1
|
Abstract
Proteasomes are a class of protease that carry out the degradation of a specific set of cellular proteins. While essential for eukaryotic life, proteasomes are found only in a small subset of bacterial species. In this chapter, we present the current knowledge of bacterial proteasomes, detailing the structural features and catalytic activities required to achieve proteasomal proteolysis. We describe the known mechanisms by which substrates are doomed for degradation, and highlight potential non-degradative roles for components of bacterial proteasome systems. Additionally, we highlight several pathways of microbial physiology that rely on proteasome activity. Lastly, we explain the various gaps in our understanding of bacterial proteasome function and emphasize several opportunities for further study.
Collapse
Affiliation(s)
- Samuel H Becker
- Department of Microbiology, New York University School of Medicine, 430 E. 29th Street, Room 312, New York, NY, 10016, USA
| | - Huilin Li
- Van Andel Research Institute, Cryo-EM Structural Biology Laboratory, 333 Bostwick Ave, NE, Grand Rapids, MI, 4950, USA
| | - K Heran Darwin
- Department of Microbiology, New York University School of Medicine, 430 E. 29th Street, Room 312, New York, NY, 10016, USA.
| |
Collapse
|
2
|
Bacterial Proteasomes: Mechanistic and Functional Insights. Microbiol Mol Biol Rev 2016; 81:81/1/e00036-16. [PMID: 27974513 DOI: 10.1128/mmbr.00036-16] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Regulated proteolysis is essential for the normal physiology of all organisms. While all eukaryotes and archaea use proteasomes for protein degradation, only certain orders of bacteria have proteasomes, whose functions are likely as diverse as the species that use them. In this review, we discuss the most recent developments in the understanding of how proteins are targeted to proteasomes for degradation, including ATP-dependent and -independent mechanisms, and the roles of proteasome-dependent degradation in protein quality control and the regulation of cellular physiology. Furthermore, we explore newly established functions of proteasome system accessory factors that function independently of proteolysis.
Collapse
|
3
|
Abstract
This chapter describes the identification of the first prokaryotic ubiquitin-like protein modifier, Pup, which covalently attaches to proteins to target them for destruction by a bacterial proteasome in a manner akin to ubiquitin in eukaryotes. Despite using a proteasome as the end point for proteolysis, Pup and ubiquitin differ in sequence, structure and method of activation and conjugation to protein substrates. Pup is so far the only known posttranslational protein modifier in prokaryotes and its discovery opens the door to the possibility that others are present not only for proteolysis, but also to regulate protein function or localization. Here, we discuss the putative mechanism of activation and conjugation of Pup (termed "pupylation") to target proteins. In addition, because it is unclear whether or not Pup, like ubiquitin, is recycled or degraded during substrate targeting to the proteasome, we propose methods that may identify Pup deconjugation enzymes ("depupylases"). Finally, we outline future directions for Pup research and anti-tuberculosis drug discovery.
Collapse
|
4
|
Abstract
Proteasomes are ATP-dependent, barrel-shaped proteases found in all three domains of life. In eukaryotes, proteins are typically targeted for degradation by posttranslational modification with the small protein ubiquitin. In 2008, the first bacterial protein modifier, Pup (prokaryotic ubiquitin-like protein), was identified in Mycobacterium tuberculosis. Functionally analogous to ubiquitin, conjugation with Pup serves as a signal for degradation by the mycobacterial proteasome. Proteolysis-dependent and -independent functions of the M. tuberculosis proteasome are essential for virulence of this successful pathogen. In this article we describe the discovery of the proteasome as a key player in tuberculosis pathogenesis and the biology and biochemistry of the Pup-proteasome system.
Collapse
|
5
|
Samanovic MI, Darwin KH. Game of 'Somes: Protein Destruction for Mycobacterium tuberculosis Pathogenesis. Trends Microbiol 2016; 24:26-34. [PMID: 26526503 PMCID: PMC4698092 DOI: 10.1016/j.tim.2015.10.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Revised: 09/25/2015] [Accepted: 10/05/2015] [Indexed: 01/12/2023]
Abstract
The proteasome system of Mycobacterium tuberculosis is required for causing disease. Proteasomes are multisubunit chambered proteases and, until recently, were only known to participate in adenosine triphosphate (ATP)-dependent proteolysis in bacteria. In this review, we discuss the latest advances in understanding how both ATP-dependent and ATP-independent proteasome-regulated pathways contribute to M. tuberculosis virulence.
Collapse
Affiliation(s)
- Marie I Samanovic
- New York University School of Medicine, Department of Microbiology, 550 First Avenue, MSB 236 New York, NY 10016, USA
| | - K Heran Darwin
- New York University School of Medicine, Department of Microbiology, 550 First Avenue, MSB 236 New York, NY 10016, USA.
| |
Collapse
|
6
|
The Absence of Pupylation (Prokaryotic Ubiquitin-Like Protein Modification) Affects Morphological and Physiological Differentiation in Streptomyces coelicolor. J Bacteriol 2015; 197:3388-99. [PMID: 26283768 DOI: 10.1128/jb.00591-15] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 08/10/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Protein turnover is essential in all living organisms for the maintenance of normal cell physiology. In eukaryotes, most cellular protein turnover involves the ubiquitin-proteasome pathway, in which proteins tagged with ubiquitin are targeted to the proteasome for degradation. In contrast, most bacteria lack a proteasome but harbor proteases for protein turnover. However, some actinobacteria, such as mycobacteria, possess a proteasome in addition to these proteases. A prokaryotic ubiquitination-like tagging process in mycobacteria was described and was named pupylation: proteins are tagged with Pup (prokaryotic ubiquitin-like protein) and directed to the proteasome for degradation. We report pupylation in another actinobacterium, Streptomyces coelicolor. Both the morphology and life cycle of Streptomyces species are complex (formation of a substrate and aerial mycelium followed by sporulation), and these bacteria are prolific producers of secondary metabolites with important medicinal and agricultural applications. The genes encoding the pupylation system in S. coelicolor are expressed at various stages of development. We demonstrated that pupylation targets numerous proteins and identified 20 of them. Furthermore, we established that abolition of pupylation has substantial effects on morphological and metabolic differentiation and on resistance to oxidative stress. In contrast, in most cases, a proteasome-deficient mutant showed only modest perturbations under the same conditions. Thus, the phenotype of the pup mutant does not appear to be due solely to defective proteasomal degradation. Presumably, pupylation has roles in addition to directing proteins to the proteasome. IMPORTANCE Streptomyces spp. are filamentous and sporulating actinobacteria, remarkable for their morphological and metabolic differentiation. They produce numerous bioactive compounds, including antifungal, antibiotic, and antitumor compounds. There is therefore considerable interest in understanding the mechanisms by which Streptomyces species regulate their complex physiology and production of bioactive compounds. We studied the role in Streptomyces of pupylation, a posttranslational modification that tags proteins that are then directed to the proteasome for degradation. We demonstrated that the absence of pupylation had large effects on morphological differentiation, antibiotic production, and resistance to oxidative stress in S. coelicolor. The phenotypes of pupylation and proteasome-defective mutants differed and suggest that pupylation acts in a proteasome-independent manner in addition to its role in proteasomal degradation.
Collapse
|
7
|
The amazing ubiquitin-proteasome system: structural components and implication in aging. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2014; 314:171-237. [PMID: 25619718 DOI: 10.1016/bs.ircmb.2014.09.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Proteome quality control (PQC) is critical for the maintenance of cellular functionality and it is assured by the curating activity of the proteostasis network (PN). PN is constituted of several complex protein machines that under conditions of proteome instability aim to, firstly identify, and then, either rescue or degrade nonnative polypeptides. Central to the PN functionality is the ubiquitin-proteasome system (UPS) which is composed from the ubiquitin-conjugating enzymes and the proteasome; the latter is a sophisticated multi-subunit molecular machine that functions in a bimodal way as it degrades both short-lived ubiquitinated normal proteins and nonfunctional polypeptides. UPS is also involved in PQC of the nucleus, the endoplasmic reticulum and the mitochondria and it also interacts with the other main cellular degradation axis, namely the autophagy-lysosome system. UPS functionality is optimum in the young organism but it is gradually compromised during aging resulting in increasing proteotoxic stress; these effects correlate not only with aging but also with most age-related diseases. Herein, we present a synopsis of the UPS components and of their functional alterations during cellular senescence or in vivo aging. We propose that mild UPS activation in the young organism will, likely, promote antiaging effects and/or suppress age-related diseases.
Collapse
|
8
|
Abstract
Autophagy is a process in which a eukaryotic (but not prokaryotic) cell destroys its own components through the lysosomal machinery. This tightly regulated process is essential for normal cell growth, development, and homeostasis, serving to maintain a balance between synthesis and degradation, resulting in the recycling of cellular products. Here we try to expand the concept of autophagy and define it as a general mechanism of regulation encompassing various levels of the biosphere. Interestingly, one of the consequences of such an approach is that we must presume an existence of the autophagic processes in the prokaryotic domain.
Collapse
Affiliation(s)
- Petro Starokadomskyy
- Department of Internal Medicine; University of Texas Southwestern Medical Center; Dallas, TX USA
| | | |
Collapse
|
9
|
Kunjappu MJ, Hochstrasser M. Assembly of the 20S proteasome. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1843:2-12. [PMID: 23507199 DOI: 10.1016/j.bbamcr.2013.03.008] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2012] [Revised: 03/02/2013] [Accepted: 03/05/2013] [Indexed: 10/27/2022]
Abstract
The proteasome is a cellular protease responsible for the selective degradation of the majority of the intracellular proteome. It recognizes, unfolds, and cleaves proteins that are destined for removal, usually by prior attachment to polymers of ubiquitin. This macromolecular machine is composed of two subcomplexes, the 19S regulatory particle (RP) and the 20S core particle (CP), which together contain at least 33 different and precisely positioned subunits. How these subunits assemble into functional complexes is an area of active exploration. Here we describe the current status of studies on the assembly of the 20S proteasome (CP). The 28-subunit CP is found in all three domains of life and its cylindrical stack of four heptameric rings is well conserved. Though several CP subunits possess self-assembly properties, a consistent theme in recent years has been the need for dedicated assembly chaperones that promote on-pathway assembly. To date, a minimum of three accessory factors have been implicated in aiding the construction of the 20S proteasome. These chaperones interact with different assembling proteasomal precursors and usher subunits into specific slots in the growing structure. This review will focus largely on chaperone-dependent CP assembly and its regulation. This article is part of a Special Issue entitled: Ubiquitin-Proteasome System. Guest Editors: Thomas Sommer and Dieter H. Wolf.
Collapse
Affiliation(s)
- Mary J Kunjappu
- Department of Molecular, Cellular and Developmental Biology, Yale University, 266 Whitney Avenue P.O. Box 208114, New Haven, CT 06520-8114, USA
| | | |
Collapse
|
10
|
Liu G, Chater KF, Chandra G, Niu G, Tan H. Molecular regulation of antibiotic biosynthesis in streptomyces. Microbiol Mol Biol Rev 2013; 77:112-43. [PMID: 23471619 PMCID: PMC3591988 DOI: 10.1128/mmbr.00054-12] [Citation(s) in RCA: 519] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Streptomycetes are the most abundant source of antibiotics. Typically, each species produces several antibiotics, with the profile being species specific. Streptomyces coelicolor, the model species, produces at least five different antibiotics. We review the regulation of antibiotic biosynthesis in S. coelicolor and other, nonmodel streptomycetes in the light of recent studies. The biosynthesis of each antibiotic is specified by a large gene cluster, usually including regulatory genes (cluster-situated regulators [CSRs]). These are the main point of connection with a plethora of generally conserved regulatory systems that monitor the organism's physiology, developmental state, population density, and environment to determine the onset and level of production of each antibiotic. Some CSRs may also be sensitive to the levels of different kinds of ligands, including products of the pathway itself, products of other antibiotic pathways in the same organism, and specialized regulatory small molecules such as gamma-butyrolactones. These interactions can result in self-reinforcing feed-forward circuitry and complex cross talk between pathways. The physiological signals and regulatory mechanisms may be of practical importance for the activation of the many cryptic secondary metabolic gene cluster pathways revealed by recent sequencing of numerous Streptomyces genomes.
Collapse
Affiliation(s)
- Gang Liu
- State Key Laboratory of Microbial Resources
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Keith F. Chater
- Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom
| | - Govind Chandra
- Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom
| | | | | |
Collapse
|
11
|
Abstract
Proteasomes are ATP-dependent protein degradation machines present in all archaea and eukaryotes, and found in several bacterial species of the order Actinomycetales. Mycobacterium tuberculosis (Mtb), an Actinomycete pathogenic to humans, requires proteasome function to cause disease. In this chapter, we describe what is currently understood about the biochemistry of the Mtb proteasome and its role in virulence. The characterization of the Mtb proteasome has led to the discovery that proteins can be targeted for degradation by a small protein modifier in bacteria as they are in eukaryotes. Furthermore, the understanding of proteasome function in Mtb has helped reveal new insight into how the host battles infections.
Collapse
Affiliation(s)
- Marie I Samanovic
- Department of Microbiology, New York University School of Medicine, 550 First Avenue, MSB 236, New York, NY, 10016, USA
| | | | | |
Collapse
|
12
|
Kale AJ, McGlinchey RP, Lechner A, Moore BS. Bacterial self-resistance to the natural proteasome inhibitor salinosporamide A. ACS Chem Biol 2011; 6:1257-64. [PMID: 21882868 DOI: 10.1021/cb2002544] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Proteasome inhibitors have recently emerged as a therapeutic strategy in cancer chemotherapy, but susceptibility to drug resistance limits their efficacy. The marine actinobacterium Salinispora tropica produces salinosporamide A (NPI-0052, marizomib), a potent proteasome inhibitor and promising clinical agent in the treatment of multiple myeloma. Actinobacteria also possess 20S proteasome machinery, raising the question of self-resistance. We identified a redundant proteasome β-subunit, SalI, encoded within the salinosporamide biosynthetic gene cluster and biochemically characterized the SalI proteasome complex. The SalI β-subunit has an altered substrate specificity profile, 30-fold resistance to salinosporamide A, and cross-resistance to the FDA-approved proteasome inhibitor bortezomib. An A49V mutation in SalI correlates to clinical bortezomib resistance from a human proteasome β5-subunit A49T mutation, suggesting that intrinsic resistance to natural proteasome inhibitors may predict clinical outcomes.
Collapse
Affiliation(s)
- Andrew J. Kale
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography
| | - Ryan P. McGlinchey
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography
| | - Anna Lechner
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography
| | - Bradley S. Moore
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California at San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| |
Collapse
|
13
|
Burns KE, Darwin KH. Pupylation versus ubiquitylation: tagging for proteasome-dependent degradation. Cell Microbiol 2010; 12:424-31. [PMID: 20109157 DOI: 10.1111/j.1462-5822.2010.01447.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Prokaryotic ubiquitin-like protein (Pup) is the first identified prokaryotic protein that is functionally analogous to ubiquitin. Despite using the proteasome as the end-point for proteolysis, Pup differs from ubiquitin both biochemically and structurally. We will discuss these differences that have been highlighted by several recent studies. Finally, we will speculate on the possible interactions between the two analogous pathways in pathogen and host.
Collapse
Affiliation(s)
- Kristin E Burns
- Department of Microbiology, New York University School of Medicine, New York, NY 10016, USA.
| | | |
Collapse
|
14
|
Imkamp F, Rosenberger T, Striebel F, Keller PM, Amstutz B, Sander P, Weber-Ban E. Deletion of dop in Mycobacterium smegmatis abolishes pupylation of protein substrates in vivo. Mol Microbiol 2009; 75:744-54. [PMID: 20025664 DOI: 10.1111/j.1365-2958.2009.07013.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Proteasome-bearing bacteria make use of a ubiquitin-like modification pathway to target proteins for proteasomal turnover. In a process termed pupylation, proteasomal substrates are covalently modified with the small protein Pup that serves as a degradation signal. Pup is attached to substrate proteins by action of PafA. Prior to its attachment, Pup needs to undergo deamidation at its C-terminal residue, converting glutamine to glutamate. This step is catalysed in vitro by Dop. In order to characterize Dop activity in vivo, we generated a dop deletion mutant in Mycobacterium smegmatis. In the Deltadop strain, pupylation is severely impaired and the steady-state levels of two known proteasomal substrates are drastically increased. Pupylation can be re-established by complementing the mutant with either DopWt or a Pup variant carrying a glutamate at its ultimate C-terminal position (PupGGE). Our data show that Pup is deamidated by Dop in vivo and that likely Dop alone is responsible for this activity. Furthermore, we demonstrate that a putative N-terminal ATP-binding motif is crucial for catalysis, as a single point mutation (E10A) in this motif abolishes Dop activity both in vivo and in vitro.
Collapse
Affiliation(s)
- Frank Imkamp
- ETH Zurich, Institute of Molecular Biology & Biophysics, Zurich, Switzerland
| | | | | | | | | | | | | |
Collapse
|
15
|
Cerda-Maira F, Darwin KH. The Mycobacterium tuberculosis proteasome: more than just a barrel-shaped protease. Microbes Infect 2009; 11:1150-5. [PMID: 19671445 DOI: 10.1016/j.micinf.2009.08.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2009] [Accepted: 08/05/2009] [Indexed: 01/22/2023]
Abstract
In eukaryotes the proteasome is responsible for the degradation of many proteins that are targeted for turnover by post-translational modification with ubiquitin. A similar system was identified in Mycobacterium tuberculosis (Mtb) and has shown to be essential for the pathogenesis of this bacterium. Here, we overview the current information of the Mtb proteasome and discuss the role of this protease in pathogenesis.
Collapse
Affiliation(s)
- Francisca Cerda-Maira
- Department of Microbiology, New York University School of Medicine, New York, NY 10016, USA
| | | |
Collapse
|
16
|
Chen X, Solomon WC, Kang Y, Cerda-Maira F, Darwin KH, Walters KJ. Prokaryotic ubiquitin-like protein pup is intrinsically disordered. J Mol Biol 2009; 392:208-17. [PMID: 19607839 DOI: 10.1016/j.jmb.2009.07.018] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2009] [Revised: 07/06/2009] [Accepted: 07/06/2009] [Indexed: 02/03/2023]
Abstract
The prokaryotic ubiquitin-like protein Pup targets substrates for degradation by the Mycobacterium tuberculosis proteasome through its interaction with Mpa, an ATPase that is thought to abut the 20S catalytic subunit. Ubiquitin, which is assembled into a polymer to similarly signal for proteasomal degradation in eukaryotes, adopts a stable and compact structural fold that is adapted into other proteins for diverse biological functions. We used NMR spectroscopy to demonstrate that, unlike ubiquitin, the 64-amino-acid protein Pup is intrinsically disordered with small helical propensity in the C-terminal region. We found that the Pup:Mpa interaction involves an extensive contact surface that spans S21-K61 and that the binding is in the "slow exchange" regime on the NMR time scale, thus demonstrating higher affinity than most ubiquitin:ubiquitin receptor pairs. Interestingly, during the titration experiment, intermediate Pup species were observable, suggesting the formation of one or more transient state(s) upon binding. Moreover, Mpa selected one configuration for a region undergoing chemical exchange in the free protein. These findings provide mechanistic insights into Pup's functional role as a degradation signal.
Collapse
Affiliation(s)
- Xiang Chen
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, 55455, USA
| | | | | | | | | | | |
Collapse
|
17
|
Marques AJ, Palanimurugan R, Matias AC, Ramos PC, Dohmen RJ. Catalytic mechanism and assembly of the proteasome. Chem Rev 2009; 109:1509-36. [PMID: 19265443 DOI: 10.1021/cr8004857] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- António J Marques
- Institute for Genetics, University of Cologne, Zulpicher Strasse 47, D-50674 Cologne, Germany
| | | | | | | | | |
Collapse
|
18
|
Darwin KH. Prokaryotic ubiquitin-like protein (Pup), proteasomes and pathogenesis. Nat Rev Microbiol 2009; 7:485-91. [PMID: 19483713 DOI: 10.1038/nrmicro2148] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Proteasomes are ATP-dependent, multisubunit proteases that are found in all eukaryotes and archaea and some bacteria. In eukaryotes, the small protein ubiquitin is covalently attached in a post-translational manner to proteins that are targeted for proteasomal degradation. Despite the presence of proteasomes in many prokaryotes, ubiquitin or other post-translational protein modifiers were presumed to be absent from these organisms. Recently a prokaryotic ubiquitin-like protein, Pup, was found to target proteins for proteolysis by the Mycobacterium tuberculosis proteasome. The discovery of this ubiquitin-like modifier opens up the possibility that other bacteria may also have small post-translational protein tagging systems, with the ability to affect cellular processes.
Collapse
Affiliation(s)
- K Heran Darwin
- Department of Microbiology, New York University School of Medicine, 550 First Avenue MSB 236, New York, New York 10016, USA.
| |
Collapse
|
19
|
De Mot R. Actinomycete-like proteasomes in a Gram-negative bacterium. Trends Microbiol 2007; 15:335-8. [PMID: 17587582 DOI: 10.1016/j.tim.2007.06.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2007] [Revised: 05/22/2007] [Accepted: 06/11/2007] [Indexed: 12/23/2022]
Abstract
Cultivation-independent proteogenomic exploration of mine-drainage biofilm has revealed proteasomes in Gram-negative bacteria of the Nitrospirae phylum (Leptospirillum group II) dominating this acidophilic community. Most probably, the proteasome genes were acquired from actinobacteria, the only eubacteria previously known to contain proteasomes. In addition, this study shows that the proteasome and the evolutionarily related ATP-dependent protease HslVU (also known as ClpQY) are not mutually exclusive in prokaryotes.
Collapse
Affiliation(s)
- René De Mot
- Centre of Microbial and Plant Genetics, Department of Microbial and Molecular Systems, Faculty of Bioscience Engineering, Katholieke Universiteit Leuven, B-3001 Heverlee-Leuven, Belgium.
| |
Collapse
|
20
|
De Mot R, Schoofs G, Nagy I. Proteome analysis of Streptomyces coelicolor mutants affected in the proteasome system reveals changes in stress-responsive proteins. Arch Microbiol 2007; 188:257-71. [PMID: 17486317 DOI: 10.1007/s00203-007-0243-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2006] [Revised: 02/19/2007] [Accepted: 04/02/2007] [Indexed: 12/17/2022]
Abstract
Prokaryotic 20S proteasomes are confined to archaebacteria and actinomycetes. Bacterial targets of this compartmentalized multi-subunit protease have not yet been identified and its physiological function in prokaryotes remains unknown. In this study, intracellular and extracellular proteomes of Streptomyces coelicolor A3(2) mutants affected in the structural genes of the 20S proteasome, in the gene encoding the presumed proteasome-accessory AAA ATPase ARC, or in two putative proteasome-associated actinomycete-specific genes (sco1646, sco1647) were analysed, revealing modified patterns of stress-responsive proteins. In addition, the extracellular protease profile of the sco1647 mutant was significantly altered. The most prominent change, common to the four mutants, was a strongly increased level of the non-heme chloroperoxidase SCO0465, coinciding with an increased resistance to cumene hydroperoxide.
Collapse
Affiliation(s)
- René De Mot
- Centre of Microbial and Plant Genetics, Department of Microbial and Molecular Systems, Faculty of Bioscience Engineering, Katholieke Universiteit Leuven, Kasteelpark Arenberg 20, 3001 Leuven, Belgium.
| | | | | |
Collapse
|
21
|
Sallam KI, Tamura N, Tamura T. A multipurpose transposon-based vector system mediates protein expression in Rhodococcus erythropolis. Gene 2006; 386:173-82. [PMID: 17098379 DOI: 10.1016/j.gene.2006.09.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2006] [Revised: 09/07/2006] [Accepted: 09/07/2006] [Indexed: 11/29/2022]
Abstract
In the current study we developed two transposon-based vectors; namely pTNR-KA and pTNR-TA and utilized them for expression of proteasome complex, derived from Streptomyces coelicolor, in Rhodococcus erythropolis. The two vectors can be transposed into Rhodococcus cells by means of electroporation, either individually in two consecutive processes or in combinations by a single step. During transposition, each of the two vectors liberates its transposable-marker gene, which integrated in a single copy into a random site in the Rhodococcus chromosomal DNA. Southern blot analysis indicated that the two transposable-marker genes of both vectors does not alter or knock out each other. To utilize these vectors for Streptomyces proteasome expression, two expression cassettes were constructed; each cassette comprised a constitutive promoter (P(nit)), the DNA fragment, prcA or prcB that encodes alpha- or beta-subunits of Streptomyces proteasome, and T(thcA) transcriptional terminator. The cassettes were then individually introduced into the multiple cloning sites that are located in the transposable-marker gene of the two vectors. The two cassettes-harboring vectors were subsequently co-transposed, in combinations, into the Rhodococcus genome by a single electroporation step and the Streptomyces proteasome was successfully expressed in the rodococcal host cell. The isolated proteasome was further characterized and the peptidase activity was confirmed and indicated that it was biologically active. The present study concluded that both pTNR-KA and pTNR-TA can be used as transposon-based protein expression systems in Rhodococcus species.
Collapse
Affiliation(s)
- Khalid Ibrahim Sallam
- Department of Food Hygiene and Control, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | | | | |
Collapse
|
22
|
Lin G, Hu G, Tsu C, Kunes YZ, Li H, Dick L, Parsons T, Li P, Chen Z, Zwickl P, Weich N, Nathan C. Mycobacterium tuberculosis prcBA genes encode a gated proteasome with broad oligopeptide specificity. Mol Microbiol 2006; 59:1405-16. [PMID: 16468985 DOI: 10.1111/j.1365-2958.2005.05035.x] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Genes predicted to be associated with the putative proteasome of Mycobacterium tuberculosis (Mtb) play a critical role in defence of the bacillus against nitrosative stress. However, proteasomes are uncommon in eubacteria and it remains to be established whether Mtb's prcBA genes in fact encode a proteasome. We found that coexpression of recombinant PrcB and PrcA in Escherichia coli over a prolonged period at 37 degrees C allowed formation of an alpha(7)beta(7)beta(7)alpha(7), 750 kDa cylindrical stack of four rings in which all 14 beta-subunits were proteolytically processed to expose the active site threonine. In contrast to another Actinomycete, Rhodococcus erythropolis, Mtb's beta-chain propeptide was not required for particle assembly. Peptidolytic activity of the 750 kDa particle towards a hydrophobic oligopeptide was nearly two orders of magnitude less than that of the Rhodococcus 20S proteasome, and unlike eukaryotic and archaeal proteasomes, activity of the Mtb 750 kDa particle could not be stimulated by SDS, Mg(2+) or Ca(2+). Electron microscopy revealed what appeared to be obstructed alpha-rings in the Mtb 750 kDa particle. Deletion of the N-terminal octapeptide from Mtb's alpha-chain led to disappearance of the apparent obstruction and a marked increase of peptidolytic activity. Unlike proteasomes isolated from other Actinomycetes, the open-gate Mtb mutant 750 kDa particle cleaved oligopeptides not only after hydrophobic residues but also after basic, acidic and small, neutral amino acids. Thus, Mtb encodes a broadly active, gated proteasome that may work in concert with an endogenous activator.
Collapse
Affiliation(s)
- Gang Lin
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, 1300 York Avenue, New York, NY 10021, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Maupin-Furlow JA, Humbard MA, Kirkland PA, Li W, Reuter CJ, Wright AJ, Zhou G. Proteasomes from Structure to Function: Perspectives from Archaea. Curr Top Dev Biol 2006; 75:125-69. [PMID: 16984812 DOI: 10.1016/s0070-2153(06)75005-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Insight into the world of proteolysis has expanded considerably over the past decade. Energy-dependent proteases, such as the proteasome, are no longer viewed as nonspecific degradative enzymes associated solely with protein catabolism but are intimately involved in controlling biological processes that span life to death. The proteasome maintains this exquisite control by catalyzing the precisely timed and rapid turnover of key regulatory proteins. Proteasomes also interplay with chaperones to ensure protein quality and to readjust the composition of the proteome following stress. Archaea encode proteasomes that are highly related to those of eukaryotes in basic structure and function. Investigations of archaeal proteasomes coupled with those of eukaryotes has greatly facilitated our understanding of the molecular mechanisms that govern regulated protein degradation by this elaborate nanocompartmentalized machine.
Collapse
Affiliation(s)
- Julie A Maupin-Furlow
- Department of Microbiology and Cell Science, University of Florida Gainesville, Florida 32611, USA
| | | | | | | | | | | | | |
Collapse
|
24
|
Hong B, Wang L, Lammertyn E, Geukens N, Van Mellaert L, Li Y, Anné J. Inactivation of the 20S proteasome in Streptomyces lividans and its influence on the production of heterologous proteins. Microbiology (Reading) 2005; 151:3137-3145. [PMID: 16151224 DOI: 10.1099/mic.0.28034-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Proteasomes are self-compartmentalizing proteases first discovered in eukaryotes but also occurring in archaea and in bacteria belonging to the order Actinomycetales. In bacteria, proteasomes have so far no known function. In order to evaluate the influence of the 20S proteasome on the production of heterologous proteins by Streptomyces lividans TK24, the production of a number of heterologous proteins, including soluble human tumour necrosis factor receptor II (shuTNFRII) and salmon calcitonin (sCT), was compared with the wild-type TK24, a proteasome-deficient mutant designated PRO41 and a strain complemented for the disrupted proteasome genes (strain PRO41R). S. lividans cells lacking intact proteasome genes are phenotypically indistinguishable from the wild-type or the complemented strain containing functional proteasomes. Using the expression and secretion signals of the subtilisin inhibitor of Streptomyces venezuelae CBS762.70 (Vsi) for shuTNFRII and those of tyrosinase of Streptomyces antibioticus (MelC1) for the production of sCT, both proteins were secreted in significantly higher amounts in the strain PRO41 than in the wild-type S. lividans TK24 or the complemented strain PRO41R. However, the secretion of other heterologous proteins such as shuTNFRI was not enhanced in the proteasome-deficient strain. This suggests that S. lividans TK24 can degrade some heterologous proteins in a proteasome-dependent fashion. The proteasome-deficient strain may therefore be useful for the efficient production of these heterologous proteins.
Collapse
Affiliation(s)
- Bin Hong
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical University, No. 1 Tiantanxili, Beijing 100050, China
| | - Lifei Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical University, No. 1 Tiantanxili, Beijing 100050, China
| | - Elke Lammertyn
- Laboratory of Bacteriology, Rega Institute, Katholieke Universiteit Leuven, Minderbroedersstraat 10, 3000 Leuven, Belgium
| | - Nick Geukens
- Laboratory of Bacteriology, Rega Institute, Katholieke Universiteit Leuven, Minderbroedersstraat 10, 3000 Leuven, Belgium
| | - Lieve Van Mellaert
- Laboratory of Bacteriology, Rega Institute, Katholieke Universiteit Leuven, Minderbroedersstraat 10, 3000 Leuven, Belgium
| | - Yuan Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical University, No. 1 Tiantanxili, Beijing 100050, China
| | - Jozef Anné
- Laboratory of Bacteriology, Rega Institute, Katholieke Universiteit Leuven, Minderbroedersstraat 10, 3000 Leuven, Belgium
| |
Collapse
|
25
|
Zhang X, Stoffels K, Wurzbacher S, Schoofs G, Pfeifer G, Banerjee T, Parret AHA, Baumeister W, De Mot R, Zwickl P. The N-terminal coiled coil of the Rhodococcus erythropolis ARC AAA ATPase is neither necessary for oligomerization nor nucleotide hydrolysis. J Struct Biol 2004; 146:155-65. [PMID: 15037247 DOI: 10.1016/j.jsb.2003.10.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2003] [Revised: 10/17/2003] [Indexed: 11/18/2022]
Abstract
Deletion mutants of the Rhodococcus erythropolis ARC AAA ATPase were generated and characterized by biochemical analysis and electron microscopy. Based on sequence comparisons the ARC protein was divided into three consecutive regions, the N-terminal coiled coil, the central ARC-specific inter domain and the C-terminal AAA domain. When the ARC AAA domain was expressed separately it formed aggregates of undefined structure. However, when the AAA domain was expressed in conjunction with the preceeding inter domain, but without the N-terminal coiled coil, high-molecular weight-complexes were formed (ARC-DeltaCC) which showed an N-ethylmaleimide-sensitive ATPase activity. In 2D crystallization experiments the ARC-DeltaCC particles yielded crystals nearly identical to those formed by the wild-type ARC complexes. Thus, the N-terminal coiled coil, which was proposed to have a role in the assembly of and/or interaction between the eukaryotic AAA ATPases in the 26S proteasome, is neither essential for assembly nor for ATP hydrolysis of the ARC ATPase. The N-terminal domain of related AAA ATPases mediates the interaction with substrates or co-factors, suggesting a regulatory function for the N-terminal coiled coil of the ARC ATPase. Surprisingly, the mutant ARC protein ARC-DeltaAAA consisting of the N-terminal coiled coil and the central inter domain, but deleted for the C-terminal AAA domain, was shown to form a dodecameric complex with sixfold symmetry. This suggests an important role of the inter domain for the ordered assembly of the ARC ATPase.
Collapse
Affiliation(s)
- Xujia Zhang
- Max-Planck-Institut für Biochemie, Am Klopferspitz 18a, D-82152 Martinsried, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Maupin-Furlow JA, Kaczowka SJ, Reuter CJ, Zuobi-Hasona K, Gil MA. Archaeal proteasomes: potential in metabolic engineering. Metab Eng 2003; 5:151-63. [PMID: 12948749 DOI: 10.1016/s1096-7176(03)00030-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Archaea are a valuable source of enzymes for industrial and scientific applications because of their ability to survive extreme conditions including high salt and temperature. Thanks to advances in molecular biology and genetics, archaea are also attractive hosts for metabolic engineering. Understanding how energy-dependent proteases and chaperones function to maintain protein quality control is key to high-level synthesis of recombinant products. In archaea, proteasomes are central players in energy-dependent proteolysis and form elaborate nanocompartments that degrade proteins into oligopeptides by processive hydrolysis. The catalytic core responsible for this proteolytic activity is the 20S proteasome, a barrel-shaped particle with a central channel and axial gates on each end that limit substrate access to a central proteolytic chamber. AAA proteins (ATPases associated with various cellular activities) are likely to play several roles in mediating energy-dependent proteolysis by the proteasome. These include ATP binding/hydrolysis, substrate binding/unfolding, opening of the axial gates, and translocation of substrate into the proteolytic chamber.
Collapse
Affiliation(s)
- Julie A Maupin-Furlow
- Department of Microbiology and Cell Science, University of Florida, Room 1052, Building 981, Gainesville, FL 32611-0700, USA.
| | | | | | | | | |
Collapse
|
27
|
Chandu D, Kumar A, Nandi D. PepN, the major Suc-LLVY-AMC-hydrolyzing enzyme in Escherichia coli, displays functional similarity with downstream processing enzymes in Archaea and eukarya. Implications in cytosolic protein degradation. J Biol Chem 2003; 278:5548-56. [PMID: 12482750 DOI: 10.1074/jbc.m207926200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Succinyl-Leu-Leu-Val-Tyr-7-amido-4-methylcoumarin (Suc-LLVY-AMC), a fluorogenic endopeptidase substrate, is used to detect 20 S proteasomal activity from Archaea to mammals. An o-phenanthroline-sensitive Suc-LLVY-AMC hydrolyzing activity was detected in Escherichia coli although it lacks 20 S proteasomes. We identified PepN, previously characterized as the sole alanine aminopeptidase in E. coli, to be responsible for the hydrolysis of Suc-LLVY-AMC. PepN is an aminoendopeptidase. First, extracts from an ethyl methanesulfonate-derived PepN mutant, 9218, did not cleave Suc-LLVY-AMC and L-Ala-para-nitroanilide (pNA). Second, biochemically purified PepN cleaves a wide variety of both aminopeptidase and endopeptidase substrates, and L-Ala-pNA is cleaved more efficiently than other substrates. Studies with bestatin, an aminopeptidase-specific inhibitor, suggest differences in the mechanisms of cleavage of aminopeptidase and endopeptidase substrates. Third, PepN hydrolyzes whole proteins, casein and albumin. Finally, an E. coli strain with a targeted deletion in PepN also lacks the ability to cleave Suc-LLVY-AMC and L-Ala-pNA, and expression of wild type PepN in this mutant rescues both activities. In addition, we identified a low molecular weight Suc-LLVY-AMC-cleaving peptidase in Mycobacterium smegmatis, a eubacteria harboring 20 S proteasomes, to be an aminopeptidase homologous to E. coli PepN, by mass spectrometry analysis. "Sequence-based homologues" of PepN include well characterized aminopeptidases, e.g. Tricorn interacting factors F2 and F3 in Archaea and puromycin-sensitive aminopeptidase in mammals. However, our results suggest that eubacterial PepN and its homologues displaying aminoendopeptidase activities may be "functionally similar" to enzymes important in downstream processing of proteins in the cytosol: Tricorn-F1-F2-F3 complex in Archaea and TPPII/Multicorn in eukaryotes.
Collapse
Affiliation(s)
- Dilip Chandu
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | | | | |
Collapse
|
28
|
Nagy I, Banerjee T, Tamura T, Schoofs G, Gils A, Proost P, Tamura N, Baumeister W, De Mot R. Characterization of a novel intracellular endopeptidase of the alpha/beta hydrolase family from Streptomyces coelicolor A3(2). J Bacteriol 2003; 185:496-503. [PMID: 12511496 PMCID: PMC145308 DOI: 10.1128/jb.185.2.496-503.2003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In a proteasome-lacking mutant of Streptomyces coelicolor A3(2), an intracellular enzyme with chymotrypsin-like activity, absent from the wild type, was detected. Complementation that restored proteasome function did not suppress expression of the endopeptidase. Since the enzyme was not found in two other S. coelicolor proteasome mutants, its expression probably resulted from a secondary mutation arisen in the proteasome mutant. Purification of the endopeptidase revealed its identity to SCO7095, a putative hydrolase encoded by the S. coelicolor A3(2) genome with no known homologue. Based on the prediction of a Ser-Asp-His catalytic triad and an alpha/beta hydrolase fold, SCO7095 was assigned to peptidase clan SC. N-terminally His-tagged SCO7095 was efficiently expressed in Escherichia coli cells and purified for further characterization. Although SCO7095 is distantly related to several proline iminopeptidases, including Thermoplasma acidophilum tricorn-interacting F1, no aminopeptidase activity was detected. On synthetic substrates, the monomeric enzyme exhibited not only chymotrypsin-like activity but also thrombin-like activity.
Collapse
Affiliation(s)
- István Nagy
- Centre of Microbial and Plant Genetics, Catholic University of Leuven, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
Proteasomes are large, multisubunit proteases that are found, in one form or another, in all domains of life and play a critical role in intracellular protein degradation. Although they have substantial structural similarity, the proteasomes of bacteria, archaea, and eukaryotes show many differences in architecture and subunit composition. This article discusses possible paths by which proteasomes may have evolved from simple precursors to the highly complicated and diverse complexes observed today.
Collapse
Affiliation(s)
- C Volker
- SmithKline Beecham Pharmaceuticals, UP 1345, 1250 South Collegeville Road, Collegeville, PA 19426-0989, USA
| | | |
Collapse
|
30
|
Maupin-Furlow JA, Kaczowka SJ, Ou MS, Wilson HL. Archaeal proteasomes: proteolytic nanocompartments of the cell. ADVANCES IN APPLIED MICROBIOLOGY 2002; 50:279-338. [PMID: 11677686 DOI: 10.1016/s0065-2164(01)50008-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- J A Maupin-Furlow
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida 32611-0700, USA
| | | | | | | |
Collapse
|
31
|
Self-Processing of Subunits of the Proteasome. CO- AND POSTTRANSLATIONAL PROTEOLYSIS OF PROTEINS 2002. [DOI: 10.1016/s1874-6047(02)80013-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|