1
|
Parra-Flores J, Daza-Prieto B, Chavarria P, Troncoso M, Stöger A, Figueroa G, Mancilla-Rojano J, Cruz-Córdova A, Martinovic A, Ruppitsch W. From Traditional Typing to Genomic Precision: Whole-Genome Sequencing of Listeria monocytogenes Isolated from Refrigerated Foods in Chile. Foods 2025; 14:290. [PMID: 39856956 PMCID: PMC11765429 DOI: 10.3390/foods14020290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/11/2025] [Accepted: 01/14/2025] [Indexed: 01/27/2025] Open
Abstract
Ready-to-eat (RTE) foods are the most common sources of Listeria monocytogenes transmission. Whole-genome sequencing (WGS) enhances the investigation of foodborne outbreaks by enabling the tracking of pathogen sources and the prediction of genetic traits related to virulence, stress, and antimicrobial resistance, which benefit food safety management. The aim of this study was to evaluate the efficacy of WGS in the typing of 16 L. monocytogenes strains isolated from refrigerated foods in Chile, highlighting its advantages in pathogen identification and the improvement of epidemiological surveillance and food safety. Using cgMLST, a cluster was identified comprising 2 strains with zero allele differences among the 16 strains evaluated. Ninety-four percent of the isolates (15/16) were serotype 1/2b, and 88% of them (14/16) were ST5. All strains shared identical virulence genes related to adhesion (ami, iap, lapB), stress resistance (clpCEP), invasion (aut, iapcwhA, inlAB, lpeA), toxin production (hly), and intracellular regulation (prfA), with only 13 strains exhibiting the bcrBC and qacJ gene, which confer resistance to quaternary ammonium. The pCFSAN010068_01 plasmids were prevalent, and insertion sequences (ISLs) and composite transposons (cns) were detected in 87.5% of the strains. The presence of various antibiotic resistance genes, along with resistance to thermal shocks and disinfectants, may provide L. monocytogenes ST5 strains with enhanced environmental resistance to the hygiene treatments used in the studied food production plant.
Collapse
Affiliation(s)
- Julio Parra-Flores
- Department of Nutrition and Public Health, Universidad del Bío-Bío, Chillán 3780000, Chile;
| | - Beatriz Daza-Prieto
- Institute of Medical Microbiology and Hygiene, Austrian Agency for Health and Food Safety, 1090 Vienna, Austria; (B.D.-P.); (A.S.)
| | - Pamela Chavarria
- Department of Nutrition and Public Health, Universidad del Bío-Bío, Chillán 3780000, Chile;
| | - Miriam Troncoso
- Fundación Instituto Profesional Duoc UC, Santiago 8240000, Chile;
| | - Anna Stöger
- Institute of Medical Microbiology and Hygiene, Austrian Agency for Health and Food Safety, 1090 Vienna, Austria; (B.D.-P.); (A.S.)
| | - Guillermo Figueroa
- Microbiology and Probiotics Laboratory, Institute of Nutrition and Food Technology, Universidad de Chile, Santiago 7830490, Chile;
| | - Jetsi Mancilla-Rojano
- Immunochemistry Research Laboratory, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico; (J.M.-R.); (A.C.-C.)
| | - Ariadnna Cruz-Córdova
- Immunochemistry Research Laboratory, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico; (J.M.-R.); (A.C.-C.)
| | - Aleksandra Martinovic
- Faculty of Food Technology, Food Safety and Ecology, University of Donja Gorica, 81000 Podgorica, Montenegro;
| | - Werner Ruppitsch
- Institute of Medical Microbiology and Hygiene, Austrian Agency for Health and Food Safety, 1090 Vienna, Austria; (B.D.-P.); (A.S.)
- Faculty of Food Technology, Food Safety and Ecology, University of Donja Gorica, 81000 Podgorica, Montenegro;
| |
Collapse
|
2
|
Panebianco F, Alvarez-Ordóñez A, Oliveira M, Ferreira S, Lovisolo S, Vono C, Cannizzo FT, Chiesa F, Civera T, Di Ciccio P. Effect of neutral electrolyzed water on biofilm formed by meat-related Listeria monocytogenes: Intraspecies variability and influence of the growth surface material. Int J Food Microbiol 2025; 431:111064. [PMID: 39837152 DOI: 10.1016/j.ijfoodmicro.2025.111064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 12/11/2024] [Accepted: 01/10/2025] [Indexed: 01/23/2025]
Abstract
Listeria monocytogenes raises major challenges for the food industry. Due to its capacity to form biofilms, this pathogen can persist in processing environments and contaminate the final products. Neutral electrolyzed water (NEW) may offer a promising and eco-friendly method for controlling L. monocytogenes biofilms, though current in vitro studies on its antibiofilm activity are limited and often focused on reference strains. In this study, we assessed the effect of NEW on biofilms formed by meat-related and reference L. monocytogenes strains on polystyrene and stainless steel. Forty wild-type strains isolated from meat products and processing environments were firstly screened for their biofilm-forming abilities and classified as weak (30 %; 12/40), moderate (55 %; 22/40), and strong (15 %; 6/40) biofilm producers. Twenty-two wild-type and two reference strains were selected for the eradication assays, performed by treating the biofilms with NEW for 9 minutes of total contact time. In silico functional enrichment analysis and the visualization of biofilms by scanning electron microscopy (SEM) were also performed. The NEW treatment resulted in a greater average reduction of viable cells in biofilms formed on polystyrene (4.3 ± 1.0 log10 CFU/cm2) compared to stainless steel (2.9 ± 2.0 log10 CFU/cm2), and a remarkable intraspecies variability was observed. SEM images revealed higher structural damage on biofilms formed on polystyrene. Functional enrichment analysis suggested that clustered regularly interspaced short palindromic repeats (CRISPR)-associated elements could be involved in resistance to the treatments. NEW could be a promising additional tool to mitigate L. monocytogenes biofilms in meat processing environments, although its effect varied with surface material and strain-specific characteristics.
Collapse
Affiliation(s)
- Felice Panebianco
- Department of Veterinary Sciences, University of Turin, Largo Braccini 2, 10095, Grugliasco, Italy.
| | | | - Márcia Oliveira
- Department of Food Hygiene and Technology, University of León, 24071, León, Spain
| | - Susana Ferreira
- CICS-UBI Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal
| | - Stella Lovisolo
- Department of Veterinary Sciences, University of Turin, Largo Braccini 2, 10095, Grugliasco, Italy
| | - Cristina Vono
- Department of Veterinary Sciences, University of Turin, Largo Braccini 2, 10095, Grugliasco, Italy
| | | | - Francesco Chiesa
- Department of Veterinary Sciences, University of Turin, Largo Braccini 2, 10095, Grugliasco, Italy
| | - Tiziana Civera
- Department of Veterinary Sciences, University of Turin, Largo Braccini 2, 10095, Grugliasco, Italy
| | - Pierluigi Di Ciccio
- Department of Veterinary Sciences, University of Turin, Largo Braccini 2, 10095, Grugliasco, Italy
| |
Collapse
|
3
|
Feodorova VA, Zaitsev SS, Khizhnyakova MA, Lavrukhin MS, Saltykov YV, Zaberezhny AD, Larionova OS. Complete genome of the Listeria monocytogenes strain AUF, used as a live listeriosis veterinary vaccine. Sci Data 2024; 11:643. [PMID: 38886393 PMCID: PMC11183264 DOI: 10.1038/s41597-024-03440-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 05/28/2024] [Indexed: 06/20/2024] Open
Abstract
Listeria monocytogenes (Lm) is a highly pathogenic bacterium that can cause listeriosis, a relatively rare food-borne infectious disease that affects farm, domestic, wild animals and humans as well. The infected livestock is the frequent sources of Lm. Vaccination is one of the methods of controlling listeriosis in target farm animals to prevent Lm-associated food contamination. Here we report the complete sequence of the Lm strain AUF attenuated from a fully-virulent Lm strain by ultraviolet irradiation, successfully used since the 1960s as a live whole-cell veterinary vaccine. The de novo assembled genome consists of a circular chromosome of 2,942,932 bp length, including more than 2,800 CDSs, 17 pseudogenes, 5 antibiotic resistance genes, and 56/92 virulence genes. Two wild Lm strains, the EGD and the 10403S that is also used in cancer Immunotherapy, were the closest homologs for the Lm strain AUF. Although all three strains belonged to different sequence types (ST), namely ST12, ST85, and ST1538, they were placed in the same genetic lineage II, CC7.
Collapse
Affiliation(s)
- Valentina A Feodorova
- Laboratory for Fundamental and Applied Research, Saratov State University of Genetics, Biotechnology and Engineering named after N.I. Vavilov, Saratov, Russia.
- Department for Microbiology and Biotechnology, Saratov State University of Genetics, Biotechnology and Engineering named after N.I. Vavilov, Saratov, Russia.
| | - Sergey S Zaitsev
- Laboratory for Fundamental and Applied Research, Saratov State University of Genetics, Biotechnology and Engineering named after N.I. Vavilov, Saratov, Russia
| | - Mariya A Khizhnyakova
- Laboratory for Fundamental and Applied Research, Saratov State University of Genetics, Biotechnology and Engineering named after N.I. Vavilov, Saratov, Russia
| | - Maxim S Lavrukhin
- Laboratory for Fundamental and Applied Research, Saratov State University of Genetics, Biotechnology and Engineering named after N.I. Vavilov, Saratov, Russia
| | - Yury V Saltykov
- Laboratory for Fundamental and Applied Research, Saratov State University of Genetics, Biotechnology and Engineering named after N.I. Vavilov, Saratov, Russia
| | - Alexey D Zaberezhny
- All-Russian Scientific Research and Technological Institute of Biological Industry, Biocombinat, Moscow, Russia
| | - Olga S Larionova
- Laboratory for Fundamental and Applied Research, Saratov State University of Genetics, Biotechnology and Engineering named after N.I. Vavilov, Saratov, Russia
- Department for Microbiology and Biotechnology, Saratov State University of Genetics, Biotechnology and Engineering named after N.I. Vavilov, Saratov, Russia
| |
Collapse
|
4
|
Huang BD, Kim D, Yu Y, Wilson CJ. Engineering intelligent chassis cells via recombinase-based MEMORY circuits. Nat Commun 2024; 15:2418. [PMID: 38499601 PMCID: PMC10948884 DOI: 10.1038/s41467-024-46755-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 03/08/2024] [Indexed: 03/20/2024] Open
Abstract
Synthetic biologists seek to engineer intelligent living systems capable of decision-making, communication, and memory. Separate technologies exist for each tenet of intelligence; however, the unification of all three properties in a living system has not been achieved. Here, we engineer completely intelligent Escherichia coli strains that harbor six orthogonal and inducible genome-integrated recombinases, forming Molecularly Encoded Memory via an Orthogonal Recombinase arraY (MEMORY). MEMORY chassis cells facilitate intelligence via the discrete multi-input regulation of recombinase functions enabling inheritable DNA inversions, deletions, and genomic insertions. MEMORY cells can achieve programmable and permanent gain (or loss) of functions extrachromosomally or from a specific genomic locus, without the loss or modification of the MEMORY platform - enabling the sequential programming and reprogramming of DNA circuits within the cell. We demonstrate all three tenets of intelligence via a probiotic (Nissle 1917) MEMORY strain capable of information exchange with the gastrointestinal commensal Bacteroides thetaiotaomicron.
Collapse
Affiliation(s)
- Brian D Huang
- Georgia Institute of Technology, School of Chemical & Biomolecular Engineering, 311 Ferst Drive, Atlanta, GA, 30332-0100, Georgia
| | - Dowan Kim
- Georgia Institute of Technology, School of Chemical & Biomolecular Engineering, 311 Ferst Drive, Atlanta, GA, 30332-0100, Georgia
| | - Yongjoon Yu
- Georgia Institute of Technology, School of Chemical & Biomolecular Engineering, 311 Ferst Drive, Atlanta, GA, 30332-0100, Georgia
| | - Corey J Wilson
- Georgia Institute of Technology, School of Chemical & Biomolecular Engineering, 311 Ferst Drive, Atlanta, GA, 30332-0100, Georgia.
| |
Collapse
|
5
|
Ładziak M, Prochwicz E, Gut K, Gomza P, Jaworska K, Ścibek K, Młyńska-Witek M, Kadej-Zajączkowska K, Lillebaek EMS, Kallipolitis BH, Krawczyk-Balska A. Inactivation of lmo0946 ( sif) induces the SOS response and MGEs mobilization and silences the general stress response and virulence program in Listeria monocytogenes. Front Microbiol 2024; 14:1324062. [PMID: 38239729 PMCID: PMC10794523 DOI: 10.3389/fmicb.2023.1324062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 12/05/2023] [Indexed: 01/22/2024] Open
Abstract
Bacteria have evolved numerous regulatory pathways to survive in changing environments. The SOS response is an inducible DNA damage repair system that plays an indispensable role in bacterial adaptation and pathogenesis. Here we report a discovery of the previously uncharacterized protein Lmo0946 as an SOS response interfering factor (Sif) in the human pathogen Listeria monocytogenes. Functional genetic studies demonstrated that sif is indispensable for normal growth of L. monocytogenes in stress-free as well as multi-stress conditions, and sif contributes to susceptibility to β-lactam antibiotics, biofilm formation and virulence. Absence of Sif promoted the SOS response and elevated expression of mobilome genes accompanied by mobilization of the A118 prophage and ICELm-1 mobile genetic elements (MGEs). These changes were found to be associated with decreased expression of general stress response genes from the σB regulon as well as virulence genes, including the PrfA regulon. Together, this study uncovers an unexpected role of a previously uncharacterized factor, Sif, as an inhibitor of the SOS response in L. monocytogenes.
Collapse
Affiliation(s)
- Magdalena Ładziak
- Department of Molecular Microbiology, Biological and Chemical Research Centre, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Emilia Prochwicz
- Department of Molecular Microbiology, Biological and Chemical Research Centre, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Karina Gut
- Department of Molecular Microbiology, Biological and Chemical Research Centre, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Patrycja Gomza
- Department of Molecular Microbiology, Biological and Chemical Research Centre, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Karolina Jaworska
- Department of Molecular Microbiology, Biological and Chemical Research Centre, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Katarzyna Ścibek
- Department of Molecular Microbiology, Biological and Chemical Research Centre, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Marta Młyńska-Witek
- Department of Molecular Microbiology, Biological and Chemical Research Centre, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Katarzyna Kadej-Zajączkowska
- Department of Molecular Microbiology, Biological and Chemical Research Centre, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Eva M. S. Lillebaek
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Birgitte H. Kallipolitis
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Agata Krawczyk-Balska
- Department of Molecular Microbiology, Biological and Chemical Research Centre, Faculty of Biology, University of Warsaw, Warsaw, Poland
| |
Collapse
|
6
|
Short AE, Kim D, Milner PT, Wilson CJ. Next generation synthetic memory via intercepting recombinase function. Nat Commun 2023; 14:5255. [PMID: 37644045 PMCID: PMC10465543 DOI: 10.1038/s41467-023-41043-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 08/22/2023] [Indexed: 08/31/2023] Open
Abstract
Here we present a technology to facilitate synthetic memory in a living system via repurposing Transcriptional Programming (i.e., our decision-making technology) parts, to regulate (intercept) recombinase function post-translation. We show that interception synthetic memory can facilitate programmable loss-of-function via site-specific deletion, programmable gain-of-function by way of site-specific inversion, and synthetic memory operations with nested Boolean logical operations. We can expand interception synthetic memory capacity more than 5-fold for a single recombinase, with reconfiguration specificity for multiple sites in parallel. Interception synthetic memory is ~10-times faster than previous generations of recombinase-based memory. We posit that the faster recombination speed of our next-generation memory technology is due to the post-translational regulation of recombinase function. This iteration of synthetic memory is complementary to decision-making via Transcriptional Programming - thus can be used to develop intelligent synthetic biological systems for myriad applications.
Collapse
Affiliation(s)
- Andrew E Short
- Georgia Institute of Technology, School of Chemical and Biomolecular Engineering, Atlanta, GA, USA
| | - Dowan Kim
- Georgia Institute of Technology, School of Chemical and Biomolecular Engineering, Atlanta, GA, USA
| | - Prasaad T Milner
- Georgia Institute of Technology, School of Chemical and Biomolecular Engineering, Atlanta, GA, USA
| | - Corey J Wilson
- Georgia Institute of Technology, School of Chemical and Biomolecular Engineering, Atlanta, GA, USA.
| |
Collapse
|
7
|
Son B, Kim Y, Yu B, Kong M. Isolation and Characterization of a Weizmannia coagulans Bacteriophage Youna2 and Its Endolysin PlyYouna2. J Microbiol Biotechnol 2023; 33:1050-1056. [PMID: 37218442 PMCID: PMC10468668 DOI: 10.4014/jmb.2303.03021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/18/2023] [Accepted: 04/27/2023] [Indexed: 05/24/2023]
Abstract
Weizmannia coagulans (formerly Bacillus coagulans) is Gram-positive, and spore-forming bacteria causing food spoilage, especially in acidic canned food products. To control W. coagulans, we isolated a bacteriophage Youna2 from a sewage sludge sample. Morphological analysis revealed that phage Youna2 belongs to the Siphoviridae family with a non-contractile and flexible tail. Youna2 has 52,903 bp double-stranded DNA containing 61 open reading frames. There are no lysogeny-related genes, suggesting that Youna2 is a virulent phage. plyYouna2, a putative endolysin gene was identified in the genome of Youna2 and predicted to be composed of a N-acetylmuramoyl-L-alanine amidase domain (PF01520) at the N-terminus and unknown function DUF5776 domain (PF19087) at the C-terminus. While phage Youna2 has a narrow host range, infecting only certain strains of W. coagulans, PlyYouna2 exhibited a broad antimicrobial spectrum beyond the Bacillus genus. Interestingly, PlyYouna2 can lyse Gram-negative bacteria such as Escherichia coli, Yersinia enterocolitica, Pseudomonas putida and Cronobacter sakazakii without other additives to destabilize bacterial outer membrane. To the best of our knowledge, Youna2 is the first W. coagulans-infecting phage and we speculate its endolysin PlyYouna2 can provide the basis for the development of a novel biocontrol agent against various foodborne pathogens.
Collapse
Affiliation(s)
- Bokyung Son
- Department of Food Biotechnology, Dong-A University, Busan 49315, Republic of Korea
| | - Youna Kim
- Department of Food Science and Technology, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea
| | - Booyoung Yu
- Department of Food Science and Technology, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea
| | - Minsuk Kong
- Department of Food Science and Technology, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea
| |
Collapse
|
8
|
Functional Genomics Identified Novel Genes Involved in Growth at Low Temperatures in Listeria monocytogenes. Microbiol Spectr 2022; 10:e0071022. [PMID: 35735974 PMCID: PMC9431668 DOI: 10.1128/spectrum.00710-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Listeria monocytogenes (Lm) is a foodborne pathogen that can cause severe human illness. Standard control measures for restricting bacterial growth, such as refrigeration, are often inadequate as Lm grows well at low temperatures. To identify genes involved in growth at low temperatures, a powerful functional genomics method Tn-seq was performed in this study. This genome-wide screening comprehensively identified the known and novel genetic determinants involved in low-temperature growth. A novel gene lmo1366, encoding rRNA methyltransferase, was identified to play an essential role in Lm growth at 16°C. In contrast, the inactivation of lmo2301, a gene encoding the terminase of phage A118, significantly enhanced the growth of Lm at 16°C. The deletion of lmo1366 or lmo2301 resulted in cell morphology alterations and impaired the growth rate in milk and other conditions at low temperatures. Transcriptomic analysis revealed that the Δlmo1366 and Δlmo2301 mutants exhibited altered transcriptional patterns compared to the wild-type strain at 16°C with significant differences in genes involved in ribosome structural stability and function, and membrane biogenesis, respectively. This work uncovered novel genetic determinants involved in Lm growth at 16°C, which could lead to a better understanding of how bacteria survive and multiply at low temperatures. Furthermore, these findings could potentially contribute to developing novel antibacterial strategies under low-temperature conditions. IMPORTANCEListeria monocytogenes is a Gram-positive pathogen that contributes to foodborne outbreaks due to its ability to survive at low temperatures. However, the genetic determinants of Lm involved in growth at low temperatures have not been fully defined. Here, the genetic determinants involved in the low-temperature growth of Lm were comprehensively identified on a genome-wide scale by Tn-seq. The gene lmo1366, encoding rRNA methyltransferase, was identified essential for growth under low-temperature conditions. On the other hand, the gene lmo2301, encoding terminase of phage A118, plays a negative role in bacterial growth at low temperatures. The transcriptomic analysis revealed the potential mechanisms. These findings lead to a better understanding of how bacteria survive and multiply at low temperatures and could provide unique targets for novel antibacterial strategies under low-temperature conditions.
Collapse
|
9
|
Azulay G, Pasechnek A, Stadnyuk O, Ran-Sapir S, Fleisacher AM, Borovok I, Sigal N, Herskovits AA. A dual-function phage regulator controls the response of cohabiting phage elements via regulation of the bacterial SOS response. Cell Rep 2022; 39:110723. [PMID: 35443160 PMCID: PMC9043618 DOI: 10.1016/j.celrep.2022.110723] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 02/09/2022] [Accepted: 03/30/2022] [Indexed: 12/02/2022] Open
Abstract
Listeria monocytogenes strain 10403S harbors two phage elements in its chromosome; one produces infective virions and the other tailocins. It was previously demonstrated that induction of the two elements is coordinated, as they are regulated by the same anti-repressor. In this study, we identified AriS as another phage regulator that controls the two elements, bearing the capacity to inhibit their lytic induction under SOS conditions. AriS is a two-domain protein that possesses two distinct activities, one regulating the genes of its encoding phage and the other downregulating the bacterial SOS response. While the first activity associates with the AriS N-terminal AntA/AntB domain, the second associates with its C-terminal ANT/KilAC domain. The ANT/KilAC domain is conserved in many AriS-like proteins of listerial and non-listerial prophages, suggesting that temperate phages acquired such dual-function regulators to align their response with the other phage elements that cohabit the genome. Listeria monocytogenes strain 10403S harbors two phage elements in its chromosome The lytic response of the phage elements is synchronized under SOS conditions AriS, a dual-function phage regulator, fine-tunes the elements’ response under SOS Aris regulates both its encoding phage and the bacterial SOS response
Collapse
Affiliation(s)
- Gil Azulay
- The Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel
| | - Anna Pasechnek
- The Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel
| | - Olga Stadnyuk
- The Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel
| | - Shai Ran-Sapir
- The Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel
| | - Ana Mejia Fleisacher
- The Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel
| | - Ilya Borovok
- The Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel
| | - Nadejda Sigal
- The Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel
| | - Anat A Herskovits
- The Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel.
| |
Collapse
|
10
|
Control of the Serine Integrase Reaction: Roles of the Coiled-Coil and Helix E Regions in DNA Site Synapsis and Recombination. J Bacteriol 2021; 203:e0070320. [PMID: 34060907 DOI: 10.1128/jb.00703-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Bacteriophage serine integrases catalyze highly specific recombination reactions between defined DNA segments called att sites. These reactions are reversible depending upon the presence of a second phage-encoded directionality factor. The bipartite C-terminal DNA-binding region of integrases includes a recombinase domain (RD) connected to a zinc-binding domain (ZD), which contains a long flexible coiled-coil (CC) motif that extends away from the bound DNA. We directly show that the identities of the phage A118 integrase att sites are specified by the DNA spacing between the RD and ZD DNA recognition determinants, which in turn directs the relative trajectories of the CC motifs on each subunit of the att-bound integrase dimer. Recombination between compatible dimer-bound att sites requires minimal-length CC motifs and 14 residues surrounding the tip where the pairing of CC motifs between synapsing dimers occurs. Our alanine-scanning data suggest that molecular interactions between CC motif tips may differ in integrative (attP × attB) and excisive (attL × attR) recombination reactions. We identify mutations in 5 residues within the integrase oligomerization helix that control the remodeling of dimers into tetramers during synaptic complex formation. Whereas most of these gain-of-function mutants still require the CC motifs for synapsis, one mutant efficiently, but indiscriminately, forms synaptic complexes without the CC motifs. However, the CC motifs are still required for recombination, suggesting a function for the CC motifs after the initial assembly of the integrase synaptic tetramer. IMPORTANCE The robust and exquisitely regulated site-specific recombination reactions promoted by serine integrases are integral to the life cycle of temperate bacteriophage and, in the case of the A118 prophage, are an important virulence factor of Listeria monocytogenes. The properties of these recombinases have led to their repurposing into tools for genetic engineering and synthetic biology. In this report, we identify determinants regulating synaptic complex formation between correct DNA sites, including the DNA architecture responsible for specifying the identity of recombination sites, features of the unique coiled-coil structure on the integrase that are required to initiate synapsis, and amino acid residues on the integrase oligomerization helix that control the remodeling of synapsing dimers into a tetramer active for DNA strand exchange.
Collapse
|
11
|
Genomic Analysis of Prophages Recovered from Listeria monocytogenes Lysogens Found in Seafood and Seafood-Related Environment. Microorganisms 2021; 9:microorganisms9071354. [PMID: 34206706 PMCID: PMC8303350 DOI: 10.3390/microorganisms9071354] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/18/2021] [Accepted: 06/19/2021] [Indexed: 11/23/2022] Open
Abstract
A prophage is a phage-related sequence that is integrated into a bacterial chromosome. Prophages play an important role in bacterial evolution, survival, and persistence. To understand the impact of Listeria prophages on their host genome organizations, this work sequenced two L. monocytogenes strains (134LM and 036LM), previously identified as lysogens by mitomycin C induction. Draft genomes were generated with assembly sizes of 2,953,877 bp and 3,000,399 bp. One intact prophage (39,532 bp) was inserted into the comK gene of the 134LM genome. Two intact prophages (48,684 bp and 39,488 bp) were inserted in tRNA-Lys and elongation-factor genes of the 036LM genome. The findings confirmed the presence of three corresponding induced phages previously obtained by mitomycin C induction. Comparative genomic analysis of three prophages obtained in the newly sequenced lysogens with 61 prophages found in L. monocytogenes genomes, available in public databases, identified six major clusters using whole genome-based phylogenetic analysis. The results of the comparative genomic analysis of the prophage sequences provides knowledge about the diversity of Listeria prophages and their distribution among Listeria genomes in diverse environments, including different sources or geographical regions. In addition, the prophage sequences and their insertion sites contribute to the genomic diversity of L. monocytogenes genomes. These data of prophage sequences, prophage insertion sites, and prophage sequence comparisons, together with ANIb confirmation, could be useful for L. monocytogenes classification by prophages. One potential development could be refinement of prophage typing tools for monitoring or surveillance of L. monocytogenes contamination and transmission.
Collapse
|
12
|
Boichis E, Sigal N, Borovok I, Herskovits AA. A Metzincin and TIMP-Like Protein Pair of a Phage Origin Sensitize Listeria monocytogenes to Phage Lysins and Other Cell Wall Targeting Agents. Microorganisms 2021; 9:1323. [PMID: 34207021 PMCID: PMC8235301 DOI: 10.3390/microorganisms9061323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/14/2021] [Accepted: 06/15/2021] [Indexed: 11/17/2022] Open
Abstract
Infection of mammalian cells by Listeria monocytogenes (Lm) was shown to be facilitated by its phage elements. In a search for additional phage remnants that play a role in Lm's lifecycle, we identified a conserved locus containing two XRE regulators and a pair of genes encoding a secreted metzincin protease and a lipoprotein structurally similar to a TIMP-family metzincin inhibitor. We found that the XRE regulators act as a classic CI/Cro regulatory switch that regulates the expression of the metzincin and TIMP-like genes under intracellular growth conditions. We established that when these genes are expressed, their products alter Lm morphology and increase its sensitivity to phage mediated lysis, thereby enhancing virion release. Expression of these proteins also sensitized the bacteria to cell wall targeting compounds, implying that they modulate the cell wall structure. Our data indicate that these effects are mediated by the cleavage of the TIMP-like protein by the metzincin, and its subsequent release to the extracellular milieu. While the importance of this locus to Lm pathogenicity remains unclear, the observation that this phage-associated protein pair act upon the bacterial cell wall may hold promise in the field of antibiotic potentiation to combat antibiotic resistant bacterial pathogens.
Collapse
Affiliation(s)
| | | | | | - Anat A. Herskovits
- The Shmunis School of Biomedicine and Cancer Research, Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel; (E.B.); (N.S.); (I.B.)
| |
Collapse
|
13
|
da Silva DAL, de Melo Tavares R, Camargo AC, Yamatogi RS, De Martinis ECP, Nero LA. Biofilm growth by Listeria monocytogenes on stainless steel and expression of biofilm-related genes under stressing conditions. World J Microbiol Biotechnol 2021; 37:119. [PMID: 34131813 DOI: 10.1007/s11274-021-03092-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 06/11/2021] [Indexed: 12/01/2022]
Abstract
This research was carried out to investigate the differences in adhesion and growth during biofilm formation of L. monocytogenes from different sources and clonal complexes. Biofilm by L. monocytogenes (isolates CLIST 441 and 7: both lineage I, serotype 1/2b, CC3; isolates 19 and 508: both lineage II, serotype 1/2c, CC9) was grown on stainless steel coupons under different stressing conditions (NaCl, curing salts and quaternary ammonium compounds-QAC), to determine the expression of different genes involved in biofilm formation and stress response. CLIST 441, which carries a premature stop codon (PMSC) in agrC, formed high-density biofilms in the presence of QAC (7.5% w/v) or curing salts (10% w/v). Reverse Transcriptase-qPCR results revealed that L. monocytogenes isolates presented differences in transcriptional profile of genes related to biofilm formation and adaptation to environmental conditions. Our results demonstrated how L. monocytogenes can survive, multiply and form biofilm under adverse conditions related to food processing environments. Differences in transcriptional expression were observed, highlighting the role of regulatory gene networks for particular serotypes under different stress responses.
Collapse
Affiliation(s)
- Danilo Augusto Lopes da Silva
- InsPOA - Laboratório de Inspeção de Produtos de Origem Animal, Departamento de Veterinária, Universidade Federal de Viçosa, Campus Viçosa, Centro, Viçosa, MG, 36570-900, Brazil
| | - Rafaela de Melo Tavares
- InsPOA - Laboratório de Inspeção de Produtos de Origem Animal, Departamento de Veterinária, Universidade Federal de Viçosa, Campus Viçosa, Centro, Viçosa, MG, 36570-900, Brazil
| | - Anderson Carlos Camargo
- InsPOA - Laboratório de Inspeção de Produtos de Origem Animal, Departamento de Veterinária, Universidade Federal de Viçosa, Campus Viçosa, Centro, Viçosa, MG, 36570-900, Brazil.,Departamento de Tecnologia de Alimentos, Universidade Federal de Viçosa, Campus Viçosa, Centro, Viçosa, MG, 36570-900, Brazil
| | - Ricardo Seiti Yamatogi
- InsPOA - Laboratório de Inspeção de Produtos de Origem Animal, Departamento de Veterinária, Universidade Federal de Viçosa, Campus Viçosa, Centro, Viçosa, MG, 36570-900, Brazil
| | - Elaine Cristina Pereira De Martinis
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av. do Cafés/n, Vila Monte Alegre, Ribeirão Preto, SP, 14040-903, Brazil
| | - Luís Augusto Nero
- InsPOA - Laboratório de Inspeção de Produtos de Origem Animal, Departamento de Veterinária, Universidade Federal de Viçosa, Campus Viçosa, Centro, Viçosa, MG, 36570-900, Brazil.
| |
Collapse
|
14
|
Complete nucleotide sequence analysis and identification of 7-cyano-7-deazaguanine (PreQ 0) biosynthesis-related genes in the novel Bacillus subtilis-infecting Siphoviridae family phage BSP7. Arch Virol 2021; 166:1795-1799. [PMID: 33839920 DOI: 10.1007/s00705-021-05056-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 02/12/2021] [Indexed: 10/21/2022]
Abstract
In this study, bacteriophage BSP7, a novel Bacillus subtilis-infecting member of the family Siphoviridae, was isolated from a Korean soybean-based fermented food, Deonjang, using B. subtilis ATCC 21336 as a host. The genome is 55,455 bp long with 39.92% G+C content. A total of 70 ORFs with no tRNA were detected in the genome. A distinct feature of the BSP7 genome among B. subtilis-infecting Siphoviridae family phages is the presence of putative ORFs related to biosynthesis of 7-cyano-7-deazaguanine (PreQ0), a precursor of queuosine and archaeosine biosynthesis. Bioinformatic analysis revealed that the genome of BSP7 does not exhibit any significant similarities to other phages with sequences in the NCBI database. A comparative genomic analysis also confirmed the uniqueness of BSP7 within the family Siphoviridae.
Collapse
|
15
|
Marei EM. Isolation and Characterization of <i>Pseudomonas aeruginosa</i> and its Virulent Bacteriophages. Pak J Biol Sci 2021; 23:491-500. [PMID: 32363834 DOI: 10.3923/pjbs.2020.491.500] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND AND OBJECTIVE Pseudomonas aeruginosa is a free living bacterium in widely different areas such as plants, soil, water and other moist locations. It is pathogenic to plants and humans. P. aeruginosa causes several disease symptoms to plants such as wet rot and curved leaves. The virulent bacterial viruses of P. aeruginosa were found to be of widespread occurrence in nature and isolated from widely different sources. Bacterial viruses were applied to control pathogenic bacteria in different fields and successfully. Therefore, this work aimed to study the different characteristics of P. aeruginosa lytic phage isolates. Moreover, the bio-control of P. aeruginosa by lytic phage isolates was also studied. MATERIAL AND METHODS Different physical and molecular characteristics were assayed and determined of P. aeruginosa lytic bacteriophages. Also, the effect of phage isolates on P. aeruginosa as a bio-control under lab condition was studied. RESULTS Pseudomonas aeruginosa pathogenic bacterium was isolated from a sewage water sample. Two lytic bacteriophages specific to P. aeruginosa were isolated from same sewage water sample and designated Pa1 and Pa2. Both phage isolates (Pa1 and Pa2) found to be stable in 90°C and different pH low and high levels. The total count of P. aeruginosa decreased after 48 h in broth treated with lytic phages. RAPD-PCR amplification was indicated that the two phage isolates (Pa1 and Pa2) are belonging to two different phage types. CONCLUSION The results of this study indicated that both lytic phage isolates could be used as a biological control agents against the plant pathogen P. aeuroginosa.
Collapse
|
16
|
Palaiodimou L, Fanning S, Fox EM. Genomic insights into persistence of Listeria species in the food processing environment. J Appl Microbiol 2021; 131:2082-2094. [PMID: 33768629 DOI: 10.1111/jam.15089] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/18/2021] [Accepted: 03/21/2021] [Indexed: 12/01/2022]
Abstract
AIMS Listeria species may colonize and persist in food processing facilities for prolonged periods of time, despite hygiene interventions in place. To understand the genetic factors contributing to persistence of Listeria strains, this study undertook a comparative analysis of seven persistent and six presumed non-persistent strains, isolated from a single food processing environment, to identify genetic markers correlating to promoting persistence of Listeria strains, through whole genome sequence analysis. METHODS AND RESULTS A diverse pool of genetic markers relevant to hygiene tolerance was identified, including disinfectant resistance markers qacH, emrC and the efflux cassette bcrABC. Both persistent and presumed non-persistent cohorts encoded a range of stress resistance markers, including heavy metal resistance, oxidative and pH stress, although trends were associated with each cohort (e.g., qacH and cadA1C resistance was more frequently found in persistent isolates). Persistent isolates were more likely to contain mutations associated with attenuated virulence, including a truncated InlA. Plasmids and transposons were widespread between cohorts. CONCLUSIONS Results suggest that no single genetic marker identified was universally responsible for a strain's ability to persist. Persistent strains were more likely to harbour mutation associated with hypovirulence. SIGNIFICANCE AND IMPACT OF THE STUDY This study provides additional insights into the distribution of genetic elements relevant to persistence across Listeria species, as well as strain virulence potential.
Collapse
Affiliation(s)
- L Palaiodimou
- Department of Applied Sciences, Northumbria University, Newcastle upon Tyne, UK
| | - S Fanning
- UCD-Centre for Food Safety, School of Public Health, Physiotherapy and Sports Science, University College Dublin, Dublin, Ireland.,Institute for Global Food Security, Queen's University Belfast, Belfast, UK
| | - E M Fox
- Department of Applied Sciences, Northumbria University, Newcastle upon Tyne, UK
| |
Collapse
|
17
|
Complete Genome Sequences of Three Listeria monocytogenes Bacteriophage Propagation Strains. Microbiol Resour Announc 2021; 10:10/1/e01159-20. [PMID: 33414304 PMCID: PMC8407704 DOI: 10.1128/mra.01159-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Bacteriophages can be used as a biocontrol for the foodborne pathogen Listeria monocytogenes. Propagation of phages is a necessary step for their use in experimental studies and biocontrol applications. Here, we present the complete genomes of three Listeria monocytogenes strains commonly used as propagation hosts for Listeria phages. Bacteriophages can be used as a biocontrol for the foodborne pathogen Listeria monocytogenes. Propagation of phages is a necessary step for their use in experimental studies and biocontrol applications. Here, we present the complete genomes of three Listeria monocytogenes strains commonly used as propagation hosts for Listeria phages.
Collapse
|
18
|
Zamudio R, Haigh RD, Ralph JD, De Ste Croix M, Tasara T, Zurfluh K, Kwun MJ, Millard AD, Bentley SD, Croucher NJ, Stephan R, Oggioni MR. Lineage-specific evolution and gene flow in Listeria monocytogenes are independent of bacteriophages. Environ Microbiol 2020; 22:5058-5072. [PMID: 32483914 PMCID: PMC7614921 DOI: 10.1111/1462-2920.15111] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 05/26/2020] [Accepted: 05/30/2020] [Indexed: 11/29/2022]
Abstract
Listeria monocytogenes is a foodborne pathogen causing systemic infection with high mortality. To allow efficient tracking of outbreaks a clear definition of the genomic signature of a cluster of related isolates is required, but lineage-specific characteristics call for a more detailed understanding of evolution. In our work, we used core genome MLST (cgMLST) to identify new outbreaks combined to core genome SNP analysis to characterize the population structure and gene flow between lineages. Whilst analysing differences between the four lineages of L. monocytogenes we have detected differences in the recombination rate, and interestingly also divergence in the SNP differences between sub-lineages. In addition, the exchange of core genome variation between the lineages exhibited a distinct pattern, with lineage III being the best donor for horizontal gene transfer. Whilst attempting to link bacteriophage-mediated transduction to observed gene transfer, we found an inverse correlation between phage presence in a lineage and the extent of recombination. Irrespective of the profound differences in recombination rates observed between sub-lineages and lineages, we found that the previously proposed cut-off of 10 allelic differences in cgMLST can be still considered valid for the definition of a foodborne outbreak cluster of L. monocytogenes.
Collapse
Affiliation(s)
- Roxana Zamudio
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - Richard D Haigh
- Department of Respiratory Sciences, University of Leicester, Leicester, UK
| | - Joseph D Ralph
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - Megan De Ste Croix
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - Taurai Tasara
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Katrin Zurfluh
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Min Jung Kwun
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College London, London, UK
| | - Andrew D Millard
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - Stephen D Bentley
- Parasites and Microbes, Wellcome Trust Sanger Institute, Hinxton, UK
| | - Nicholas J Croucher
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College London, London, UK
| | - Roger Stephan
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Marco R Oggioni
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| |
Collapse
|
19
|
Bacteriophage biocontrol to fight Listeria outbreaks in seafood. Food Chem Toxicol 2020; 145:111682. [PMID: 32805341 DOI: 10.1016/j.fct.2020.111682] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 08/04/2020] [Accepted: 08/07/2020] [Indexed: 12/19/2022]
Abstract
Listeria monocytogenes is a well-known pathogen responsible for the severe foodborne disease listeriosis. The control of L. monocytogenes occurrence in seafood products and seafood processing environments is an important challenge for the seafood industry and the public health sector. However, bacteriophage biocontrol shows great potential to be used as safety control measure in seafood. This review provides an update on Listeria-specific bacteriophages, focusing on their application as a safe and natural strategy to prevent L. monocytogenes contamination and growth in seafood products and seafood processing environments. Furthermore, the main properties required from bacteriophages intended to be used as biocontrol tools are summarized and emerging strategies to overcome the current limitations are considered. Also, major aspects relevant for bacteriophage production at industrial scale, their access to the market, as well as the current regulatory status of bacteriophage-based solutions for Listeria biocontrol are discussed.
Collapse
|
20
|
Glycotyping and Specific Separation of Listeria monocytogenes with a Novel Bacteriophage Protein Tool Kit. Appl Environ Microbiol 2020; 86:AEM.00612-20. [PMID: 32358009 PMCID: PMC7301860 DOI: 10.1128/aem.00612-20] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 04/27/2020] [Indexed: 12/13/2022] Open
Abstract
Listeria monocytogenes is a ubiquitous opportunistic pathogen that presents a major concern to the food industry due to its propensity to cause foodborne illness. The Listeria genus contains 15 different serovars, with most of the variance depending on the wall-associated teichoic acid glycopolymers, which confer somatic antigenicity. Strains belonging to serovars 1/2 and 4b cause the vast majority of listeriosis cases and outbreaks, meaning that regulators, as well as the food industry itself, have an interest in rapidly identifying isolates of these particular serovars in food processing environments. Current methods for phenotypic serovar differentiation are slow and lack accuracy, and the food industry could benefit from new technologies allowing serovar-specific isolation. Therefore, the novel method described here for rapid glycotype determination could present a valuable asset to detect and control this bacterium. The Gram-positive pathogen Listeria monocytogenes can be subdivided into at least 12 different serovars, based on the differential expression of a set of somatic and flagellar antigens. Of note, strains belonging to serovars 1/2a, 1/2b, and 4b cause the vast majority of foodborne listeriosis cases and outbreaks. The standard protocol for serovar determination involves an agglutination method using a set of sera containing cell surface-recognizing antibodies. However, this procedure is imperfect in both precision and practicality, due to discrepancies resulting from subjective interpretation. Furthermore, the exact antigenic epitopes remain unclear, due to the preparation of the absorbed sera and the complex nature of polyvalent antibody binding. Here, we present a novel method for quantitative somatic antigen differentiation using a set of recombinant affinity proteins (cell wall-binding domains and receptor-binding proteins) derived from a collection of Listeria bacteriophages. These proteins enable rapid, objective, and precise identification of the different teichoic acid glycopolymer structures, which represent the O-antigens, and allow a near-complete differentiation. This glycotyping approach confirmed serovar designations of over 60 previously characterized Listeria strains. Using select phage receptor-binding proteins coupled to paramagnetic beads, we also demonstrate the ability to specifically isolate serovar 1/2 or 4b cells from a mixed culture. In addition, glycotyping led to the discovery that strains designated serovar 4e actually possess an intermediate 4b-4d teichoic acid glycosylation pattern, underpinning the high discerning power and precision of this novel technique. IMPORTANCEListeria monocytogenes is a ubiquitous opportunistic pathogen that presents a major concern to the food industry due to its propensity to cause foodborne illness. The Listeria genus contains 15 different serovars, with most of the variance depending on the wall-associated teichoic acid glycopolymers, which confer somatic antigenicity. Strains belonging to serovars 1/2 and 4b cause the vast majority of listeriosis cases and outbreaks, meaning that regulators, as well as the food industry itself, have an interest in rapidly identifying isolates of these particular serovars in food processing environments. Current methods for phenotypic serovar differentiation are slow and lack accuracy, and the food industry could benefit from new technologies allowing serovar-specific isolation. Therefore, the novel method described here for rapid glycotype determination could present a valuable asset to detect and control this bacterium.
Collapse
|
21
|
Mageeney CM, Lau BY, Wagner JM, Hudson CM, Schoeniger JS, Krishnakumar R, Williams KP. New candidates for regulated gene integrity revealed through precise mapping of integrative genetic elements. Nucleic Acids Res 2020; 48:4052-4065. [PMID: 32182341 PMCID: PMC7192596 DOI: 10.1093/nar/gkaa156] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 02/26/2020] [Accepted: 02/28/2020] [Indexed: 12/12/2022] Open
Abstract
Integrative genetic elements (IGEs) are mobile multigene DNA units that integrate into and excise from host bacterial genomes. Each IGE usually targets a specific site within a conserved host gene, integrating in a manner that preserves target gene function. However, a small number of bacterial genes are known to be inactivated upon IGE integration and reactivated upon excision, regulating phenotypes of virulence, mutation rate, and terminal differentiation in multicellular bacteria. The list of regulated gene integrity (RGI) cases has been slow-growing because IGEs have been challenging to precisely and comprehensively locate in genomes. We present software (TIGER) that maps IGEs with unprecedented precision and without attB site bias. TIGER uses a comparative genomic, ping-pong BLAST approach, based on the principle that the IGE integration module (i.e. its int-attP region) is cohesive. The resultant IGEs from 2168 genomes, along with integrase phylogenetic analysis and gene inactivation tests, revealed 19 new cases of genes whose integrity is regulated by IGEs (including dut, eccCa1, gntT, hrpB, merA, ompN, prkA, tqsA, traG, yifB, yfaT and ynfE), as well as recovering previously known cases (in sigK, spsM, comK, mlrA and hlb genes). It also recovered known clades of site-promiscuous integrases and identified possible new ones.
Collapse
Affiliation(s)
- Catherine M Mageeney
- Sandia National Laboratories, Systems Biology Department, Livermore, CA 94551-0969, USA
| | - Britney Y Lau
- Sandia National Laboratories, Systems Biology Department, Livermore, CA 94551-0969, USA
| | - Julian M Wagner
- Sandia National Laboratories, Systems Biology Department, Livermore, CA 94551-0969, USA
| | - Corey M Hudson
- Sandia National Laboratories, Systems Biology Department, Livermore, CA 94551-0969, USA
| | - Joseph S Schoeniger
- Sandia National Laboratories, Systems Biology Department, Livermore, CA 94551-0969, USA
| | - Raga Krishnakumar
- Sandia National Laboratories, Systems Biology Department, Livermore, CA 94551-0969, USA
| | - Kelly P Williams
- Sandia National Laboratories, Systems Biology Department, Livermore, CA 94551-0969, USA
| |
Collapse
|
22
|
Genomic Differences between Listeria monocytogenes EGDe Isolates Reveal Crucial Roles for SigB and Wall Rhamnosylation in Biofilm Formation. J Bacteriol 2020; 202:JB.00692-19. [PMID: 31964697 PMCID: PMC7167478 DOI: 10.1128/jb.00692-19] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 01/16/2020] [Indexed: 12/20/2022] Open
Abstract
Biofilms are an important mode of growth in many settings. Here, we looked at small differences in the genomes of the bacterium Listeria monocytogenes isolate EGDe and used them to find out how biofilms form. This important fundamental information may help new treatments to be developed and also highlights the fact that isolates of the same identity often diverge. Listeria monocytogenes is a Gram-positive firmicute that causes foodborne infections, in part due to its ability to use multiple strategies, including biofilm formation, to survive adverse growth conditions. As a potential way to screen for genes required for biofilm formation, we harnessed the ability of bacteria to accumulate mutations in the genome over time, diverging the properties of seemingly identical strains. By sequencing the genomes of four laboratory reference strains of the commonly used L. monocytogenes EGDe, we showed that each isolate contains single nucleotide polymorphisms (SNPs) compared with the reference genome. We discovered that two SNPs, contained in two independent genes within one of the isolates, impacted biofilm formation. Using bacterial genetics and phenotypic assays, we confirmed that rsbU and rmlA influence biofilm formation. RsbU is the upstream regulator of the alternative sigma factor SigB, and mutation of either rsbU or sigB increased biofilm formation. In contrast, deletion of rmlA, which encodes the first enzyme for TDP-l-rhamnose biosynthesis, resulted in a reduction in the amount of biofilm formed. Further analysis of biofilm formation in a strain that still produces TDP-l-rhamnose but which cannot decorate the wall teichoic acid with rhamnose (rmlT mutant) showed that it is the decorated wall teichoic acid that is required for adhesion of the cells to surfaces. Together, these data uncover novel routes by which biofilm formation by L. monocytogenes can be impacted. IMPORTANCE Biofilms are an important mode of growth in many settings. Here, we looked at small differences in the genomes of the bacterium Listeria monocytogenes isolate EGDe and used them to find out how biofilms form. This important fundamental information may help new treatments to be developed and also highlights the fact that isolates of the same identity often diverge.
Collapse
|
23
|
Brooks MR, Padilla-Vélez L, Khan TA, Qureshi AA, Pieper JB, Maddox CW, Alam MT. Prophage-Mediated Disruption of Genetic Competence in Staphylococcus pseudintermedius. mSystems 2020; 5:e00684-19. [PMID: 32071159 PMCID: PMC7029219 DOI: 10.1128/msystems.00684-19] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Accepted: 01/27/2020] [Indexed: 11/20/2022] Open
Abstract
Methicillin-resistant Staphylococcus pseudintermedius (MRSP) is a major cause of soft tissue infections in dogs and occasionally infects humans. Hypervirulent multidrug-resistant (MDR) MRSP clones have emerged globally. The sequence types ST71 and ST68, the major epidemic clones of Europe and North America, respectively, have spread to other regions. The genetic factors underlying the success of these clones have not been investigated thoroughly. Here, we performed a comprehensive genomic analysis of 371 S. pseudintermedius isolates to dissect the differences between major clonal lineages. We show that the prevalence of genes associated with antibiotic resistance, virulence, prophages, restriction-modification (RM), and CRISPR/Cas systems differs significantly among MRSP clones. The isolates with GyrA+GrlA mutations, conferring fluoroquinolone resistance, carry more of these genes than those without GyrA+GrlA mutations. ST71 and ST68 clones carry lineage-specific prophages with genes that are likely associated with their increased fitness and virulence. We have discovered that a prophage, SpST71A, is inserted within the comGA gene of the late competence operon comG in the ST71 lineage. A functional comG is essential for natural genetic competence, which is one of the major modes of horizontal gene transfer (HGT) in bacteria. The RM and CRISPR/Cas systems, both major genetic barriers to HGT, are also lineage specific. Clones harboring CRISPR/Cas or a prophage-disrupted comG exhibited less genetic diversity and lower rates of recombination than clones lacking these systems. After Listeria monocytogenes, this is the second example of prophage-mediated competence disruption reported in any bacteria. These findings are important for understanding the evolution and clonal expansion of MDR MRSP clones.IMPORTANCE Staphylococcus pseudintermedius is a bacterium responsible for clinically important infections in dogs and can infect humans. In this study, we performed genomic analysis of 371 S. pseudintermedius isolates to understand the evolution of antibiotic resistance and virulence in this organism. The analysis covered significant reported clones, including ST71 and ST68, the major epidemic clones of Europe and North America, respectively. We show that the prevalence of genes associated with antibiotic resistance, virulence, prophages, and horizontal gene transfer differs among clones. ST71 and ST68 carry prophages with novel virulence and antibiotic resistance genes. Importantly, site-specific integration of a prophage, SpST71A, has led to the disruption of the genetic competence operon comG in ST71 clone. A functional comG is essential for the natural uptake of foreign DNA and thus plays an important role in the evolution of bacteria. This study provides insight into the emergence and evolution of antibiotic resistance and virulence in S. pseudintermedius, which may help in efforts to combat this pathogen.
Collapse
Affiliation(s)
- Michael R Brooks
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Lyan Padilla-Vélez
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Tarannum A Khan
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Azaan A Qureshi
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Jason B Pieper
- Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Carol W Maddox
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Md Tauqeer Alam
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
24
|
Argov T, Sapir SR, Pasechnek A, Azulay G, Stadnyuk O, Rabinovich L, Sigal N, Borovok I, Herskovits AA. Coordination of cohabiting phage elements supports bacteria-phage cooperation. Nat Commun 2019; 10:5288. [PMID: 31754112 PMCID: PMC6872733 DOI: 10.1038/s41467-019-13296-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 10/30/2019] [Indexed: 01/08/2023] Open
Abstract
Bacterial pathogens often carry multiple prophages and other phage-derived elements within their genome, some of which can produce viral particles in response to stress. Listeria monocytogenes 10403S harbors two phage elements in its chromosome, both of which can trigger bacterial lysis under stress: an active prophage (ϕ10403S) that promotes the virulence of its host and can produce infective virions, and a locus encoding phage tail-like bacteriocins. Here, we show that the two phage elements are co-regulated, with the bacteriocin locus controlling the induction of the prophage and thus its activity as a virulence-associated molecular switch. More specifically, a metalloprotease encoded in the bacteriocin locus is upregulated in response to stress and acts as an anti-repressor for CI-like repressors encoded in each phage element. Our results provide molecular insight into the phenomenon of polylysogeny and its intricate adaptation to complex environments.
Collapse
Affiliation(s)
- Tal Argov
- The School of Molecular Cell Biology and Biotechnology, Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv, 69978, Israel
| | - Shai Ran Sapir
- The School of Molecular Cell Biology and Biotechnology, Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv, 69978, Israel
| | - Anna Pasechnek
- The School of Molecular Cell Biology and Biotechnology, Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv, 69978, Israel
| | - Gil Azulay
- The School of Molecular Cell Biology and Biotechnology, Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv, 69978, Israel
| | - Olga Stadnyuk
- The School of Molecular Cell Biology and Biotechnology, Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv, 69978, Israel
| | - Lev Rabinovich
- The School of Molecular Cell Biology and Biotechnology, Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv, 69978, Israel
| | - Nadejda Sigal
- The School of Molecular Cell Biology and Biotechnology, Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv, 69978, Israel
| | - Ilya Borovok
- The School of Molecular Cell Biology and Biotechnology, Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv, 69978, Israel
| | - Anat A Herskovits
- The School of Molecular Cell Biology and Biotechnology, Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv, 69978, Israel.
| |
Collapse
|
25
|
Sumrall ET, Shen Y, Keller AP, Rismondo J, Pavlou M, Eugster MR, Boulos S, Disson O, Thouvenot P, Kilcher S, Wollscheid B, Cabanes D, Lecuit M, Gründling A, Loessner MJ. Phage resistance at the cost of virulence: Listeria monocytogenes serovar 4b requires galactosylated teichoic acids for InlB-mediated invasion. PLoS Pathog 2019; 15:e1008032. [PMID: 31589660 PMCID: PMC6779246 DOI: 10.1371/journal.ppat.1008032] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 08/15/2019] [Indexed: 01/13/2023] Open
Abstract
The intracellular pathogen Listeria monocytogenes is distinguished by its ability to invade and replicate within mammalian cells. Remarkably, of the 15 serovars within the genus, strains belonging to serovar 4b cause the majority of listeriosis clinical cases and outbreaks. The Listeria O-antigens are defined by subtle structural differences amongst the peptidoglycan-associated wall-teichoic acids (WTAs), and their specific glycosylation patterns. Here, we outline the genetic determinants required for WTA decoration in serovar 4b L. monocytogenes, and demonstrate the exact nature of the 4b-specific antigen. We show that challenge by bacteriophages selects for surviving clones that feature mutations in genes involved in teichoic acid glycosylation, leading to a loss of galactose from both wall teichoic acid and lipoteichoic acid molecules, and a switch from serovar 4b to 4d. Surprisingly, loss of this galactose decoration not only prevents phage adsorption, but leads to a complete loss of surface-associated Internalin B (InlB),the inability to form actin tails, and a virulence attenuation in vivo. We show that InlB specifically recognizes and attaches to galactosylated teichoic acid polymers, and is secreted upon loss of this modification, leading to a drastically reduced cellular invasiveness. Consequently, these phage-insensitive bacteria are unable to interact with cMet and gC1q-R host cell receptors, which normally trigger cellular uptake upon interaction with InlB. Collectively, we provide detailed mechanistic insight into the dual role of a surface antigen crucial for both phage adsorption and cellular invasiveness, demonstrating a trade-off between phage resistance and virulence in this opportunistic pathogen. L. monocytogenes is a Gram-positive, food-borne, intracellular pathogen that causes severe infection in susceptible individuals. Interestingly, almost all infections are caused by a subset of strains belonging to certain serovars featuring a complex glycosylation pattern on their cell surface. Using an engineered bacteriophage that specifically recognizes these modifications we selected for mutants that lost these sugars. We found that the resulting strains are severely deficient in invading host cells as we observed that a major virulence factor mediating host cell entry requires galactose decoration of the cell surface for its function. Without this galactose decoration, the strain represents a serovar not associated with disease. Altogether, we show a complex interplay between bacteriophages, bacteria, and the host, demonstrating that cellular invasiveness is dependent upon a serovar-defining structure, which also serves as a phage receptor.
Collapse
Affiliation(s)
- Eric T. Sumrall
- Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Yang Shen
- Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
- * E-mail: (YS); (MJL)
| | - Anja P. Keller
- Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Jeanine Rismondo
- Section of Microbiology and MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, United Kingdom
| | - Maria Pavlou
- Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Marcel R. Eugster
- Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Samy Boulos
- Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Olivier Disson
- Biology of Infection Unit, Institut Pasteur, Paris, France
- Inserm U1117, Paris, France
| | - Pierre Thouvenot
- Biology of Infection Unit, Institut Pasteur, Paris, France
- Inserm U1117, Paris, France
| | - Samuel Kilcher
- Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Bernd Wollscheid
- Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Didier Cabanes
- i3S - Instituto de Investigação e Inovação em Saúde; Institute for Molecular and Cell Biology, University of Porto, Porto, Portugal
| | - Marc Lecuit
- Biology of Infection Unit, Institut Pasteur, Paris, France
- Inserm U1117, Paris, France
- Paris Descartes University, Department of Infectious Diseases and Tropical Medicine, Necker-Enfants Malades University Hospital, APHP, Institut Imagine, Paris, France
| | - Angelika Gründling
- Section of Microbiology and MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, United Kingdom
| | - Martin J. Loessner
- Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
- * E-mail: (YS); (MJL)
| |
Collapse
|
26
|
Meeske AJ, Nakandakari-Higa S, Marraffini LA. Cas13-induced cellular dormancy prevents the rise of CRISPR-resistant bacteriophage. Nature 2019; 570:241-245. [PMID: 31142834 PMCID: PMC6570424 DOI: 10.1038/s41586-019-1257-5] [Citation(s) in RCA: 178] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 04/30/2019] [Indexed: 12/26/2022]
Abstract
Clustered, regularly interspaced, short palindromic repeat (CRISPR) loci of prokaryotes are composed of 30-40 bp repeats separated by equally short sequences of plasmid and bacteriophage origin known as spacers1–3. Spacers are transcribed and processed into short CRISPR RNAs (crRNAs) that are used as guides by CRISPR-associated (Cas) nucleases to recognize and destroy complementary sequences (known as protospacers) within invaders4,5. In contrast to most Cas nucleases which destroy the invader’s DNA4–7, the type VI effector nuclease Cas13 employs RNA guides to locate complementary transcripts and catalyze both sequence-specific cis-, and non-specific trans-RNA cleavage8. While it has been hypothesized that Cas13 naturally defends against RNA phages8, type VI spacer sequences have exclusively been found to match the genomes of double-stranded DNA (dsDNA) phages9,10, suggesting that Cas13 can provide immunity against these invaders. However, whether and how Cas13 utilizes the cis- and/or trans-RNA cleavage activities in defending against dsDNA phages is not understood. Here we show that trans-cleavage of transcripts halts the growth of the host cell and results in the abortion of the infectious cycle. This depletes the phage population and provides herd immunity to uninfected bacteria. Phages harboring target mutations, which easily evade DNA-targeting CRISPR systems11–13, are also depleted due to the activation of Cas13 by co-infecting wild type phages. Thus, by acting on the host rather than directly targeting the virus, type VI CRISPR systems not only provide robust defense against DNA phages but also prevent outbreaks of CRISPR-resistant phage.
Collapse
Affiliation(s)
- Alexander J Meeske
- Laboratory of Bacteriology, The Rockefeller University, New York, NY, USA.
| | | | - Luciano A Marraffini
- Laboratory of Bacteriology, The Rockefeller University, New York, NY, USA. .,Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
27
|
Korf IHE, Meier-Kolthoff JP, Adriaenssens EM, Kropinski AM, Nimtz M, Rohde M, van Raaij MJ, Wittmann J. Still Something to Discover: Novel Insights into Escherichia coli Phage Diversity and Taxonomy. Viruses 2019; 11:E454. [PMID: 31109012 PMCID: PMC6563267 DOI: 10.3390/v11050454] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 04/29/2019] [Accepted: 05/15/2019] [Indexed: 12/18/2022] Open
Abstract
The aim of this study was to gain further insight into the diversity of Escherichia coli phagesfollowed by enhanced work on taxonomic issues in that field. Therefore, we present the genomiccharacterization and taxonomic classification of 50 bacteriophages against E. coli isolated fromvarious sources, such as manure or sewage. All phages were examined for their host range on a setof different E. coli strains, originating, e.g., from human diagnostic laboratories or poultry farms.Transmission electron microscopy revealed a diversity of morphotypes (70% Myo-, 22% Sipho-, and8% Podoviruses), and genome sequencing resulted in genomes sizes from ~44 to ~370 kb.Annotation and comparison with databases showed similarities in particular to T4- and T5-likephages, but also to less-known groups. Though various phages against E. coli are already describedin literature and databases, we still isolated phages that showed no or only few similarities to otherphages, namely phages Goslar, PTXU04, and KWBSE43-6. Genome-based phylogeny andclassification of the newly isolated phages using VICTOR resulted in the proposal of new generaand led to an enhanced taxonomic classification of E. coli phages.
Collapse
Affiliation(s)
- Imke H E Korf
- Leibniz Institute DSMZ⁻German Collection of Microorganisms and Cell Cultures, 38124 Braunschweig,Germany.
| | - Jan P Meier-Kolthoff
- Leibniz Institute DSMZ⁻German Collection of Microorganisms and Cell Cultures, 38124 Braunschweig,Germany.
| | | | - Andrew M Kropinski
- Departments of Food Science and Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada.
| | - Manfred Nimtz
- Protein Analytics Platform, Helmholtz-Centre for Infection Research (HZI), 38124 Braunschweig,Germany.
| | - Manfred Rohde
- Central Facility for Microscopy, Helmholtz-Centre for Infection Research (HZI), 38124 Braunschweig,Germany.
| | - Mark J van Raaij
- Department of Macromolecular Structure, Centro Nacional de Biotecnologia CNB-CSIC, 28049 Madrid,Spain.
| | - Johannes Wittmann
- Leibniz Institute DSMZ⁻German Collection of Microorganisms and Cell Cultures, 38124 Braunschweig,Germany.
| |
Collapse
|
28
|
Impact of Combined Acidic and Hyperosmotic Shock Conditions on the Proteome of Listeria monocytogenesATCC 19115 in a Time-Course Study. J FOOD QUALITY 2019. [DOI: 10.1155/2019/3075028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Listeria monocytogenescan cause listeriosis in humans through consumption of contaminated food and can adapt to and grow under a wide array of physiochemical stresses. Consequently, it causes persistent food safety issues and requires vigilant sanitation processes to be in place, especially for the manufacture of high-risk food products. In this study, the global proteomic responses of the food-borne pathogenL. monocytogenesstrain ATCC 19115 were determined when exposed to nonthermal inactivation. This process was examined in the early stationary growth phase with the strain placed under simultaneous exposure to low pH (pH 3.5) and high salinity (aw0.900, 14% NaCl). Proteomic responses, measured using iTRAQ techniques, were conducted over a time course (5 min, 30 min, and 1 h at 25°C). The enumeration results showed that, at 5 min, cells underwent initial rapid inactivation by 1.2 log units and 2.5 log units after 30 min, and after that, culturability remained stable when sampled at 1 h. From the iTRAQ results, the proteome level changes that occur rapidly during the inactivation process mainly affected prophage, cell defense/detoxification, carbohydrate-related metabolism, transporter proteins, phosphotransferase systems, cell wall biogenesis, and specific cell surface proteins. Pathway map analysis revealed that several pathways are affected including pentose and glucuronate interconversions, glycolysis/gluconeogenesis, pyruvate metabolism, valine, leucine and isoleucine biosynthesis, oxidative phosphorylation, and proteins associated with bacterial invasion of epithelial cells and host survival. Proteome profiling provided a better understanding of the physiological responses of this pathogen to adapt to lethal nonthermal environments and indicates the need to improve food processing and storage methods, especially for non- or minimally thermally processed foods.
Collapse
|
29
|
Characterization of Listeria prophages in lysogenic isolates from foods and food processing environments. PLoS One 2019; 14:e0214641. [PMID: 30934000 PMCID: PMC6443182 DOI: 10.1371/journal.pone.0214641] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 03/18/2019] [Indexed: 12/15/2022] Open
Abstract
Prophages are commonly found in Listeria genomes, potentially enhancing survival or fitness of Listeria spp. Currently, there is still limited information on the distribution of prophages among Listeria isolates of different allelic types and from various sources. In this study, by using mitomycin C induction, prophages were found in 23/144 isolates (16.0%), including 13 L. monocytogenes and 10 Listeria spp. isolates, resulting in 28 and 11 induced phages, respectively. These prophage-carrying isolates (lysogens) were obtained from foods and food-related environments presenting 3 common allelic types (ATs) of L. monocytogenes (lineage I, II and IV), 4 ATs of L. innocua and 1 AT of L. welshimeri. The likelihood of prophage-carrying isolates of L. monocytogenes was 14.4 (95% CI: 4.9–35.4), and 18.5 (95% CI: 4.8–50.2) for Listeria spp. The 39 induced phages were classified into 3 lysis groups by the host range test against 9 major serotypes of L. monocytogenes and 5 species of Listeria. Most phages were host-specific with higher ability to lyse L. monocytogenes serotype 4 than other serotypes. The genome size of phages ranged from 35±2 kb to 50±2 kb and belonged to two common phage families, Myoviridae and Siphoviridae. Restriction analysis classified 19 selected phages into 16 restriction profiles, suggesting highly diverse prophages with at least 16 types. This may contribute to the variation in the genomes of Listeria. Information obtained here provides basic knowledge for further study to understand the overall role of prophages in Listeria, including roles in survival or fitness in foods and food processing environments.
Collapse
|
30
|
Born Y, Knecht LE, Eigenmann M, Bolliger M, Klumpp J, Fieseler L. A major-capsid-protein-based multiplex PCR assay for rapid identification of selected virulent bacteriophage types. Arch Virol 2019; 164:819-830. [PMID: 30673846 PMCID: PMC6394723 DOI: 10.1007/s00705-019-04148-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 12/14/2018] [Indexed: 12/17/2022]
Abstract
Bacteriophages represent a promising alternative for controlling pathogenic bacteria. They are ubiquitous in the environment, and their isolation is usually simple and fast. However, not every phage is suitable for biocontrol applications. It must be virulent (i.e., strictly lytic), non-transducing, and safe. We have developed a method for identifying selected types of virulent phages at an early stage of the isolation process to simplify the search for suitable candidates. Using the major capsid protein (MCP) as a phylogenetic marker, we designed degenerate primers for the identification of Felix O1-, GJ1-, N4-, SP6-, T4-, T7-, and Vi1-like phages in multiplex PCR setups with single phage plaques as templates. Performance of the MCP PCR assay was evaluated with a set of 26 well-characterized phages. Neither false-positive nor false-negative results were obtained. In addition, 154 phages from enrichment cultures from various environmental samples were subjected to MCP PCR analysis. Eight of them, specific for Salmonella enterica, Escherichia coli, or Erwinia amylovora, belonged to one of the selected phage types. Their PCR-based identification was successfully confirmed by pulsed-field gel electrophoresis of the phage genomes, electron microscopy, and sequencing of the amplified mcp gene fragment. The MCP PCR assay was shown to be a simple method for preliminary assignment of new phages to a certain group and thus to identify candidates for biocontrol immediately after their isolation. Given that sufficient sequence data are available, this method can be extended to any phage group of interest.
Collapse
Affiliation(s)
- Yannick Born
- Institute of Food and Beverage Innovation, Zurich University of Applied Sciences, 8820, Wädenswil, Switzerland
| | - Leandra E Knecht
- Institute of Food and Beverage Innovation, Zurich University of Applied Sciences, 8820, Wädenswil, Switzerland
- Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Mirjam Eigenmann
- Institute of Food and Beverage Innovation, Zurich University of Applied Sciences, 8820, Wädenswil, Switzerland
| | - Michel Bolliger
- Institute of Food and Beverage Innovation, Zurich University of Applied Sciences, 8820, Wädenswil, Switzerland
| | - Jochen Klumpp
- Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Lars Fieseler
- Institute of Food and Beverage Innovation, Zurich University of Applied Sciences, 8820, Wädenswil, Switzerland.
| |
Collapse
|
31
|
Abdelkader K, Gerstmans H, Saafan A, Dishisha T, Briers Y. The Preclinical and Clinical Progress of Bacteriophages and Their Lytic Enzymes: The Parts are Easier than the Whole. Viruses 2019; 11:E96. [PMID: 30678377 PMCID: PMC6409994 DOI: 10.3390/v11020096] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 01/16/2019] [Accepted: 01/22/2019] [Indexed: 12/25/2022] Open
Abstract
The therapeutic potential of phages has been considered since their first identification more than a century ago. The evident concept of using a natural predator to treat bacterial infections has, however, since then been challenged considerably. Initially, the vast success of antibiotics almost eliminated the study of phages for therapy. Upon the renaissance of phage therapy research, the most provocative and unique properties of phages such as high specificity, self-replication and co-evolution prohibited a rapid preclinical and clinical development. On the one hand, the typical trajectory followed by small molecule antibiotics could not be simply translated into the preclinical analysis of phages, exemplified by the need for complex broad spectrum or personalized phage cocktails of high purity and the more complex pharmacokinetics. On the other hand, there was no fitting regulatory framework to deal with flexible and sustainable phage therapy approaches, including the setup and approval of adequate clinical trials. While significant advances are incrementally made to eliminate these hurdles, phage-inspired antibacterials have progressed in the slipstream of phage therapy, benefiting from the lack of hurdles that are typically associated with phage therapy. Most advanced are phage lytic enzymes that kill bacteria through peptidoglycan degradation and osmotic lysis. Both phages and their lytic enzymes are now widely considered as safe and have now progressed to clinical phase II to show clinical efficacy as pharmaceutical. Yet, more initiatives are needed to fill the clinical pipeline to beat the typical attrition rates of clinical evaluation and to come to a true evaluation of phages and phage lytic enzymes in the clinic.
Collapse
Affiliation(s)
- Karim Abdelkader
- Laboratory of Applied Biotechnology, Department of Biotechnology, Ghent University, Valentin Vaerwijckweg 1, B-9000 Ghent, Belgium.
- Department of Microbiology and Immunology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62511, Egypt.
| | - Hans Gerstmans
- Laboratory of Applied Biotechnology, Department of Biotechnology, Ghent University, Valentin Vaerwijckweg 1, B-9000 Ghent, Belgium.
- MeBioS-Biosensors group, Department of Biosystems, KU Leuven, Willem de Croylaan 42, B-3001 Leuven, Belgium.
- Laboratory of Gene Technology, Department of Biosystems, KU Leuven, Kasteelpark Arenberg 21, B-3001 Leuven, Belgium.
| | - Amal Saafan
- Department of Microbiology and Immunology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62511, Egypt.
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Menoufia University, Shebin ElKoum 51132, Egypt.
| | - Tarek Dishisha
- Department of Microbiology and Immunology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62511, Egypt.
| | - Yves Briers
- Laboratory of Applied Biotechnology, Department of Biotechnology, Ghent University, Valentin Vaerwijckweg 1, B-9000 Ghent, Belgium.
| |
Collapse
|
32
|
Villa TG, Feijoo-Siota L, Sánchez-Pérez A, Rama JLR, Sieiro C. Horizontal Gene Transfer in Bacteria, an Overview of the Mechanisms Involved. HORIZONTAL GENE TRANSFER 2019:3-76. [DOI: 10.1007/978-3-030-21862-1_1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
33
|
Genome Sequences of Listeria Phages Induced from Lysogenic Isolates of Listeria monocytogenes from Seafood and a Seafood Processing Environment in Thailand. GENOME ANNOUNCEMENTS 2018; 6:6/27/e00546-18. [PMID: 29976605 PMCID: PMC6033974 DOI: 10.1128/genomea.00546-18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
We report here the complete genome sequences of three Listeria phages (PSU-VKH-LP019, PSU-VKH-LP040, and PSU-VKH-LP041), which were newly induced from lysogenic isolates of Listeria monocytogenes from seafood and a seafood processing environment in Thailand. The three phages show circularly permuted double-stranded DNA genomes with sizes of 38.6, 39.6, and 48.3 kb. We report here the complete genome sequences of three Listeria phages (PSU-VKH-LP019, PSU-VKH-LP040, and PSU-VKH-LP041), which were newly induced from lysogenic isolates of Listeria monocytogenes from seafood and a seafood processing environment in Thailand. The three phages show circularly permuted double-stranded DNA genomes with sizes of 38.6, 39.6, and 48.3 kb.
Collapse
|
34
|
Abstract
Many icosahedral viruses use a specialized portal vertex for genome encapsidation in the viral capsid (or head). This structure then controls release of the viral genetic information to the host cell at the beginning of infection. In tailed bacteriophages, the portal system is connected to a tail device that delivers their genome to the bacterial cytoplasm. The head-to-tail interface is a multiprotein complex that locks the viral DNA inside the phage capsid correctly positioned for egress and that controls its ejection when the viral particle interacts with the host cell receptor. Here we review the molecular mechanisms how this interface is assembled and how it carries out those two critical steps in the life cycle of tailed phages.
Collapse
Affiliation(s)
- Paulo Tavares
- Department of Virology, Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France.
| |
Collapse
|
35
|
Control of Recombination Directionality by the Listeria Phage A118 Protein Gp44 and the Coiled-Coil Motif of Its Serine Integrase. J Bacteriol 2017; 199:JB.00019-17. [PMID: 28289084 DOI: 10.1128/jb.00019-17] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 03/06/2017] [Indexed: 02/04/2023] Open
Abstract
The serine integrase of phage A118 catalyzes integrative recombination between attP on the phage and a specific attB locus on the chromosome of Listeria monocytogenes, but it is unable to promote excisive recombination between the hybrid attL and attR sites found on the integrated prophage without assistance by a recombination directionality factor (RDF). We have identified and characterized the phage-encoded RDF Gp44, which activates the A118 integrase for excision and inhibits integration. Gp44 binds to the C-terminal DNA binding domain of integrase, and we have localized the primary binding site to be within the mobile coiled-coil (CC) motif but distinct from the distal tip of the CC that is required for recombination. This interaction is sufficient to inhibit integration, but a second interaction involving the N-terminal end of Gp44 is also required to activate excision. We provide evidence that these two contacts modulate the trajectory of the CC motifs as they extend out from the integrase core in a manner dependent upon the identities of the four att sites. Our results support a model whereby Gp44 shapes the Int-bound complexes to control which att sites can synapse and recombine.IMPORTANCE Serine integrases mediate directional recombination between bacteriophage and bacterial chromosomes. These highly regulated site-specific recombination reactions are integral to the life cycle of temperate phage and, in the case of Listeria monocytogenes lysogenized by A118 family phage, are an essential virulence determinant. Serine integrases are also utilized as tools for genetic engineering and synthetic biology because of their exquisite unidirectional control of the DNA exchange reaction. Here, we identify and characterize the recombination directionality factor (RDF) that activates excision and inhibits integration reactions by the phage A118 integrase. We provide evidence that the A118 RDF binds to and modulates the trajectory of the long coiled-coil motif that extends from the large carboxyl-terminal DNA binding domain and is postulated to control the early steps of recombination site synapsis.
Collapse
|
36
|
Blokesch M. In and out-contribution of natural transformation to the shuffling of large genomic regions. Curr Opin Microbiol 2017; 38:22-29. [PMID: 28458094 DOI: 10.1016/j.mib.2017.04.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 04/01/2017] [Accepted: 04/06/2017] [Indexed: 01/28/2023]
Abstract
Naturally competent bacteria can pull free DNA from their surroundings. This incoming DNA can serve various purposes, ranging from acting as a source of nutrients or DNA stretches for repair to the acquisition of novel genetic information. The latter process defines the natural competence for transformation as a mode of horizontal gene transfer (HGT) and led to its discovery almost a century ago. However, although it is widely accepted that natural competence can contribute to the spread of genetic material among prokaryotes, the question remains whether this mode of HGT can foster the transfer of larger DNA regions or only transfers shorter fragments, given that extracellular DNA is often heavily fragmented. Here, I outline examples of competence-mediated movement of large genomic segments. Moreover, I discuss a recent proposition that transformation is used to cure bacteria of selfish mobile genetic elements. Such a transformation-mediated genome maintenance mechanism could indeed be an important and underappreciated function of natural competence.
Collapse
Affiliation(s)
- Melanie Blokesch
- Laboratory of Molecular Microbiology, Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland.
| |
Collapse
|
37
|
Turner D, Wand ME, Briers Y, Lavigne R, Sutton JM, Reynolds DM. Characterisation and genome sequence of the lytic Acinetobacter baumannii bacteriophage vB_AbaS_Loki. PLoS One 2017; 12:e0172303. [PMID: 28207864 PMCID: PMC5313236 DOI: 10.1371/journal.pone.0172303] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 02/02/2017] [Indexed: 01/17/2023] Open
Abstract
Acinetobacter baumannii has emerged as an important nosocomial pathogen in healthcare and community settings. While over 100 of Acinetobacter phages have been described in the literature, relatively few have been sequenced. This work describes the characterisation and genome annotation of a new lytic Acinetobacter siphovirus, vB_AbaS_Loki, isolated from activated sewage sludge. Sequencing revealed that Loki encapsulates a 41,308 bp genome, encoding 51 predicted open reading frames. Loki is most closely related to Acinetobacter phage IME_AB3 and more distantly related to Burkholderia phage KL1, Paracoccus phage vB_PmaS_IMEP1 and Pseudomonas phages vB_Pae_Kakheti25, vB_PaeS_SCH_Ab26 and PA73. Loki is characterised by a narrow host range, among the 40 Acinetobacter isolates tested, productive infection was only observed for the propagating host, A. baumannii ATCC 17978. Plaque formation was found to be dependent upon the presence of Ca2+ ions and adsorption to host cells was abolished upon incubation with a mutant of ATCC 17978 encoding a premature stop codon in lpxA. The complete genome sequence of vB_AbaS_Loki was deposited in the European Nucleotide Archive (ENA) under the accession number LN890663.
Collapse
Affiliation(s)
- Dann Turner
- Centre for Research in Biosciences, Department of Applied Sciences, Faculty of Health and Applied Sciences, University of the West of England, Coldharbour Lane, Bristol, United Kingdom
| | - Matthew E. Wand
- National Infections Service, Public Health England, Porton Down, Salisbury, Wiltshire, United Kingdom
| | - Yves Briers
- Laboratory of Applied Biotechnology, Department of Applied Biosciences, Ghent University, Ghent, Belgium
- Laboratory of Gene Technology, Biosystems Department, KU Leuven, Heverlee, Belgium
| | - Rob Lavigne
- Laboratory of Gene Technology, Biosystems Department, KU Leuven, Heverlee, Belgium
| | - J. Mark Sutton
- National Infections Service, Public Health England, Porton Down, Salisbury, Wiltshire, United Kingdom
| | - Darren M. Reynolds
- Centre for Research in Biosciences, Department of Applied Sciences, Faculty of Health and Applied Sciences, University of the West of England, Coldharbour Lane, Bristol, United Kingdom
| |
Collapse
|
38
|
Fox EM, Allnutt T, Bradbury MI, Fanning S, Chandry PS. Comparative Genomics of the Listeria monocytogenes ST204 Subgroup. Front Microbiol 2016; 7:2057. [PMID: 28066377 PMCID: PMC5177744 DOI: 10.3389/fmicb.2016.02057] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 12/07/2016] [Indexed: 11/18/2022] Open
Abstract
The ST204 subgroup of Listeria monocytogenes is among the most frequently isolated in Australia from a range of environmental niches. In this study we provide a comparative genomics analysis of food and food environment isolates from geographically diverse sources. Analysis of the ST204 genomes showed a highly conserved core genome with the majority of variation seen in mobile genetic elements such as plasmids, transposons and phage insertions. Most strains (13/15) harbored plasmids, which although varying in size contained highly conserved sequences. Interestingly 4 isolates contained a conserved plasmid of 91,396 bp. The strains examined were isolated over a period of 12 years and from different geographic locations suggesting plasmids are an important component of the genetic repertoire of this subgroup and may provide a range of stress tolerance mechanisms. In addition to this 4 phage insertion sites and 2 transposons were identified among isolates, including a novel transposon. These genetic elements were highly conserved across isolates that harbored them, and also contained a range of genetic markers linked to stress tolerance and virulence. The maintenance of conserved mobile genetic elements in the ST204 population suggests these elements may contribute to the diverse range of niches colonized by ST204 isolates. Environmental stress selection may contribute to maintaining these genetic features, which in turn may be co-selecting for virulence markers relevant to clinical infection with ST204 isolates.
Collapse
Affiliation(s)
- Edward M Fox
- CSIRO Food and Nutrition Werribee, VIC, Australia
| | | | | | - Séamus Fanning
- UCD-Centre for Food Safety, School of Public Health, Physiotherapy and Sports Science, University College Dublin Dublin, Ireland
| | | |
Collapse
|
39
|
Casey A, Jordan K, Coffey A, Fox EM, McAuliffe O. Comparative Genomic Analysis of Two Serotype 1/2b Listeria monocytogenes Isolates from Analogous Environmental Niches Demonstrates the Influence of Hypervariable Hotspots in Defining Pathogenesis. Front Nutr 2016; 3:54. [PMID: 28066772 PMCID: PMC5174086 DOI: 10.3389/fnut.2016.00054] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 12/07/2016] [Indexed: 12/23/2022] Open
Abstract
The vast majority of clinical human listeriosis cases are caused by serotype 1/2a, 1/2b, 1/2c, and 4b isolates of Listeria monocytogenes. The ability of L. monocytogenes to establish a systemic listeriosis infection within a host organism relies on a combination of genes that are involved in cell recognition, internalization, evasion of host defenses, and in vitro survival and growth. Recently, whole genome sequencing and comparative genomic analysis have proven to be powerful tools for the identification of these virulence-associated genes in L. monocytogenes. In this study, two serotype 1/2b strains of L. monocytogenes with analogous isolation sources, but differing infection abilities, were subjected to comparative genomic analysis. The results from this comparison highlight the importance of accessory genes (genes that are not part of the conserved core genome) in L. monocytogenes pathogenesis. In addition, a number of factors, which may account for the perceived inability of one of the strains to establish a systemic infection within its host, have been identified. These factors include the notable absence of the Listeria pathogenicity island 3 and the stress survival islet, of which the latter has been demonstrated to enhance the survival ability of L. monocytogenes during its passage through the host intestinal tract, leading to a higher infection rate. The findings from this research demonstrate the influence of hypervariable hotspots in defining the physiological characteristics of a L. monocytogenes strain and indicate that the emergence of a non-pathogenic isolate of L. monocytogenes may result from a cumulative loss of functionality rather than by a single isolated genetic event.
Collapse
Affiliation(s)
- Aidan Casey
- Teagasc Food Research Centre, Fermoy, Ireland; Department of Biological Sciences, Cork Institute of Technology, Bishopstown, Ireland
| | | | - Aidan Coffey
- Department of Biological Sciences, Cork Institute of Technology , Bishopstown , Ireland
| | - Edward M Fox
- CSIRO Agriculture and Food , Werribee, VIC , Australia
| | | |
Collapse
|
40
|
Xayarath B, Freitag NE. When being alone is enough: noncanonical functions of canonical bacterial quorum-sensing systems. Future Microbiol 2016; 11:1447-1459. [PMID: 27750441 DOI: 10.2217/fmb-2016-0066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
A number of bacterial pathogens are capable of detecting the presence of other bacteria located within their surrounding niche through a process of bacterial signaling and cell-to-cell communication commonly referred to as quorum sensing (QS). QS systems are commonly now described in the context of collective behaviors exhibited by groups of bacteria coordinating diverse arrays of physiological functions to enhance survival of the community. However, QS systems have also been implicated in a variety of processes distinct from the measure of bacterial cell density. This review will highlight noncanonical adaptations of canonical QS systems that have evolved to enable bacteria to detect nonself individuals within a population or to detect occupation of confined spaces.
Collapse
Affiliation(s)
- Bobbi Xayarath
- Department of Microbiology & Immunology, University of Illinois at Chicago, Chicago, IL 60612-7344, USA
| | - Nancy E Freitag
- Department of Microbiology & Immunology, University of Illinois at Chicago, Chicago, IL 60612-7344, USA
| |
Collapse
|
41
|
Radford DR, Ahmadi H, Leon-Velarde CG, Balamurugan S. Propagation method for persistent high yield of diverse Listeria phages on permissive hosts at refrigeration temperatures. Res Microbiol 2016; 167:685-691. [DOI: 10.1016/j.resmic.2016.05.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 05/27/2016] [Accepted: 05/30/2016] [Indexed: 11/15/2022]
|
42
|
F-Type Bacteriocins of Listeria monocytogenes: a New Class of Phage Tail-Like Structures Reveals Broad Parallel Coevolution between Tailed Bacteriophages and High-Molecular-Weight Bacteriocins. J Bacteriol 2016; 198:2784-93. [PMID: 27457717 DOI: 10.1128/jb.00489-16] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 07/19/2016] [Indexed: 01/19/2023] Open
Abstract
UNLABELLED Listeria monocytogenes is a significant foodborne human pathogen that can cause severe disease in certain high-risk individuals. L. monocytogenes is known to produce high-molecular-weight, phage tail-like bacteriocins, or "monocins," upon induction of the SOS system. In this work, we purified and characterized monocins and found them to be a new class of F-type bacteriocins. The L. monocytogenes monocin genetic locus was cloned and expressed in Bacillus subtilis, producing specifically targeted bactericidal particles. The receptor binding protein, which determines target cell specificity, was identified and engineered to change the bactericidal spectrum. Unlike the F-type pyocins of Pseudomonas aeruginosa, which are related to lambda-like phage tails, monocins are more closely related to TP901-1-like phage tails, structures not previously known to function as bacteriocins. Monocins therefore represent a new class of phage tail-like bacteriocins. It appears that multiple classes of phage tails and their related bacteriocins have coevolved separately in parallel. IMPORTANCE Phage tail-like bacteriocins (PTLBs) are structures widespread among the members of the bacterial kingdom that are evolutionarily related to the DNA delivery organelles of phages (tails). We identified and characterized "monocins" of Listeria monocytogenes and showed that they are related to the tail structures of TP901-1-like phages, structures not previously known to function as bacteriocins. Our results show that multiple types of envelope-penetrating machines have coevolved in parallel to function either for DNA delivery (phages) or as membrane-disrupting bacteriocins. While it has commonly been assumed that these structures were coopted from phages, we cannot rule out the opposite possibility, that ancient phages coopted complex bacteriocins from the cell, which then underwent adaptations to become efficient at translocating DNA.
Collapse
|
43
|
Roquet N, Soleimany AP, Ferris AC, Aaronson S, Lu TK. Synthetic recombinase-based state machines in living cells. Science 2016; 353:aad8559. [PMID: 27463678 DOI: 10.1126/science.aad8559] [Citation(s) in RCA: 143] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 06/02/2016] [Indexed: 12/18/2022]
Abstract
State machines underlie the sophisticated functionality behind human-made and natural computing systems that perform order-dependent information processing. We developed a recombinase-based framework for building state machines in living cells by leveraging chemically controlled DNA excision and inversion operations to encode states in DNA sequences. This strategy enables convenient readout of states (by sequencing and/or polymerase chain reaction) as well as complex regulation of gene expression. We validated our framework by engineering state machines in Escherichia coli that used one, two, or three chemical inputs to control up to 16 DNA states. These state machines were capable of recording the temporal order of all inputs and performing multi-input, multi-output control of gene expression. We also developed a computational tool for the automated design of gene regulation programs using recombinase-based state machines. Our scalable framework should enable new strategies for recording and studying how combinational and temporal events regulate complex cell functions and for programming sophisticated cell behaviors.
Collapse
Affiliation(s)
- Nathaniel Roquet
- Synthetic Biology Group, Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. Biophysics Program, Harvard University, Boston, MA 02115, USA
| | - Ava P Soleimany
- Synthetic Biology Group, Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Alyssa C Ferris
- Synthetic Biology Group, Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. Biochemistry Program, Wellesley College, Wellesley, MA 02481, USA
| | - Scott Aaronson
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Timothy K Lu
- Synthetic Biology Group, Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. Biophysics Program, Harvard University, Boston, MA 02115, USA. Center for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
44
|
Studer P, Borisova M, Schneider A, Ayala JA, Mayer C, Schuppler M, Loessner MJ, Briers Y. The Absence of a Mature Cell Wall Sacculus in Stable Listeria monocytogenes L-Form Cells Is Independent of Peptidoglycan Synthesis. PLoS One 2016; 11:e0154925. [PMID: 27149671 PMCID: PMC4858229 DOI: 10.1371/journal.pone.0154925] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 04/21/2016] [Indexed: 01/16/2023] Open
Abstract
L-forms are cell wall-deficient variants of otherwise walled bacteria that maintain the ability to survive and proliferate in absence of the surrounding peptidoglycan sacculus. While transient or unstable L-forms can revert to the walled state and may still rely on residual peptidoglycan synthesis for multiplication, stable L-forms cannot revert to the walled form and are believed to propagate in the complete absence of peptidoglycan. L-forms are increasingly studied as a fundamental biological model system for cell wall synthesis. Here, we show that a stable L-form of the intracellular pathogen Listeria monocytogenes features a surprisingly intact peptidoglycan synthesis pathway including glycosyl transfer, in spite of the accumulation of multiple mutations during prolonged passage in the cell wall-deficient state. Microscopic and biochemical analysis revealed the presence of peptidoglycan precursors and functional glycosyl transferases, resulting in the formation of peptidoglycan polymers but without the synthesis of a mature cell wall sacculus. In conclusion, we found that stable, non-reverting L-forms, which do not require active PG synthesis for proliferation, may still continue to produce aberrant peptidoglycan.
Collapse
Affiliation(s)
- Patrick Studer
- Institute for Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Marina Borisova
- Department of Microbiology/Biotechnology, University of Tuebingen, Tuebingen, Germany
| | - Alexander Schneider
- Department of Microbiology/Biotechnology, University of Tuebingen, Tuebingen, Germany
| | - Juan A. Ayala
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid, Madrid, Spain
| | - Christoph Mayer
- Department of Microbiology/Biotechnology, University of Tuebingen, Tuebingen, Germany
| | - Markus Schuppler
- Institute for Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Martin J. Loessner
- Institute for Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Yves Briers
- Institute for Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
- Department of Applied Biosciences, Ghent University, Ghent, Belgium
- * E-mail:
| |
Collapse
|
45
|
Abstract
The large serine recombinases (LSRs) are a family of enzymes, encoded in temperate phage genomes or on mobile elements, that precisely cut and recombine DNA in a highly controllable and predictable way. In phage integration, the LSRs act at specific sites, the attP site in the phage and the attB site in the host chromosome, where cleavage and strand exchange leads to the integrated prophage flanked by the recombinant sites attL and attR. The prophage can excise by recombination between attL and attR but this requires a phage-encoded accessory protein, the recombination directionality factor (RDF). Although the LSRs can bind specifically to all the recombination sites, only specific integrase-bound sites can pair in a synaptic complex prior to strand exchange. Recent structural information has led to a breakthrough in our understanding of the mechanism of the LSRs, notably how the LSRs bind to their substrates and how LSRs display this site-selectivity. We also understand that the RDFs exercise control over the LSRs by protein-protein interactions. Other recent work with the LSRs have contributed to our understanding of how all serine recombinases undergo strand exchange subunit rotation, facilitated by surfaces that resemble a molecular bearing.
Collapse
|
46
|
Listeria monocytogenes – An examination of food chain factors potentially contributing to antimicrobial resistance. Food Microbiol 2016. [DOI: 10.1016/j.fm.2014.08.006] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
47
|
Fagerlund A, Langsrud S, Schirmer BCT, Møretrø T, Heir E. Genome Analysis of Listeria monocytogenes Sequence Type 8 Strains Persisting in Salmon and Poultry Processing Environments and Comparison with Related Strains. PLoS One 2016; 11:e0151117. [PMID: 26953695 PMCID: PMC4783014 DOI: 10.1371/journal.pone.0151117] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 02/22/2016] [Indexed: 12/19/2022] Open
Abstract
Listeria monocytogenes is an important foodborne pathogen responsible for the disease listeriosis, and can be found throughout the environment, in many foods and in food processing facilities. The main cause of listeriosis is consumption of food contaminated from sources in food processing environments. Persistence in food processing facilities has previously been shown for the L. monocytogenes sequence type (ST) 8 subtype. In the current study, five ST8 strains were subjected to whole-genome sequencing and compared with five additionally available ST8 genomes, allowing comparison of strains from salmon, poultry and cheese industry, in addition to a human clinical isolate. Genome-wide analysis of single-nucleotide polymorphisms (SNPs) confirmed that almost identical strains were detected in a Danish salmon processing plant in 1996 and in a Norwegian salmon processing plant in 2001 and 2011. Furthermore, we show that L. monocytogenes ST8 was likely to have been transferred between two poultry processing plants as a result of relocation of processing equipment. The SNP data were used to infer the phylogeny of the ST8 strains, separating them into two main genetic groups. Within each group, the plasmid and prophage content was almost entirely conserved, but between groups, these sequences showed strong divergence. The accessory genome of the ST8 strains harbored genetic elements which could be involved in rendering the ST8 strains resilient to incoming mobile genetic elements. These included two restriction-modification loci, one of which was predicted to show phase variable recognition sequence specificity through site-specific domain shuffling. Analysis indicated that the ST8 strains harbor all important known L. monocytogenes virulence factors, and ST8 strains are commonly identified as the causative agents of invasive listeriosis. Therefore, the persistence of this L. monocytogenes subtype in food processing facilities poses a significant concern for food safety.
Collapse
Affiliation(s)
- Annette Fagerlund
- Nofima, Norwegian Institute of Food, Fisheries and Aquaculture Research, Ås, Norway
- * E-mail:
| | - Solveig Langsrud
- Nofima, Norwegian Institute of Food, Fisheries and Aquaculture Research, Ås, Norway
| | - Bjørn C. T. Schirmer
- Nofima, Norwegian Institute of Food, Fisheries and Aquaculture Research, Ås, Norway
| | - Trond Møretrø
- Nofima, Norwegian Institute of Food, Fisheries and Aquaculture Research, Ås, Norway
| | - Even Heir
- Nofima, Norwegian Institute of Food, Fisheries and Aquaculture Research, Ås, Norway
| |
Collapse
|
48
|
Liu Y, Orsi RH, Boor KJ, Wiedmann M, Guariglia-Oropeza V. An advanced bioinformatics approach for analyzing RNA-seq data reveals sigma H-dependent regulation of competence genes in Listeria monocytogenes. BMC Genomics 2016; 17:115. [PMID: 26880300 PMCID: PMC4754846 DOI: 10.1186/s12864-016-2432-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 02/03/2016] [Indexed: 11/14/2022] Open
Abstract
Background Alternative σ factors are important transcriptional regulators in bacteria. While σB has been shown to control a large regulon and play important roles in stress response and virulence in the pathogen Listeria monocytogenes, the function of σH has not yet been well defined in Listeria, even though σH controls a large regulon in the closely related non-pathogenic Bacillus subtilis. Results Using RNA-seq characterization of a L. monocytogenes strain with deletions of all 4 genes encoding alternative σ factors (ΔBCHL), which was further modified to overexpress sigH (ΔBCHL::Prha-sigH), we identified 6 transcription units (TUs) that are transcribed from σH-dependent promoters. Five of these TUs had not been previously identified. Identification of these promoters was facilitated by use of a bio-informatics approach that compared normalized RNA-seq coverage (NRC), between ΔBCHL::Prha-sigH and a ΔBCHL control, using sliding windows of 51 nt along the whole genome rather than comparing NRC calculated only for whole genes. Interestingly, we found that three operons that encode competence genes (comGABCDEFG, comEABC, coiA) are transcribed from σH-dependent promoters. While these promoters were highly conserved in L. monocytogenes, none of them were found in all Listeria spp. and coiA and its σH-dependent promoter were only found in L. monocytogenes. Conclusions Our data indicate that a number of L. monocytogenes competence genes are regulated by σH. This σH-dependent regulation of competence related genes is conserved in the pathogen L. monocytogenes, but not in other non-pathogenic Listeria strains. Combined with prior data that indicated a role of σH in virulence in a mouse model, this suggests a possible novel role of σH-dependent competence genes in L. monocytogenes virulence. Development and implementation of a sliding window approach to identify differential transcription using RNA-seq data, not only allowed for identification of σH-dependent promoters, but also provides a general approach for sensitive identification of differentially transcribed promoters and genes, particularly for genes that are transcribed from multiple promoter elements only some of which show differential transcription. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2432-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yichang Liu
- Department of Food Science, Cornell University, Ithaca, NY, 14853, USA.
| | - Renato Hohl Orsi
- Department of Food Science, Cornell University, Ithaca, NY, 14853, USA.
| | - Kathryn Jean Boor
- Department of Food Science, Cornell University, Ithaca, NY, 14853, USA.
| | - Martin Wiedmann
- Department of Food Science, Cornell University, Ithaca, NY, 14853, USA.
| | | |
Collapse
|
49
|
Feiner R, Argov T, Rabinovich L, Sigal N, Borovok I, Herskovits AA. A new perspective on lysogeny: prophages as active regulatory switches of bacteria. Nat Rev Microbiol 2016; 13:641-50. [PMID: 26373372 DOI: 10.1038/nrmicro3527] [Citation(s) in RCA: 291] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Unlike lytic phages, temperate phages that enter lysogeny maintain a long-term association with their bacterial host. In this context, mutually beneficial interactions can evolve that support efficient reproduction of both phages and bacteria. Temperate phages are integrated into the bacterial chromosome as large DNA insertions that can disrupt gene expression, and they may pose a fitness burden on the cell. However, they have also been shown to benefit their bacterial hosts by providing new functions in a bacterium-phage symbiotic interaction termed lysogenic conversion. In this Opinion article, we discuss another type of bacterium-phage interaction, active lysogeny, in which phages or phage-like elements are integrated into the bacterial chromosome within critical genes or operons and serve as switches that regulate bacterial genes via genome excision.
Collapse
Affiliation(s)
- Ron Feiner
- Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Tel Aviv 69978, Israel
| | - Tal Argov
- Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Tel Aviv 69978, Israel
| | - Lev Rabinovich
- Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Tel Aviv 69978, Israel
| | - Nadejda Sigal
- Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Tel Aviv 69978, Israel
| | - Ilya Borovok
- Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Tel Aviv 69978, Israel
| | - Anat A Herskovits
- Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
50
|
Hsieh SE, Tseng YH, Lo HH, Chen ST, Wu CN. Genomic analysis of Staphylococcus phage Stau2 isolated from medical specimen. Virus Genes 2015; 52:107-16. [PMID: 26706853 DOI: 10.1007/s11262-015-1276-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 12/10/2015] [Indexed: 11/30/2022]
Abstract
Stau2 is a lytic myophage of Staphylococcus aureus isolated from medical specimen. Exhibiting a broad host range against S. aureus clinical isolates, Stau2 is potentially useful for topical phage therapy or as an additive in food preservation. In this study, Stau2 was firstly revealed to possess a circularly permuted linear genome of 133,798 bp, with low G + C content, containing 146 open reading frames, but encoding no tRNA. The genome is organized into several modules containing genes for packaging, structural proteins, replication/transcription and host-cell-lysis, with the structural proteins and DNA polymerase modules being organized similarly to that in Twort-like phages of Staphylococcus. With the encoded DNA replication genes, Stau2 can possibly use its own system for replication. In addition, analysis in silico found several introns in seven genes, including those involved in DNA metabolism, packaging, and structure, while one of them (helicase gene) is experimentally confirmed to undergo splicing. Furthermore, phylogenetic analysis suggested Stau2 to be most closely related to Staphylococcus phages SA11 and Remus, members of Twort-like phages. The results of sodium dodecyl sulfate polyacrylamide gel electrophoresis showed 14 structural proteins of Stau2 and N-terminal sequencing identified three of them. Importantly, this phage does not encode any proteins which are known or suspected to be involved in toxicity, pathogenicity, or antibiotic resistance. Therefore, further investigations of feasible therapeutic application of Stau2 are needed.
Collapse
Affiliation(s)
- Sue-Er Hsieh
- Department of Medical Laboratory Science and Biotechnology, Central Taiwan University of Science and Technology, Taichung, 406, Taiwan
| | - Yi-Hsiung Tseng
- Department of Microbiology, Tzu Chi University, Hualien, 970, Taiwan
| | - Hsueh-Hsia Lo
- Department of Medical Laboratory Science and Biotechnology, Central Taiwan University of Science and Technology, Taichung, 406, Taiwan
| | - Shui-Tu Chen
- Pediatrics Department, Nantou Hospital, Department of Health, Nantou, 540, Taiwan
| | - Cheng-Nan Wu
- Department of Medical Laboratory Science and Biotechnology, Central Taiwan University of Science and Technology, Taichung, 406, Taiwan.
| |
Collapse
|