1
|
Dinesh R, Sreena CP, Sheeja TE, Charles S, Srinivasan V, Sajith V, Subila KP, Haritha P. Metagenomics indicates abundance of biofilm related genes and horizontal transfer of multidrug resistant genes among bacterial communities in nano zinc oxide polluted soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 859:160032. [PMID: 36370776 DOI: 10.1016/j.scitotenv.2022.160032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 11/03/2022] [Accepted: 11/03/2022] [Indexed: 06/16/2023]
Abstract
The unsafe and reckless disposal of metal oxide nanoparticles like ZnO (nZnO) into the soil could seriously impact bacterial behavioural responses and functions. Under such stress, biofilm formation is considered to be a robust mechanism for bacterial survival in soil. We examined the response of bacterial metagenomes in soils exposed to varying levels of Zn (50, 200, 500 and 1000 mg kg-1) as nano Zn oxide (nZnO) in terms of biofilm genesis and regulation and their co-occurrences with multidrug resistance genes (MDRGs) and mobile genetic elements (MGEs). The size-specific effects of nZnO were verified using its bulk counterpart (bZnO). Both nZnO and bZnO facilitated profusion of biofilm related genes (BGs) especially at higher Zn levels (500 and 1000 mg kg-1 Zn), though maximum abundance was registered at a comparatively lower level under nZnO. In general, nZnO favoured an enhancement of genes involved in exopolysaccharide biosynthesis and attachment, while bZnO favoured genes related to capsule formation, chemotaxis and biofilm dispersion. Co-occurrence network analysis revealed significant positive correlations between abundances of BGs, MDRGs and MGEs, indicating an enhanced probability for horizontal gene transfer of MDRGs in nZnO polluted soils.
Collapse
Affiliation(s)
- R Dinesh
- ICAR-Indian Institute of Spices Research, Marikunnu PO, Kozhikode, Kerala 673012, India
| | - C P Sreena
- ICAR-Indian Institute of Spices Research, Marikunnu PO, Kozhikode, Kerala 673012, India
| | - T E Sheeja
- ICAR-Indian Institute of Spices Research, Marikunnu PO, Kozhikode, Kerala 673012, India.
| | - Sona Charles
- ICAR-Indian Institute of Spices Research, Marikunnu PO, Kozhikode, Kerala 673012, India
| | - V Srinivasan
- ICAR-Indian Institute of Spices Research, Marikunnu PO, Kozhikode, Kerala 673012, India
| | - V Sajith
- National Institute of Technology, NIT Campus PO, Kozhikode, Kerala 673012, India
| | - K P Subila
- ICAR-Indian Institute of Spices Research, Marikunnu PO, Kozhikode, Kerala 673012, India
| | - P Haritha
- ICAR-Indian Institute of Spices Research, Marikunnu PO, Kozhikode, Kerala 673012, India
| |
Collapse
|
2
|
Johnston CH, Soulet AL, Bergé M, Prudhomme M, De Lemos D, Polard P. The alternative sigma factor σ X mediates competence shut-off at the cell pole in Streptococcus pneumoniae. eLife 2020; 9:62907. [PMID: 33135635 PMCID: PMC7665891 DOI: 10.7554/elife.62907] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 10/31/2020] [Indexed: 12/22/2022] Open
Abstract
Competence is a widespread bacterial differentiation program driving antibiotic resistance and virulence in many pathogens. Here, we studied the spatiotemporal localization dynamics of the key regulators that master the two intertwined and transient transcription waves defining competence in Streptococcus pneumoniae. The first wave relies on the stress-inducible phosphorelay between ComD and ComE proteins, and the second on the alternative sigma factor σX, which directs the expression of the DprA protein that turns off competence through interaction with phosphorylated ComE. We found that ComD, σX and DprA stably co-localize at one pole in competent cells, with σX physically conveying DprA next to ComD. Through this polar DprA targeting function, σX mediates the timely shut-off of the pneumococcal competence cycle, preserving cell fitness. Altogether, this study unveils an unprecedented role for a transcription σ factor in spatially coordinating the negative feedback loop of its own genetic circuit.
Collapse
Affiliation(s)
- Calum Hg Johnston
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM ; UMR5100), Centre de Biologie Intégrative (CBI), Centre Nationale de la Recherche Scientifique (CNRS), Toulouse, France.,Université Paul Sabatier (Toulouse III), Toulouse, France
| | - Anne-Lise Soulet
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM ; UMR5100), Centre de Biologie Intégrative (CBI), Centre Nationale de la Recherche Scientifique (CNRS), Toulouse, France.,Université Paul Sabatier (Toulouse III), Toulouse, France
| | - Matthieu Bergé
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM ; UMR5100), Centre de Biologie Intégrative (CBI), Centre Nationale de la Recherche Scientifique (CNRS), Toulouse, France.,Université Paul Sabatier (Toulouse III), Toulouse, France.,Dept. Microbiology and Molecular Medicine, Institute of Genetics & Genomics in Geneva (iGE3), Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Marc Prudhomme
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM ; UMR5100), Centre de Biologie Intégrative (CBI), Centre Nationale de la Recherche Scientifique (CNRS), Toulouse, France.,Université Paul Sabatier (Toulouse III), Toulouse, France
| | - David De Lemos
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM ; UMR5100), Centre de Biologie Intégrative (CBI), Centre Nationale de la Recherche Scientifique (CNRS), Toulouse, France.,Université Paul Sabatier (Toulouse III), Toulouse, France
| | - Patrice Polard
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM ; UMR5100), Centre de Biologie Intégrative (CBI), Centre Nationale de la Recherche Scientifique (CNRS), Toulouse, France.,Université Paul Sabatier (Toulouse III), Toulouse, France
| |
Collapse
|
3
|
Cyclic AMP-Independent Control of Twitching Motility in Pseudomonas aeruginosa. J Bacteriol 2017; 199:JB.00188-17. [PMID: 28583947 DOI: 10.1128/jb.00188-17] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 05/23/2017] [Indexed: 01/05/2023] Open
Abstract
FimV is a Pseudomonas aeruginosa inner membrane hub protein that modulates levels of the second messenger, cyclic AMP (cAMP), through the activation of adenylate cyclase CyaB. Although type IVa pilus (T4aP)-dependent twitching motility is modulated by cAMP levels, mutants lacking FimV are twitching impaired, even when exogenous cAMP is provided. Here we further define FimV's cAMP-dependent and -independent regulation of twitching. We confirmed that the response regulator of the T4aP-associated Chp chemotaxis system, PilG, requires both FimV and the CyaB regulator, FimL, to activate CyaB. However, in cAMP-replete backgrounds-lacking the cAMP phosphodiesterase CpdA or the CheY-like protein PilH or expressing constitutively active CyaB-pilG and fimV mutants failed to twitch. Both cytoplasmic and periplasmic domains of FimV were important for its cAMP-dependent and -independent roles, while its septal peptidoglycan-targeting LysM motif was required only for twitching motility. Polar localization of the sensor kinase PilS, a key regulator of transcription of the major pilin, was FimV dependent. However, unlike its homologues in other species that localize flagellar system components, FimV was not required for swimming motility. These data provide further evidence to support FimV's role as a key hub protein that coordinates the polar localization and function of multiple structural and regulatory proteins involved in P. aeruginosa twitching motility.IMPORTANCEPseudomonas aeruginosa is a serious opportunistic pathogen. Type IVa pili (T4aP) are important for its virulence, because they mediate dissemination and invasion via twitching motility and are involved in surface sensing, which modulates pathogenicity via changes in cAMP levels. Here we show that the hub protein FimV and the response regulator of the Chp system, PilG, regulate twitching independently of their roles in the modulation of cAMP synthesis. These functions do not require the putative scaffold protein FimL, proposed to link PilG with FimV. PilG may regulate asymmetric functioning of the T4aP system to allow for directional movement, while FimV appears to localize both structural and regulatory elements-including the PilSR two-component system-to cell poles for optimal function.
Collapse
|
4
|
Mignolet J, Holden S, Bergé M, Panis G, Eroglu E, Théraulaz L, Manley S, Viollier PH. Functional dichotomy and distinct nanoscale assemblies of a cell cycle-controlled bipolar zinc-finger regulator. eLife 2016; 5. [PMID: 28008851 PMCID: PMC5182063 DOI: 10.7554/elife.18647] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 11/01/2016] [Indexed: 11/13/2022] Open
Abstract
Protein polarization underlies differentiation in metazoans and in bacteria. How symmetric polarization can instate functional asymmetry remains elusive. Here, we show by super-resolution photo-activated localization microscopy and edgetic mutations that the bitopic zinc-finger protein ZitP implements specialized developmental functions – pilus biogenesis and multifactorial swarming motility – while shaping distinct nanoscale (bi)polar architectures in the asymmetric model bacterium Caulobacter crescentus. Polar assemblage and accumulation of ZitP and its effector protein CpaM are orchestrated in time and space by conserved components of the cell cycle circuitry that coordinate polar morphogenesis with cell cycle progression, and also act on the master cell cycle regulator CtrA. Thus, this novel class of potentially widespread multifunctional polarity regulators is deeply embedded in the cell cycle circuitry. DOI:http://dx.doi.org/10.7554/eLife.18647.001 Living cells become asymmetric for many different reasons and how they do so has been a long-standing question in biology. In some cells, the asymmetry arises because a given protein accumulates at one side of the cell. In particular, this process happens before some cells divide to produce two non-identical daughter cells that then go on to develop in very different ways – which is vital for the development of almost all multicellular organisms. The single-celled bacterium Caulobacter crescentus also undergoes this type of asymmetric division. The polarized Caulobacter cell produces two very different offsprings – a stationary cell and a nomadic cell that swims using a propeller-like structure, called a flagellum, and has projections called pili on its surface. Before it divides asymmetrically, the Caulobacter cell must accumulate specific proteins at its extremities, or poles. Two such proteins are ZitP and CpaM, which appear to have multiple roles and are thought to interact with other factors that regulate cell division. However, little is known about how ZitP and CpaM become organized at the poles at the right time and how they interact with these regulators of cell division. Mignolet et al. explored how ZitP becomes polarized in Caulobacter crescentus using a combination of approaches including biochemical and genetic analyses and very high-resolution microscopy. This revealed that ZitP accumulated via different pathways at the two poles and that it formed distinct structures at each pole. These structures were associated with different roles for ZitP. While ZitP recruited proteins, including CpaM, required for assembly of pili to one of the poles, it acted differently at the opposite pole. By mutating regions of ZitP, Mignolet et al. went on to show that different regions of the protein carry out these roles. Further experiments demonstrated that regulators of the cell division cycle influenced how ZitP and CpaM accumulated and behaved in cells, ensuring that the proteins carry out their roles at the correct time during division. These findings provide more evidence that proteins can have different roles at distinct sites within a cell, in this case at opposite poles of a cell. Future studies will be needed to determine whether this is seen in cells other than Caulobacter including more complex, non-bacterial cells. DOI:http://dx.doi.org/10.7554/eLife.18647.002
Collapse
Affiliation(s)
- Johann Mignolet
- Microbiology and Molecular Medicine, Institute of Genetics and Genomics in Geneva (iGE3), Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Seamus Holden
- Laboratory of Experimental Biophysics, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.,Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle, United Kingdom
| | - Matthieu Bergé
- Microbiology and Molecular Medicine, Institute of Genetics and Genomics in Geneva (iGE3), Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Gaël Panis
- Microbiology and Molecular Medicine, Institute of Genetics and Genomics in Geneva (iGE3), Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Ezgi Eroglu
- Microbiology and Molecular Medicine, Institute of Genetics and Genomics in Geneva (iGE3), Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Laurence Théraulaz
- Microbiology and Molecular Medicine, Institute of Genetics and Genomics in Geneva (iGE3), Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Suliana Manley
- Laboratory of Experimental Biophysics, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Patrick H Viollier
- Microbiology and Molecular Medicine, Institute of Genetics and Genomics in Geneva (iGE3), Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
5
|
Bretl DJ, Müller S, Ladd KM, Atkinson SN, Kirby JR. Type IV-pili dependent motility is co-regulated by PilSR and PilS2R2 two-component systems via distinct pathways in Myxococcus xanthus. Mol Microbiol 2016; 102:37-53. [PMID: 27393239 DOI: 10.1111/mmi.13445] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/16/2016] [Indexed: 01/08/2023]
Abstract
Myxococcus xanthus is an environmental bacterium with two forms of motility. One type, known as social motility, is dependent on extension and retraction of Type-IV pili (T4P) and production of extracellular polysaccharides (EPS). Several signaling systems have been linked to regulation of T4P-dependent motility. In particular, expression of the pilin subunit pilA requires the PilSR two-component signaling system (TCS). A second TCS, PilS2R2, encoded within the same locus that encodes PilSR, has also been linked to M. xanthus T4P-dependent motility. We demonstrate that PilSR and PilS2R2 regulate M. xanthus T4P-dependent motility through distinct pathways. Consistent with known roles of PilSR, our results indicate that the primary function of PilSR is to regulate expression of pilA. In contrast, PilS2 and PilR2 have little to no affect on PilA protein levels. However, deletion of pilR2 resulted in a reduction of assembled pili, significant decreases in EPS production and loss of T4P-dependent motility. Furthermore, the pilR2 mutation led to increased production of outer membrane vesicles (OMV). Collectively, we propose that PilS2R2 is required for proper assembly of T4P and regulation of OMV production, and hypothesize that production of these vesicles is related to M. xanthus motility.
Collapse
Affiliation(s)
- Daniel J Bretl
- Department of Microbiology, University of Iowa, 51 Newton Road, Iowa City, Iowa, 52242, USA
| | - Susanne Müller
- Department of Microbiology, University of Iowa, 51 Newton Road, Iowa City, Iowa, 52242, USA
| | - Kayla M Ladd
- Department of Microbiology, University of Iowa, 51 Newton Road, Iowa City, Iowa, 52242, USA
| | - Samantha N Atkinson
- Department of Microbiology, University of Iowa, 51 Newton Road, Iowa City, Iowa, 52242, USA
| | - John R Kirby
- Department of Microbiology, University of Iowa, 51 Newton Road, Iowa City, Iowa, 52242, USA.
| |
Collapse
|
6
|
Kim T, Choi J, Lee S, Yeo KJ, Cheong HK, Kim KK. Structural Studies on the Extracellular Domain of Sensor Histidine Kinase YycG from Staphylococcus aureus and Its Functional Implications. J Mol Biol 2016; 428:3074-89. [PMID: 27389096 DOI: 10.1016/j.jmb.2016.06.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 06/15/2016] [Accepted: 06/27/2016] [Indexed: 01/14/2023]
Abstract
Bacterial two-component signal transduction systems are used to adapt to fluctuations in the environment. YycG, a key two-component histidine kinase in Staphylococcus aureus, plays an essential role in cell viability and regulates cell wall metabolism, biofilm formation, virulence, and antibiotic resistance. For these reasons, YycG is considered a compelling target for the development of novel antibiotics. However, to date, the signaling mechanism of YycG and its stimulus are poorly understood mainly because of a lack of structural information on YycG. To address this deficiency, we determined the crystal structure of the extracellular domain of S. aureus YycG (YycGex) at 2.0-Å resolution. The crystal structure indicated two subunits with an extracellular Per-Arnt-Sim (PAS) topology packed into a dimer with interloop interactions. Disulfide scanning using cysteine-substituted mutants revealed that YycGex possessed dimeric interfaces not only in the loop but also in the helix α1. Cross-linking studies using intact YycG demonstrated that it was capable of forming high molecular weight oligomers on the cell membrane. Furthermore, we also observed that two auxiliary proteins of YycG, YycH and YycI, cooperatively interfered with the multimerization of YycG. From these results, we propose that signaling through YycG is regulated by multimerization and binding of YycH and YycI. These structural studies, combined with biochemical analyses, provide a better understanding of the signaling mechanism of YycG, which is necessary for developing novel antibacterial drugs targeting S. aureus.
Collapse
Affiliation(s)
- Truc Kim
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon 440-746, Republic of Korea
| | - Jongkeun Choi
- Department of Cosmetic Science, Chungwoon University, San 29, Namjang, Hongsung, Chungnam 350-701, Republic of Korea
| | - Sangho Lee
- Departments of Biological Science, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - Kwon Joo Yeo
- Division of Magnetic Resonance, Korea Basic Science Institute (KBSI), 162 Yeongudanji-Ro, Ochang, Chungbuk 363-883, Republic of Korea
| | - Hae-Kap Cheong
- Division of Magnetic Resonance, Korea Basic Science Institute (KBSI), 162 Yeongudanji-Ro, Ochang, Chungbuk 363-883, Republic of Korea
| | - Kyeong Kyu Kim
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon 440-746, Republic of Korea.
| |
Collapse
|
7
|
Das A, Das A. Delineation of polar localization domains of Agrobacterium tumefaciens type IV secretion apparatus proteins VirB4 and VirB11. Microbiologyopen 2014; 3:793-802. [PMID: 25220247 PMCID: PMC4234268 DOI: 10.1002/mbo3.208] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 07/12/2014] [Accepted: 07/22/2014] [Indexed: 11/16/2022] Open
Abstract
Agrobacterium tumefaciens transfers DNA and proteins to a plant cell through a type IV secretion apparatus assembled by the VirB proteins. All VirB proteins localized to a cell pole, although these conclusions are in dispute. To study subcellular location of the VirB proteins and to identify determinants of their subcellular location, we tagged two proteins, VirB4 and VirB11, with the visual marker green fluorescent protein (GFP) and studied localization of the fusion proteins by epifluorescence microscopy. Both GFP-VirB4 and GFP-VirB11 fusions localized to a single cell pole. GFP-VirB11 was also functional in DNA transfer. To identify the polar localization domains (PLDs) of VirB4 and VirB11, we analyzed fusions of GFP with smaller segments of the two proteins. Two noncontiguous regions in VirB4, residues 236–470 and 592–789, contain PLDs. The VirB11 PLD mapped to a 69 amino acid segment, residues 149–217, in the central region of the protein. These domains are probably involved in interactions that target the two proteins to a cell pole.
Collapse
Affiliation(s)
- Aditi Das
- Roseville Area High School, Roseville, Minnesota, 55113
| | | |
Collapse
|
8
|
Affiliation(s)
- Lori L. Burrows
- Department of Biochemistry and Biomedical Sciences, Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON L8N 3Z5, Canada;
| |
Collapse
|
9
|
Hauberg-Lotte L, Klingenberg H, Scharf C, Böhm M, Plessl J, Friedrich F, Völker U, Becker A, Reinhold-Hurek B. Environmental factors affecting the expression of pilAB as well as the proteome and transcriptome of the grass endophyte Azoarcus sp. strain BH72. PLoS One 2012; 7:e30421. [PMID: 22276194 PMCID: PMC3262810 DOI: 10.1371/journal.pone.0030421] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Accepted: 12/15/2011] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Bacterial communication is involved in regulation of cellular mechanisms such as metabolic processes, microbe-host interactions or biofilm formation. In the nitrogen-fixing model endophyte of grasses Azoarcus sp. strain BH72, known cell-cell signaling systems have not been identified; however, the pilA gene encoding the structural protein of type IV pili that are essential for plant colonization appears to be regulated in a population density-dependent manner. METHODOLOGY/PRINCIPAL FINDINGS Our data suggest that pilAB expression is affected by population density, independent of autoinducers typical for gram-negative bacteria, likely depending on unknown secreted molecule(s) that can be produced by different bacterial species. We used transcriptomic and proteomic approaches to identify target genes and proteins differentially regulated in conditioned supernatants in comparison to standard growth conditions. Around 8% of the 3992 protein-coding genes of Azoarcus sp. and 18% of the detected proteins were differentially regulated. Regulatory proteins and transcription factors among the regulated proteins indicated a complex hierarchy. Differentially regulated genes and proteins were involved in processes such as type IV pili formation and regulation, metal and nutrient transport, energy metabolism, and unknown functions mediated by hypothetical proteins. Four of the newly discovered target genes were further analyzed and in general they showed regulation patterns similar to pilAB. The expression of one of them was shown to be induced in plant roots. CONCLUSION/SIGNIFICANCE This study is the first global approach to initiate characterization of cell density-dependent gene regulation mediated by soluble molecule(s) in the model endophyte Azoarcus sp. strain BH72. Our data suggest that the putative signaling molecule(s) are also produced by other Proteobacteria and might thus be used for interspecies communication. This study provides the foundation for the development of robust reporter systems for Azoarcus sp. to analyze mechanisms and molecules involved in the population-dependent gene expression in this endophyte in future.
Collapse
Affiliation(s)
- Lena Hauberg-Lotte
- University Bremen, Molecular Plant Microbiology, Center for Biomolecular Interactions Bremen, Bremen, Germany
| | - Hannah Klingenberg
- University Bremen, Molecular Plant Microbiology, Center for Biomolecular Interactions Bremen, Bremen, Germany
| | - Christian Scharf
- Ernst-Moritz-Arndt-University Greifswald, Interfaculty Institute of Genetics and Functional Genomics, Greifswald, Germany
- University of Medicine Greifswald, Department of Otorhinolaryngology, Greifswald, Germany
| | - Melanie Böhm
- University Bremen, Molecular Plant Microbiology, Center for Biomolecular Interactions Bremen, Bremen, Germany
| | - Jörg Plessl
- University Bremen, Molecular Plant Microbiology, Center for Biomolecular Interactions Bremen, Bremen, Germany
| | - Frauke Friedrich
- University Bremen, Molecular Plant Microbiology, Center for Biomolecular Interactions Bremen, Bremen, Germany
| | - Uwe Völker
- Ernst-Moritz-Arndt-University Greifswald, Interfaculty Institute of Genetics and Functional Genomics, Greifswald, Germany
| | - Anke Becker
- Institute of Biology III, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Barbara Reinhold-Hurek
- University Bremen, Molecular Plant Microbiology, Center for Biomolecular Interactions Bremen, Bremen, Germany
| |
Collapse
|
10
|
Mikkelsen H, Sivaneson M, Filloux A. Key two-component regulatory systems that control biofilm formation in Pseudomonas aeruginosa. Environ Microbiol 2011; 13:1666-81. [PMID: 21554516 DOI: 10.1111/j.1462-2920.2011.02495.x] [Citation(s) in RCA: 162] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Biofilm formation in P. aeruginosa is a highly regulated process that proceeds through a number of distinct stages. This development is controlled by a wide range of factors, of which two-component systems (TCSs) play a key role. In this review, we focus on some of the TCSs that regulate the switch from a motile to a sessile bacterial lifestyle, either via the production of extracellular appendages or by the production of exopolysaccharides. Extracellular appendages, such as flagella, type IV pili and Cup fimbriae are often involved in the initial attachment of bacteria to a surface. In P. aeruginosa, many of these surface structures are regulated by TCSs, and some systems regulate more than one type of appendage. Furthermore, the production of exopolysaccharides, such as Pel and Psl, is required for P. aeruginosa biofilm formation. The regulation of Pel and Psl is post-transcriptionally repressed by RsmA, the activity of which is controlled by a complex regulatory system involving several sensor kinases and accessory components. Furthermore, the Rsm system is a major control system that inversely regulates factors involved in motility and acute infection on one hand, and factors involved in biofilm formation and chronic infection on the other hand. Finally, a series of TCSs has recently been discovered that regulates biofilm development in a stage-specific manner. Taken together, these complex regulatory networks allow the bacterium to respond appropriately to diverse environmental stimuli, and increased knowledge of their mechanisms and signals could be of great importance in the design of novel antibacterial strategies.
Collapse
Affiliation(s)
- Helga Mikkelsen
- Imperial College London, Division of Cell and Molecular Biology, Centre for Molecular Microbiology and Infection, South Kensington Campus, Flowers Building, London SW7 2AZ, UK
| | | | | |
Collapse
|
11
|
Kirkpatrick CL, Viollier PH. Poles apart: prokaryotic polar organelles and their spatial regulation. Cold Spring Harb Perspect Biol 2011; 3:cshperspect.a006809. [PMID: 21084387 DOI: 10.1101/cshperspect.a006809] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
While polar organelles hold the key to understanding the fundamentals of cell polarity and cell biological principles in general, they have served in the past merely for taxonomical purposes. Here, we highlight recent efforts in unraveling the molecular basis of polar organelle positioning in bacterial cells. Specifically, we detail the role of members of the Ras-like GTPase superfamily and coiled-coil-rich scaffolding proteins in modulating bacterial cell polarity and in recruiting effector proteins to polar sites. Such roles are well established for eukaryotic cells, but not for bacterial cells that are generally considered diffusion-limited. Studies on spatial regulation of protein positioning in bacterial cells, though still in their infancy, will undoubtedly experience a surge of interest, as comprehensive localization screens have yielded an extensive list of (polarly) localized proteins, potentially reflecting subcellular sites of functional specialization predicted for organelles.
Collapse
Affiliation(s)
- Clare L Kirkpatrick
- Department of Microbiology and Molecular Medicine, Centre Médicale Universitaire, Faculty of Medicine, University of Geneva, Switzerland
| | | |
Collapse
|
12
|
Fukushima T, Furihata I, Emmins R, Daniel RA, Hoch JA, Szurmant H. A role for the essential YycG sensor histidine kinase in sensing cell division. Mol Microbiol 2010; 79:503-22. [PMID: 21219466 DOI: 10.1111/j.1365-2958.2010.07464.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The YycG sensor histidine kinase co-ordinates cell wall remodelling with cell division in Gram-positive bacteria by controlling the transcription of genes for autolysins and their inhibitors. Bacillus subtilis YycG senses cell division and is enzymatically activated by associating with the divisome at the division septum. Here it is shown that the cytoplasmic PAS domain of this multi-domain transmembrane kinase is a determining factor translocating the kinase to the division septum. Furthermore, translocation to the division septum, per se, is insufficient to activate YycG, indicating that specific interactions and/or ligands produced there are required to stimulate kinase activity. N-terminal truncations of YycG lose negative regulation of their activity inferring that this regulation is accomplished through its transmembrane and extramembrane domains interacting with the membrane associated YycH and YycI proteins that do not localize to the divisome. The data indicate that YycG activity in non-dividing cells is suppressed by its interaction with YycH and YycI and its activation is co-ordinated to cell division in dividing cells by specific interactions that occur within the divisome.
Collapse
Affiliation(s)
- Tatsuya Fukushima
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA 92011, USA
| | | | | | | | | | | |
Collapse
|
13
|
Kentner D, Sourjik V. Use of Fluorescence Microscopy to Study Intracellular Signaling in Bacteria. Annu Rev Microbiol 2010; 64:373-90. [DOI: 10.1146/annurev.micro.112408.134205] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- David Kentner
- Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Alliance, D-69120 Heidelberg, Germany;
| | - Victor Sourjik
- Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Alliance, D-69120 Heidelberg, Germany;
| |
Collapse
|
14
|
Polar localization of the CckA histidine kinase and cell cycle periodicity of the essential master regulator CtrA in Caulobacter crescentus. J Bacteriol 2009; 192:539-52. [PMID: 19897656 DOI: 10.1128/jb.00985-09] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The phosphorylated form of the response regulator CtrA represses DNA replication initiation and regulates the transcription of about 100 cell cycle-regulated genes in Caulobacter crescentus. CtrA activity fluctuates during the cell cycle, and its periodicity is a key element of the engine that drives cell cycle progression. The histidine kinase CckA controls the phosphorylation not only of CtrA but also of CpdR, whose unphosphorylated form promotes CtrA proteolysis. Thus, CckA has a central role in establishing the cell cycle periodicity of CtrA activity by controlling both its phosphorylation and stability. Evidence suggests that the polar localization of CckA during the cell cycle plays a role in CckA function. However, the exact pattern of CckA localization remains controversial. Here, we describe a thorough, quantitative analysis of the spatiotemporal distribution of a functional and chromosomally produced CckA-monomeric green fluorescent protein fusion that affects current models of cell cycle regulation. We also identify two cis-acting regions in CckA that are important for its proper localization and function. The disruption of a PAS-like motif in the sensor domain affects the stability of CckA accumulation at the poles. This is accompanied by a partial loss in CckA function. Shortening an extended linker between beta-sheets within the CckA catalysis-assisting ATP-binding domain has a more severe effect on CckA polar localization and function. This mutant strain exhibits a dramatic cell-to-cell variability in CpdR levels and CtrA cell cycle periodicity, suggesting that the cell cycle-coordinated polar localization of CckA may be important for the robustness of signal transduction and cell cycle progression.
Collapse
|
15
|
Janakiraman A, Fixen KR, Gray AN, Niki H, Goldberg MB. A genome-scale proteomic screen identifies a role for DnaK in chaperoning of polar autotransporters in Shigella. J Bacteriol 2009; 191:6300-11. [PMID: 19684128 PMCID: PMC2753027 DOI: 10.1128/jb.00833-09] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2009] [Accepted: 08/07/2009] [Indexed: 11/20/2022] Open
Abstract
Autotransporters are outer membrane proteins that are widely distributed among gram-negative bacteria. Like other autotransporters, the Shigella autotransporter IcsA, which is required for actin assembly during infection, is secreted at the bacterial pole. In the bacterial cytoplasm, IcsA localizes to poles and potential cell division sites independent of the cell division protein FtsZ. To identify bacterial proteins involved in the targeting of IcsA to the pole in the bacterial cytoplasm, we screened a genome-scale library of Escherichia coli proteins tagged with green fluorescent protein (GFP) for those that displayed a localization pattern similar to that of IcsA-GFP in cells that lack functional FtsZ using a strain carrying a temperature-sensitive ftsZ allele. For each protein that mimicked the localization of IcsA-GFP, we tested whether IcsA localization was dependent on the presence of the protein. Although these approaches did not identify a polar receptor for IcsA, the cytoplasmic chaperone DnaK both mimicked IcsA localization at elevated temperatures as a GFP fusion and was required for the localization of IcsA to the pole in the cytoplasm of E. coli. DnaK was also required for IcsA secretion at the pole in Shigella flexneri. The localization of DnaK-GFP to poles and potential cell division sites was dependent on elevated growth temperature and independent of the presence of IcsA or functional FtsZ; native DnaK was found to be enhanced at midcell and the poles. A second Shigella autotransporter, SepA, also required DnaK for secretion, consistent with a role of DnaK more generally in the chaperoning of autotransporter proteins in the bacterial cytoplasm.
Collapse
Affiliation(s)
- Anuradha Janakiraman
- Division of Infectious Diseases, Massachusetts General Hospital, Cambridge, Massachusetts 02139, USA
| | | | | | | | | |
Collapse
|
16
|
Gooderham WJ, Hancock REW. Regulation of virulence and antibiotic resistance by two-component regulatory systems inPseudomonas aeruginosa. FEMS Microbiol Rev 2009; 33:279-94. [DOI: 10.1111/j.1574-6976.2008.00135.x] [Citation(s) in RCA: 238] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
17
|
Sciara MI, Spagnuolo C, Jares-Erijman E, García Véscovi E. Cytolocalization of the PhoP response regulator in Salmonella enterica: modulation by extracellular Mg2+ and by the SCV environment. Mol Microbiol 2008; 70:479-93. [PMID: 18761685 DOI: 10.1111/j.1365-2958.2008.06427.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The PhoP/PhoQ two-component system plays an essential role regulating numerous virulence phenotypes in Salmonella enterica. Previous work showed that PhoQ, the sensor protein, switches between the kinase- and the phosphatase-dominant state in response to environmental Mg2+ availability. This switch defines the PhoP phosphorylation status and, as a result, the transcriptional activity of this regulator. In this work, using the FlAsH labelling technique, we examine PhoP cytolocalization in response to extracellular Mg2+ limitation in vitro and to the Salmonella-containing vacuole (SCV) environment in macrophage cells. We demonstrate that in these PhoP/PhoQ-inducing environments PhoP displays preferential localization to one cell pole, while being homogeneously distributed in the bacterial cytoplasm in repressing conditions. Polar localization is lost in the absence of PhoQ or when a non-phosphorylatable PhoP(D52A) mutant is expressed. However, when PhoP transcriptional activation is achieved in a Mg2+- and PhoQ-independent manner, PhoP regains asymmetric polar localization. In addition, we show that, in the analysed conditions, PhoQ cellular distribution does not parallel PhoP location pattern. These findings reveal that PhoP cellular location is dynamic and conditioned by its environmentally defined transcriptional status, showing a new insight in the PhoP/PhoQ system mechanism.
Collapse
Affiliation(s)
- Mariela I Sciara
- Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Departamento de Microbiología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, S2002LRK Rosario, Argentina
| | | | | | | |
Collapse
|
18
|
Scheu P, Sdorra S, Liao YF, Wegner M, Basché T, Unden G, Erker W. Polar accumulation of the metabolic sensory histidine kinases DcuS and CitA in Escherichia coli. Microbiology (Reading) 2008; 154:2463-2472. [DOI: 10.1099/mic.0.2008/018614-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Patrick Scheu
- Institute of Microbiology and Wine Research, Johannes Gutenberg University, Mainz, Becherweg 15, 55099 Mainz, Germany
| | - Sven Sdorra
- Institute of Physical Chemistry, Johannes Gutenberg University, Mainz, Welderweg 11, 55099 Mainz, Germany
| | - Yun-Feng Liao
- Institute of Physical Chemistry, Johannes Gutenberg University, Mainz, Welderweg 11, 55099 Mainz, Germany
| | - Maria Wegner
- Institute of Physical Chemistry, Johannes Gutenberg University, Mainz, Welderweg 11, 55099 Mainz, Germany
| | - Thomas Basché
- Institute of Physical Chemistry, Johannes Gutenberg University, Mainz, Welderweg 11, 55099 Mainz, Germany
| | - Gottfried Unden
- Institute of Microbiology and Wine Research, Johannes Gutenberg University, Mainz, Becherweg 15, 55099 Mainz, Germany
| | - Wolfgang Erker
- Institute of Physical Chemistry, Johannes Gutenberg University, Mainz, Welderweg 11, 55099 Mainz, Germany
| |
Collapse
|
19
|
Abstract
Two-component signal transduction systems enable bacteria to sense, respond, and adapt to a wide range of environments, stressors, and growth conditions. In the prototypical two-component system, a sensor histidine kinase catalyzes its autophosphorylation and then subsequently transfers the phosphoryl group to a response regulator, which can then effect changes in cellular physiology, often by regulating gene expression. The utility of these signaling systems is underscored by their prevalence throughout the bacterial kingdom and by the fact that many bacteria contain dozens, or sometimes hundreds, of these signaling proteins. The presence of so many highly related signaling proteins in individual cells creates both an opportunity and a challenge. Do cells take advantage of the similarity between signaling proteins to integrate signals or diversify responses, and thereby enhance their ability to process information? Conversely, how do cells prevent unwanted cross-talk and maintain the insulation of distinct pathways? Here we address both questions by reviewing the cellular and molecular mechanisms that dictate the specificity of two-component signaling pathways.
Collapse
Affiliation(s)
- Michael T Laub
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | | |
Collapse
|
20
|
DeLange PA, Collins TL, Pierce GE, Robinson JB. PilJ localizes to cell poles and is required for type IV pilus extension in Pseudomonas aeruginosa. Curr Microbiol 2007; 55:389-95. [PMID: 17713814 DOI: 10.1007/s00284-007-9008-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2007] [Accepted: 05/20/2007] [Indexed: 10/22/2022]
Abstract
Twitching motility allows Pseudomonas aeruginosa to respond to stimuli by extending and retracting its type IV pili (TFP). PilJ is a protein necessary for this surface-associated twitching motility and bears high sequence identity with Escherichia coli methyl-accepting chemotaxis proteins (MCP). Here, we report that whereas wild-type P. aeruginosa PAO1 cells have extended pili at a single pole, pilJ mutant cells have shortened pili often at both poles despite normal levels of pilin accumulation, suggesting that PilJ is required for full TFP assembly/extension. Using yellow fluorescent protein fusions (pilJ-yfp), both plasmid born and in-frame chromosomal constructs, we determined that PilJ localizes to both poles of the cell. Overexpression of pilJ-yfp resulted in the protein accumulating between the poles.
Collapse
Affiliation(s)
- Paul A DeLange
- Biology Department, University of Dayton, 300 College Park, Dayton, OH 45469-2320, USA
| | | | | | | |
Collapse
|
21
|
Dalisay DS, Webb JS, Scheffel A, Svenson C, James S, Holmström C, Egan S, Kjelleberg S. A mannose-sensitive haemagglutinin (MSHA)-like pilus promotes attachment of Pseudoalteromonas tunicata cells to the surface of the green alga Ulva australis. Microbiology (Reading) 2006; 152:2875-2883. [PMID: 17005969 DOI: 10.1099/mic.0.29158-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
This study demonstrates that attachment of the marine bacterium Pseudoalteromonas tunicata to the cellulose-containing surface of the green alga Ulva australis is mediated by a mannose-sensitive haemagglutinin (MSHA-like) pilus. We have identified an MSHA pilus biogenesis gene locus in P. tunicata, termed mshI1I2JKLMNEGFBACDOPQ, which shows significant homology, with respect to its genetic characteristics and organization, to the MSHA pilus biogenesis gene locus of Vibrio cholerae. Electron microscopy studies revealed that P. tunicata wild-type cells express flexible pili peritrichously arranged on the cell surface. A P. tunicata mutant (SM5) with a transposon insertion in the mshJ region displayed a non-piliated phenotype. Using SM5, it has been demonstrated that the MSHA pilus promotes attachment of P. tunicata wild-type cells in polystyrene microtitre plates, as well as to microcrystalline cellulose and to the living surface of U. australis. P. tunicata also demonstrated increased pilus production in response to cellulose and its monomer constituent cellobiose. The MSHA pilus thus functions as a determinant of attachment in P. tunicata, and it is proposed that an understanding of surface sensing mechanisms displayed by P. tunicata will provide insight into specific ecological interactions that occur between this bacterium and higher marine organisms.
Collapse
MESH Headings
- Bacterial Adhesion/genetics
- Bacterial Proteins/genetics
- Cellulose/metabolism
- DNA Transposable Elements
- DNA, Bacterial/chemistry
- DNA, Bacterial/genetics
- Fimbriae Proteins/genetics
- Fimbriae Proteins/metabolism
- Fimbriae Proteins/physiology
- Fimbriae, Bacterial/genetics
- Fimbriae, Bacterial/physiology
- Fimbriae, Bacterial/ultrastructure
- Gene Deletion
- Gene Expression Regulation, Bacterial
- Mannose/metabolism
- Mannose-Binding Lectin/genetics
- Mannose-Binding Lectin/metabolism
- Mannose-Binding Lectin/physiology
- Microscopy, Electron, Transmission
- Microscopy, Fluorescence
- Molecular Sequence Data
- Multigene Family
- Mutagenesis, Insertional
- Polystyrenes/metabolism
- Pseudoalteromonas/genetics
- Pseudoalteromonas/physiology
- Sequence Analysis, DNA
- Ulva/microbiology
Collapse
Affiliation(s)
- Doralyn S Dalisay
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Jeremy S Webb
- Centre for Marine Biofouling and Bio-innovation, University of New South Wales, Sydney, NSW 2052, Australia
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - André Scheffel
- Max-Planck-Institute for Marine Microbiology, Celsiusstraße 1 28359, Bremen, Germany
| | - Charles Svenson
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Sally James
- Centre for Marine Biofouling and Bio-innovation, University of New South Wales, Sydney, NSW 2052, Australia
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Carola Holmström
- Centre for Marine Biofouling and Bio-innovation, University of New South Wales, Sydney, NSW 2052, Australia
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Suhelen Egan
- Centre for Marine Biofouling and Bio-innovation, University of New South Wales, Sydney, NSW 2052, Australia
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Staffan Kjelleberg
- Centre for Marine Biofouling and Bio-innovation, University of New South Wales, Sydney, NSW 2052, Australia
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
22
|
Nilsen T, Yan AW, Gale G, Goldberg MB. Presence of multiple sites containing polar material in spherical Escherichia coli cells that lack MreB. J Bacteriol 2005; 187:6187-96. [PMID: 16109960 PMCID: PMC1196171 DOI: 10.1128/jb.187.17.6187-6196.2005] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In rod-shaped bacteria, certain proteins are specifically localized to the cell poles. The nature of the positional information that leads to the proper localization of these proteins is unclear. In a screen for factors required for the localization of the Shigella sp. actin assembly protein IcsA to the bacterial pole, a mutant carrying a transposon insertion in mreB displayed altered targeting of IcsA. The phenotype of cells containing a transposon insertion in mreB was indistinguishable from that of cells containing a nonpolar mutation in mreB or that of wild-type cells treated with the MreB inhibitor A22. In cells lacking MreB, a green fluorescent protein (GFP) fusion to a cytoplasmic derivative of IcsA localized to multiple sites. Secreted full-length native IcsA was present in multiple faint patches on the surfaces of these cells in a pattern similar to that seen for the cytoplasmic IcsA-GFP fusion. EpsM, the polar Vibrio cholerae inner membrane protein, also localized to multiple sites in mreB cells and colocalized with IcsA, indicating that localization to multiple sites is not unique to IcsA. Our results are consistent with the requirement, either direct or indirect, for MreB in the restriction of certain polar material to defined sites within the cell and, in the absence of MreB, with the formation of ectopic sites containing polar material.
Collapse
Affiliation(s)
- Trine Nilsen
- Bacterial Pathogenesis Laboratories, University Park, 65 Landsdowne Street, Cambridge, MA 02139, USA
| | | | | | | |
Collapse
|
23
|
Sciochetti SA, Ohta N, Newton A. The role of polar localization in the function of an essential Caulobacter crescentus tyrosine kinase. Mol Microbiol 2005; 56:1467-80. [PMID: 15916599 DOI: 10.1111/j.1365-2958.2005.04652.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
DivL is an essential tyrosine kinase in Caulobacter crescentus that controls an early step in the cell division cycle. We show here that DivL dynamically localizes to the stalk-distal cell pole and less frequently to the stalked cell pole during the S-phase. The kinase is subsequently released from the cell poles late in division and remains dispersed in the newly divided progeny stalk and swarmer cells. Mutational analysis of DivL in a DivL-GFP fusion protein demonstrated that the extreme C-terminus and residues in the conserved four-helix bundle, which is the phosphorylation-dimerization domain, are important for localization. We speculate that the four-helix bundle of the core catalytic domain may serve as a recognition site for the "localization machinery". Unexpectedly, a DivL protein with mutations in the C-terminal localization sequence, and an intact catalytic domain, efficiently complemented a divL null mutation. Thus, subcellular localization of DivL is not essential to its function in cell division regulation. Regulation of cell division by DivL does, however, depend on its localization in the cell membrane.
Collapse
|
24
|
Coltri PP, Rosato YB. Transcription analysis of pilS and xpsEL genes from Xylella fastidiosa. Antonie Van Leeuwenhoek 2005; 87:253-7. [PMID: 15803391 DOI: 10.1007/s10482-004-4620-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2004] [Accepted: 10/12/2004] [Indexed: 10/25/2022]
Abstract
Xylella fastidiosa is a xylem-limited phytopathogen responsible for diseases in several plants such as citrus and coffee. Analysis of the bacterial genome revealed some putative pathogenicity-related genes that could help to elucidate the molecular mechanisms of plant-pathogen interactions. In the present work, the transcription of three genes of the bacterium, grown in defined and rich media and also in media containing host plant extracts (sweet orange, 'ponkan' and coffee) was analyzed by RT-PCR. The pilS gene, which encodes a sensor histidine kinase responsible for the biosynthesis of fimbriae, was transcribed when the bacterium was grown in more complex media such as PW and in medium containing plant extracts. The xps genes (xpsL and xpsE) which are related to the type II secretion system were also detected when the bacterium was grown in rich media and media with 'ponkan' and coffee extracts. It was thus observed that pilS and xpsEL genes of X. fastidiosa can be modulated by environmental factors and their expression is dependent on the nutritional status of the growth medium.
Collapse
Affiliation(s)
- Patricia P Coltri
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, P.O. Box 6010, CEP 13087-930, Barão Geraldo, Campinas, SP, Brazil.
| | | |
Collapse
|
25
|
Abstract
In rod-shaped bacteria, a surprisingly large number of proteins are localized to the cell poles. Polar positioning of proteins is crucial to many fundamental cellular processes. Formation of the pole occurs at the time of a prior cell division event and involves coordination of the cell division machinery with septal placement of newly-synthesized peptidoglycan. Development of polar peptidoglycan and outer membrane depends on the formation of the cytokinetic FtsZ ring at midcell. By contrast, positioning of at least two polar proteins depends on signals independent of both the assembly of the FtsZ ring and the synthesis of septal and polar peptidoglycan. We propose a model for distinct but interrelated developmental pathways for polar cell envelope synthesis and positional information recognized by polar proteins.
Collapse
Affiliation(s)
- Anuradha Janakiraman
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital/Harvard Medical School, 65 Landsdowne St., Cambridge, MA 02139, USA
| | | |
Collapse
|
26
|
Chiang P, Habash M, Burrows LL. Disparate subcellular localization patterns of Pseudomonas aeruginosa Type IV pilus ATPases involved in twitching motility. J Bacteriol 2005; 187:829-39. [PMID: 15659660 PMCID: PMC545728 DOI: 10.1128/jb.187.3.829-839.2005] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The opportunistic pathogen Pseudomonas aeruginosa expresses polar type IV pili (TFP), which are responsible for adhesion to various materials and twitching motility on surfaces. Twitching occurs by alternate extension and retraction of TFP, which arise from assembly and disassembly of pilin subunits at the base of the pilus. The ATPase PilB promotes pilin assembly, while the ATPase PilT or PilU or both promote pilin dissociation. Fluorescent fusions to two of the three ATPases (PilT and PilU) were functional, as shown by complementation of the corresponding mutants. PilB and PilT fusions localized to both poles, while PilU fusions localized only to the piliated pole. To identify the portion of the ATPases required for localization, sequential C-terminal deletions of PilT and PilU were generated. The conserved His and Walker B boxes were dispensable for polar localization but were required for twitching motility, showing that localization and function could be uncoupled. Truncated fusions that retained polar localization maintained their distinctive distribution patterns. To dissect the cellular factors involved in establishing polarity, fusion protein localization was monitored with a panel of TFP mutants. The localization of yellow fluorescent protein (YFP)-PilT and YFP-PilU was independent of the subunit PilA, other TFP ATPases, and TFP-associated proteins previously shown to be associated with the membrane or exhibiting polar localization. In contrast, YFP-PilB exhibited diffuse cytoplasmic localization in a pilC mutant, suggesting that PilC is required for polar localization of PilB. Finally, localization studies performed with fluorescent ATPase chimeras of PilT and PilU demonstrated that information responsible for the characteristic localization patterns of the ATPases likely resides in their N termini.
Collapse
Affiliation(s)
- Poney Chiang
- Centre for Infection and Biomaterials Research, 7142A Elm Wing, Hospital for Sick Children Research Institute, 555 University Avenue, Toronto, Ontario, Canada M5G 1X8
| | | | | |
Collapse
|
27
|
Nilsen T, Ghosh AS, Goldberg MB, Young KD. Branching sites and morphological abnormalities behave as ectopic poles in shape-defective Escherichia coli. Mol Microbiol 2004; 52:1045-54. [PMID: 15130123 PMCID: PMC3097518 DOI: 10.1111/j.1365-2958.2004.04050.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Certain mutants in Escherichia coli lacking multiple penicillin-binding proteins (PBPs) produce misshapen cells containing kinks, bends and branches. These deformed regions exhibit two structural characteristics of normal cell poles: the peptidoglycan is inert to dilution by new synthesis or turnover, and a similarly stable patch of outer membrane caps the sites. To test the premise that these aberrant sites represent biochemically functional but misplaced cell poles, we assessed the intracellular distribution of proteins that localize specifically to bacterial poles. Green fluorescent protein (GFP) hybrids containing polar localization sequences from the Shigella flexneri IcsA protein or from the Vibrio cholerae EpsM protein formed foci at the poles of wild-type E. coli and at the poles and morphological abnormalities in PBP mutants. In addition, secreted wild-type IcsA localized to the outer membrane overlying these aberrant domains. We conclude that the morphologically deformed sites in these mutants represent fully functional poles or pole fragments. The results suggest that prokaryotic morphology is driven, at least in part, by the controlled placement of polar material, and that one or more of the low-molecular-weight PBPs participate in this process. Such mutants may help to unravel how particular proteins are targeted to bacterial poles, thereby creating important biochemical and functional asymmetries.
Collapse
Affiliation(s)
- Trine Nilsen
- Infectious Disease Division, Massachusetts General Hospital/Harvard Medical School, Boston, MA 02114, USA
| | - Anindya S. Ghosh
- Department of Microbiology and Immunology, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58202, USA
| | - Marcia B. Goldberg
- Infectious Disease Division, Massachusetts General Hospital/Harvard Medical School, Boston, MA 02114, USA
| | - Kevin D. Young
- Department of Microbiology and Immunology, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58202, USA
- For correspondence. ; Tel. (+1) 701 777 2624; Fax (+1) 701 777 2054
| |
Collapse
|
28
|
Jacobs-Wagner C. Regulatory proteins with a sense of direction: cell cycle signalling network in Caulobacter. Mol Microbiol 2004; 51:7-13. [PMID: 14651607 DOI: 10.1046/j.1365-2958.2003.03828.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Localization of kinases and other signalling molecules at discrete cellular locations is often an essential component of signal transduction in eukaryotes. Caulobacter crescentus is a small, single-celled bacterium that presumably lacks intracellular organelles. Yet in Caulobacter, the subcellular distribution of several two-component signal transduction proteins involved in the control of polar morphogenesis and cell cycle progression changes from a fairly dispersed distribution to a tight accumulation at one or both poles in a spatial and temporal pattern that is reproduced during each cell cycle. This cell cycle-dependent choreography suggests that similarly to what happens in eukaryotes, protein localization provides a means of modulating signal transduction in bacteria. Recent studies have provided important insights into the biological role and the mechanisms for the differential localization of these bacterial signalling proteins during the Caulobacter cell cycle.
Collapse
Affiliation(s)
- Christine Jacobs-Wagner
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut 06520, USA.
| |
Collapse
|
29
|
Ausmees N, Jacobs-Wagner C. Spatial and temporal control of differentiation and cell cycle progression in Caulobacter crescentus. Annu Rev Microbiol 2004; 57:225-47. [PMID: 14527278 DOI: 10.1146/annurev.micro.57.030502.091006] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The dimorphic and intrinsically asymmetric bacterium Caulobacter crescentus has become an important model organism to study the bacterial cell cycle, cell polarity, and polar differentiation. A multifaceted regulatory network orchestrates the precise coordination between the development of polar organelles and the cell cycle. One master response regulator, CtrA, directly controls the initiation of chromosome replication as well as several aspects of polar morphogenesis and cell division. CtrA activity is temporally and spatially regulated by multiple partially redundant control mechanisms, such as transcription, phosphorylation, and targeted proteolysis. A multicomponent signal transduction network upstream CtrA, containing histidine kinases CckA, PleC, DivJ, and DivL and the essential response regulator DivK, contributes to the control of CtrA activity in response to cell cycle and developmental cues. An intriguing feature of this signaling network is the dynamic cell cycle-dependent polar localization of its components, which is believed to have a novel regulatory function.
Collapse
Affiliation(s)
- Nora Ausmees
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06520-8103, USA.
| | | |
Collapse
|
30
|
Huang B, Whitchurch CB, Mattick JS. FimX, a multidomain protein connecting environmental signals to twitching motility in Pseudomonas aeruginosa. J Bacteriol 2004; 185:7068-76. [PMID: 14645265 PMCID: PMC296245 DOI: 10.1128/jb.185.24.7068-7076.2003] [Citation(s) in RCA: 136] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Twitching motility is a form of surface translocation mediated by the extension, tethering, and retraction of type IV pili. Three independent Tn5-B21 mutations of Pseudomonas aeruginosa with reduced twitching motility were identified in a new locus which encodes a predicted protein of unknown function annotated PA4959 in the P. aeruginosa genome sequence. Complementation of these mutants with the wild-type PA4959 gene, which we designated fimX, restored normal twitching motility. fimX mutants were found to express normal levels of pilin and remained sensitive to pilus-specific bacteriophages, but they exhibited very low levels of surface pili, suggesting that normal pilus function was impaired. The fimX gene product has a molecular weight of 76,000 and contains four predicted domains that are commonly found in signal transduction proteins: a putative response regulator (CheY-like) domain, a PAS-PAC domain (commonly involved in environmental sensing), and DUF1 (or GGDEF) and DUF2 (or EAL) domains, which are thought to be involved in cyclic di-GMP metabolism. Red fluorescent protein fusion experiments showed that FimX is located at one pole of the cell via sequences adjacent to its CheY-like domain. Twitching motility in fimX mutants was found to respond relatively normally to a range of environmental factors but could not be stimulated by tryptone and mucin. These data suggest that fimX is involved in the regulation of twitching motility in response to environmental cues.
Collapse
Affiliation(s)
- Bixing Huang
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD 4072, Australia
| | | | | |
Collapse
|
31
|
Abstract
Bacteria exhibit a high degree of intracellular organization, both in the timing of essential processes and in the placement of the chromosome, the division site, and individual structural and regulatory proteins. We examine the temporal and spatial regulation of the Caulobacter cell cycle, bacterial chromosome segregation and cytokinesis, and Bacillus subtilis sporulation. Mechanisms that control timing of cell cycle and developmental events include transcriptional cascades, regulated phosphorylation and proteolysis of signal transduction proteins, transient genetic asymmetry, and intercellular communication. Surprisingly, many signal transduction proteins are dynamically localized to specific subcellular addresses during the cell division cycle and sporulation, and proper localization is essential for their function. The Min proteins that govern division site selection in Escherichia coli may be the first example of a system that generates positional information de novo.
Collapse
Affiliation(s)
- Kathleen R Ryan
- Department of Developmental Biology, Beckman Center, Stanford University School of Medicine, Stanford, California 94305-5329, USA.
| | | |
Collapse
|
32
|
Abstract
Twitching motility is a flagella-independent form of bacterial translocation over moist surfaces. It occurs by the extension, tethering, and then retraction of polar type IV pili, which operate in a manner similar to a grappling hook. Twitching motility is equivalent to social gliding motility in Myxococcus xanthus and is important in host colonization by a wide range of plant and animal pathogens, as well as in the formation of biofilms and fruiting bodies. The biogenesis and function of type IV pili is controlled by a large number of genes, almost 40 of which have been identified in Pseudomonas aeruginosa. A number of genes required for pili assembly are homologous to genes involved in type II protein secretion and competence for DNA uptake, suggesting that these systems share a common architecture. Twitching motility is also controlled by a range of signal transduction systems, including two-component sensor-regulators and a complex chemosensory system.
Collapse
Affiliation(s)
- John S Mattick
- ARC Special Research Centre for Functional and Applied Genomics, Institute for Molecular Bioscience, University of Queensland, Brisbane Qld. 4072, Australia.
| |
Collapse
|
33
|
Abstract
Bacteria are often highly polarized, exhibiting specialized structures at or near the ends of the cell. Among such structures are actin-organizing centers, which mediate the movement of certain pathogenic bacteria within the cytoplasm of an animal host cell; organized arrays of membrane receptors, which govern chemosensory behavior in swimming bacteria; and asymmetrically positioned septa, which generate specialized progeny in differentiating bacteria. This polarization is orchestrated by complex and dynamic changes in the subcellular localization of signal transduction and cytoskeleton proteins as well as of specific regions of the chromosome. Recent work has provided information on how dynamic subcellular localization occurs and how it is exploited by the bacterial cell. The main task of a bacterial cell is to survive and duplicate itself. The bacterium must replicate its genetic material and divide at the correct site in the cell and at the correct time in the cell cycle with high precision. Each kind of bacterium also executes its own strategy to find nutrients in its habitat and to cope with conditions of stress from its environment. This involves moving toward food, adapting to environmental extremes, and, in many cases, entering and exploiting a eukaryotic host. These activities often involve processes that take place at or near the poles of the cell. Here we explore some of the schemes bacteria use to orchestrate dynamic changes at their poles and how these polar events execute cellular functions. In spite of their small size, bacteria have a remarkably complex internal organization and external architecture. Bacterial cells are inherently asymmetric, some more obviously so than others. The most easily recognized asymmetries involve surface structures, e.g., flagella, pili, and stalks that are preferentially assembled at one pole by many bacteria. "New" poles generated at the cell division plane differ from old poles from the previous round of cell division. Even in Escherichia coli, which is generally thought to be symmetrical, old poles are more static than new poles with respect to cell wall assembly (1), and they differ in the deposition of phospholipid domains (2). There are many instances of differential polar functions; among these is the preferential use of old poles when attaching to host cells as in the interaction of Bradyrhizobium with plant root hairs (3) or the polar pili-mediated attachment of the Pseudomonas aeruginosa pathogen to tracheal epithelia (4). An unusual polar organelle that mediates directed motility on solid surfaces is found in the nonpathogenic bacterium Myxococcus xanthus. The gliding motility of this bacterium is propelled by a nozzle-like structure that squirts a polysaccharide-containing slime from the pole of the cell (5). Interestingly, M. xanthus, which has nozzles at both poles, can reverse direction by closing one nozzle and opening the other in response to end-to-end interactions between cells.
Collapse
Affiliation(s)
- Lucy Shapiro
- Department of Developmental Biology, Stanford University School of Medicine, B300 Beckman Center, Stanford, CA 94305, USA.
| | | | | |
Collapse
|
34
|
Viollier PH, Sternheim N, Shapiro L. A dynamically localized histidine kinase controls the asymmetric distribution of polar pili proteins. EMBO J 2002; 21:4420-8. [PMID: 12198144 PMCID: PMC126193 DOI: 10.1093/emboj/cdf454] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Each cell division in Caulobacter crescentus is asymmetric, yielding a swarmer cell with several polar pili and a non-piliated stalked cell. To identify factors contributing to the asymmetric biogenesis of polar pili, cytological studies of pilus assembly components were performed. We show here that the CpaC protein, which is thought to form the outer membrane pilus secretion channel, and its assembly factor, CpaE, are localized to the cell pole prior to the polymerization of the pilus filament. We demonstrate that the PleC histidine kinase, a two-component signal transduction protein shown previously to localize to the piliated cell pole before and during pilus assembly, controls the accumulation of the pilin subunit, PilA. Using an inactive form of PleC (PleCH610A) that lacks the catalytic histidine residue, we provide evidence that PleC activity is responsible for the asymmetric distribution of CpaE and itself to only one of the two cell poles. Thus, a polar signal transduction protein controls its own asymmetric location as well as that of a factor assembling a polar organelle.
Collapse
Affiliation(s)
| | | | - Lucy Shapiro
- Department of Developmental Biology, Beckman Center, B351, 279 Campus Drive, Stanford University School of Medicine, Palo Alto, CA 94305-5329, USA
Corresponding author e-mail:
| |
Collapse
|
35
|
Kumar RB, Das A. Polar location and functional domains of the Agrobacterium tumefaciens DNA transfer protein VirD4. Mol Microbiol 2002; 43:1523-32. [PMID: 11952902 DOI: 10.1046/j.1365-2958.2002.02829.x] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Agrobacterium tumefaciens VirD4 is essential for DNA transfer to plants. VirD4 presumably functions as a coupling factor that facilitates communication between a substrate and the transport pore. To serve as a coupling protein, VirD4 may be required to localize near the transport apparatus. In a previous study, we observed that several constituents of the transport apparatus localize to the cell membranes. In this study, we demonstrate that VirD4 has a unique cellular location. In immunofluorescence microscopy, cells probed with anti-VirD4 antibodies had foci of fluorescence primarily at the cell poles, indicating that VirD4 localizes to the cell pole. Polar location of VirD4 was not dependent on T-DNA processing, the formation of the transport apparatus and the presence of other Vir proteins. VirD4 is an integral membrane protein with one periplasmic domain. The large cytoplasmic region contains a nucleotide-binding domain. To investigate the role of these domains in DNA transfer, we introduced mutations in virD4 and studied the effect of a mutation on substrate transfer. A deletion of most of the periplasmic domain as well as the alterations of glycine 151 to serine and lysine 152 to alanine led to the complete loss of DNA transfer, indicating that both domains are essential for substrate transfer. Subcellular localization of the mutant proteins indicated that both the periplasmic and the nucleotide-binding domains are required for polar localization of VirD4. The periplasmic domain mutant VirD4Delta36-61 was distributed throughout the cell membrane, whereas the nucleotide binding site mutant VirD4G151S localized to sites other than the cell poles. Polar location of VirD4 suggests a role for the cell pole in DNA transfer.
Collapse
Affiliation(s)
- Renu B Kumar
- Department of Biochemistry, University of Minnesota, St Paul 55108, USA
| | | |
Collapse
|
36
|
Phillips GJ. Green fluorescent protein--a bright idea for the study of bacterial protein localization. FEMS Microbiol Lett 2001; 204:9-18. [PMID: 11682170 DOI: 10.1111/j.1574-6968.2001.tb10854.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Use of the green fluorescent protein (GFP) of Aequorea victoria as a reporter for protein and DNA localization has provided sensitive, new approaches for studying the organization of the bacterial cell, leading to new insights into diverse cellular processes. GFP has many characteristics that make it useful for localization studies in bacteria, primarily its ability to fluoresce when fused to target polypeptides without the addition of exogenously added substrates. As an alternative to immunofluorescence microscopy, the expression of gfp gene fusions has been used to probe the function of cellular components fundamental for DNA replication, translation, protein export, and signal transduction, that heretofore have been difficult to study in living cells. Moreover, protein and DNA localization can now be monitored in real time, revealing that several proteins important for cell division, development and sporulation are dynamically localized throughout the cell cycle. The use of additional GFP variants that permit the labeling of multiple components within the same cell, and the use of GFP for genetic screens, should continue to make this a valuable tool for addressing complex questions about the bacterial cell.
Collapse
Affiliation(s)
- G J Phillips
- Department of Microbiology, 207 Science I Building, Iowa State University, Ames, IA 50011, USA.
| |
Collapse
|
37
|
Affiliation(s)
- S R Lybarger
- Department of Biology, University of Michigan, Ann Arbor, MI 48109-1048, USA
| | | |
Collapse
|
38
|
Ethier J, Boyd JM. Topological analysis and role of the transmembrane domain in polar targeting of PilS, a Pseudomonas aeruginosa sensor kinase. Mol Microbiol 2000; 38:891-903. [PMID: 11115122 DOI: 10.1046/j.1365-2958.2000.02189.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In Pseudomonas aeruginosa, synthesis of pilin, the major protein subunit of the pili, is regulated by a two-component signal transduction system in which PilS is the sensor kinase. PilS is an inner membrane protein found at the poles of the bacterial cell. It is composed of three domains: an N-terminal hydrophobic domain; a central cytoplasmic linker region; and the C-terminal transmitter region conserved among other sensor kinases. The signal that activates PilS and, consequently, pilin transcription remains unknown. The membrane topology of the hydrophobic domain was determined using the lacZ and phoA gene fusion approach. In this report, we describe a topological model for PilS in which the hydrophobic domain forms six transmembrane helices, whereas the N- and C-termini are cytoplasmic. This topology is very stable, and the cytoplasmic C-terminus cannot cross the inner membrane. We also show that two of the six transmembrane segments are sufficient for membrane anchoring and polar localization of PilS.
Collapse
Affiliation(s)
- J Ethier
- University of Calgary, Microbiology and Infectious Diseases, 3330 Hospital Drive, NW, Calgary, Alberta, Canada, T2N 4N1
| | | |
Collapse
|