infectious disease processes. In this review we will focus on bacterial biofilms formed by human pathogens and highlight their relevance for diverse diseases. Along biofilm composition and regulation emphasis is laid on the intensively studied biofilms of Vibrio cholerae, Pseudomonas aeruginosa and Staphylococcus spp., which are commonly used as biofilm model organisms and therefore contribute to our general understanding of bacterial biofilm (patho-)physiology. Finally, therapeutical intervention strategies targeting biofilms will be discussed.
Collapse
Affiliation(s)
- Adina Schulze
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50, 8010 Graz, Austria
- A.S. and F.M. contributed equally to this work
| | - Fabian Mitterer
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50, 8010 Graz, Austria
- A.S. and F.M. contributed equally to this work
| | - Joao P. Pombo
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50, 8010 Graz, Austria
| | - Stefan Schild
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50, 8010 Graz, Austria
- BioTechMed Graz, Austria
- Field of Excellence Biohealth – University of Graz, Graz, Austria
| |
Collapse
|
5
|
Jenul C, Horswill AR. Regulation of Staphylococcus aureus Virulence. Microbiol Spectr 2019; 7:10.1128/microbiolspec.gpp3-0031-2018. [PMID: 30953424 PMCID: PMC6452892 DOI: 10.1128/microbiolspec.gpp3-0031-2018] [Citation(s) in RCA: 301] [Impact Index Per Article: 50.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Indexed: 01/15/2023] Open
Abstract
Staphylococcus aureus is a Gram-positive opportunistic pathogen that has evolved a complex regulatory network to control virulence. One of the main functions of this interconnected network is to sense various environmental cues and respond by altering the production of virulence factors necessary for survival in the host, including cell surface adhesins and extracellular enzymes and toxins. Of these S. aureus regulatory systems, one of the best studied is the accessory gene regulator (agr), which is a quorum-sensing system that senses the local concentration of a cyclic peptide signaling molecule. This system allows S. aureus to sense its own population density and translate this information into a specific gene expression pattern. Besides agr, this pathogen uses other two-component systems to sense specific cues and coordinates responses with cytoplasmic regulators of the SarA protein family and alternative sigma factors. These divergent regulatory systems integrate the various environmental and host-derived signals into a network that ensures optimal pathogen response to the changing conditions. This article gives an overview of the most important and best-studied S. aureus regulatory systems and summarizes the functions of these regulators during host interactions. The regulatory systems discussed include the agr quorum-sensing system; the SaeRS, SrrAB, and ArlRS two-component systems, the cytoplasmic SarA-family regulators (SarA, Rot, and MgrA); and the alternative sigma factors (SigB and SigH).
Collapse
Affiliation(s)
- Christian Jenul
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Alexander R Horswill
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| |
Collapse
|
6
|
Mahapa A, Mandal S, Sinha D, Sau S, Sau K. Determining the Roles of a Conserved α-Helix in a Global Virulence Regulator from Staphylococcus aureus. Protein J 2018; 37:103-112. [PMID: 29464485 DOI: 10.1007/s10930-018-9762-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
SarA, a pleiotropic transcription regulator, is encoded by Staphylococcus aureus, a pathogenic bacterium. The expression of many virulence and non-virulence genes in S. aureus is modulated by this regulator. Structural studies have shown it to be a winged-helix DNA-binding protein carrying two monomers. Each SarA monomer is composed of five α-helices (α1-α5), three β-strands (β1-β3) and multiple loops. The putative DNA binding region of SarA is constituted with α3, α4, β2, and β3, whereas, its dimerization seems to occur using α1, α2, and α5. Interestingly, many SarA-like proteins are dimeric and use three or more helices for their dimerization. To clearly understand the roles of helix α1 in the dimerization, we have constructed and purified a SarA mutant (Δα1) that lacks helix α1. Our in-depth studies with Δα1 indicate that the helix α1 is critical for preserving the structure, DNA binding activity and thermodynamic stability of SarA. However, the helix has little affected its dimerization ability. Possible reasons for such anomaly have been discussed at length.
Collapse
Affiliation(s)
- Avisek Mahapa
- Department of Biotechnology, Haldia Institute of Technology, PO-HIT, Dist-Purba, Medinipur, 721657, West Bengal, India
| | - Sukhendu Mandal
- Department of Biochemistry, Bose Institute, Kolkata, West Bengal, India
| | - Debabrata Sinha
- Department of Biochemistry, Bose Institute, Kolkata, West Bengal, India
| | - Subrata Sau
- Department of Biochemistry, Bose Institute, Kolkata, West Bengal, India.
| | - Keya Sau
- Department of Biotechnology, Haldia Institute of Technology, PO-HIT, Dist-Purba, Medinipur, 721657, West Bengal, India.
| |
Collapse
|
7
|
Horn J, Stelzner K, Rudel T, Fraunholz M. Inside job: Staphylococcus aureus host-pathogen interactions. Int J Med Microbiol 2017; 308:607-624. [PMID: 29217333 DOI: 10.1016/j.ijmm.2017.11.009] [Citation(s) in RCA: 140] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 11/17/2017] [Accepted: 11/21/2017] [Indexed: 12/21/2022] Open
Abstract
Staphylococcus aureus is a notorious opportunistic pathogen causing a plethora of diseases. Recent research established that once phagocytosed by neutrophils and macrophages, a certain percentage of S. aureus is able to survive within these phagocytes which thereby even may contribute to dissemination of the pathogen. S. aureus further induces its uptake by otherwise non-phagocytic cells and the ensuing intracellular cytotoxicity is suggested to lead to tissue destruction, whereas bacterial persistence within cells is thought to lead to immune evasion and chronicity of infections. We here review recent work on the S. aureus host pathogen interactions with a focus on the intracellular survival of the pathogen.
Collapse
Affiliation(s)
- Jessica Horn
- Chair of Microbiology, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Kathrin Stelzner
- Chair of Microbiology, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Thomas Rudel
- Chair of Microbiology, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Martin Fraunholz
- Chair of Microbiology, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany.
| |
Collapse
|
8
|
Abstract
The staphylococci comprise a diverse genus of Gram-positive, nonmotile commensal organisms that inhabit the skin and mucous membranes of humans and other mammals. In general, staphylococci are benign members of the natural flora, but many species have the capacity to be opportunistic pathogens, mainly infecting individuals who have medical device implants or are otherwise immunocompromised. Staphylococcus aureus and Staphylococcus epidermidis are major sources of hospital-acquired infections and are the most common causes of surgical site infections and medical device-associated bloodstream infections. The ability of staphylococci to form biofilms in vivo makes them highly resistant to chemotherapeutics and leads to chronic diseases. These biofilm infections include osteomyelitis, endocarditis, medical device infections, and persistence in the cystic fibrosis lung. Here, we provide a comprehensive analysis of our current understanding of staphylococcal biofilm formation, with an emphasis on adhesins and regulation, while also addressing how staphylococcal biofilms interact with the immune system. On the whole, this review will provide a thorough picture of biofilm formation of the staphylococcus genus and how this mode of growth impacts the host.
Collapse
|
9
|
Mauro T, Rouillon A, Felden B. Insights into the regulation of small RNA expression: SarA represses the expression of two sRNAs in Staphylococcus aureus. Nucleic Acids Res 2016; 44:10186-10200. [PMID: 27596601 PMCID: PMC5137438 DOI: 10.1093/nar/gkw777] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 08/09/2016] [Accepted: 08/24/2016] [Indexed: 11/14/2022] Open
Abstract
The opportunistic pathogen Staphylococcus aureus expresses transcription factors (TFs) and regulatory small RNAs (sRNAs) which are essential for bacterial adaptation and infectivity. Until recently, the study of S. aureus sRNA gene expression regulation was under investigated, but it is now an expanding field. Here we address the regulation of Srn_3610_SprC sRNA, an attenuator of S. aureus virulence. We demonstrate that SarA TF represses srn_3610_sprC transcription. DNase I footprinting and deletion analyses show that the SarA binding site on srn_3610_sprC belongs to an essential 22 bp DNA region. Comparative analysis also revealed another possible site, this time in the srn_9340 promoter. SarA specifically binds these two sRNA promoters with high affinity in vitro and also represses their transcription in vivo. Chromatin immunoprecipitation (ChIP) assays confirmed SarA attachment to both promoters. ChIP and electrophoretic mobility shift assays targeting σA RNA polymerase subunit or using bacterial RNA polymerase holoenzyme suggested that SarA and the σA bind srn_3610_sprC and srn_9340 promoters in a mutually exclusive way. Beyond the mechanistic study of SarA repression of these two sRNAs, this work also suggests that some S. aureus sRNAs belong to the same regulon and act jointly in responding to environmental changes.
Collapse
Affiliation(s)
- Tony Mauro
- Inserm U835, Biochimie Pharmaceutique, University of Rennes 1, 35000 Rennes, France
| | - Astrid Rouillon
- Inserm U835, Biochimie Pharmaceutique, University of Rennes 1, 35000 Rennes, France
| | - Brice Felden
- Inserm U835, Biochimie Pharmaceutique, University of Rennes 1, 35000 Rennes, France
| |
Collapse
|
10
|
Mandal S, Mahapa A, Biswas A, Jana B, Polley S, Sau K, Sau S. A Surfactant-Induced Functional Modulation of a Global Virulence Regulator from Staphylococcus aureus. PLoS One 2016; 11:e0151426. [PMID: 26989900 PMCID: PMC4798592 DOI: 10.1371/journal.pone.0151426] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2016] [Accepted: 02/29/2016] [Indexed: 11/24/2022] Open
Abstract
Triton X-100 (TX-100), a useful non-ionic surfactant, reduced the methicillin resistance in Staphylococcus aureus significantly. Many S. aureus proteins were expressed in the presence of TX-100. SarA, one of the TX-100-induced proteins, acts as a global virulence regulator in S. aureus. To understand the effects of TX-100 on the structure, and function of SarA, a recombinant S. aureus SarA (rSarA) and its derivative (C9W) have been investigated in the presence of varying concentrations of this surfactant using various probes. Our data have revealed that both rSarA and C9W bind to the cognate DNA with nearly similar affinity in the absence of TX-100. Interestingly, their DNA binding activities have been significantly increased in the presence of pre-micellar concentration of TX-100. The increase of TX-100 concentrations to micellar or post-micellar concentration did not greatly enhance their activities further. TX-100 molecules have altered the secondary and tertiary structures of both proteins to some extents. Size of the rSarA-TX-100 complex appears to be intermediate to those of rSarA and TX-100. Additional analyses show a relatively moderate interaction between C9W and TX-100. Binding of TX-100 to C9W has, however, occurred by a cooperative pathway particularly at micellar and higher concentrations of this surfactant. Taken together, TX-100-induced structural alteration of rSarA and C9W might be responsible for their increased DNA binding activity. As TX-100 has stabilized the somewhat weaker SarA-DNA complex effectively, it could be used to study its structure in the future.
Collapse
Affiliation(s)
- Sukhendu Mandal
- Department of Biochemistry, Bose Institute, Kolkata, West Bengal, India
| | - Avisek Mahapa
- Department of Biotechnology, Haldia Institute of Technology, Haldia, West Bengal, India
| | - Anindya Biswas
- Department of Biochemistry, Bose Institute, Kolkata, West Bengal, India
| | - Biswanath Jana
- Department of Biochemistry, Bose Institute, Kolkata, West Bengal, India
| | - Soumitra Polley
- Department of Biochemistry, Bose Institute, Kolkata, West Bengal, India
| | - Keya Sau
- Department of Biotechnology, Haldia Institute of Technology, Haldia, West Bengal, India
- * E-mail: (KS); (SS)
| | - Subrata Sau
- Department of Biochemistry, Bose Institute, Kolkata, West Bengal, India
- * E-mail: (KS); (SS)
| |
Collapse
|
11
|
The bicomponent pore-forming leucocidins of Staphylococcus aureus. Microbiol Mol Biol Rev 2015; 78:199-230. [PMID: 24847020 DOI: 10.1128/mmbr.00055-13] [Citation(s) in RCA: 201] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The ability to produce water-soluble proteins with the capacity to oligomerize and form pores within cellular lipid bilayers is a trait conserved among nearly all forms of life, including humans, single-celled eukaryotes, and numerous bacterial species. In bacteria, some of the most notable pore-forming molecules are protein toxins that interact with mammalian cell membranes to promote lysis, deliver effectors, and modulate cellular homeostasis. Of the bacterial species capable of producing pore-forming toxic molecules, the Gram-positive pathogen Staphylococcus aureus is one of the most notorious. S. aureus can produce seven different pore-forming protein toxins, all of which are believed to play a unique role in promoting the ability of the organism to cause disease in humans and other mammals. The most diverse of these pore-forming toxins, in terms of both functional activity and global representation within S. aureus clinical isolates, are the bicomponent leucocidins. From the first description of their activity on host immune cells over 100 years ago to the detailed investigations of their biochemical function today, the leucocidins remain at the forefront of S. aureus pathogenesis research initiatives. Study of their mode of action is of immediate interest in the realm of therapeutic agent design as well as for studies of bacterial pathogenesis. This review provides an updated perspective on our understanding of the S. aureus leucocidins and their function, specificity, and potential as therapeutic targets.
Collapse
|
12
|
Mahapa A, Mandal S, Biswas A, Jana B, Polley S, Sau S, Sau K. Chemical and thermal unfolding of a global staphylococcal virulence regulator with a flexible C-terminal end. PLoS One 2015; 10:e0122168. [PMID: 25822635 PMCID: PMC4379015 DOI: 10.1371/journal.pone.0122168] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 02/07/2015] [Indexed: 11/19/2022] Open
Abstract
SarA, a Staphylococcus aureus-specific dimeric protein, modulates the expression of numerous proteins including various virulence factors. Interestingly, S. aureus synthesizes multiple SarA paralogs seemingly for optimizing the expression of its virulence factors. To understand the domain structure/flexibility and the folding/unfolding mechanism of the SarA protein family, we have studied a recombinant SarA (designated rSarA) using various in vitro probes. Limited proteolysis of rSarA and the subsequent analysis of the resulting protein fragments suggested it to be a single-domain protein with a long, flexible C-terminal end. rSarA was unfolded by different mechanisms in the presence of different chemical and physical denaturants. While urea-induced unfolding of rSarA occurred successively via the formation of a dimeric and a monomeric intermediate, GdnCl-induced unfolding of this protein proceeded through the production of two dimeric intermediates. The surface hydrophobicity and the structures of the intermediates were not identical and also differed significantly from those of native rSarA. Of the intermediates, the GdnCl-generated intermediates not only possessed a molten globule-like structure but also exhibited resistance to dissociation during their unfolding. Compared to the native rSarA, the intermediate that was originated at lower GdnCl concentration carried a compact shape, whereas, other intermediates owned a swelled shape. The chemical-induced unfolding, unlike thermal unfolding of rSarA, was completely reversible in nature.
Collapse
Affiliation(s)
- Avisek Mahapa
- Department of Biotechnology, Haldia Institute of Technology, Haldia, West Bengal, India
| | - Sukhendu Mandal
- Department of Biochemistry, Bose Institute, Kolkata, West Bengal, India
| | - Anindya Biswas
- Department of Biochemistry, Bose Institute, Kolkata, West Bengal, India
| | - Biswanath Jana
- Department of Biochemistry, Bose Institute, Kolkata, West Bengal, India
| | - Soumitra Polley
- Department of Biochemistry, Bose Institute, Kolkata, West Bengal, India
| | - Subrata Sau
- Department of Biochemistry, Bose Institute, Kolkata, West Bengal, India
- * E-mail: (SS); (KS)
| | - Keya Sau
- Department of Biotechnology, Haldia Institute of Technology, Haldia, West Bengal, India
- * E-mail: (SS); (KS)
| |
Collapse
|
13
|
Nicod SS, Weinzierl ROJ, Burchell L, Escalera-Maurer A, James EH, Wigneshweraraj S. Systematic mutational analysis of the LytTR DNA binding domain of Staphylococcus aureus virulence gene transcription factor AgrA. Nucleic Acids Res 2014; 42:12523-36. [PMID: 25352558 PMCID: PMC4227749 DOI: 10.1093/nar/gku1015] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Most DNA-binding bacterial transcription factors contact DNA through a recognition α-helix in their DNA-binding domains. An emerging class of DNA-binding transcription factors, predominantly found in pathogenic bacteria interact with the DNA via a relatively novel type of DNA-binding domain, called the LytTR domain, which mainly comprises β strands. Even though the crystal structure of the LytTR domain of the virulence gene transcription factor AgrA from Staphylococcus aureus bound to its cognate DNA sequence is available, the contribution of specific amino acid residues in the LytTR domain of AgrA to transcription activation remains elusive. Here, for the first time, we have systematically investigated the role of amino acid residues in transcription activation in a LytTR domain-containing transcription factor. Our analysis, which involves in vivo and in vitro analyses and molecular dynamics simulations of S. aureus AgrA identifies a highly conserved tyrosine residue, Y229, as a major amino acid determinant for maximal activation of transcription by AgrA and provides novel insights into structure-function relationships in S. aureus AgrA.
Collapse
Affiliation(s)
- Sophie S Nicod
- MRC Centre for Molecular Microbiology and Infection, Imperial College London, London, UK
| | | | - Lynn Burchell
- MRC Centre for Molecular Microbiology and Infection, Imperial College London, London, UK
| | | | - Ellen H James
- MRC Centre for Molecular Microbiology and Infection, Imperial College London, London, UK
| | | |
Collapse
|
14
|
Structure-based functional characterization of repressor of toxin (Rot), a central regulator of Staphylococcus aureus virulence. J Bacteriol 2014; 197:188-200. [PMID: 25331435 DOI: 10.1128/jb.02317-14] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Staphylococcus aureus is responsible for a large number of diverse infections worldwide. In order to support its pathogenic lifestyle, S. aureus has to regulate the expression of virulence factors in a coordinated fashion. One of the central regulators of the S. aureus virulence regulatory networks is the transcription factor repressor of toxin (Rot). Rot plays a key role in regulating S. aureus virulence through activation or repression of promoters that control expression of a large number of critical virulence factors. However, the mechanism by which Rot mediates gene regulation has remained elusive. Here, we have determined the crystal structure of Rot and used this information to probe the contribution made by specific residues to Rot function. Rot was found to form a dimer, with each monomer harboring a winged helix-turn-helix (WHTH) DNA-binding motif. Despite an overall acidic pI, the asymmetric electrostatic charge profile suggests that Rot can orient the WHTH domain to bind DNA. Structure-based site-directed mutagenesis studies demonstrated that R(91), at the tip of the wing, plays an important role in DNA binding, likely through interaction with the minor groove. We also found that Y(66), predicted to bind within the major groove, contributes to Rot interaction with target promoters. Evaluation of Rot binding to different activated and repressed promoters revealed that certain mutations on Rot exhibit promoter-specific effects, suggesting for the first time that Rot differentially interacts with target promoters. This work provides insight into a precise mechanism by which Rot controls virulence factor regulation in S. aureus.
Collapse
|
15
|
Arya R, Princy SA. An insight into pleiotropic regulators Agr and Sar: molecular probes paving the new way for antivirulent therapy. Future Microbiol 2013; 8:1339-53. [DOI: 10.2217/fmb.13.92] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Staphylococcus aureus pathogenesis is an intricate process involving a diverse array of extracellular proteins, biofilm and cell wall components that are coordinately expressed in different stages of infection. The expression of two divergent loci, agr and sar, is increasingly recognized as a key regulator of virulence in S. aureus, and there is mounting evidence for the role of these loci in staphylococcal infections. The functional agr regulon is critical for the production of virulence factors, including α, β and δ hemolysins. The sar locus encodes SarA protein, which regulates the expression of cell wall-associated and certain extracellular proteins in agr-dependent and agr-independent pathways. Multidrug-resistant S. aureus is a leading cause of morbidity and mortality in the world and its management, especially in community-acquired methicillin-resistant S. aureus infections, has evolved comparatively little. In particular, no novel targets have been incorporated into its treatment to date. Hence, these loci appear to be the most significant and are currently at the attention of intense investigation regarding their therapeutic prospects.
Collapse
Affiliation(s)
- Rekha Arya
- Quorum Sensing Laboratory, SASTRA‘s Hub for Research & Innovation (SHRI), School of Chemical & Biotechnology, SASTRA University, Tirumalaisamudrum 613401, Thanjavur, Tamil Nadu, India
| | - S Adline Princy
- Quorum Sensing Laboratory, SASTRA‘s Hub for Research & Innovation (SHRI), School of Chemical & Biotechnology, SASTRA University, Tirumalaisamudrum 613401, Thanjavur, Tamil Nadu, India
| |
Collapse
|
16
|
|
17
|
Zielinska AK, Beenken KE, Mrak LN, Spencer HJ, Post GR, Skinner RA, Tackett AJ, Horswill AR, Smeltzer MS. sarA-mediated repression of protease production plays a key role in the pathogenesis of Staphylococcus aureus USA300 isolates. Mol Microbiol 2012; 86:1183-96. [PMID: 23075270 DOI: 10.1111/mmi.12048] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/19/2012] [Indexed: 01/31/2023]
Abstract
Mutation of staphylococcal accessory regulator (sarA) results in increased production of extracellular proteases in Staphylococcus aureus, which has been correlated with decreased biofilm formation and decreased accumulation of extracellular toxins. We used murine models of implant-associated biofilm infection and S. aureus bacteraemia (SAB) to compare virulence of USA300 strain LAC, its isogenic sarA mutant, and derivatives of each of these strains with mutations in all 10 of the genes encoding recognized extracellular proteases. The sarA mutant was attenuated in both models, and this was reversed by eliminating production of extracellular proteases. To examine the mechanistic basis, we identified proteins impacted by sarA in a protease-dependent manner. We identified 253 proteins where accumulation was reduced in the sarA mutant compared with the parent strain, and was restored in the sarA/protease mutant. Additionally, in SAB, the LAC protease mutant exhibited a hypervirulent phenotype by comparison with the isogenic parent strain, demonstrating that sarA also positively regulates production of virulence factors, some of which are subject to protease-mediated degradation. We propose a model in which attenuation of sarA mutants is defined by their inability to produce critical factors and simultaneously repress production of extracellular proteases that would otherwise limit accumulation of virulence factors.
Collapse
Affiliation(s)
- Agnieszka K Zielinska
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Junecko JM, Zielinska AK, Mrak LN, Ryan DC, Graham JW, Smeltzer MS, Lee CY. Transcribing virulence in Staphylococcus aureus. World J Clin Infect Dis 2012; 2:63-76. [DOI: 10.5495/wjcid.v2.i4.63] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Staphylococcus aureus (S. aureus) is an important human pathogen capable of causing a diverse range of infections. Once regarded as an opportunistic pathogen causing primarily nosocomial infections, recent years have seen the emergence of S. aureus strains capable of causing serious infection even in otherwise healthy human hosts. There has been much debate about whether this transition is a function of unique genotypic characteristics or differences in the expression of conserved virulence factors, but irrespective of this debate it is clear that the ability of S. aureus to cause infection in all of its diverse forms is heavily influenced by its ability to modulate gene expression in response to changing conditions within the human host. Indeed, the S. aureus genome encodes more than 100 transcriptional regulators that modulate the production of virulence factors either directly via interactions with cis elements associated with genes encoding virulence factors or indirectly through their complex interactions with each other. The goal of this review is to summarize recent work describing these regulators and their contribution to defining S. aureus as a human pathogen.
Collapse
|
19
|
Arya R, Princy SA. Computational approach to design small molecule inhibitors and identify SarA as a potential therapeutic candidate. Med Chem Res 2012. [DOI: 10.1007/s00044-012-0185-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
20
|
Sadaka A, Durand ML, Gilmore MS. Bacterial endophthalmitis in the age of outpatient intravitreal therapies and cataract surgeries: host-microbe interactions in intraocular infection. Prog Retin Eye Res 2012; 31:316-31. [PMID: 22521570 PMCID: PMC3361607 DOI: 10.1016/j.preteyeres.2012.03.004] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2011] [Revised: 03/23/2012] [Accepted: 03/27/2012] [Indexed: 02/07/2023]
Abstract
Bacterial endophthalmitis is a sight threatening infection of the interior structures of the eye. Incidence in the US has increased in recent years, which appears to be related to procedures being performed on an aging population. The advent of outpatient intravitreal therapy for management of age-related macular degeneration raises yet additional risks. Compounding the problem is the continuing progression of antibiotic resistance. Visual prognosis for endophthalmitis depends on the virulence of the causative organism, the severity of intraocular inflammation, and the timeliness of effective therapy. We review the current understanding of the pathogenesis of bacterial endophthalmitis, highlighting opportunities for the development of improved therapeutics and preventive strategies.
Collapse
Affiliation(s)
- Ama Sadaka
- Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA
| | | | | |
Collapse
|
21
|
Kantyka T, Shaw LN, Potempa J. Papain-like proteases of Staphylococcus aureus. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 712:1-14. [PMID: 21660655 DOI: 10.1007/978-1-4419-8414-2_1] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
Staphylococcus aureus remains one of the major humanpathogens, causing a number of diverse infections. the growing antibiotic resistance, including vancomycin and methicilin-resistant strains raises the special interest in virulence mechanism of this pathogen. among a number of extracellular virulence factors, S. aureus secretes several proteases of three catalytic classes-metallo, serine and papain-like cysteine proteases. the expression of proteolytic enzymes is strictly controlled by global regulators of virulence factors expression agr and sar and proteases take a role in a phenotype change in postlogarithmic phase of growth. the staphylococcal proteases are secreted as proenzymes and undergo activation in a cascade manner. Staphopains, two cysteine, papain-like proteases of S. aureus are both approximately 20 kDa proteins that have almost identical three-dimensional structures, despite sharing limited primary sequence identity. although staphopain a displays activity similar to cathepsins, recognising hydrophobic residues at P2 position and large charged residues at P1, staphopain B differs significantly, showing significant preference towards β-branched residues at P2 and accepting only small, neutral residues at the P1 position. there is limited data available on the virulence potential of staphopains in in vivo models. However, in vitro experiments have demonstrated a very broad activity of these enzymes, including destruction of connective tissue, disturbance of clotting and kinin systems and direct interaction with host immune cells. Staphopain genes in various staphylococci species are regularly followed by a gene encoding an extremely specific inhibitor of the respective staphopain. This pattern is conserved across species and it is believed that inhibitors (staphostatins) protect the cytoplasm of the cell from premature activation of staphopains during protein folding. Notably, production and activity of staphopains is controlled on each level, from gene expression, through presence of specific inhibitors in cytoplasm, to the cascade-like activation in extracellular environment. Since these systems are highly conserved, this points to the importance of these proteases in the survival and/or pathogenicity of S. aureus.
Collapse
Affiliation(s)
- Tomasz Kantyka
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | | | | |
Collapse
|
22
|
Coordinated regulation by AgrA, SarA, and SarR to control agr expression in Staphylococcus aureus. J Bacteriol 2011; 193:6020-31. [PMID: 21908676 DOI: 10.1128/jb.05436-11] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The agr locus of Staphylococcus aureus is composed of two divergent transcripts (RNAII and RNAIII) driven by the P2 and P3 promoters. The P2-P3 intergenic region comprises the SarA/SarR binding sites and the four AgrA boxes to which AgrA binds. We reported here the role of AgrA, SarA, and SarR on agr P2 and P3 transcription. Using real-time reverse transcription (RT)-PCR and promoter fusion studies with selected single, double, triple, and complemented mutants, we showed that AgrA is indispensable to agr P2 and P3 transcription, whereas SarA activates and SarR represses P2 transcription. In vitro runoff transcription assays revealed that AgrA alone promoted transcription from the agr P2 promoter, with SarA enhancing it and SarR inhibiting agr P2 transcription in the presence of AgrA or with SarA and AgrA. Electrophoretic mobility shift assay (EMSA) analysis disclosed that SarR binds more avidly to the agr promoter than SarA and displaces SarA from the agr promoter. Additionally, SarA and AgrA bend the agr P2 promoter, whereas SarR does not. Collectively, these data indicated that AgrA activates agr P2 and P3 promoters while SarA activates the P2 promoter, presumably via bending of promoter DNA to bring together AgrA dimers to facilitate engagement of RNA polymerase (RNAP) to initiate transcription.
Collapse
|
23
|
Transcriptional profiling analysis of the global regulator NorG, a GntR-like protein of Staphylococcus aureus. J Bacteriol 2011; 193:6207-14. [PMID: 21908673 DOI: 10.1128/jb.05847-11] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The GntR-like protein NorG has been shown to affect Staphylococcus aureus genes involved in resistance to quinolones and β-lactams, such as those encoding the NorB and AbcA transporters. To identify the target genes regulated by NorG, we carried out transcriptional-profiling assays using S. aureus RN6390 and its isogenic norG::cat mutant. Our data showed that NorG positively affected the transcription of global regulators mgrA, arlS, and sarZ. The three putative drug efflux pump genes most positively affected by NorG were the NorB efflux pump (5.1-fold), the MmpL-like protein SACOL2566 (5.2-fold), and the BcrA-like drug transporter SACOL2525 (5.7-fold) genes. The S. aureus predicted MmpL protein showed 53% homology with the MmpL lipid transporter of Mycobacterium tuberculosis, and the putative SACOL2525 protein showed 87% homology with the bacitracin drug transporter BcrA of Staphylococcus hominis. Two pump genes most negatively affected by NorG were the NorC (4-fold) and AbcA (6-fold) genes. Other categories of genes, such as those participating in amino acid, inorganic ion, or nucleotide transporters and metabolism, were also affected by NorG. Real-time reverse transcription (RT)-PCR assays for mgrA, arlS, sarZ, norB, norC, abcA, mmpL, and bcrA-like were carried out to verify microarray data and showed the same level of up- or downregulation by NorG. The norG mutant showed a 2-fold increase in resistance to norfloxacin and rhodamine, both substrates of the NorC transporter, which is consistent with the resistance phenotype conferred by overexpression of norC on a plasmid. These data indicate that NorG has broad regulatory function in S. aureus.
Collapse
|
24
|
Deep A, Chaudhary U, Gupta V. Quorum sensing and Bacterial Pathogenicity: From Molecules to Disease. J Lab Physicians 2011; 3:4-11. [PMID: 21701655 PMCID: PMC3118056 DOI: 10.4103/0974-2727.78553] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Quorum sensing in prokaryotic biology refers to the ability of a bacterium to sense information from other cells in the population when they reach a critical concentration (i.e. a Quorum) and communicate with them. The “language” used for this intercellular communication is based on small, self-generated signal molecules called as autoinducers. Quorum sensing is thought to afford pathogenic bacteriaa mechanism to minimize host immune responses by delaying theproduction of tissue-damaging virulence factors until sufficientbacteria have amassed and are prepared to overwhelm host defensemechanisms and establish infection. Quorum sensing systems are studied in a large number of gram-negative bacterial species belonging to α, β, and γ subclasses of proteobacteria. Among the pathogenic bacteria, Pseudomonas aeruginosa is perhaps the best understood in terms of the virulence factors regulated and the role the Quorum sensing plays in pathogenicity. Presently, Quorum sensing is considered as a potential novel target for antimicrobial therapy to control multi/all drug-resistant infections. This paper reviews Quorum sensing in gram positive and gram negative bacteria and its role in biofilm formation.
Collapse
Affiliation(s)
- Antariksh Deep
- Department of Microbiology, Pt. B.D. Sharma, PGIMS, Rohtak - 124 001, India
| | | | | |
Collapse
|
25
|
Thoendel M, Kavanaugh JS, Flack CE, Horswill AR. Peptide signaling in the staphylococci. Chem Rev 2010; 111:117-51. [PMID: 21174435 DOI: 10.1021/cr100370n] [Citation(s) in RCA: 293] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Matthew Thoendel
- Department of Microbiology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242, USA
| | | | | | | |
Collapse
|
26
|
Control of the Staphylococcus aureus toxic shock tst promoter by the global regulator SarA. J Bacteriol 2010; 192:6077-85. [PMID: 20870770 DOI: 10.1128/jb.00146-10] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Staphylococcus aureus SarA global regulator controls the expression of numerous virulence genes, often in conjunction with the agr quorum-sensing system and its effector RNA, RNAIII. In the present study, we have examined the role of both SarA and RNAIII on the regulation of the promoter of tst, encoding staphylococcal superantigen toxic shock syndrome toxin 1 (TSST-1). In vitro DNA-protein interaction studies with purified SarA using gel shift and DNase I protection assays revealed one strong SarA binding site and evidence for a weaker site nearby within the minimal 400-bp promoter region upstream of tst. In vivo analysis of tst promoter activation using a p(tst)-luxAB reporter inserted in the chromosome revealed partial but not complete loss of tst expression in a Δhld-RNAIII strain. In contrast, disruption of sarA abrogated tst expression. No significant tst expression was found for the double Δhld-RNAIII-ΔsarA mutant. Introduction of a plasmid containing cloned hld-RNAIII driven by a non-agr-dependent promoter, p(HU), into isogenic parental wild-type or ΔsarA strains showed comparable levels of RNAIII detected by quantitative reverse transcription-PCR (qRT-PCR) but a two-log(10) reduction in p(tst)-luxAB reporter expression in the ΔsarA strain, arguing that RNAIII levels alone are not strictly determinant for tst expression. Collectively, our results indicate that SarA binds directly to the tst promoter and that SarA plays a significant and direct role in the expression of tst.
Collapse
|
27
|
Control of thioredoxin reductase gene (trxB) transcription by SarA in Staphylococcus aureus. J Bacteriol 2010; 192:336-45. [PMID: 19854896 DOI: 10.1128/jb.01202-09] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Thioredoxin reductase (encoded by trxB) protects Staphylococcus aureus against oxygen or disulfide stress and is indispensable for growth. Among the different sarA family mutants analyzed, transcription of trxB was markedly elevated in the sarA mutant under conditions of aerobic as well as microaerophilic growth, indicating that SarA acts as a negative regulator of trxB expression. Gel shift analysis showed that purified SarA protein binds directly to the trxB promoter region DNA in vitro. DNA binding of SarA was essential for repression of trxB transcription in vivo in S. aureus. Northern blot analysis and DNA binding studies of the purified wild-type SarA and the mutant SarAC9G with oxidizing agents indicated that oxidation of Cys-9 reduced the binding of SarA to the trxB promoter DNA. Oxidizing agents, in particular diamide, could further enhance transcription of the trxB gene in the sarA mutant, suggesting the presence of a SarA-independent mode of trxB induction. Analysis of two oxidative stress-responsive sarA regulatory target genes, trxB and sodM, with various mutant sarA constructs showed a differential ability of the SarA to regulate expression of the two above-mentioned genes in vivo. The overall data demonstrate the important role played by SarA in modulating expression of genes involved in oxidative stress resistance in S. aureus.
Collapse
|
28
|
Fujimoto DF, Higginbotham RH, Sterba KM, Maleki SJ, Segall AM, Smeltzer MS, Hurlburt BK. Staphylococcus aureus SarA is a regulatory protein responsive to redox and pH that can support bacteriophage lambda integrase-mediated excision/recombination. Mol Microbiol 2009; 74:1445-58. [PMID: 19919677 DOI: 10.1111/j.1365-2958.2009.06942.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Staphylococcus aureus produces a wide array of virulence factors and causes a correspondingly diverse array of infections. Production of these virulence factors is under the control of a complex network of global regulatory elements, one of which is sarA. sarA encodes a DNA binding protein that is considered to function as a transcription factor capable of acting as either a repressor or an activator. Using competitive ELISA assays, we demonstrate that SarA is present at approximately 50 000 copies per cell, which is not characteristic of classical transcription factors. We also demonstrate that SarA is present at all stages of growth in vitro and is capable of binding DNA with high affinity but that its binding affinity and pattern of shifted complexes in electrophoretic mobility shift assays is responsive to the redox state. We also show that SarA binds to the bacteriophage lambda (lambda) attachment site, attL, producing SarA-DNA complexes similar to intasomes, which consist of bacteriophage lambda integrase, Escherichia coli integration host factor and attL DNA. In addition, SarA stimulates intramolecular excision recombination in the absence of lambda excisionase, a DNA binding accessory protein. Taken together, these data suggest that SarA may function as an architectural accessory protein.
Collapse
Affiliation(s)
- David F Fujimoto
- Department of Biology, San Diego State University, San Diego, CA 92182, USA
| | | | | | | | | | | | | |
Collapse
|
29
|
Ballal A, Manna AC. Expression of the sarA family of genes in different strains of Staphylococcus aureus. MICROBIOLOGY-SGM 2009; 155:2342-2352. [PMID: 19389785 DOI: 10.1099/mic.0.027417-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Expression of genes involved in the pathogenesis of Staphylococcus aureus is controlled by global regulatory loci, including two-component regulatory systems and transcriptional regulators. The staphylococcal-specific SarA family of transcription regulators control large numbers of target genes involved in virulence, autolysis, biofilm formation, stress responses and metabolic processes, and are recognized as potential therapeutic targets. Expression of some of these important regulators has been examined, mostly in laboratory strains, while the pattern of expression of these genes in other strains, especially clinical isolates, is largely unknown. In this report, a comparative analysis of 10 sarA-family genes was conducted in six different S. aureus strains, including two laboratory (RN6390, SH1000) and four clinical (MW2, Newman, COL and UAMS-1) strains, by Northern and Western blot analyses. Transcription of most of the sarA-family genes showed a strong growth phase-dependence in all strains tested. Among these genes, no difference was observed in expression of the sarA, sarV, sarT and sarU genes, while a major difference was observed in expression of the sarX gene only in strain RN6390. Expression of mgrA, rot, sarZ, sarR and sarS was observed in all strains, but the level of expression varied from strain to strain.
Collapse
Affiliation(s)
- Anand Ballal
- Center for Infectious Disease Research and Vaccinology, South Dakota State University, Brookings, SD 57007, USA.,Division of Basic Biomedical Sciences, University of South Dakota, Vermillion, SD 57069, USA
| | - Adhar C Manna
- Center for Infectious Disease Research and Vaccinology, South Dakota State University, Brookings, SD 57007, USA.,Division of Basic Biomedical Sciences, University of South Dakota, Vermillion, SD 57069, USA
| |
Collapse
|
30
|
Regulation of superoxide dismutase (sod) genes by SarA in Staphylococcus aureus. J Bacteriol 2009; 191:3301-10. [PMID: 19286803 DOI: 10.1128/jb.01496-08] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The scavenging of reactive oxygen species (ROS) within cells is regulated by several interacting factors, including transcriptional regulators. Involvement of sarA family genes in the regulation of proteins involved in the scavenging of ROS is largely unknown. In this report, we show that under aerobic conditions, the levels of sodM and sodA transcription, in particular the sodM transcript, are markedly enhanced in the sarA mutant among the tested sarA family mutants. Increased levels of sod expression returned to near the parental level in a single-copy sarA complemented strain. Under microaerophilc conditions, transcription of both sodM and sodA was considerably enhanced in the sarA mutant compared to the wild-type strain. Various genotypic, phenotypic, and DNA binding studies confirmed the involvement of SarA in the regulation of sod transcripts in different strains of Staphylococcus aureus. The sodA mutant was sensitive to an oxidative stress-inducing agent, methyl viologen, but the sarA sodA double mutant was more resistant to the same stressor than the single sodA mutant. These results suggest that overexpression of SodM, which occurs in the sarA background, can rescue the methyl viologen-sensitive phenotype observed in the absence of the sodA gene. Analysis with various oxidative stress-inducing agents indicates that SarA may play a greater role in modulating oxidative stress resistance in S. aureus. This is the first report that demonstrates the direct involvement of a regulatory protein (SarA) in control of sod expression in S. aureus.
Collapse
|
31
|
Abstract
The staphylococcal agr locus encodes a quorum sensing (QS) system that controls the expression of virulence and other accessory genes by a classical two-component signaling module. Like QS modalities in other Gram-positive bacteria, agr encodes an autoactivating peptide (AIP) that is the inducing ligand for AgrC, the agr signal receptor. Unlike other such systems, agr variants have arisen that show strong cross-inhibition in heterologous combinations, with important evolutionary implications. Also unlike other systems, the effector of global gene regulation in the agr system is a major regulatory RNA, RNAIII. In this review, we describe the functions of the agr system's elements, show how they interact to bring about the regulatory response, and discuss the role of QS in staphylococcal pathobiology. We conclude with the suggestion that agr autoactivation, unlike classical enzyme induction, can occur under suboptimal conditions and can distinguish self from non-self by inducing an exclusive and coordinated population wide response.
Collapse
Affiliation(s)
- Richard P Novick
- Kimmel Center for Biology and Medicine, New York University Medical Center, New York, New York 10016, USA.
| | | |
Collapse
|
32
|
Regulation of the mazEF toxin-antitoxin module in Staphylococcus aureus and its impact on sigB expression. J Bacteriol 2009; 191:2795-805. [PMID: 19181798 DOI: 10.1128/jb.01713-08] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
In Staphylococcus aureus, the sigB operon codes for the alternative sigma factor sigma(B) and its regulators that enable the bacteria to rapidly respond to environmental stresses via redirection of transcriptional priorities. However, a full model of sigma(B) regulation in S. aureus has not yet emerged. Earlier data has suggested that mazEF, a toxin-antitoxin (TA) module immediately upstream of the sigB operon, was transcribed with the sigB operon. Here we demonstrate that the promoter P(mazE) upstream of mazEF is essential for full sigma(B) activity and that instead of utilizing autorepression typical of TA systems, sigB downregulates this promoter, providing a negative-feedback loop for sigB to repress its own transcription. We have also found that the transcriptional regulator SarA binds and activates P(mazE). In addition, P(mazE) was shown to respond to environmental and antibiotic stresses in a way that provides an additional layer of control over sigB expression. The antibiotic response also appears to occur in two other TA systems in S. aureus, indicating a shared mechanism of regulation.
Collapse
|
33
|
sarZ, a sarA family gene, is transcriptionally activated by MgrA and is involved in the regulation of genes encoding exoproteins in Staphylococcus aureus. J Bacteriol 2008; 191:1656-65. [PMID: 19103928 DOI: 10.1128/jb.01555-08] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The expression of genes involved in the pathogenesis of Staphylococcus aureus is controlled by global regulatory loci, including two-component regulatory systems and transcriptional regulators (e.g., sar family genes). Most members of the SarA family have been partially characterized and shown to regulate a large numbers of target genes. Here, we describe the characterization of sarZ, a sarA paralog from S. aureus, and its regulatory relationship with other members of its family. Expression of sarZ was growth phase dependent with maximal expression in the early exponential phase of growth. Transcription of sarZ was reduced in an mgrA mutant and returned to a normal level in a complemented mgrA mutant strain, which suggests that mgrA acts as an activator of sarZ transcription. Purified MgrA protein bound to the sarZ promoter region, as determined by gel shift assays. Among the sarA family of genes analyzed, inactivation of sarZ increased sarS transcription, while it decreased agr transcription. The expression of potential target genes involved in virulence was evaluated in single and double mutants of sarZ with mgrA, sarX, and agr. Northern and zymogram analyses indicated that the sarZ gene product played a role in regulating several virulence genes, particularly those encoding exoproteins. Gel shift assays demonstrated nonspecific binding of purified SarZ protein to the promoter regions of the sarZ-regulated target genes. These results demonstrate the important role played by SarZ in controlling regulatory and virulence gene expression in S. aureus.
Collapse
|
34
|
Doern CD, Holder RC, Reid SD. Point mutations within the streptococcal regulator of virulence (Srv) alter protein-DNA interactions and Srv function. MICROBIOLOGY-SGM 2008; 154:1998-2007. [PMID: 18599828 DOI: 10.1099/mic.0.2007/013466-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Group A Streptococcus (GAS) possesses a complex regulatory system enabling the organism to colonize a range of physiologically distinct host sites. Within this network of regulators is the streptococcal regulator of virulence (Srv). Srv is a member of the CRP/FNR family of transcriptional regulators and is most similar to pleiotropic regulatory factor A (PrfA), a positive regulator of virulence in Listeria monocytogenes. Members of this family possess a characteristic C-terminal helix-turn-helix motif (HTH) that facilitates binding to DNA targets. Genome scanning identified four targets in GAS that were similar to the consensus DNA target recognized by PrfA. Furthermore, previous amino acid sequence alignments identified conserved residues within the Srv HTH which are necessary for function in PrfA and CRP. Here we investigated the ability of Srv to interact with DNA and evaluated the role of the HTH in this interaction. Purified recombinant Srv (rSrv) was found to co-purify with an untagged form of Srv. Glutaraldehyde cross-linking and gel-filtration chromatography indicated that this co-purification is likely due to the ability of Srv to oligomerize. Electrophoretic mobility shift assays (EMSAs) demonstrated that rSrv retarded the mobility of DNA targets and a supershift analysis confirmed the observation was rSrv-dependent. Competition EMSA indicated that rSrv had a higher relative affinity for the DNA targets studied than non-specific DNA. Site-directed mutagenesis of residues predicted to be in or near the HTH resulted in a decrease or abrogation of DNA binding. Complementation of MGAS5005Deltasrv with one of these site-directed mutants failed to restore wild-type SpeB activity. Taken together, these data suggest that the Srv HTH is necessary for DNA binding and Srv function.
Collapse
Affiliation(s)
- Christopher D Doern
- Department of Microbiology and Immunology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Robert C Holder
- Department of Microbiology and Immunology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Sean D Reid
- Department of Microbiology and Immunology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| |
Collapse
|
35
|
Feng Y, Chen CJ, Su LH, Hu S, Yu J, Chiu CH. Evolution and pathogenesis ofStaphylococcus aureus: lessons learned from genotyping and comparative genomics. FEMS Microbiol Rev 2008; 32:23-37. [DOI: 10.1111/j.1574-6976.2007.00086.x] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
36
|
Manna AC, Ray B. Regulation and characterization of rot transcription in Staphylococcus aureus. MICROBIOLOGY-SGM 2007; 153:1538-1545. [PMID: 17464068 DOI: 10.1099/mic.0.2006/004309-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The pathogenesis of Staphylococcus aureus infections is dependent upon expression of various virulence factors, which are under the control of multiple regulatory systems, including two-component regulatory systems and transcriptional regulators such as the SarA family of proteins. As a part of a continuing effort to understand the regulatory mechanisms that involve the SarA protein family, the regulation and physical characterization of rot transcription is described here. The rot gene, a member of the sarA family of genes, was previously characterized and has been shown to regulate a large number of genes. The rot locus is composed of multiple overlapping transcripts as determined by primer extension and was proposed to encode an open reading frame of 133 residues. Transcription of rot was significantly increased in the sarA mutant. Gel shift and transcriptional studies revealed that SarA could bind to the rot promoter region, probably acting as a repressor for rot transcription. The data indicate that the expression of rot transcription is significantly repressed only by SarA among the sarA family of mutants tested at the post-exponential phase of growth.
Collapse
Affiliation(s)
- Adhar C Manna
- Division of Basic Biomedical Sciences, University of South Dakota, Vermillion, SD 57069, USA, and Center for Infectious Disease Research and Vaccinology, South Dakota State University, Brookings, SD 57007, USA
| | - Binata Ray
- Division of Basic Biomedical Sciences, University of South Dakota, Vermillion, SD 57069, USA, and Center for Infectious Disease Research and Vaccinology, South Dakota State University, Brookings, SD 57007, USA
| |
Collapse
|
37
|
Mapping the transcription start points of the Staphylococcus aureus eap, emp, and vwb promoters reveals a conserved octanucleotide sequence that is essential for expression of these genes. J Bacteriol 2007; 190:447-51. [PMID: 17965149 DOI: 10.1128/jb.01174-07] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mapping the transcription start points of the eap, emp, and vwb promoters revealed a conserved octanucleotide sequence (COS). Deleting this sequence abolished the expression of eap, emp, and vwb. However, electrophoretic mobility shift assays gave no evidence that this sequence was a binding site for SarA or SaeR, known regulators of eap and emp.
Collapse
|
38
|
Kaito C, Morishita D, Matsumoto Y, Kurokawa K, Sekimizu K. Novel DNA binding protein SarZ contributes to virulence in Staphylococcus aureus. Mol Microbiol 2007; 62:1601-17. [PMID: 17087772 DOI: 10.1111/j.1365-2958.2006.05480.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
We previously reported that the cvfA gene is a virulence regulatory gene in Staphylococcus aureus. Here, we identified a novel gene named sarZ that acts as a multicopy suppressor of decreased haemolysin production in the cvfA deletion mutant. The amount of sarZ transcripts was decreased in the cvfA mutant. The sarZ-deletion mutant produced less haemolysin and attenuated virulence in a silkworm-infection model and a mouse-infection model. The amino acid sequence of the sarZ gene product had 19% identity with the transcription factor MarR in Escherichia coli, and the internal region contained a winged helix-turn-helix motif (wHTH), a known DNA binding domain. Purified recombinant SarZ protein had binding affinity for the promoter region of the hla gene that encodes alpha-haemolysin. SarZ mutant proteins with an amino acid substitution in the N-terminal region or in the wHTH motif had significantly decreased DNA binding. The mutated sarZ genes encoding SarZ mutant proteins with a low affinity for DNA did not complement the decreased haemolysin production or the attenuated killing ability against silkworms in the sarZ mutant. These results suggest that the DNA binding activity of the SarZ protein is required for virulence in S. aureus.
Collapse
Affiliation(s)
- Chikara Kaito
- Laboratory of Microbiology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 3-1, 7-Chome, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | | | | | |
Collapse
|
39
|
Gobbetti M, De Angelis M, Di Cagno R, Minervini F, Limitone A. Cell-cell communication in food related bacteria. Int J Food Microbiol 2007; 120:34-45. [PMID: 17617483 DOI: 10.1016/j.ijfoodmicro.2007.06.012] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2006] [Revised: 02/07/2007] [Indexed: 11/26/2022]
Abstract
Although the study of quorum sensing is relatively recent, it has been well established that bacteria produce, release, detect and respond to small signalling hormone-like molecules called "autoinducers". When a critical threshold concentration of the signal molecule is achieved, bacteria detect its presence and initiate a signalling cascade resulting in changes of target gene expression. Cell-cell communication has been shown within and between species with mechanisms substantially different in Gram-positive and Gram-negative bacteria. The identified quorum-sensing mechanisms in several food related Gram-negative and Gram-positive bacteria, including bacteriocin synthesis, luxS quorum sensing and interactions between sourdough starter lactic acid bacteria are reviewed. The understanding of extracellular signalling may provide a new basis for controlling over molecular and cellular process the deleterious and useful food related bacteria whose behaviour is mostly a consequence of very complex community interactions.
Collapse
Affiliation(s)
- M Gobbetti
- Dipartimento di Protezione delle Piante e Microbiologia Applicata, Università degli Studi di Bari, Bari, Italy.
| | | | | | | | | |
Collapse
|
40
|
Manna AC, Cheung AL. Transcriptional regulation of the agr locus and the identification of DNA binding residues of the global regulatory protein SarR in Staphylococcus aureus. Mol Microbiol 2007; 60:1289-301. [PMID: 16689803 DOI: 10.1111/j.1365-2958.2006.05171.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Many members of the transcriptional regulator SarA protein family are winged-helix proteins that are involved in gene regulation essential to Staphylococcus aureus pathogenesis. Investigation of the mechanism by which this family of genes acts at the molecular level will likely contribute to the understanding of the pathogenesis process and enhance the potential for the development of inhibitors capable of controlling S. aureus infections. Our previously published studies demonstrate that SarR is a repressor of sarA expression. Here, we show that SarR (a member of the SarA protein family) in part regulates agr expression by direct binding to the agr intergenic promoter region as determined by gel shift and DNase I footprinting assays. Analysis of the double sarA/sarR mutant in the early phase of growth reveals its significant role in regulating agr expression as compared with single mutants. Based on the previously reported crystal structure of SarR, we conducted site-specific mutagenesis and demonstrate that K52 residues within helix-turn-helix (HTH), K80, R82 and R88 (in the wing) and L105 (in the alpha5 helix) are important for DNA binding. Interestingly, SarR and SarA binding sites on the agr promoter are confined within the same region of DNA. Additional gel shift studies with SarR and SarA suggest that these two proteins may bind the same region of the agr promoter.
Collapse
Affiliation(s)
- Adhar C Manna
- Division of Basic Biomedical Sciences, University of South Dakota School of Medicine, Vermillion, SD 57069, USA
| | | |
Collapse
|
41
|
Cassat J, Dunman PM, Murphy E, Projan SJ, Beenken KE, Palm KJ, Yang SJ, Rice KC, Bayles KW, Smeltzer MS. Transcriptional profiling of a Staphylococcus aureus clinical isolate and its isogenic agr and sarA mutants reveals global differences in comparison to the laboratory strain RN6390. MICROBIOLOGY-SGM 2007; 152:3075-3090. [PMID: 17005987 DOI: 10.1099/mic.0.29033-0] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The production of Staphylococcus aureus virulence factors is under the control of complex regulatory circuits. Most studies aimed at defining these regulatory networks have focused on derivatives of the strain NCTC 8325, most notably RN6390. However, all NCTC 8325 derivatives, including RN6390, possess an 11 bp deletion in rsbU. This deletion renders NCTC 8325 derivatives naturally sigma-factor-B deficient. Recent studies have shown that RN6390 is also deficient, in comparison to clinical isolates, with respect to biofilm formation, a process which is important for both pathogenesis and antimicrobial resistance. Based on these considerations, the authors carried out genome-scale transcriptional profiling, comparing RN6390 with the virulent rsbU-positive clinical isolate UAMS-1. The results revealed significant genome-wide differences in expression patterns between RN6390 and UAMS-1, and suggested that the overall transcriptional profile of UAMS-1 is geared toward expression of factors that promote colonization and biofilm formation. In contrast, the transcriptional profile of RN6390 was heavily influenced by RNAIII expression, resulting in a phenotype characterized by increased production of exoproteins, and decreased capacity to form a biofilm. The greater influence of agr in RN6390 relative to UAMS-1 was also evident when the transcriptional profile of UAMS-1 was compared with that of its isogenic sarA and agr mutants. Specifically, the results indicate that, in contrast to NCTC 8325 derivatives, agr plays a limited role in overall regulation of gene expression in UAMS-1, when compared with sarA. Furthermore, by defining the sarA regulon in a biofilm-positive clinical isolate, and comparing the results with transcriptional profiling experiments defining biofilm-associated gene expression patterns in the same strain, the authors identified a sarA-regulated operon (alsSD) that is also induced in biofilms, and demonstrated that mutation of alsSD results in reduced capacity to form a biofilm.
Collapse
Affiliation(s)
- James Cassat
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Paul M Dunman
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | | | | | - Karen E Beenken
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Katherine J Palm
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Soo-Jin Yang
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Kelly C Rice
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Kenneth W Bayles
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Mark S Smeltzer
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| |
Collapse
|
42
|
Sambanthamoorthy K, Smeltzer MS, Elasri MO. Identification and characterization of msa (SA1233), a gene involved in expression of SarA and several virulence factors in Staphylococcus aureus. MICROBIOLOGY-SGM 2006; 152:2559-2572. [PMID: 16946251 DOI: 10.1099/mic.0.29071-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The staphylococcal accessory regulator (sarA) plays a central role in the regulation of virulence in Staphylococcus aureus. To date, studies involving sarA have focused on its activity as a global regulator that modulates transcription of a wide variety of genes (>100) and its role in virulence. However, there is also evidence to suggest the existence of accessory elements that modulate SarA production and/or function. A reporter system was developed to identify such elements, and a new gene, msa (SA1233), mutation of which results in reduced expression of SarA, was identified and characterized. Additionally, it was shown that mutation of msa resulted in altered transcription of the accessory gene regulator (agr) and the genes encoding several virulence factors including alpha toxin (hla) and protein A (spa). However, the impact of mutating msa was different in the laboratory strain RN6390 and the clinical isolate UAMS-1. For instance, mutation of msa caused a decrease in spa and hla transcription in RN6390 but had a different effect in UAMS-1. The strain-dependent effects of the msa mutation were similar to those observed previously, which suggests that msa may modulate the production of specific virulence factors through its impact on sarA. Interestingly, sequence analysis of Msa suggests that it is a putative membrane protein with three membrane-spanning regions, indicating that Msa might interact with the environment. The findings show that msa is involved in the expression of SarA and several virulence factors.
Collapse
Affiliation(s)
- Karthik Sambanthamoorthy
- Department of Biological Sciences, The University of Southern Mississippi, Hattiesburg, MS 39406, USA
| | - Mark S Smeltzer
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Mohamed O Elasri
- Department of Biological Sciences, The University of Southern Mississippi, Hattiesburg, MS 39406, USA
| |
Collapse
|
43
|
Shaw LN, Aish J, Davenport JE, Brown MC, Lithgow JK, Simmonite K, Crossley H, Travis J, Potempa J, Foster SJ. Investigations into sigmaB-modulated regulatory pathways governing extracellular virulence determinant production in Staphylococcus aureus. J Bacteriol 2006; 188:6070-80. [PMID: 16923874 PMCID: PMC1595368 DOI: 10.1128/jb.00551-06] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The commonly used Staphylococcus aureus laboratory strain 8325-4 bears a naturally occurring 11-bp deletion in the sigmaB-regulating phosphatase rsbU. We have previously published a report (M. J. Horsburgh, J. L. Aish, I. J. White, L. Shaw, J. K. Lithgow, and S. J. Foster, J. Bacteriol. 184:5457-5467, 2002) on restoring the rsbU deletion, producing a sigmaB-functional 8325-4 derivative, SH1000. SH1000 is pleiotropically altered in phenotype from 8325-4, displaying enhanced pigmentation, increased growth yields, and a marked decrease in secreted exoproteins. This reduction in exoprotein secretion appears to result from a sixfold reduction in agr expression. In this study we have undertaken transposon mutagenesis of SH1000 to identify components involved in the modulation of extracellular proteases and alpha-hemolysin compared to 8325-4. In total, 13 genes were identified displaying increased alpha-hemolysin transcription and extracellular proteolysis. Phenotypic analysis revealed that each mutant also had decreased pigmentation and a general increase in protein secretion. Interestingly this phenotype was not identical in each case but was variable from mutant to mutant. None of the genes identified encoded classic regulatory proteins but were predominantly metabolic enzymes involved in amino acid biosynthesis and transport. Further analysis revealed that all of these mutations were clustered in a 35-kb region of the chromosome. By complementation and genetic manipulation we were able to demonstrate the validity of these mutations. Interestingly transcriptional analysis revealed that rather than being regulated by sigmaB, these genes appeared to have a role in the regulation of sigmaB activity. Thus, we propose that the loss of individual genes in this chromosomal hot spot region results in a destabilization of cellular harmony and disruption of the sigmaB regulatory cascade.
Collapse
Affiliation(s)
- Lindsey N Shaw
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Manna AC, Cheung AL. Expression of SarX, a negative regulator of agr and exoprotein synthesis, is activated by MgrA in Staphylococcus aureus. J Bacteriol 2006; 188:4288-99. [PMID: 16740935 PMCID: PMC1482969 DOI: 10.1128/jb.00297-06] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The expression of genes involved in the pathogenesis of Staphylococcus aureus is known to be controlled by global regulatory loci, including agr, sarA, saeRS, arlRS, and sarA-like genes. As part of our continuing efforts to understand the regulatory mechanisms that involve sarA-like genes, we describe here the characterization of a novel transcriptional regulator called SarX, a member of the SarA protein family. The transcription of sarX was growth phase dependent and was expressed maximally during the stationary phase of growth, which was significantly decreased in the mgrA mutant. MgrA acted as an activator of sarX expression as confirmed by transcriptional fusion and Northern blot analyses. Purified MgrA protein bound to the upstream region of the sarX promoter as demonstrated by gel shift assay. The expression levels of various potential target genes involved in virulence and regulation, specifically those affected by sarA and mgrA, were analyzed with isogenic sarX mutant strains. Our data indicated that SarX acted as a repressor of the agr locus and consequently target genes regulated by the agr system. We propose that SarX is an important regulator in the SarA protein family and may be part of the common pathway by which agr and members of the sarA gene family control virulence in S. aureus.
Collapse
Affiliation(s)
- Adhar C Manna
- Division of Basic Biomedical Sciences, University of South Dakota Sanford School of Medicine, 414 E. Clark Street, Vermillion, SD 57069, USA.
| | | |
Collapse
|
45
|
Nakayama T, Nomura N, Matsumura M. Study on the relationship of protease production and luminescence in Vibrio harveyi. J Appl Microbiol 2006; 101:200-5. [PMID: 16834607 DOI: 10.1111/j.1365-2672.2006.02887.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AIMS To demonstrate that Vibrio harveyi produces various types of toxins and how the production of those toxins is related with luminescence. METHODS AND RESULTS Luminescence and toxicity of eight V. harveyi were evaluated. We demonstrated that all V. harveyi emitting luminescence were isolated from marine organisms and also showed that they were highly pathogenic when compared with culture collection V. harveyi based on cytotoxic assay test. On the contrary, V. harveyi isolated from shrimp farm showed no luminescence but showed high pathogenicity based on toxicity test. The effect of protease inhibitors on pathogenicity and luminescence was also investigated. We demonstrated that light emission of pathogenic V. harveyi remarkably decreased after addition of protease inhibitor. Furthermore, extracellular proteins from cell-free culture supernatant of luminescent and nonluminescent V. harveyi were compared using SDS-PAGE analysis. Results showed that there were differences in molecular weight and amount of proteins. CONCLUSIONS Vibrio harveyi parasiting marine organisms have both luminescence and pathogenicity. Based on this study, luminescence and protease toxin activity in V. harveyi are related. Moreover, this paper clarified that V. harveyi produces various types of toxins. SIGNIFICANCE AND IMPACT OF THE STUDY The current study demonstrated that V. harveyi produces two kinds of toxins, haemolysin and protease toxin. It may be clear roots of V. harveyi toxin.
Collapse
Affiliation(s)
- T Nakayama
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | | | | |
Collapse
|
46
|
Liu Y, Manna AC, Pan CH, Kriksunov IA, Thiel DJ, Cheung AL, Zhang G. Structural and function analyses of the global regulatory protein SarA from Staphylococcus aureus. Proc Natl Acad Sci U S A 2006; 103:2392-7. [PMID: 16455801 PMCID: PMC1413715 DOI: 10.1073/pnas.0510439103] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The sarA locus in Staphylococcus aureus controls the expression of many virulence genes. The sarA regulatory molecule, SarA, is a 14.7-kDa protein (124 residues) that binds to the promoter region of target genes. Here we report the 2.6 A-resolution x-ray crystal structure of the dimeric winged helix SarA protein, which differs from the published SarA structure dramatically. In the crystal packing, multiple dimers of SarA form a scaffold, possibly via divalent cations. Mutations of individual residues within the DNA-binding helix-turn-helix and the winged region as well as within the metal-binding pocket implicate basic residues R84 and R90 within the winged region to be critical in DNA binding, whereas acidic residues D88 and E89 (wing), D8 and E11 (metal-binding pocket), and cysteine 9 are essential for SarA function. These data suggest that the winged region of the winged helix protein participates in DNA binding and activation, whereas the putative divalent cation binding pocket is only involved in gene function.
Collapse
Affiliation(s)
- Yingfang Liu
- *Integrated Department of Immunology, National Jewish Medical and Research Center, Biomolecular Structure Program and Department of Pharmacology, School of Medicine, University of Colorado Health Science Center, 1400 Jackson Street, Denver, CO 80206
| | - Adhar C. Manna
- Departments of Microbiology and Immunology, Dartmouth Medical School, Hanover, NH 03755; and
| | - Cheol-Ho Pan
- *Integrated Department of Immunology, National Jewish Medical and Research Center, Biomolecular Structure Program and Department of Pharmacology, School of Medicine, University of Colorado Health Science Center, 1400 Jackson Street, Denver, CO 80206
| | - Irina A. Kriksunov
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853
| | - Daniel J. Thiel
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853
| | - Ambrose L. Cheung
- Departments of Microbiology and Immunology, Dartmouth Medical School, Hanover, NH 03755; and
- To whom correspondence may be addressed. E-mail:
or
| | - Gongyi Zhang
- *Integrated Department of Immunology, National Jewish Medical and Research Center, Biomolecular Structure Program and Department of Pharmacology, School of Medicine, University of Colorado Health Science Center, 1400 Jackson Street, Denver, CO 80206
- To whom correspondence may be addressed. E-mail:
or
| |
Collapse
|
47
|
Gustafsson E, Nilsson P, Karlsson S, Arvidson S. Characterizing the Dynamics of the Quorum-Sensing System in Staphylococcus aureus. J Mol Microbiol Biotechnol 2005; 8:232-42. [PMID: 16179800 DOI: 10.1159/000086704] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The virulence determinants of Staphylococcus aureus are expressed in a growth phase-dependent manner governed by the autoinducible quorum-sensing system agr. Activation of the agr system results in a rapid increase in the regulator RNAIII and occurs in response to accumulation of AIP. In order to activate the agr system, a basal transcription of agr components must be assumed. This basal transcription of agr components seems to be stimulated by sarA. To better understand how SarA would affect activation of the agr system by modulating the basal agr activity, a mathematical model for autoactivation of the agr system was set up. The model predicted that the agr system is hysteretic, meaning that the agr system is activated at a specific concentration of autoinducing peptide (AIP), whereas it is inactivated at a specific lower concentration of AIP. According to the model, changing the basal agr activity only had a marginal effect on steady-state levels of RNAIII but changed the sensitivity of the cells to AIP. This was supported by Northern blot analysis of RNAIII in S. aureus mutants with different levels of SarA expression. Since natural antagonistic AIPs have been demonstrated, the effect of adding inhibitors to the system was analyzed.
Collapse
Affiliation(s)
- Erik Gustafsson
- Computational Molecular Biology, University of Skövde, SE-541 28 Skövde, Sweden.
| | | | | | | |
Collapse
|
48
|
Abstract
The accessory gene regulator (Agr) system is a quorum-sensing system of Staphylococcus aureus responsible for upregulation of certain exoprotein genes and downregulation of certain cell-wall associated proteins during the post-exponential phase of growth. The enterotoxin B (seb) determinant is upregulated by the Agr system. Agr-regulated cis elements within the seb promoter region were examined by deletion analyses of the seb promoter by a hybrid promoter approach utilizing the staphylococcal lac operon promoter. To identify the regulatory pathway for enterotoxin B expression, the seb promoter fused to the chloramphenicol acetyltransferase reporter gene was introduced into mutants of S. aureus lacking agr or different members of the Sar family of transcriptional regulators. Agr control of seb promoter activity was found to be dependent upon the presence of a functional Rot protein, and Rot was shown to be able to bind to the seb promoter. Therefore, the Agr-mediated post-exponential-phase increase in seb transcription results from the Agr system's inactivation of Rot repressor activity.
Collapse
Affiliation(s)
- Ching Wen Tseng
- Life Sciences Center 471E, 1201 Rollins Road, University of Missouri, Columbia, MO 65211-7310, USA
| | | |
Collapse
|
49
|
Abstract
The global regulatory locus sarA comprises a 375-bp open reading frame that is driven by three promoters, the proximal P1 and distal P3 and P2 promoters. We mutated the weaker P3 and P2 promoters to ascertain the effect of the change on SarA protein and target gene expression. Our results indicated that the solely active P1 promoter led to a lower SarA protein level, which has an effect on agr transcription and subsequently had corresponding effects on hla, sspA, and spa transcription, probably in both agr-independent and agr-dependent manners.
Collapse
Affiliation(s)
- Ambrose L Cheung
- Department of Microbiology and Immunology, Dartmouth Medical School, Vail 205, Hanover, New Hampshire 03755, USA
| | | |
Collapse
|
50
|
Pragman AA, Schlievert PM. Virulence regulation in Staphylococcus aureus: the need for in vivo analysis of virulence factor regulation. ACTA ACUST UNITED AC 2004; 42:147-54. [PMID: 15364098 DOI: 10.1016/j.femsim.2004.05.005] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2004] [Accepted: 05/11/2004] [Indexed: 10/26/2022]
Abstract
Staphylococcus aureus is a pathogenic microorganism that is responsible for a wide variety of clinical infections. These infections can be relatively mild, but serious, life-threatening infections may result from the expression of staphylococcal virulence factors that are coordinated by virulence regulators. Much work has been done to characterize the actions of staphylococcal virulence regulators in broth culture. Recently, several laboratories showed that transcriptional analyses of virulence regulators in in vivo animal models or in human infection did not correlate with transcriptional analyses accomplished in vitro. In describing the differences between in vitro and in vivo transcription of staphylococcal virulence regulators, we hope to encourage investigators to study virulence regulators using infection models whenever possible.
Collapse
Affiliation(s)
- Alexa A Pragman
- Department of Microbiology, University of Minnesota Medical School, 960 Mayo Building, MMC 196, 420 Delaware St. SE, Minneapolis, MN 55455, USA.
| | | |
Collapse
|