1
|
Flores-Vega VR, Lara-Zavala BA, Jarillo-Quijada MD, Fernández-Vázquez JL, Alcántar-Curiel MD, Vargas-Roldán SY, Ares MA, de la Cruz MA, Morfín-Otero R, Rodríguez-Noriega E, Santos-Preciado JI, Rosales-Reyes R. Burkholderia vietnamiensis causing infections in noncystic fibrosis patients in a tertiary care hospital in Mexico. Diagn Microbiol Infect Dis 2023; 105:115866. [PMID: 36525921 DOI: 10.1016/j.diagmicrobio.2022.115866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/31/2022] [Accepted: 11/19/2022] [Indexed: 11/26/2022]
Abstract
Burkholderia cepacia complex (Bcc) species are opportunistic pathogens widely distributed in the environment and often infect people with cystic fibrosis (CF). This study aims to determine which genomovars of the Bcc can cause infections in non-CF patients from a tertiary care hospital in Mexico and if they carry virulence factors that could increase their pathogenicity. We identified 23 clinical isolates that carry the recA gene. Twenty-two of them belongs to the genomovar V (B. vietnamiensis) and one to the genomovar II (B. multivorans). Thirteen pulsotypes were identified among 22 B. vietnamiensis isolates. All clinical isolates produced biofilm were motile and cytotoxic on murine macrophage-like RAW264.7 and in A549 human lung epithelial cells. In conclusion, B. vietnamiensis causes infections in non-CF patients in a tertiary care hospital in Mexico, rapid identification of this pathogen can help physicians to establish a better antimicrobial treatment.
Collapse
Affiliation(s)
- Verónica Roxana Flores-Vega
- Facultad de Medicina, Unidad de Medicina Experimental, Universidad Nacional Autónoma de México, Mexico City, Mexico; Escuela de Ciencias de la Salud, Universidad del Valle de México, Campus Coyoacán, Mexico City, Mexico
| | - Berenice Alejandra Lara-Zavala
- Facultad de Medicina, Unidad de Medicina Experimental, Universidad Nacional Autónoma de México, Mexico City, Mexico; Escuela de Ciencias de la Salud, Universidad del Valle de México, Campus Coyoacán, Mexico City, Mexico
| | - Ma Dolores Jarillo-Quijada
- Facultad de Medicina, Unidad de Medicina Experimental, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - José Luis Fernández-Vázquez
- Facultad de Medicina, Unidad de Medicina Experimental, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | | | - Silvia Yalid Vargas-Roldán
- Facultad de Medicina, Unidad de Medicina Experimental, Universidad Nacional Autónoma de México, Mexico City, Mexico; Laboratorio de Microbiología, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Miguel A Ares
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Centro Médico Nacional Siglo XXI, Hospital de Pediatría, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Miguel A de la Cruz
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Centro Médico Nacional Siglo XXI, Hospital de Pediatría, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Rayo Morfín-Otero
- Hospital Civil de Guadalajara Fray Antonio Alcalde, Instituto de Patología Infecciosa y Experimental, Guadalajara, Jalisco, Mexico
| | - Eduardo Rodríguez-Noriega
- Hospital Civil de Guadalajara Fray Antonio Alcalde, Instituto de Patología Infecciosa y Experimental, Guadalajara, Jalisco, Mexico
| | - José Ignacio Santos-Preciado
- Facultad de Medicina, Unidad de Medicina Experimental, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Roberto Rosales-Reyes
- Facultad de Medicina, Unidad de Medicina Experimental, Universidad Nacional Autónoma de México, Mexico City, Mexico.
| |
Collapse
|
2
|
González-Cruz AO, Hernández-Juárez J, Ramírez-Cabrera MA, Balderas-Rentería I, Arredondo-Espinoza E. Peptide-based drug-delivery systems: A new hope for improving cancer therapy. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
3
|
Kushawaha PK, Pati Tripathi CD, Dube A. Leishmania donovani secretory protein nucleoside diphosphate kinase b localizes in its nucleus and prevents ATP mediated cytolysis of macrophages. Microb Pathog 2022; 166:105457. [DOI: 10.1016/j.micpath.2022.105457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 02/22/2022] [Accepted: 02/22/2022] [Indexed: 10/19/2022]
|
4
|
Zakataeva NP. Microbial 5'-nucleotidases: their characteristics, roles in cellular metabolism, and possible practical applications. Appl Microbiol Biotechnol 2021; 105:7661-7681. [PMID: 34568961 PMCID: PMC8475336 DOI: 10.1007/s00253-021-11547-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 08/21/2021] [Accepted: 08/24/2021] [Indexed: 11/25/2022]
Abstract
5′-Nucleotidases (EC 3.1.3.5) are enzymes that catalyze the hydrolytic dephosphorylation of 5′-ribonucleotides and 5′-deoxyribonucleotides to their respective nucleosides and phosphate. Most 5′-nucleotidases have broad substrate specificity and are multifunctional enzymes capable of cleaving phosphorus from not only mononucleotide phosphate molecules but also a variety of other phosphorylated metabolites. 5′-Nucleotidases are widely distributed throughout all kingdoms of life and found in different cellular locations. The well-studied vertebrate 5′-nucleotidases play an important role in cellular metabolism. These enzymes are involved in purine and pyrimidine salvage pathways, nucleic acid repair, cell-to-cell communication, signal transduction, control of the ribo- and deoxyribonucleotide pools, etc. Although the first evidence of microbial 5′-nucleotidases was obtained almost 60 years ago, active studies of genetic control and the functions of microbial 5′-nucleotidases started relatively recently. The present review summarizes the current knowledge about microbial 5′-nucleotidases with a focus on their diversity, cellular localizations, molecular structures, mechanisms of catalysis, physiological roles, and activity regulation and approaches to identify new 5′-nucleotidases. The possible applications of these enzymes in biotechnology are also discussed. Key points • Microbial 5′-nucleotidases differ in molecular structure, hydrolytic mechanism, and cellular localization. • 5′-Nucleotidases play important and multifaceted roles in microbial cells. • Microbial 5′-nucleotidases have wide range of practical applications.
Collapse
Affiliation(s)
- Natalia P Zakataeva
- Ajinomoto-Genetika Research Institute, 1st Dorozhny Proezd, b.1-1, Moscow, 117545, Russia.
| |
Collapse
|
5
|
Kulkarni PG, Shah N, Waghela BN, Pathak CM, Pappachan A. Leishmania donovani adenylate kinase 2a prevents ATP-mediated cell cytolysis in macrophages. Parasitol Int 2019; 72:101929. [PMID: 31108219 DOI: 10.1016/j.parint.2019.101929] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 04/12/2019] [Accepted: 05/16/2019] [Indexed: 01/09/2023]
Abstract
In Leishmania spp. ATP utilizing enzymes serves as a key role in preserving integrity of host cells for survival of parasite. Earlier reports suggested that Adenylate kinase (AK) a phosphotransferase enzyme released by Leishmania donovani secretome, involved in modulating levels of NTPs. In the present study, we cloned, expressed and characterized recombinant putative AK. Based on a sequence and phylogeny analysis, we identified the prominent features of the seven AK isoforms of Leishmania donovani and assigned our putative AK as LdAK2a. The Km value of LdAK2a for ATP and AMP substrate were 204 μM and 184 μM, respectively and Vmax was calculated as 1.6 μmol min-1 mg-1 protein. Ap5A, a known inhibitor of AK inhibited LdAK2a with estimated Ki values of 280 nM and 230 nM for ATP and AMP respectively. CD spectral studies were carried out to estimate its structural stability. Recombinant LdAK2a was found to prevent ATP mediated cell cytolysis of Raw 264.7 macrophages in vitro, which was determined by LDH assay and MMP assay. This is the first report which validates that Leishmanial AK2a can prevent ATP mediated cytolysis of macrophage cells and thereby probably play a role in preserving integrity of host cells for survival of parasite.
Collapse
Affiliation(s)
- P G Kulkarni
- Department of Bioinformatics and Structural Biology, Indian Institute of Advanced Research, Koba, Gandhinagar 382007, Gujarat, India
| | - N Shah
- Department of Bioinformatics and Structural Biology, Indian Institute of Advanced Research, Koba, Gandhinagar 382007, Gujarat, India
| | - B N Waghela
- Department of Cell Biology, Indian Institute of Advanced Research, Koba, Gandhinagar, 382007, Gujarat, India
| | - C M Pathak
- Department of Cell Biology, Indian Institute of Advanced Research, Koba, Gandhinagar, 382007, Gujarat, India
| | - A Pappachan
- Department of Bioinformatics and Structural Biology, Indian Institute of Advanced Research, Koba, Gandhinagar 382007, Gujarat, India; School of Life Sciences, Central University of Gujarat, Gandhinagar 382030, Gujarat, India.
| |
Collapse
|
6
|
Yu H, Rao X, Zhang K. Nucleoside diphosphate kinase (Ndk): A pleiotropic effector manipulating bacterial virulence and adaptive responses. Microbiol Res 2017; 205:125-134. [PMID: 28942838 DOI: 10.1016/j.micres.2017.09.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 08/23/2017] [Accepted: 09/02/2017] [Indexed: 12/11/2022]
Abstract
Nucleoside diphosphate kinase (Ndk) is a housekeeping enzyme that balances cellular nucleoside triphosphate (NTP) pools by catalyzing the reversible transfer of γ-phosphate from NTPs to nucleoside diphosphates (NDPs). In addition to its fundamental role in nucleotide metabolism, Ndk has roles in protein histidine phosphorylation, DNA cleavage/repair, and gene regulation. Recent studies have also revealed that Ndk secreted from bacteria is important in modulating virulence-associated phenotypes including quorum sensing regulation, type III secretion system activation, and virulence factor production. Moreover, after infection, Ndks released from bacteria are involved in regulating host defense activities, such as cell apoptosis, phagocytosis, and inflammatory responses. Given that Ndk exerts a pleiotropic effect on bacterial virulence and bacteria-host interactions, the biological significance of the bacterial Ndks during infection is intriguing. This review will provide a synopsis of the current knowledge regarding the biological properties and roles of Ndks in regulating bacterial virulence and adaptation and will discuss in depth the biological significance of Ndk during bacteria-host interactions.
Collapse
Affiliation(s)
- Hua Yu
- Central Laboratory, Xinqiao Hospital, Third Military Medical University, Chongqing, China; Department of Microbiology, College of Basic Medical Sciences, Third Military Medical University, Chongqing, China
| | - Xiancai Rao
- Department of Microbiology, College of Basic Medical Sciences, Third Military Medical University, Chongqing, China.
| | - Kebin Zhang
- Central Laboratory, Xinqiao Hospital, Third Military Medical University, Chongqing, China.
| |
Collapse
|
7
|
Janahiraman V, Anandham R, Kwon SW, Sundaram S, Karthik Pandi V, Krishnamoorthy R, Kim K, Samaddar S, Sa T. Control of Wilt and Rot Pathogens of Tomato by Antagonistic Pink Pigmented Facultative Methylotrophic Delftia lacustris and Bacillus spp. FRONTIERS IN PLANT SCIENCE 2016; 7:1626. [PMID: 27872630 PMCID: PMC5097904 DOI: 10.3389/fpls.2016.01626] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 10/14/2016] [Indexed: 05/13/2023]
Abstract
The studies on the biocontrol potential of pink pigmented facultative methylotrophic (PPFM) bacteria other than the genus Methylobacterium are scarce. In the present study, we report three facultative methylotrophic isolates; PPO-1, PPT-1, and PPB-1, respectively, identified as Delftia lacustris, Bacillus subtilis, and Bacillus cereus by 16S rRNA gene sequence analysis. Hemolytic activity was tested to investigate the potential pathogenicity of isolates to plants and humans, the results indicates that the isolates PPO-1, PPT-1, and PPB-1 are not pathogenic strains. Under in vitro conditions, D. lacustris PPO-1, B. subtilis PPT-1, and B. cereus PPB-1 showed direct antagonistic effect by inhibiting the mycelial growth of fungal pathogens; Fusarium oxysporum f. sp. lycopersici (2.15, 2.05, and 1.95 cm), Sclerotium rolfsii (2.14, 2.04, and 1.94 cm), Pythium ultimum (2.12, 2.02, and 1.92 cm), and Rhizoctonia solani (2.18, 2.08, and 1.98 cm) and also produced volatile inhibitory compounds. Under plant growth chamber condition methylotrophic bacterial isolates; D. lacustris PPO-1, B. subtilis PPT-1, and B. cereus PPB-1 significantly reduced the disease incidence of tomato. Under greenhouse condition, D. lacustris PPO-1, B. subtilis PPT-1, and B. cereus PPB-1 inoculated tomato plants, when challenged with F. oxysporum f. sp. lycopersici, S. rolfsii, P. ultimum, and R. solani, increased the pathogenesis related proteins (β-1,3-glucanase and chitinase) and defense enzymes (phenylalanine ammonia lyase, peroxidase, polyphenol oxidase, and catalase) on day 5 after inoculation. In the current study, we first report the facultative methylotrophy in pink pigmented D. lacustris, B. subtilis, and B. cereus and their antagonistic potential against fungal pathogens. Direct antagonistic and ISR effects of these isolates against fungal pathogens of tomato evidenced their possible use as a biocontrol agent.
Collapse
Affiliation(s)
- Veeranan Janahiraman
- Department of Agricultural Microbiology, Agricultural College and Research Institute, Tamil Nadu Agricultural UniversityMadurai, India
| | - Rangasamy Anandham
- Department of Agricultural Microbiology, Agricultural College and Research Institute, Tamil Nadu Agricultural UniversityMadurai, India
- *Correspondence: Rangasamy Anandham
| | - Soon W. Kwon
- Korean Agricultural Culture Collection, National Academy of Agricultural Science, Rural Development AdministrationJeonju, South Korea
| | - Subbiah Sundaram
- Department of Agricultural Microbiology, Agricultural College and Research Institute, Tamil Nadu Agricultural UniversityMadurai, India
- Department of Environmental and Biological Chemistry, Chungbuk National UniversityCheongju, South Korea
| | - Veeranan Karthik Pandi
- Department of Plant Pathology, Agricultural College and Research Institute, Tamil Nadu Agricultural UniversityCoimbatore, India
| | - Ramasamy Krishnamoorthy
- Department of Agricultural Microbiology, Agricultural College and Research Institute, Tamil Nadu Agricultural UniversityMadurai, India
| | - Kiyoon Kim
- Department of Environmental and Biological Chemistry, Chungbuk National UniversityCheongju, South Korea
| | - Sandipan Samaddar
- Department of Environmental and Biological Chemistry, Chungbuk National UniversityCheongju, South Korea
| | - Tongmin Sa
- Department of Environmental and Biological Chemistry, Chungbuk National UniversityCheongju, South Korea
- Tongmin Sa
| |
Collapse
|
8
|
Adenylate kinase from Streptococcus pneumoniae is essential for growth through its catalytic activity. FEBS Open Bio 2014; 4:672-82. [PMID: 25180151 PMCID: PMC4141199 DOI: 10.1016/j.fob.2014.07.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 06/26/2014] [Accepted: 07/02/2014] [Indexed: 01/13/2023] Open
Abstract
Crystal structure of adenylate kinase from Streptococcus pneumoniae was determined. Arg-89 was identified as a key residue for enzymatic activity. Expression of the R89A mutated protein did not rescue a pneumococcal growth defect. Lack of functional adenylate kinase caused a growth defect in vivo. Pneumoccocal adenylate kinase is essential for growth both in vitro and in vivo.
Streptococcus pneumoniae (pneumococcus) infection causes more than 1.6 million deaths worldwide. Pneumococcal growth is a prerequisite for its virulence and requires an appropriate supply of cellular energy. Adenylate kinases constitute a major family of enzymes that regulate cellular ATP levels. Some bacterial adenylate kinases (AdKs) are known to be critical for growth, but the physiological effects of AdKs in pneumococci have been poorly understood at the molecular level. Here, by crystallographic and functional studies, we report that the catalytic activity of adenylate kinase from S.pneumoniae (SpAdK) serotype 2 D39 is essential for growth. We determined the crystal structure of SpAdK in two conformations: ligand-free open form and closed in complex with a two-substrate mimic inhibitor adenosine pentaphosphate (Ap5A). Crystallographic analysis of SpAdK reveals Arg-89 as a key active site residue. We generated a conditional expression mutant of pneumococcus in which the expression of the adk gene is tightly regulated by fucose. The expression level of adk correlates with growth rate. Expression of the wild-type adk gene in fucose-inducible strains rescued a growth defect, but expression of the Arg-89 mutation did not. SpAdK increased total cellular ATP levels. Furthermore, lack of functional SpAdK caused a growth defect in vivo. Taken together, our results demonstrate that SpAdK is essential for pneumococcal growth in vitro and in vivo.
Collapse
|
9
|
Da'dara AA, Bhardwaj R, Skelly PJ. Schistosome apyrase SmATPDase1, but not SmATPDase2, hydrolyses exogenous ATP and ADP. Purinergic Signal 2014; 10:573-80. [PMID: 24894599 DOI: 10.1007/s11302-014-9416-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Accepted: 05/27/2014] [Indexed: 12/20/2022] Open
Abstract
Schistosomes are parasitic worms that can live in the bloodstream of their vertebrate hosts for many years. It has been proposed that the worms impinge on host purinergic signalling by degrading proinflammatory molecules like ATP as well as prothrombotic mediators like ADP. This capability may help explain the apparent refractoriness of the worms to both immune elimination and thrombus formation. Three distinct ectoenzymes, expressed at the host-exposed surface of the worm's tegument, are proposed to be involved in the catabolism of ATP and ADP. These are alkaline phosphatase (SmAP), phosphodiesterase (SmNPP-5), and ATP diphosphohydrolase (SmATPDase1). It has recently been shown that only one of these enzymes-SmATPDase1-actually degrades exogenous ATP and ADP. However, a second ATP diphosphohydrolase homolog (SmATPDase2) is located in the tegument and has been reported to be released by the worms. It is possible that this enzyme too participates in the cleavage of exogenous nucleotide tri- and di-phosphates. To test this hypothesis, we employed RNA interference (RNAi) to suppress the expression of the schistosome SmATPDase1 and SmATPDase2 genes. We find that only SmATPDase1-suppressed parasites are significantly impaired in their ability to degrade exogenously added ATP or ADP. Suppression of SmATPDase2 does not appreciably affect the worms' ability to catabolize ATP or ADP. Furthermore, we detect no evidence for the secretion or release of an ATP-hydrolyzing activity by cultured parasites. The results confirm the role of tegumental SmATPDase1, but not SmADTPDase2, in the degradation of the exogenous proinflammatory and prothrombotic nucleotides ATP and ADP by live intravascular stages of the parasite.
Collapse
Affiliation(s)
- Akram A Da'dara
- Molecular Helminthology Laboratory, Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA, USA
| | | | | |
Collapse
|
10
|
Koukoura O, Spandidos DA, Daponte A, Sifakis S. DNA methylation profiles in ovarian cancer: implication in diagnosis and therapy (Review). Mol Med Rep 2014; 10:3-9. [PMID: 24821107 PMCID: PMC4068729 DOI: 10.3892/mmr.2014.2221] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Accepted: 05/09/2014] [Indexed: 02/07/2023] Open
Abstract
Genetic alterations alone cannot account for the complexity of ovarian cancer. The potential reversibility of epigenetic mechanisms makes them attractive candidates for the prevention and/or treatment of ovarian carcinoma. Detection of the epigenetic signature of each cancer cell may be useful in the identification of candidate biomarkers for disease detection, classification and monitoring and may also facilitate personalized cancer treatment. In ovarian cancer, in addition to other non-gynaecological cancers, two opposite epigenetic phenomena occur. The first involves an overall global decrease in DNA methylation of heterochromatin leading to demethylation of several oncogenes, while the second involves specific CpG island hypermethylation associated with the promoters of tumor suppressor genes. Early studies focused on the methylation patterns of single genes associated with tumorigenesis. However, newer genome-wide methods have identified a group of genes whose regulation is altered by DNA methylation during ovarian cancer progression.
Collapse
Affiliation(s)
- Ourania Koukoura
- Department of Obstetrics and Gynecology, University Hospital of Larissa, Larissa, Thessaly, Greece
| | - Demetrios A Spandidos
- Laboratory of Clinical Virology, University of Crete Medical School, Heraklion, Crete, Greece
| | - Alexandros Daponte
- Department of Obstetrics and Gynecology, University Hospital of Larissa, Larissa, Thessaly, Greece
| | - Stavros Sifakis
- Department of Obstetrics and Gynecology, University Hospital of Heraklion, Heraklion, Crete, Greece
| |
Collapse
|
11
|
Taylor CM, Wang Q, Rosa BA, Huang SCC, Powell K, Schedl T, Pearce EJ, Abubucker S, Mitreva M. Discovery of anthelmintic drug targets and drugs using chokepoints in nematode metabolic pathways. PLoS Pathog 2013; 9:e1003505. [PMID: 23935495 PMCID: PMC3731235 DOI: 10.1371/journal.ppat.1003505] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Accepted: 06/03/2013] [Indexed: 12/19/2022] Open
Abstract
Parasitic roundworm infections plague more than 2 billion people (1/3 of humanity) and cause drastic losses in crops and livestock. New anthelmintic drugs are urgently needed as new drug resistance and environmental concerns arise. A “chokepoint reaction” is defined as a reaction that either consumes a unique substrate or produces a unique product. A chokepoint analysis provides a systematic method of identifying novel potential drug targets. Chokepoint enzymes were identified in the genomes of 10 nematode species, and the intersection and union of all chokepoint enzymes were found. By studying and experimentally testing available compounds known to target proteins orthologous to nematode chokepoint proteins in public databases, this study uncovers features of chokepoints that make them successful drug targets. Chemogenomic screening was performed on drug-like compounds from public drug databases to find existing compounds that target homologs of nematode chokepoints. The compounds were prioritized based on chemical properties frequently found in successful drugs and were experimentally tested using Caenorhabditis elegans. Several drugs that are already known anthelmintic drugs and novel candidate targets were identified. Seven of the compounds were tested in Caenorhabditis elegans and three yielded a detrimental phenotype. One of these three drug-like compounds, Perhexiline, also yielded a deleterious effect in Haemonchus contortus and Onchocerca lienalis, two nematodes with divergent forms of parasitism. Perhexiline, known to affect the fatty acid oxidation pathway in mammals, caused a reduction in oxygen consumption rates in C. elegans and genome-wide gene expression profiles provided an additional confirmation of its mode of action. Computational modeling of Perhexiline and its target provided structural insights regarding its binding mode and specificity. Our lists of prioritized drug targets and drug-like compounds have potential to expedite the discovery of new anthelmintic drugs with broad-spectrum efficacy. The World Health Organization estimates that 2.9 million people are infected with parasitic roundworms, causing high-morbidity and mortality rates, developmental delays in children, and low productivity of affected individuals. The agricultural industry experiences drastic losses in crop and livestock due to parasitic worm infections. Therefore, there is an urgent need to identify new targets and drugs to fight parasitic nematode infection. This study identified metabolic chokepoint compounds that were either produced or consumed by a single reaction and elucidated the chokepoint enzyme that drives the reaction. If the enzyme that catalyzes that reaction is blocked, a toxic build-up of a compound or lack of compound necessary for subsequent reaction will occur, potentially causing adverse effects to the parasite organism. Compounds that target some of the chokepoint enzymes were tested in C. elegans and several compounds showed efficacy. One drug-like compound, Perhexiline, showed efficacy in two different parasitic worms and yielded expected physiological effects, indicating that this drug-like compound may have efficacy on a pan-phylum level through the predicted mode of action. The methodology to find and prioritize metabolic chokepoint targets and prioritize compounds could be applied to other parasites.
Collapse
Affiliation(s)
- Christina M. Taylor
- The Genome Institute, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Qi Wang
- The Genome Institute, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Bruce A. Rosa
- The Genome Institute, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Stanley Ching-Cheng Huang
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Kerrie Powell
- SCYNEXIS, Inc, Research Triangle Park, North Carolina, United States of America
| | - Tim Schedl
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Edward J. Pearce
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Sahar Abubucker
- The Genome Institute, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Makedonka Mitreva
- The Genome Institute, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Division of Infectious Diseases, Department of Internal Medicine, Genetics, Washington University School of Medicine, St. Louis, Missouri, United States of America
- * E-mail:
| |
Collapse
|
12
|
Spooner R, Yilmaz Ö. Nucleoside-diphosphate-kinase: a pleiotropic effector in microbial colonization under interdisciplinary characterization. Microbes Infect 2012; 14:228-37. [PMID: 22079150 PMCID: PMC3277739 DOI: 10.1016/j.micinf.2011.10.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Revised: 10/07/2011] [Accepted: 10/07/2011] [Indexed: 12/20/2022]
Abstract
Emerging evidence identifies multiple roles for nucleoside-diphosphate-kinase in host-microbe interaction. We provide the first synopsis of utilization of this molecule by various microorganisms during colonization of host tissues. Additionally, we propose novel mechanisms this effector may participate in, which could be crucial for microbial adaptation in chronic host infection.
Collapse
Affiliation(s)
- Ralee Spooner
- Department of Periodontology, University of Florida, Gainesville, FL 32610, USA
| | - Özlem Yilmaz
- Department of Periodontology, University of Florida, Gainesville, FL 32610, USA
- Emerging Pathogens Institute, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
13
|
Gavrilin MA, Abdelaziz DHA, Mostafa M, Abdulrahman BA, Grandhi J, Akhter A, Abu Khweek A, Aubert DF, Valvano MA, Wewers MD, Amer AO. Activation of the pyrin inflammasome by intracellular Burkholderia cenocepacia. THE JOURNAL OF IMMUNOLOGY 2012; 188:3469-77. [PMID: 22368275 DOI: 10.4049/jimmunol.1102272] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Burkholderia cenocepacia is an opportunistic pathogen that causes chronic infection and induces progressive respiratory inflammation in cystic fibrosis patients. Recognition of bacteria by mononuclear cells generally results in the activation of caspase-1 and processing of IL-1β, a major proinflammatory cytokine. In this study, we report that human pyrin is required to detect intracellular B. cenocepacia leading to IL-1β processing and release. This inflammatory response involves the host adapter molecule ASC and the bacterial type VI secretion system (T6SS). Human monocytes and THP-1 cells stably expressing either small interfering RNA against pyrin or YFP-pyrin and ASC (YFP-ASC) were infected with B. cenocepacia and analyzed for inflammasome activation. B. cenocepacia efficiently activates the inflammasome and IL-1β release in monocytes and THP-1. Suppression of pyrin levels in monocytes and THP-1 cells reduced caspase-1 activation and IL-1β release in response to B. cenocepacia challenge. In contrast, overexpression of pyrin or ASC induced a robust IL-1β response to B. cenocepacia, which correlated with enhanced host cell death. Inflammasome activation was significantly reduced in cells infected with T6SS-defective mutants of B. cenocepacia, suggesting that the inflammatory reaction is likely induced by an as yet uncharacterized effector(s) of the T6SS. Together, we show for the first time, to our knowledge, that in human mononuclear cells infected with B. cenocepacia, pyrin associates with caspase-1 and ASC forming an inflammasome that upregulates mononuclear cell IL-1β processing and release.
Collapse
Affiliation(s)
- Mikhail A Gavrilin
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Internal Medicine, The Ohio State University, Columbus, OH 43210, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Profiling of Burkholderia cepacia secretome at mid-logarithmic and early-stationary phases of growth. PLoS One 2011; 6:e26518. [PMID: 22046299 PMCID: PMC3202529 DOI: 10.1371/journal.pone.0026518] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Accepted: 09/28/2011] [Indexed: 12/24/2022] Open
Abstract
Background Burkholderia cepacia is a Gram-negative pathogen that causes serious respiratory infections in immunocompromised patients and individuals with cystic fibrosis. This bacterium is known to release extracellular proteins that may be involved in virulence. Methodology/Principal Findings In the present study, B. cepacia grown to mid-logarithmic and early-stationary phases were investigated on their ability to invade and survive intracellularly in A549 lung epithelial cells in order to discern the fate of these bacteria in the pathogenesis of B. cepacia lung infections in in vitro condition. The early-stationary phase B. cepacia was demonstrated to be more invasive than mid-logarithmic phase. In addition, culture supernatants of B. cepacia obtained from these phases of growth were also demonstrated to cause different cytotoxic potency on the A549 human lung epithelial cells. Profiling of the supernatants using the gel-based proteomics approach identified 43 proteins that were commonly released in both the growth phases and 40 proteins newly-released at the early-stationary phase. The latter proteins may account for the higher cytotoxic activity of the early-stationary culture supernatant compared to that obtained at the mid-logarithmic phase. Among the newly-released proteins in the early-stationary phase supernatant were flagellar hook-associated domain protein (FliD), flagellar hook-associated protein (FlgK), TonB-dependent siderophore (Fiu), Elongation factor G (FusA), phosphoglycerate kinase (Pgk) and sulfatase (AslA) which are known for their virulence. Conclusion/Significance Differences in the ability of B. cepacia to invade and survive intracellularly inside the epithelial cells at different phases of growth may improve our understanding of the varied disease progressions associated with B. cepacia infections. In addition, the identified culture supernatant proteins may be used as targets for the development of new strategies to control B. cepacia infection using agents that can block their release.
Collapse
|
15
|
Drygiannakis I, Ernst PB, Lowe D, Glomski IJ. Immunological alterations mediated by adenosine during host-microbial interactions. Immunol Res 2011; 50:69-77. [PMID: 21479929 DOI: 10.1007/s12026-011-8207-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Adenosine accumulates in inflammation and ischemia but it is more than an end-product of ATP catabolism. Signaling through different receptors with distinct, cell-specific cytoplasmic pathways, adenosine is now recognized as an inducible switch that regulates the immune system. By acting through the A(2A)AR, adenosine shapes T cell function, largely by conferring an anti-inflammatory tone on effector Th cells (Teff) and natural killer (NK)T cells. In contrast, both the A(2A)AR and A(2B)AR are expressed by antigen-presenting cells (APC) which have been shown to regulate innate responses and the transition to adaptive immunity. There is also emerging evidence that adenosine production is one mechanism that allows some pathogens as well as neoplasms to evade host defenses. This review discusses the immunoregulatory functions of adenosine and some of the interactions it may have in regulating host-microbial interactions.
Collapse
Affiliation(s)
- Ioannis Drygiannakis
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Virginia, Charlottesville, 22908-0708, USA
| | | | | | | |
Collapse
|
16
|
Dar HH, Prasad D, Varshney GC, Chakraborti PK. Secretory nucleoside diphosphate kinases from both intra- and extracellular pathogenic bacteria are functionally indistinguishable. MICROBIOLOGY-SGM 2011; 157:3024-3035. [PMID: 21816881 DOI: 10.1099/mic.0.049221-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Nucleoside diphosphate kinase (NDK), responsible for the maintenance of NTP pools, is an ATP-utilizing enzyme secreted by different pathogens. We found that NDK from Salmonella enterica serovar Typhimurium (S. Typhimurium) is also secretory in nature. Secretory NDK is known to play a crucial role in the survival of pathogenic microbes within host cells through their interaction with extracellular ATP. To elucidate this aspect, we assessed the contribution of secretory products containing NDK from intracellular (Mycobacterium tuberculosis and S. Typhimurium) and extracellular (Vibrio cholerae) pathogens to the process of ATP-induced J774 mouse macrophage cell lysis by monitoring lactate dehydrogenase (LDH) release in the culture medium. Compared with an untreated control, our results demonstrate that S. Typhimurium secretory products caused a greater than twofold decrease in LDH release from J774 macrophage cells treated with ATP. Furthermore, the secretory products from an ndk-deleted strain of S. Typhimurium did not display such behaviour. Contrary to this observation, the secretory products containing NDK of V. cholerae were found to be cytotoxic to J774 cells. At the amino acid level, the sequences of both the NDKs (S. Typhimurium and V. cholerae) exhibited 65 % identity, and their biochemical characteristics (autophosphorylation and phosphotransfer activities) were indistinguishable. However, to our surprise, the secretory product of an ndk-deleted strain of S. Typhimurium, when complemented with V. cholerae ndk, was able to prevent ATP-induced cytolysis. Taken together, our results unambiguously imply that the intrinsic properties of secretory NDKs are identical in intra- and extracellular pathogens, irrespective of their mode of manifestation.
Collapse
Affiliation(s)
- Haider Hussain Dar
- Institute of Microbial Technology, CSIR, Sector 39A, Chandigarh 160 036, India
| | - Deepshikha Prasad
- Institute of Microbial Technology, CSIR, Sector 39A, Chandigarh 160 036, India
| | - Grish C Varshney
- Institute of Microbial Technology, CSIR, Sector 39A, Chandigarh 160 036, India
| | | |
Collapse
|
17
|
Kotrange S, Kopp B, Akhter A, Abdelaziz D, Abu Khweek A, Caution K, Abdulrahman B, Wewers MD, McCoy K, Marsh C, Loutet SA, Ortega X, Valvano MA, Amer AO. Burkholderia cenocepacia O polysaccharide chain contributes to caspase-1-dependent IL-1beta production in macrophages. J Leukoc Biol 2010; 89:481-8. [PMID: 21178113 DOI: 10.1189/jlb.0910513] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Burkholderia cenocepacia infections in CF patients involve heightened inflammation, fatal sepsis, and high antibiotic resistance. Proinflammatory IL-1β secretion is important in airway inflammation and tissue damage. However, little is known about this pathway in macrophages upon B. cenocepacia infection. We report here that murine macrophages infected with B. cenocepacia K56-2 produce proinflammatory cytokine IL-1β in a TLR4 and caspase-1-mediated manner. We also determined that the OPS (O antigen) of B. cenocepacia LPS contributes to IL-1β production and pyroptotic cell death. Furthermore, we showed that the malfunction of the CFTR channel augmented IL-1β production upon B. cenocepacia infection of murine macrophages. Taken together, we identified eukaryotic and bacterial factors that contribute to inflammation during B. cenocepacia infection, which may aid in the design of novel approaches to control pulmonary inflammation.
Collapse
Affiliation(s)
- Sheetal Kotrange
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Center for Microbial Interface Biology and the Department of Internal Medicine, Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Mariappan V, Vellasamy KM, Thimma JS, Hashim OH, Vadivelu J. Identification of immunogenic proteins from Burkholderia cepacia secretome using proteomic analysis. Vaccine 2010; 28:1318-24. [DOI: 10.1016/j.vaccine.2009.11.027] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2009] [Revised: 10/21/2009] [Accepted: 11/05/2009] [Indexed: 10/20/2022]
|
19
|
Tafelmeyer P, Laurent C, Lenormand P, Rousselle JC, Marsollier L, Reysset G, Zhang R, Sickmann A, Stinear TP, Namane A, Cole ST. Comprehensive proteome analysis of Mycobacterium ulcerans and quantitative comparison of mycolactone biosynthesis. Proteomics 2008; 8:3124-38. [PMID: 18615429 DOI: 10.1002/pmic.200701018] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Mycobacterium ulcerans is the causative agent of Buruli ulcer, a rapidly emerging human disease in which mycolactone, a cytotoxic and immunosuppressive macrocyclic polyketide, is responsible for massive skin destruction. The genome sequencing of M. ulcerans has recently been accomplished (http://genolist.pasteur.fr/BuruList/) enabling the first proteome study of this important human pathogen. Here, we present a comprehensive proteome analysis of different subcellular fractions and culture supernatant of in vitro grown M. ulcerans. By a combination of gel-based and gel-free techniques for protein and peptide separation with subsequent analysis by MS, we identified 1074 different proteins, corresponding to 25% of the protein-coding DNA sequence. Interestingly, new information was obtained about central metabolism and lipid biosynthesis, and as many as 192 conserved hypothetical proteins were found. Comparative analysis of the wild-type strain and an isogenic mycolactone-deficient mutant, by 2-DE and iTRAQ labeling of the cytoplasmic fraction, revealed differences in the expression profiles of proteins involved in lipid metabolism and information pathways, as well as stress responses.
Collapse
|
20
|
MacDonald KL, Speert DP. Differential modulation of innate immune cell functions by theBurkholderia cepaciacomplex:Burkholderia cenocepaciabut notBurkholderia multivoransdisrupts maturation and induces necrosis in human dendritic cells. Cell Microbiol 2008; 10:2138-49. [DOI: 10.1111/j.1462-5822.2008.01197.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
21
|
Hopfe M, Henrich B. OppA, the ecto-ATPase of Mycoplasma hominis induces ATP release and cell death in HeLa cells. BMC Microbiol 2008; 8:55. [PMID: 18394151 PMCID: PMC2323007 DOI: 10.1186/1471-2180-8-55] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2007] [Accepted: 04/04/2008] [Indexed: 12/21/2022] Open
Abstract
Background In the facultative human pathogen Mycoplasma hominis, which belongs to the cell wall-less Mollicutes, the surface-localised substrate-binding domain OppA of the oligopeptide permease was characterised as the main ecto-ATPase. Results With the idea that extra-cellular ATP could only be provided by the infected host cells we analysed the ATP release of HeLa cells after incubation with different preparations of Mycoplasma hominis: intact bacterial cells, the membrane fraction with or without OppA, recombinant OppA as well as an ATPase-deficient OppA mutant. Release of ATP into the supernatant of the HeLa cells was primarily determined in all samples lacking ecto-ATPase activity of OppA. In the presence of the ATPase inhibitor DIDS the amount of ATP in the OppA-containing samples increased. This increase was maximal after incubation with fractions containing OppA protein indicating that OppA is involved in ATP release and subsequent hydrolysis. Real-time PCR analyses revealed that the proliferation of HeLa cells is reduced after infection with M. hominis and flow cytometry experiments established that OppA induces greater apoptosis than necrosis of HeLa cells whereas the preservation of ecto-ATPase activity of OppA induces apoptosis. Conclusion The OppA induced ATP-release and -hydrolysis induced cell death of M. hominis infected HeLa cells was predominantly due to apoptosis rather than necrosis. Future work will elucidate whether the induction of apoptosis is indispensable for survival of these non-invasive pathogen.
Collapse
Affiliation(s)
- Miriam Hopfe
- Institute of Medical Microbiology and Center for Biological Medical Research, Heinrich-Heine-University, Moorenstrasse 5, 40225 Duesseldorf, Germany.
| | | |
Collapse
|
22
|
Kolli BK, Kostal J, Zaborina O, Chakrabarty AM, Chang KP. Leishmania-released nucleoside diphosphate kinase prevents ATP-mediated cytolysis of macrophages. Mol Biochem Parasitol 2007; 158:163-75. [PMID: 18242727 DOI: 10.1016/j.molbiopara.2007.12.010] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2007] [Revised: 12/10/2007] [Accepted: 12/13/2007] [Indexed: 12/14/2022]
Abstract
Leishmania amazonensis was found to release nucleoside diphosphate kinase (NdK)-a stable enzyme capable of decreasing extracellular ATP. The release of this enzyme from Leishmania results in its progressive accumulation extracellularly as they replicate, peaking at the stationary phase in vitro. The released NdK is immunoprecipitable and constitutes approximately 40% of its total activities and proteins. The retention of a known cytosolic protein by wild type cells and a fluorescent protein by DsRed transfectants at stationary phase, which release NdK, indicates that this is a spontaneous event, independent of inadvertent cytolysis. Recombinant products of Leishmania NdK prepared were enzymatically and immunologically active. Both recombinant and native Leishmania NdK utilized ATP to produce expected nucleoside triphosphates in the presence of nucleoside diphosphates in excess. Both native and recombinant Leishmania NdK were also found to prevent ATP-induced cytolysis of J774 macrophages in vitro, as determined by assays for lactate dehydrogenase release from these cells and for their mitochondrial membrane potential changes. The results obtained thus suggest that Leishmania NdK not only serves its normal house-keeping and other important functions true to all cells, but also prevents ATP-mediated lysis of macrophages, thereby preserving the integrity of the host cells to the benefit of the parasite.
Collapse
Affiliation(s)
- Bala Krishna Kolli
- Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL 60064, United States.
| | | | | | | | | |
Collapse
|
23
|
Differential interaction of bacterial species from the Burkholderia cepacia complex with human airway epithelial cells. Microbes Infect 2007; 10:52-9. [PMID: 18068390 DOI: 10.1016/j.micinf.2007.10.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2006] [Revised: 10/03/2007] [Accepted: 10/03/2007] [Indexed: 01/01/2023]
Abstract
To increase knowledge of the pathogenic potential of the Burkholderia cepacia complex (BCC), we investigated the effects of reference strains of the nine BCC species on human bronchial epithelial cells in vitro. B. multivorans exhibited the highest rates of adherence to and internalization by host cells. Two out of three clinical isolates recovered from cystic fibrosis patients confirmed the B. multivorans high adhesiveness. All four B. multivorans isolates exhibited an aggregated pattern of adherence but any of them expressed cable pili. When bacteria were centrifuged onto cell cultures to circumvent their poor adhesiveness, B. pyrrocinia exhibited the highest internalization rate, followed by B. multivorans. The percentages of apoptotic cells in cultures infected with B. cepacia, B. multivorans, B. cenocepacia (subgroups IIIA and IIIB), B. stabilis and B. vietnamiensis were significantly higher than in control non-infected cultures. All nine BCC species triggered a similar release of the inflammatory cytokine IL-8, that was not reduced by cell treatment with cytochalasin D. Hence, our data demonstrate, for the first time, that all BCC species exhibit a similar ability to induce the expression of host immune mediators whereas they differ on their ability to adhere to, invade and kill airway epithelial cells.
Collapse
|
24
|
Yamada T, Fialho AM, Punj V, Bratescu L, Gupta TKD, Chakrabarty AM. Internalization of bacterial redox protein azurin in mammalian cells: entry domain and specificity. Cell Microbiol 2005; 7:1418-31. [PMID: 16153242 DOI: 10.1111/j.1462-5822.2005.00567.x] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Azurin is a member of a group of copper-containing redox proteins called cupredoxins. Different cupredoxins are produced by different aerobic bacteria as agents of electron transfer. Recently, we demonstrated that azurin enters into J774 and several types of cancer cells leading to the induction of apoptosis. We now demonstrate that azurin is internalized in J774 or cancer cells in a temperature-dependent manner. Azurin shows preferential entry into cancer compared with normal cells. An 28-amino-acid fragment of azurin fused to glutathione S-transferase (GST) or the green fluorescent protein (GFP), which are incapable of entering mammalian cells by themselves, can be internalized in J774 or human melanoma or breast cancer cells at 37 degrees C, but not at 4 degrees C. Competition experiments as well as studies with inhibitors such as cytochalasin D suggest that azurin may enter cells, at least in part, by a receptor-mediated endocytic process. The 28-amino-acid peptide therefore acts as a potential protein transduction domain (PTD), and can be used as a vehicle to transport cargo proteins such as GST and GST-GFP fusion proteins. Another member of the cupredoxin family, rusticyanin, that has also been shown to enter J774 and human cancer cells and exert cytotoxicity, does not demonstrate preferential entry for cancer cells and lacks the structural features characteristic of the azurin PTD.
Collapse
Affiliation(s)
- Tohru Yamada
- Department of Microbiology and Immunology, University of Illinois College of Medicine, Chicago, 60612, USA
| | | | | | | | | | | |
Collapse
|
25
|
Burnstock G, Knight GE. Cellular Distribution and Functions of P2 Receptor Subtypes in Different Systems. INTERNATIONAL REVIEW OF CYTOLOGY 2004; 240:31-304. [PMID: 15548415 DOI: 10.1016/s0074-7696(04)40002-3] [Citation(s) in RCA: 581] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
This review is aimed at providing readers with a comprehensive reference article about the distribution and function of P2 receptors in all the organs, tissues, and cells in the body. Each section provides an account of the early history of purinergic signaling in the organ?cell up to 1994, then summarizes subsequent evidence for the presence of P2X and P2Y receptor subtype mRNA and proteins as well as functional data, all fully referenced. A section is included describing the plasticity of expression of P2 receptors during development and aging as well as in various pathophysiological conditions. Finally, there is some discussion of possible future developments in the purinergic signaling field.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neuroscience Institute, Royal Free and University College Medical School, London NW3 2PF, United Kingdom
| | | |
Collapse
|
26
|
Punj V, Sharma R, Zaborina O, Chakrabarty AM. Energy-generating enzymes of Burkholderia cepacia and their interactions with macrophages. J Bacteriol 2003; 185:3167-78. [PMID: 12730177 PMCID: PMC154058 DOI: 10.1128/jb.185.10.3167-3178.2003] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We previously demonstrated that several clinical and environmental isolates of Burkholderia cepacia secreted ATP-utilizing enzymes to the medium; the secretion of these enzymes by cystic fibrosis lung isolate strain 38 was shown to be greatly enhanced in the presence of alpha(2)-macroglobulin. Fractionation of the growth medium of cystic fibrosis isolate strain 71 belonging to genomovar I demonstrated the presence of two additional proteins, homologues of Pseudomonas aeruginosa azurin and cytochrome c(551), which are normally involved in electron transfer during denitrification. A Q-Sepharose column flowthrough fraction of the growth medium of B. cepacia strain 71 enriched with the azurin and cytochrome c(551) homologues triggered apoptosis in macrophages and mast cells, leading to their death. Incubation of the Q-Sepharose column flowthrough fraction with antiazurin and anti-cytochrome c(551) antibodies greatly reduced cell death. We cloned and hyperexpressed a gene from B. cepacia strain 71 that encodes the homologue of P. aeruginosa azurin. Such azurin homologues were detected in the growth medium of several strains belonging to genomovars I, III, and VI but not in the growth medium of strains belonging to other genomovars. The growth medium of the strains that elaborated the azurin homologue had high cytotoxicity towards macrophages. Purified azurin homologue was shown to induce apoptosis in macrophages in a caspase-dependent manner and was localized in both the cytosol and nucleus when incubated with or microinjected into macrophages. This is an interesting example of the interaction of a bacterial protein normally involved in cellular energetics with macrophages to effect their cell death.
Collapse
Affiliation(s)
- Vasu Punj
- Department of Microbiology and Immunology, University of Illinois College of Medicine, Chicago, Illinois 60612, USA
| | | | | | | |
Collapse
|
27
|
Punj V, Chakrabarty AM. Redox proteins in mammalian cell death: an evolutionarily conserved function in mitochondria and prokaryotes. Cell Microbiol 2003; 5:225-31. [PMID: 12675680 DOI: 10.1046/j.1462-5822.2003.00269.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Mammalian cell mitochondria are believed to have prokaryotic ancestry. Mitochondria are not only the powerhouse of energy generation within the eukaryotic cell but they also play a major role in inducing apoptotic cell death through release of redox proteins such as cytochrome c and the apoptosis-inducing factor (AIF), a flavoprotein with NADH oxidase activity. Recent evidence indicates that some present day prokaryotes release redox proteins that induce apoptosis in mammalian cells through stabilization of the tumour suppressor protein p53. p53 interacts with mitochondria either directly or through activation of the genes for pro-apoptotic proteins such as Bax or NOXA or genes that encode redox enzymes responsible for the production of reactive oxygen species (ROS). The analogy between the ancient ancestors of present day bacteria, the mitochondria, and the present day bacteria with regard to their ability to release redox proteins for triggering mammalian cell death is an interesting example of functional conservation during the hundreds of millions of years of evolution. It is possible that the ancestors of the present day prokaryotes released redox proteins to kill the ancestors of the eukaryotes. During evolution of the mitochondria from prokaryotes as obligate endosymbionts, the mitochondria maintained the same functions to programme their own host cell death.
Collapse
Affiliation(s)
- Vasu Punj
- Department of Microbiology and Immunology, University of Illinois College of Medicine, 835 S. Wolcott Avenue, Chicago, IL 60612, USA
| | | |
Collapse
|
28
|
Chopra P, Singh A, Koul A, Ramachandran S, Drlica K, Tyagi AK, Singh Y. Cytotoxic activity of nucleoside diphosphate kinase secreted from Mycobacterium tuberculosis. EUROPEAN JOURNAL OF BIOCHEMISTRY 2003; 270:625-34. [PMID: 12581202 DOI: 10.1046/j.1432-1033.2003.03402.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Pathogenicity of Mycobacterium tuberculosis is closely related to its ability to survive and replicate in the hostile environment of macrophages. For some pathogenic bacteria, secretion of ATP-utilizing enzymes into the extracellular environment aids in pathogen survival via P2Z receptor-mediated, ATP-induced death of infected macrophages. A component of these enzymes is nucleoside diphosphate kinase (Ndk). The ndk gene was cloned from M. tuberculosis H37Rv and expressed in Escherichia coli. Ndk was secreted into the culture medium by M. tuberculosis, as determined by enzymatic activity and Western blotting. Purified Ndk enhanced ATP-induced macrophage cell death, as assayed by the release of [14C]adenine. A catalytic mutant of Ndk failed to enhance ATP-induced macrophage cell death, and periodate-oxidized ATP (oATP), an irreversible inhibitor of P2Z receptor, blocked ATP/Ndk-induced cell death. Purified Ndk was also found to be autophosphorylated with broad specificity for all nucleotides. Conversion of His117-->Gln, which is part of the nucleotide-binding site, abolished autophosphorylation. Purified Ndk also showed GTPase activity. Collectively, these results indicate that secreted Ndk of M. tuberculosis acts as a cytotoxic factor for macrophages, which may help in dissemination of the bacilli and evasion of the immune system.
Collapse
Affiliation(s)
- Puneet Chopra
- Institute of Genomics and Integrative Biology, Mall Road, Delhi, India
| | | | | | | | | | | | | |
Collapse
|
29
|
Gounaris K. Nucleotidase cascades are catalyzed by secreted proteins of the parasitic nematode Trichinella spiralis. Infect Immun 2002; 70:4917-24. [PMID: 12183537 PMCID: PMC128271 DOI: 10.1128/iai.70.9.4917-4924.2002] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2002] [Revised: 05/01/2002] [Accepted: 06/11/2002] [Indexed: 11/20/2022] Open
Abstract
Extracellular nucleotides are signaling molecules whose receptor-mediated effects are involved in a variety of physiological responses in mammalian tissues. An overwhelming body of data indicate that inflammatory and other immune responses can be modulated by the availability and local concentrations of nucleotides via nucleotide receptor signaling, but this is only just beginning to be investigated in the context of infectious disease. Evidence is provided here that the parasitic nematode Trichinella spiralis can catalyze the conversion and thus modulate both the availability and concentration of extracellular nucleotides by means of the following secreted exoenzymes: apyrase, 5'-nucleotidase, and adenosine deaminase. These enzymes were characterized in terms of substrate specificity, kinetic behavior, pH, divalent cation preferences, and response to a series of compounds. The secreted 5'-nucleotidase was identified as a protein with an apparent molecular mass of 67 kDa after N-terminal amino acid sequencing of the purified protein. The presence of adenosine deaminase was confirmed in the secreted products by Western blotting with an antibody against a mammalian enzyme, as a protein with an apparent molecular mass of 38 kDa. These secreted proteins constitute an enzymatic cascade which catalyzes the degradation of extracellular nucleotides, with a potential physiological role in the regulation of purinergic signaling.
Collapse
Affiliation(s)
- Kleoniki Gounaris
- Department of Biological Sciences, Imperial College of Science, Technology and Medicine, London SW7 2AY, United Kingdom.
| |
Collapse
|
30
|
Chu KK, Davidson DJ, Halsey TK, Chung JW, Speert DP. Differential persistence among genomovars of the Burkholderia cepacia complex in a murine model of pulmonary infection. Infect Immun 2002; 70:2715-20. [PMID: 11953418 PMCID: PMC127911 DOI: 10.1128/iai.70.5.2715-2720.2002] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cystic fibrosis patients infected with strains from different genomovars of the Burkholderia cepacia complex can experience diverse clinical outcomes. To identify genomovar-specific determinants that might be responsible for these differences, we developed a pulmonary model of infection in BALB/c mice. Mice were rendered leukopenic by administration of cyclophosphamide prior to intranasal challenge with 1.6 x 10(4) bacteria. Five of six genomovar II strains persisted at stable numbers in the lungs until day 16 with minimal toxicity, whereas zero of seven genomovar III strains persisted but resulted in variable toxicity. We have developed a chronic pulmonary model of B. cepacia infection which reveals differences among genomovars in terms of clinical infection outcome.
Collapse
Affiliation(s)
- Karen K Chu
- Department of Paediatrics, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | | | |
Collapse
|
31
|
Cieri MV, Mayer-Hamblett N, Griffith A, Burns JL. Correlation between an in vitro invasion assay and a murine model of Burkholderia cepacia lung infection. Infect Immun 2002; 70:1081-6. [PMID: 11854186 PMCID: PMC127769 DOI: 10.1128/iai.70.3.1081-1086.2002] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Our understanding of the virulence of Burkholderia cepacia complex lung infections in cystic fibrosis patients is incomplete. There is a great deal of variability in the clinical course, from simple colonization to severe and often fatal necrotizing pneumonia, termed cepacia syndrome. Multiple subspecies (called genomovars) have been identified, and these genomovars may hold the key to understanding the variable pathogenicity. Thirty-one B. cepacia complex isolates belonging to five of the seven genomovars were examined by using a gentamicin protection assay of invasion with A549 cells. The level of epithelial cell invasion by B. cepacia in the A549 model was relatively low compared with the data obtained for other pathogens and was often variable from assay to assay. Thus, a statistical approach was used to determine invasiveness. When this model was used, one of four genomovar I strains (25%), three of eight genomovar II strains (37.5%), seven of nine genomovar III strains (77.8%), one of four genomovar IV strains (25%), and none of the four genomovar V strains examined were defined as invasive. All other strains were categorized as either noninvasive or indeterminate. Invasive, noninvasive, and indeterminate isolates belonging to genomovars II and III were subsequently tested for splenic invasion with the mouse agar bead model. Correlation between the models for six strains was demonstrated. Our results indicate that a statistical model used to determine invasiveness in an in vitro invasion assay can be used to predict in vivo invasiveness.
Collapse
Affiliation(s)
- Martin V Cieri
- Division of Infectious Disease, Children's Hospital and Regional Medical Center, Seattle, Washington 98105, USA
| | | | | | | |
Collapse
|
32
|
Sajjan U, Ackerley C, Forstner J. Interaction of cblA/adhesin-positive Burkholderia cepacia with squamous epithelium. Cell Microbiol 2002; 4:73-86. [PMID: 11896764 DOI: 10.1046/j.1462-5822.2002.00171.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A highly transmissible strain of Burkholderia cepacia from genomovar III carries the cable pilin gene, expresses the 22 kDa adhesin (cblA +ve/Adh +ve), binds to cytokeratin 13 (CK13) and is invasive. CK13 is expressed abundantly in the airway epithelia of cystic fibrosis (CF) patients. We have now investigated whether binding of cblA +ve/Adh +ve B. cepacia to CK13 potentiates bacterial invasion and epithelial damage using bronchial epithelial cell cultures differentiated into either squamous (CK13-enriched) or mucociliary (CK13-deficient) epithelia. Three different B. cepacia isolates (cblA +ve/Adh +ve, cblA +ve/Adh -ve and cblA -ve/Adh -ve) showed minimal binding to mucociliary cultures, and did not invade or cause cell damage. In contrast, the cblA +ve/Adh +ve isolate, but not others, bound to CK13-expressing cells in squamous cultures, caused cytotoxicity and stimulated IL-8 release within 2 h. By 24 h, this isolate invaded and migrated across the squamous culture, causing moderate to severe epithelial damage. A specific antiadhesin antibody, which blocked the initial binding of the cblA +ve/Adh +ve isolate to CK13, significantly inhibited all the pathologic effects. Transmission electron microscopy of squamous cultures incubated with the cblA +ve/Adh +ve isolate, revealed bacteria on the surface surrounded by filopodia by 2 h, and within the cells in membrane-bound vesicles by 24 h. Bacteria were also observed free in the cytoplasm, surrounded by intermediate filaments containing CK13. These findings suggest that binding of B. cepacia to CK13 is an important initial event and that it promotes bacterial invasion and epithelial damage.
Collapse
Affiliation(s)
- Umadevi Sajjan
- Departments of Structural Biology and Biochemistry, The Hospital for Sick Children, Toronto, Ontario, Canada.
| | | | | |
Collapse
|
33
|
Abstract
There have been enormous improvements in life expectancy of patients with cystic fibrosis, especially with improved nutrition and better understanding of the basic cellular defects. However, infection in particular with Pseudomonas aeruginosa and Burkholderia cepacia, has the greatest effect in decreasing life expectancy. Although infections can be prevented by rigorous infection control procedures, early aggressive antimicrobial chemotherapy and established infection managed by antibiotics, they are not completely effective. A greater understanding of how the bacteria evade the host defences and produce infection is needed.
Collapse
Affiliation(s)
- C Anthony Hart
- Department of Medical Microbiology and Genitourinary Medicine, University of Liverpool, Liverpool, UK
| | | |
Collapse
|
34
|
Markaryan A, Zaborina O, Punj V, Chakrabarty AM. Adenylate kinase as a virulence factor of Pseudomonas aeruginosa. J Bacteriol 2001; 183:3345-52. [PMID: 11344142 PMCID: PMC99632 DOI: 10.1128/jb.183.11.3345-3352.2001] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Adenylate kinase (AK; ATP:AMP phosphotransferase, EC 2.7.4.3) is a ubiquitous enzyme that contributes to the homeostasis of adenine nucleotides in eukaryotic and prokaryotic cells. AK catalyzes the reversible reaction Mg. ATP + AMP <--> Mg. ADP + ADP. In this study we show that AK secreted by the pathogenic strains of Pseudomonas aeruginosa appears to play an important role in macrophage cell death. We purified and characterized AK from the growth medium of a cystic fibrosis isolate strain of P. aeruginosa 8821 and hyperproduced it as a fusion protein with glutathione S-transferase. We demonstrated enhanced macrophage cell death in the presence of both the secreted and recombinant purified AK and its substrates AMP plus ATP or ADP. These data suggested that AK converts its substrates to a mixture of AMP, ADP, and ATP, which are potentially more cytotoxic than ATP alone. In addition, we observed increased macrophage killing in the presence of AK and ATP alone. Since the presence of ATPase activity on the macrophages was confirmed in the present work, external macrophage-effluxed ATP is converted to ADP, which in turn can be transformed by AK into a cytotoxic mixture of three adenine nucleotides. Evidence is presented in this study that secreted AK was detected in macrophages during infection with P. aeruginosa. Thus, the possible role of secreted AK as a virulence factor is in producing and keeping an intact pool of toxic mixtures of AMP, ADP, and ATP, which allows P. aeruginosa to exert its full virulence.
Collapse
Affiliation(s)
- A Markaryan
- Department of Microbiology & Immunology, University of Illinois College of Medicine, 835 South Wolcott Ave., Chicago, IL 60612, USA
| | | | | | | |
Collapse
|
35
|
Lowe CA, Asghar AH, Shalom G, Shaw JG, Thomas MS. The Burkholderia cepacia fur gene: co-localization with omlA and absence of regulation by iron. MICROBIOLOGY (READING, ENGLAND) 2001; 147:1303-1314. [PMID: 11320133 DOI: 10.1099/00221287-147-5-1303] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The ferric uptake regulator (Fur) functions as a transcription repressor of many genes in bacteria in response to iron, but the presence of a functional equivalent of this protein has not been demonstrated in Burkholderia cepacia. A segment of the Burkholderia pseudomallei fur gene was amplified using degenerate primers and used to identify chromosomal restriction fragments containing the entire fur genes of B. cepacia and B. pseudomallei. These fragments were cloned and sequenced, revealing the Fur protein of both species to be a polypeptide of 142 amino acids possessing a high degree of amino acid sequence identity to Fur of other members of the beta subclass of the Proteobacteria. Primer extension analysis demonstrated that transcription of B. cepacia fur originated from a single promoter located 36 bp upstream from the fur translation initiation codon. The Fur polypeptide of B. cepacia was shown to functionally substitute for Fur in an Escherichia coli fur mutant. Single copy fur-lacZ fusions were constructed and used to examine the regulation of B. cepacia fur. The B. cepacia fur promoter was not responsive to iron availability, the presence of hydrogen peroxide or the superoxide generator methyl viologen. In addition, fur expression was not significantly influenced by carbon source. Interestingly, the presence of the divergently transcribed omlA/smpA gene upstream of fur in some members of the gamma subclass of the Proteobacteria is retained in several genera within the beta taxon, including Burkholderia.
Collapse
Affiliation(s)
- Carolyn A Lowe
- Division of Genomic Medicine, F floor, University of Sheffield Medical School, Beech Hill Road, Sheffield S10 2RX, UK1
| | - Atif H Asghar
- Division of Genomic Medicine, F floor, University of Sheffield Medical School, Beech Hill Road, Sheffield S10 2RX, UK1
| | - Gil Shalom
- Division of Genomic Medicine, F floor, University of Sheffield Medical School, Beech Hill Road, Sheffield S10 2RX, UK1
| | - Jonathan G Shaw
- Division of Genomic Medicine, F floor, University of Sheffield Medical School, Beech Hill Road, Sheffield S10 2RX, UK1
| | - Mark S Thomas
- Division of Genomic Medicine, F floor, University of Sheffield Medical School, Beech Hill Road, Sheffield S10 2RX, UK1
| |
Collapse
|
36
|
Cao H, Baldini RL, Rahme LG. Common mechanisms for pathogens of plants and animals. ANNUAL REVIEW OF PHYTOPATHOLOGY 2001; 39:259-284. [PMID: 11701866 DOI: 10.1146/annurev.phyto.39.1.259] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The vast evolutionary gulf between plants and animals--in terms of structure, composition, and many environmental factors--would seem to preclude the possibility that these organisms could act as receptive hosts to the same microorganism. However, some pathogens are capable of establishing themselves and thriving in members of both the plant and animal kingdoms. The identification of functionally conserved virulence mechanisms required to infect hosts of divergent evolutionary origins demonstrates the remarkable conservation in some of the underlying virulence mechanisms of pathogenesis and is changing researchers' thinking about the evolution of microbial pathogenesis.
Collapse
Affiliation(s)
- H Cao
- Department of Surgery, Harvard Medical School, Massachusetts General Hospital, Shriner's Burn Hospital, Boston, Massachusetts 02114, USA
| | | | | |
Collapse
|
37
|
Zaborina O, Dhiman N, Ling Chen M, Kostal J, Holder IA, Chakrabarty AM. Secreted products of a nonmucoid Pseudomonas aeruginosa strain induce two modes of macrophage killing: external-ATP-dependent, P2Z-receptor-mediated necrosis and ATP-independent, caspase-mediated apoptosis. MICROBIOLOGY (READING, ENGLAND) 2000; 146 ( Pt 10):2521-2530. [PMID: 11021927 DOI: 10.1099/00221287-146-10-2521] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A nonmucoid clinical isolate of Pseudomonas aeruginosa, strain 808, elaborated ATP-dependent and ATP-independent types of cytotoxic factors in the growth medium. These cytotoxic factors, active against macrophages, were secreted during the exponential phase of growth in a complex medium. Commensurate with the appearance of the cytotoxic activities in the cell-free growth medium, several ATP-utilizing enzymic activities, such as adenylate kinase, nucleoside diphosphate kinase and 5'-nucleotidase (ATPase and/or phosphatase), were detected in the medium. These ATP-utilizing enzymes are believed to convert external ATP, presumably effluxed from macrophages, to various adenine nucleotides, which then activate purinergic receptors such as P2Z, leading to enhanced macrophage cell death. Pretreatment of macrophages with periodate-oxidized ATP (oATP), which is an irreversible inhibitor of P2Z receptor activation, prevented subsequent ATP-induced macrophage cell death. A second type of cytotoxic factor(s) operated in an ATP-independent manner such that it triggered activation of apoptotic processes in macrophages, leading to proteolytic conversion of procaspase-3 to active caspase-3. This cytotoxic factor(s) did not appear to act on procaspase-3 present in macrophage cytosolic extracts. Intact macrophages, when exposed to the cytotoxic factor(s) for 6-16 h, underwent apoptosis and demonstrated the presence of active caspase-3 in their cytosolic extracts. Interestingly, two redox proteins, azurin and cytochrome c(551), were detected in the cytotoxic preparation. When cell-line-derived or peritoneal macrophages or mast cells were incubated overnight with Q-Sepharose column flow-through fraction or with a mixture of azurin and cytochrome c(551), they underwent extensive cell death due to induction of apoptosis.
Collapse
Affiliation(s)
- Olga Zaborina
- Dept of Microbiology & Immunology1 and Research Resource Center2, University of Illinois College of Medicine, 835 South Wolcott Avenue, Chicago, IL 60612, USA
| | - Neelam Dhiman
- Dept of Microbiology & Immunology1 and Research Resource Center2, University of Illinois College of Medicine, 835 South Wolcott Avenue, Chicago, IL 60612, USA
| | - Mei Ling Chen
- Dept of Microbiology & Immunology1 and Research Resource Center2, University of Illinois College of Medicine, 835 South Wolcott Avenue, Chicago, IL 60612, USA
| | - Jan Kostal
- Dept of Microbiology & Immunology1 and Research Resource Center2, University of Illinois College of Medicine, 835 South Wolcott Avenue, Chicago, IL 60612, USA
| | - Ian Alan Holder
- Dept of Microbiology, Shriners Burns Hospital, 3229 Burnet Avenue, Cincinnati, OH 45229, USA3
| | - Ananda M Chakrabarty
- Dept of Microbiology & Immunology1 and Research Resource Center2, University of Illinois College of Medicine, 835 South Wolcott Avenue, Chicago, IL 60612, USA
| |
Collapse
|
38
|
Punj V, Zaborina O, Dhiman N, Falzari K, Bagdasarian M, Chakrabarty AM. Phagocytic cell killing mediated by secreted cytotoxic factors of Vibrio cholerae. Infect Immun 2000; 68:4930-7. [PMID: 10948107 PMCID: PMC101703 DOI: 10.1128/iai.68.9.4930-4937.2000] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Vibrio cholerae strain VB1 secretes a number of enzymes into the outside medium that utilize ATP as a substrate. Such enzymes are found in the outside medium during the mid-log phase of growth, when the optical density at 650 nm is about 0.4, and they demonstrate nucleoside diphosphate kinase (Ndk), 5' nucleotidase, and adenylate kinase (Ak) activities. We report that the filtered growth medium of V. cholerae, as well as the flowthrough fraction of a green Sepharose column during fractionation of the growth medium, had very little cytotoxicity by itself towards macrophages and mast cells but exhibited significant cytotoxicity in the presence of exogenous ATP. Such fractions, harboring 5' nucleotidase, Ndk, and presumably other ATP-utilizing enzymes, demonstrated enhanced macrophage and mast cell death; periodate-oxidized-ATP (oATP)-treated macrophage and mast cells or such cells exposed to 0.1 mM Mg(2+), where surface-associated P2Z receptors could not be activated, were not susceptible to subsequent ATP addition. Microscopic visualization of mast cells clearly demonstrated cell morphological changes such as swelling, vacuolization, and nuclear fragmentation following treatment with ATP and the growth medium of V. cholerae; however, these effects were suppressed if the mast cells were pretreated with oATP. These results strongly imply that the secreted ATP-utilizing enzymes of V. cholerae modulate the external ATP levels of the macrophage and mast cells, leading to their accelerated death, presumably through activation of P2Z receptors. Thus, development of inhibitors for such enzymes may reduce the level of V. cholerae infection; alternatively, mutations in such genes may eliminate V. cholerae survival in the gut and contribute to a safer live vaccine.
Collapse
Affiliation(s)
- V Punj
- Department of Microbiology & Immunology, University of Illinois College of Medicine, Chicago, Illinois 60612, USA
| | | | | | | | | | | |
Collapse
|