1
|
Host Cell Antimicrobial Responses against Helicobacter pylori Infection: From Biological Aspects to Therapeutic Strategies. Int J Mol Sci 2022; 23:ijms231810941. [PMID: 36142852 PMCID: PMC9504325 DOI: 10.3390/ijms231810941] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/13/2022] [Accepted: 09/16/2022] [Indexed: 02/07/2023] Open
Abstract
The colonization of Helicobacter pylori (H. pylori) in human gastric mucosa is highly associated with the occurrence of gastritis, peptic ulcer, and gastric cancer. Antibiotics, including amoxicillin, clarithromycin, furazolidone, levofloxacin, metronidazole, and tetracycline, are commonly used and considered the major treatment regimens for H. pylori eradication, which is, however, becoming less effective by the increasing prevalence of H pylori resistance. Thus, it is urgent to understand the molecular mechanisms of H. pylori pathogenesis and develop alternative therapeutic strategies. In this review, we focus on the virulence factors for H. pylori colonization and survival within host gastric mucosa and the host antimicrobial responses against H. pylori infection. Moreover, we describe the current treatments for H. pylori eradication and provide some insights into new therapeutic strategies for H. pylori infection.
Collapse
|
2
|
Xie W, Zhao W, Zou Z, Kong L, Yang L. Oral multivalent epitope vaccine, based on UreB, HpaA, CAT, and LTB, for prevention and treatment of Helicobacter pylori infection in C57BL / 6 mice. Helicobacter 2021; 26:e12807. [PMID: 33847026 DOI: 10.1111/hel.12807] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 03/19/2021] [Accepted: 03/26/2021] [Indexed: 01/03/2023]
Abstract
BACKGROUND As the resistance of Helicobacter pylori to traditional triple therapy is gradually revealed, an increasing number of people are focusing on vaccine treatments for H. pylori infection. Epitope vaccines are a promising strategy for the treatment of H. pylori infection, and multivalent vaccines will be more effective than monovalent vaccines. MATERIALS AND METHODS In this study, we designed a multivalent vaccine named LHUC, which consists of the adjuvant LTB as well as three Th cell epitopes (HpaA154-171 , UreB237-251, and UreB546-561 ) and five B-cell epitopes (UreB349-363 , UreB327-334 , CAT394-405 , CAT387-397, and HpaA132-141 ) from UreB, HpaA, and catalase. In BALB/c mice, the specificity and immunogenicity of the fusion peptide LHUC and the neutralization of H. pylori urease and catalase by the specific IgG elicited by LHUC were evaluated. The preventive and therapeutic effects of LHUC were evaluated in C57BL/6 mice infected with H. pylori. RESULTS The results showed that compared with LTB and PBS, LHUC induced specific IgG and IgA antibody production in mice, and IgG antibodies significantly inhibited the H. pylori urease and catalase activities in vitro. Additionally, by detecting the levels of IFN-γ, IL-4, and IL-17 in lymphocyte supernatants, we proved that LHUC could activate Th1, Th2, and Th17 mixed T-cell immune responses in vivo. Finally, a C57BL/6 mouse model of gastric infection with H. pylori was established. The results showed that compared with the effects of LTB and PBS, the prevention and treatment effects of oral inoculation with LHUC significantly inhibited bacterial colonization. CONCLUSIONS In conclusion, LHUC, a multivalent vaccine based on multiple H. pylori antigens, is a promising and safe vaccine that can effectively reduce the colonization of H. pylori in the stomach.
Collapse
Affiliation(s)
- Wenwei Xie
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, China
| | - Wenfeng Zhao
- Department of Biochemistry, China Pharmaceutical university, Nanjing, China
| | - Ziling Zou
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, China
| | - Lingyi Kong
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, China
| | - Lei Yang
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
3
|
SpoT-mediated NapA upregulation promotes oxidative stress-induced Helicobacter pylori biofilm formation and confers multidrug resistance. Antimicrob Agents Chemother 2021; 65:AAC.00152-21. [PMID: 33649116 PMCID: PMC8092859 DOI: 10.1128/aac.00152-21] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Recently, there is increased incidence of drug-resistant Helicobacter pylori infection. Biofilm formation confers multidrug resistance to bacteria. Moreover, it has been found that the formation of biofilm on the surface of gastric mucosa is an important reason for the difficulty of eradication of H. pylori The mechanisms underlying H. pylori biofilm formation in vivo have not been elucidated. Reactive oxygen species (ROS) released by the host immune cells in response to H. pylori infection cannot effectively clear the pathogen. Moreover, the extracellular matrix of the biofilm protects the bacteria against ROS-mediated toxicity. This study hypothesized that ROS can promote H. pylori biofilm formation and treatment with low concentrations of hydrogen peroxide (H2O2) promoted this process in vitro The comparative transcriptome analysis of planktonic and biofilm-forming cells revealed that the expression of SpoT, a (p)ppGpp (guanosine 3'-diphosphate 5'-triphosphate and guanosine 3',5'-bispyrophosphate) synthetase/hydrolase, is upregulated in H2O2-induced biofilms and that knockout of spoT inhibited H. pylori biofilm formation. Additionally, this study examined the key target molecules involved in SpoT regulation using weighted gene co-expression network analysis. The analysis revealed that neutrophil-activating protein (NapA; HP0243) promoted H2O2-induced biofilm formation and conferred multidrug resistance. Furthermore, vitamin C exhibited anti-H. pylori biofilm activity and downregulated the expression of napA in vitro These findings provide novel insight into the clearance of H. pylori biofilms.
Collapse
|
4
|
Baj J, Forma A, Sitarz M, Portincasa P, Garruti G, Krasowska D, Maciejewski R. Helicobacter pylori Virulence Factors-Mechanisms of Bacterial Pathogenicity in the Gastric Microenvironment. Cells 2020; 10:E27. [PMID: 33375694 PMCID: PMC7824444 DOI: 10.3390/cells10010027] [Citation(s) in RCA: 166] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/18/2020] [Accepted: 12/22/2020] [Indexed: 12/11/2022] Open
Abstract
Gastric cancer constitutes one of the most prevalent malignancies in both sexes; it is currently the fourth major cause of cancer-related deaths worldwide. The pathogenesis of gastric cancer is associated with the interaction between genetic and environmental factors, among which infection by Helicobacter pylori (H. pylori) is of major importance. The invasion, survival, colonization, and stimulation of further inflammation within the gastric mucosa are possible due to several evasive mechanisms induced by the virulence factors that are expressed by the bacterium. The knowledge concerning the mechanisms of H. pylori pathogenicity is crucial to ameliorate eradication strategies preventing the possible induction of carcinogenesis. This review highlights the current state of knowledge and the most recent findings regarding H. pylori virulence factors and their relationship with gastric premalignant lesions and further carcinogenesis.
Collapse
Affiliation(s)
- Jacek Baj
- Department of Anatomy, Medical University of Lublin, 20-400 Lublin, Poland;
| | - Alicja Forma
- Chair and Department of Forensic Medicine, Medical University of Lublin, 20-090 Lublin, Poland;
| | - Monika Sitarz
- Department of Conservative Dentistry with Endodontics, Medical University of Lublin, 20-090 Lublin, Poland;
| | - Piero Portincasa
- Clinica Medica “Augusto Murri”, Department of Biomedical Sciences and Human Oncology, University of Bari “Aldo Moro”, 70124 Bari, Italy;
| | - Gabriella Garruti
- Section of Endocrinology, Department of Emergency and Organ Transplantations, University of Bari “Aldo Moro” Medical School, Piazza G. Cesare 11, 70124 Bari, Italy;
| | - Danuta Krasowska
- Department of Dermatology, Venerology and Paediatric Dermatology of Medical University of Lublin, 20-081 Lublin, Poland;
| | | |
Collapse
|
5
|
In Vivo Genome and Methylome Adaptation of cag-Negative Helicobacter pylori during Experimental Human Infection. mBio 2020; 11:mBio.01803-20. [PMID: 32843556 PMCID: PMC7448279 DOI: 10.1128/mbio.01803-20] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Exceptional genetic diversity and variability are hallmarks of Helicobacter pylori, but the biological role of this plasticity remains incompletely understood. Here, we had the rare opportunity to investigate the molecular evolution during the first weeks of H. pylori infection by comparing the genomes and epigenomes of H. pylori strain BCS 100 used to challenge human volunteers in a vaccine trial with those of bacteria reisolated from the volunteers 10 weeks after the challenge. The data provide molecular insights into the process of establishment of this highly versatile pathogen in 10 different human individual hosts, showing, for example, selection for changes in host-interaction molecules as well as changes in epigenetic methylation patterns. The data provide important clues to the early adaptation of H. pylori to new host niches after transmission, which we believe is vital to understand its success as a chronic pathogen and develop more efficient treatments and vaccines. Multiple studies have demonstrated rapid bacterial genome evolution during chronic infection with Helicobacter pylori. In contrast, little was known about genetic changes during the first stages of infection, when selective pressure is likely to be highest. Using single-molecule, real-time (SMRT) and Illumina sequencing technologies, we analyzed genome and methylome evolution during the first 10 weeks of infection by comparing the cag pathogenicity island (cagPAI)-negative H. pylori challenge strain BCS 100 with pairs of H. pylori reisolates from gastric antrum and corpus biopsy specimens of 10 human volunteers who had been infected with this strain as part of a vaccine trial. Most genetic changes detected in the reisolates affected genes with a surface-related role or a predicted function in peptide uptake. Apart from phenotypic changes of the bacterial envelope, a duplication of the catalase gene was observed in one reisolate, which resulted in higher catalase activity and improved survival under oxidative stress conditions. The methylomes also varied in some of the reisolates, mostly by activity switching of phase-variable methyltransferase (MTase) genes. The observed in vivo mutation spectrum was remarkable for a very high proportion of nonsynonymous mutations. Although the data showed substantial within-strain genome diversity in the challenge strain, most antrum and corpus reisolates from the same volunteers were highly similar to each other, indicating that the challenge infection represents a major selective bottleneck shaping the transmitted population. Our findings suggest rapid in vivo selection of H. pylori during early-phase infection providing adaptation to different individuals by common mechanisms of genetic and epigenetic alterations.
Collapse
|
6
|
Perkins A, Tudorica DA, Amieva MR, Remington SJ, Guillemin K. Helicobacter pylori senses bleach (HOCl) as a chemoattractant using a cytosolic chemoreceptor. PLoS Biol 2019; 17:e3000395. [PMID: 31465435 PMCID: PMC6715182 DOI: 10.1371/journal.pbio.3000395] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Accepted: 07/24/2019] [Indexed: 12/21/2022] Open
Abstract
The gastric pathogen Helicobacter pylori requires a noncanonical cytosolic chemoreceptor transducer-like protein D (TlpD) for efficient colonization of the mammalian stomach. Here, we reconstituted a complete chemotransduction signaling complex in vitro with TlpD and the chemotaxis (Che) proteins CheW and CheA, enabling quantitative assays for potential chemotaxis ligands. We found that TlpD is selectively sensitive at micromolar concentrations to bleach (hypochlorous acid, HOCl), a potent antimicrobial produced by neutrophil myeloperoxidase during inflammation. HOCl acts as a chemoattractant by reversibly oxidizing a conserved cysteine within a 3His/1Cys Zn-binding motif in TlpD that inactivates the chemotransduction signaling complex. We found that H. pylori is resistant to killing by millimolar concentrations of HOCl and responds to HOCl in the micromolar range by increasing its smooth-swimming behavior, leading to chemoattraction to HOCl sources. We show related protein domains from Salmonella enterica and Escherichia coli possess similar reactivity toward HOCl. We propose that this family of proteins enables host-associated bacteria to sense sites of tissue inflammation, a strategy that H. pylori uses to aid in colonizing and persisting in inflamed gastric tissue.
Collapse
Affiliation(s)
- Arden Perkins
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon, United States of America
| | - Dan A. Tudorica
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon, United States of America
| | - Manuel R. Amieva
- Departments of Pediatrics and of Microbiology & Immunology, Stanford University School of Medicine, Stanford, California, United States of America
| | - S. James Remington
- Department of Physics, University of Oregon, Eugene, Oregon, United States of America
| | - Karen Guillemin
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon, United States of America
- Humans and the Microbiome Program, CIFAR, Toronto, Ontario, Canada
| |
Collapse
|
7
|
α-Difluoromethylornithine reduces gastric carcinogenesis by causing mutations in Helicobacter pylori cagY. Proc Natl Acad Sci U S A 2019; 116:5077-5085. [PMID: 30804204 DOI: 10.1073/pnas.1814497116] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Infection by Helicobacter pylori is the primary cause of gastric adenocarcinoma. The most potent H. pylori virulence factor is cytotoxin-associated gene A (CagA), which is translocated by a type 4 secretion system (T4SS) into gastric epithelial cells and activates oncogenic signaling pathways. The gene cagY encodes for a key component of the T4SS and can undergo gene rearrangements. We have shown that the cancer chemopreventive agent α-difluoromethylornithine (DFMO), known to inhibit the enzyme ornithine decarboxylase, reduces H. pylori-mediated gastric cancer incidence in Mongolian gerbils. In the present study, we questioned whether DFMO might directly affect H. pylori pathogenicity. We show that H. pylori output strains isolated from gerbils treated with DFMO exhibit reduced ability to translocate CagA in gastric epithelial cells. Further, we frequently detected genomic modifications in the middle repeat region of the cagY gene of output strains from DFMO-treated animals, which were associated with alterations in the CagY protein. Gerbils did not develop carcinoma when infected with a DFMO output strain containing rearranged cagY or the parental strain in which the wild-type cagY was replaced by cagY with DFMO-induced rearrangements. Lastly, we demonstrate that in vitro treatment of H. pylori by DFMO induces oxidative DNA damage, expression of the DNA repair enzyme MutS2, and mutations in cagY, demonstrating that DFMO directly affects genomic stability. Deletion of mutS2 abrogated the ability of DFMO to induce cagY rearrangements directly. In conclusion, DFMO-induced oxidative stress in H. pylori leads to genomic alterations and attenuates virulence.
Collapse
|
8
|
Molecular interaction between human SUMO-I and histone like DNA binding protein of Helicobacter pylori (Hup) investigated by NMR and other biophysical tools. Int J Biol Macromol 2018; 123:446-456. [PMID: 30439429 DOI: 10.1016/j.ijbiomac.2018.11.054] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 08/29/2018] [Accepted: 11/11/2018] [Indexed: 02/07/2023]
Abstract
The proteins secreted by bacteria contribute to immune mediated gastric inflammation and epithelial damage; thus aid bacterial invasion in host tissue, and may also interact with host proteins, conspirating a mechanism against host-immune system. The Histone-like DNA binding protein is one of the most abundant nucleoid-associated proteins in Helicobacter pylori (H. pylori). The protein -referred here as Hup- is also secreted in vitro by H. pylori, thus it may have its role in disease pathogenesis. This is possible only if Hup interact with some human proteins including Small-Ubiquitin-like-Modifier (SUMO) proteins. Studies have established that SUMO-proteins participate in various innate-immune pathways and thus promote an efficient immune response to combat pathogenic infections. Sequence analysis revealed the presence of two SUMO interacting motifs (SIMs) and several positively charged lysine residues on the protein surface of Hup. Additionally, SUMO-proteins epitomize negatively charged surface which confers them the ability to bind to DNA/RNA binding proteins. Based on the presence of SIMs as well as charge complementarity between the proteins, it is legitimate to consider that Hup protein would bind to SUMO-proteins. The present study has been undertaken to establish this interaction for the first time using NMR in combination with ITC and other biophysical techniques.
Collapse
|
9
|
Lekmeechai S, Su YC, Brant M, Alvarado-Kristensson M, Vallström A, Obi I, Arnqvist A, Riesbeck K. Helicobacter pylori Outer Membrane Vesicles Protect the Pathogen From Reactive Oxygen Species of the Respiratory Burst. Front Microbiol 2018; 9:1837. [PMID: 30245670 PMCID: PMC6137165 DOI: 10.3389/fmicb.2018.01837] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 07/23/2018] [Indexed: 01/28/2023] Open
Abstract
Outer membrane vesicles (OMVs) play an important role in the persistence of Helicobacter pylori infection. Helicobacter OMVs carry a plethora of virulence factors, including catalase (KatA), an antioxidant enzyme that counteracts the host respiratory burst. We found KatA to be enriched and surface-associated in OMVs compared to bacterial cells. This conferred OMV-dependent KatA activity resulting in neutralization of H2O2 and NaClO, and rescue of surrounding bacteria from oxidative damage. The antioxidant activity of OMVs was abolished by deletion of KatA. In conclusion, enrichment of antioxidative KatA in OMVs is highly important for efficient immune evasion.
Collapse
Affiliation(s)
- Sujinna Lekmeechai
- Clinical Microbiology and Molecular Pathology, Department of Translational Medicine, Faculty of Medicine, Lund University, Malmö, Sweden
| | - Yu-Ching Su
- Clinical Microbiology and Molecular Pathology, Department of Translational Medicine, Faculty of Medicine, Lund University, Malmö, Sweden
| | - Marta Brant
- Clinical Microbiology and Molecular Pathology, Department of Translational Medicine, Faculty of Medicine, Lund University, Malmö, Sweden
| | - Maria Alvarado-Kristensson
- Clinical Microbiology and Molecular Pathology, Department of Translational Medicine, Faculty of Medicine, Lund University, Malmö, Sweden
| | - Anna Vallström
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
| | - Ikenna Obi
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
| | - Anna Arnqvist
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
| | - Kristian Riesbeck
- Clinical Microbiology and Molecular Pathology, Department of Translational Medicine, Faculty of Medicine, Lund University, Malmö, Sweden
| |
Collapse
|
10
|
Noncatalytic Antioxidant Role for Helicobacter pylori Urease. J Bacteriol 2018; 200:JB.00124-18. [PMID: 29866802 DOI: 10.1128/jb.00124-18] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 05/30/2018] [Indexed: 12/15/2022] Open
Abstract
The well-studied catalytic role of urease, the Ni-dependent conversion of urea into carbon dioxide and ammonia, has been shown to protect Helicobacter pylori against the low pH environment of the stomach lumen. We hypothesized that the abundantly expressed urease protein can play another noncatalytic role in combating oxidative stress via Met residue-mediated quenching of harmful oxidants. Three catalytically inactive urease mutant strains were constructed by single substitutions of Ni binding residues. The mutant versions synthesize normal levels of urease, and the altered versions retained all methionine residues. The three site-directed urease mutants were able to better withstand a hypochlorous acid (HOCl) challenge than a ΔureAB deletion strain. The capacity of purified urease to protect whole cells via oxidant quenching was assessed by adding urease enzyme to nongrowing HOCl-exposed cells. No wild-type cells were recovered with oxidant alone, whereas urease addition significantly aided viability. These results suggest that urease can protect H. pylori against oxidative damage and that the protective ability is distinct from the well-characterized catalytic role. To determine the capability of methionine sulfoxide reductase (Msr) to reduce oxidized Met residues in urease, purified H. pylori urease was exposed to HOCl and a previously described Msr peptide repair mixture was added. Of the 25 methionine residues in urease, 11 were subject to both oxidation and to Msr-mediated repair, as identified by mass spectrometry (MS) analysis; therefore, the oxidant-quenchable Met pool comprising urease can be recycled by the Msr repair system. Noncatalytic urease appears to play an important role in oxidant protection.IMPORTANCE Chronic Helicobacter pylori infection can lead to gastric ulcers and gastric cancers. The enzyme urease contributes to the survival of the bacterium in the harsh environment of the stomach by increasing the local pH. In addition to combating acid, H. pylori must survive host-produced reactive oxygen species to persist in the gastric mucosa. We describe a cyclic amino acid-based antioxidant role of urease, whereby oxidized methionine residues can be recycled by methionine sulfoxide reductase to again quench oxidants. This work expands our understanding of the role of an already acknowledged pathogen virulence factor and specifically expands our knowledge of H. pylori survival mechanisms.
Collapse
|
11
|
Mejías-Luque R, Gerhard M. Immune Evasion Strategies and Persistence of Helicobacter pylori. Curr Top Microbiol Immunol 2017; 400:53-71. [PMID: 28124149 DOI: 10.1007/978-3-319-50520-6_3] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Helicobacter pylori infection is commonly acquired during childhood, can persist lifelong if not treated, and can cause different gastric pathologies, including chronic gastritis, peptic ulcer disease, and eventually gastric cancer. H. pylori has developed a number of strategies in order to cope with the hostile conditions found in the human stomach as well as successful mechanisms to evade the strong innate and adaptive immune responses elicited upon infection. Thus, by manipulating innate immune receptors and related signaling pathways, inducing tolerogenic dendritic cells and inhibiting effector T cell responses, H. pylori ensures low recognition by the host immune system as well as its persistence in the gastric epithelium. Bacterial virulence factors such as cytotoxin-associated gene A, vacuolating cytotoxin A, or gamma-glutamyltranspeptidase have been extensively studied in the context of bacterial immune escape and persistence. Further, the bacterium possesses other factors that contribute to immune evasion. In this chapter, we discuss in detail the main evasion and persistence strategies evolved by the bacterium as well as the specific bacterial virulence factors involved.
Collapse
Affiliation(s)
- Raquel Mejías-Luque
- Institut für Medizinische Mikrobiologie, Immunologie und Hygiene, Technische Universität München, Munich, Germany. .,German Centre for Infection Research (DZIF), Partner Site Munich, Munich, Germany.
| | - Markus Gerhard
- Institut für Medizinische Mikrobiologie, Immunologie und Hygiene, Technische Universität München, Munich, Germany.,German Centre for Infection Research (DZIF), Partner Site Munich, Munich, Germany
| |
Collapse
|
12
|
The Human Stomach in Health and Disease: Infection Strategies by Helicobacter pylori. Curr Top Microbiol Immunol 2017; 400:1-26. [PMID: 28124147 DOI: 10.1007/978-3-319-50520-6_1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Helicobacter pylori is a bacterial pathogen which commonly colonizes the human gastric mucosa from early childhood and persists throughout life. In the vast majority of cases, the infection is asymptomatic. H. pylori is the leading cause of peptic ulcer disease and gastric cancer, however, and these outcomes occur in 10-15% of those infected. Gastric adenocarcinoma is the third most common cause of cancer-associated death, and peptic ulcer disease is a significant cause of morbidity. Disease risk is related to the interplay of numerous bacterial host and environmental factors, many of which influence chronic inflammation and damage to the gastric mucosa. This chapter summarizes what is known about health and disease in H. pylori infection, and highlights the need for additional research in this area.
Collapse
|
13
|
De Re V, Repetto O, Zanussi S, Casarotto M, Caggiari L, Canzonieri V, Cannizzaro R. Protein signature characterizing Helicobacter pylori strains of patients with autoimmune atrophic gastritis, duodenal ulcer and gastric cancer. Infect Agent Cancer 2017; 12:22. [PMID: 28465717 PMCID: PMC5408474 DOI: 10.1186/s13027-017-0133-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 04/13/2017] [Indexed: 12/12/2022] Open
Abstract
Background Helicobacter pylori (H. pylori) represents a key factor in the etiology of autoimmune atrophic gastritis (AAG), duodenal ulcer (DU) and gastric cancer (GC). The aim of this study was to characterize the differential protein expression of H. pylori isolated from gastric biopsies of patients affected by either AAG, DU or GC. Methods The H. pylori strains were isolated from endoscopic biopsies from the stomach of patients with gastric disease. Protein profiles of H. pylori were compared by two-dimensional difference in gel electrophoresis (2D-DIGE) coupled with mass spectrometry (MS) for the identification of significantly different spots (Student t-test, p < 0.05). Results A total of 47 differentially expressed spots were found between H. pylori isolated from patients with either DU or AAG diseases and those isolated from patients with GC (Anova < 0.05, log fold change >1.5). These spots corresponded to 35 unique proteins. The identity of 7 protein spots was validated after one-dimensional electrophoresis and MS/MS analyses of excised gel portions. In H. pylori isolated from DU-patients a significant increase in proteins with antioxidant activity emerged (AroQ, AspA, FldA, Icd, OorA and ScoB), together with a higher content of proteins counteracting the high acid environment (KatA and NapA). In H. pylori isolated from AAG-patients proteins neutralizing hydrogen concentrations through organic substance metabolic processes decreased (GroL, TrxB and Tuf). In addition, a reduction of bacterial motility (FlhA) was found to be associated with AAG-H. pylori isolates. In GC-H. pylori strains it was found an increase in nucleic acid-binding proteins (e.g. DnaG, Tuf, RpoA, RplU) which may be involved in a higher demand of DNA- and protein-related processes. Conclusion Our data suggest the presence of specific protein signatures discriminating among H. pylori isolated from either AAG, DU or GC. Changes in protein expression profiles evaluated by DIGE succeeded in deciphering part of the molecular scenarios associated with the different H. pylori-related gastric diseases. Electronic supplementary material The online version of this article (doi:10.1186/s13027-017-0133-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Valli De Re
- Facility of Bio-Proteomics, Immunopathology and Cancer Biomarkers, IRCCS CRO National Cancer Institute, Via F. Gallini 2, 33081 Aviano, Italy
| | - Ombretta Repetto
- Facility of Bio-Proteomics, Immunopathology and Cancer Biomarkers, IRCCS CRO National Cancer Institute, Via F. Gallini 2, 33081 Aviano, Italy
| | - Stefania Zanussi
- Microbiology-Immunology and Virology, IRCCS CRO National Cancer Institute, Aviano, Italy
| | - Mariateresa Casarotto
- Microbiology-Immunology and Virology, IRCCS CRO National Cancer Institute, Aviano, Italy
| | - Laura Caggiari
- Facility of Bio-Proteomics, Immunopathology and Cancer Biomarkers, IRCCS CRO National Cancer Institute, Via F. Gallini 2, 33081 Aviano, Italy
| | - Vincenzo Canzonieri
- Pathology Gastroenterology, IRCCS CRO National Cancer Institute, Aviano, Italy
| | - Renato Cannizzaro
- Facility of Bio-Proteomics, Immunopathology and Cancer Biomarkers, IRCCS CRO National Cancer Institute, Via F. Gallini 2, 33081 Aviano, Italy.,Microbiology-Immunology and Virology, IRCCS CRO National Cancer Institute, Aviano, Italy.,Pathology Gastroenterology, IRCCS CRO National Cancer Institute, Aviano, Italy.,Gastroenterology, IRCCS CRO National Cancer Institute, Aviano, Italy
| |
Collapse
|
14
|
Kamboj AK, Cotter TG, Oxentenko AS. Helicobacter pylori: The Past, Present, and Future in Management. Mayo Clin Proc 2017; 92:599-604. [PMID: 28209367 DOI: 10.1016/j.mayocp.2016.11.017] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 11/22/2016] [Accepted: 11/28/2016] [Indexed: 02/06/2023]
Abstract
Helicobacter pylori is a common bacterial pathogen responsible for substantial gastrointestinal morbidity worldwide. Helicobacter pylori infection can be clinically challenging, given the numerous diagnostic and therapeutic options available. In this article, we provide a systematic review of H pylori epidemiology and pathogenesis. In addition, we provide a simplified approach to the diagnosis and treatment of H pylori infection, suitable for application in the primary care setting. On completion of this article, one should be able to (1) state the indications for H pylori testing; (2) identify noninvasive and invasive tests to diagnose H pylori infection; and (3) describe the advantages and disadvantages of various treatment regimens.
Collapse
Affiliation(s)
- Amrit K Kamboj
- Department of Internal Medicine, Mayo Clinic, Rochester, MN
| | | | - Amy S Oxentenko
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN.
| |
Collapse
|
15
|
Gobert AP, Wilson KT. Polyamine- and NADPH-dependent generation of ROS during Helicobacter pylori infection: A blessing in disguise. Free Radic Biol Med 2017; 105:16-27. [PMID: 27682363 PMCID: PMC5366100 DOI: 10.1016/j.freeradbiomed.2016.09.024] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 09/16/2016] [Accepted: 09/23/2016] [Indexed: 12/20/2022]
Abstract
Helicobacter pylori is a Gram-negative bacterium that specifically colonizes the gastric ecological niche. During the infectious process, which results in diseases ranging from chronic gastritis to gastric cancer, the host response is characterized by the activation of the innate immunity of gastric epithelial cells and macrophages. These cells thus produce effector molecules such as reactive oxygen species (ROS) to counteract the infection. The generation of ROS in response to H. pylori involves two canonical pathways: 1) the NADPH-dependent reduction of molecular oxygen to generate O2•-, which can dismute to generate ROS; and 2) the back-conversion of the polyamine spermine into spermidine through the enzyme spermine oxidase, leading to H2O2 production. Although these products have the potential to affect the survival of bacteria, H. pylori has acquired numerous strategies to counteract their deleterious effects. Nonetheless, ROS-mediated oxidative DNA damage and mutations may participate in the adaptation of H. pylori to its ecological niche. Lastly, ROS have been shown to play a major role in the development of the inflammation and carcinogenesis. It is the purpose of this review to summarize the literature about the production of ROS during H. pylori infection and their role in this infectious gastric disease.
Collapse
Affiliation(s)
- Alain P Gobert
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, United States; Center for Mucosal Inflammation and Cancer, United States
| | - Keith T Wilson
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, United States; Department of Pathology, Microbiology, and Immunology, United States; Department of Cancer Biology, United States; Center for Mucosal Inflammation and Cancer, United States; Vanderbilt Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN 37232, United States; Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN 37212, United States.
| |
Collapse
|
16
|
Kalisperati P, Spanou E, Pateras IS, Korkolopoulou P, Varvarigou A, Karavokyros I, Gorgoulis VG, Vlachoyiannopoulos PG, Sougioultzis S. Inflammation, DNA Damage, Helicobacter pylori and Gastric Tumorigenesis. Front Genet 2017; 8:20. [PMID: 28289428 PMCID: PMC5326759 DOI: 10.3389/fgene.2017.00020] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 02/08/2017] [Indexed: 12/13/2022] Open
Abstract
Helicobacter pylori (H. pylori) is a Gram negative bacterium that colonizes the stomach of almost half human population. It has evolved to escape immune surveillance, establishes lifelong inflammation, predisposing to genomic instability and DNA damage, notably double strand breaks. The epithelial host cell responds by activation of DNA damage repair (DDR) machinery that seems to be compromised by the infection. It is therefore now accepted that genetic damage is a major mechanism operating in cases of H. pylori induced carcinogenesis. Here, we review the data on the molecular pathways involved in DNA damage and DDR activation during H. pylori infection.
Collapse
Affiliation(s)
- Polyxeni Kalisperati
- Gastroenterology Unit, Department of Pathophysiology, School of Medicine, National and Kapodistrian University Athens, Greece
| | - Evangelia Spanou
- Gastroenterology Unit, Department of Pathophysiology, School of Medicine, National and Kapodistrian University Athens, Greece
| | - Ioannis S Pateras
- Department of Histology and Embryology, School of Medicine, National and Kapodistrian University Athens, Greece
| | - Penelope Korkolopoulou
- 1st Department of Pathology, Laiko Hospital, School of Medicine, National and Kapodistrian University of Athens Athens, Greece
| | | | - Ioannis Karavokyros
- 1st Department of Surgery, Laiko Hospital, University of Athens, School of Medicine Athens, Greece
| | - Vassilis G Gorgoulis
- Department of Histology and Embryology, School of Medicine, National and Kapodistrian UniversityAthens, Greece; Biomedical Research Foundation of the Academy of AthensAthens, Greece; Faculty of Biology, Medicine and Health Manchester Cancer Research Centre, Manchester Academic Health Sciences Centre, The University of ManchesterManchester, UK
| | | | - Stavros Sougioultzis
- Gastroenterology Unit, Department of Pathophysiology, School of Medicine, National and Kapodistrian University Athens, Greece
| |
Collapse
|
17
|
Mori G, Doniselli N, Faroldi F, Percudani R. Heme binding and peroxidase activity of a secreted minicatalase. FEBS Lett 2016; 590:4495-4506. [PMID: 27859138 DOI: 10.1002/1873-3468.12493] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 10/29/2016] [Accepted: 11/07/2016] [Indexed: 11/10/2022]
Abstract
Microbial pathogens often require efficient and robust H2 O2 scavenger activities to survive in the presence of reactive oxygen species generated by inflammatory responses. In addition to catalases and peroxidases, enzymes known to scavenge H2 O2 , a novel class of secreted minicatalases is found in diderm bacteria. Here, we characterize the Helicobacter pylori (Hp) minicatalase: a monomeric hemoprotein with catalase core homology. Overexpression of Hp minicatalase rescued a catalase/peroxidase-deficient Escherichia coli phenotype under aerobic conditions and limited H2 O2 stress. The purified enzyme lacks catalase activity, but has strong (kcat > 100 s-1 ) H2 O2 -dependent peroxidase activity toward a variety of organic substrates. Our investigations into heme binding revealed that the heme cofactor is assembled in the periplasm to form the functional holoprotein. Furthermore, we observed the presence of a disulfide bond near the heme cavity of Hp minicatalase, which is conserved in secreted minicatalases and, therefore, may play a role in heme binding.
Collapse
Affiliation(s)
- Giulia Mori
- Department of Life Sciences, University of Parma, Italy
| | | | | | | |
Collapse
|
18
|
Benoit SL, Maier RJ. Helicobacter Catalase Devoid of Catalytic Activity Protects the Bacterium against Oxidative Stress. J Biol Chem 2016; 291:23366-23373. [PMID: 27605666 DOI: 10.1074/jbc.m116.747881] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 08/30/2016] [Indexed: 01/18/2023] Open
Abstract
Catalase, a conserved and abundant enzyme found in all domains of life, dissipates the oxidant hydrogen peroxide (H2O2). The gastric pathogen Helicobacter pylori undergoes host-mediated oxidant stress exposure, and its catalase contains oxidizable methionine (Met) residues. We hypothesized catalase may play a large stress-combating role independent of its classical catalytic one, namely quenching harmful oxidants through its recyclable Met residues, resulting in oxidant protection to the bacterium. Two Helicobacter mutant strains (katAH56A and katAY339A) containing catalase without enzyme activity but that retain all Met residues were created. These strains were much more resistant to oxidants than a catalase-deletion mutant strain. The quenching ability of the altered versions was shown, whereby oxidant-stressed (HOCl-exposed) Helicobacter retained viability even upon extracellular addition of the inactive versions of catalase, in contrast to cells receiving HOCl alone. The importance of the methionine-mediated quenching to the pathogen residing in the oxidant-rich gastric mucus was studied. In contrast to a catalase-null strain, both site-change mutants proficiently colonized the murine gastric mucosa, suggesting that the amino acid composition-dependent oxidant-quenching role of catalase is more important than the well described H2O2-dissipating catalytic role. Over 100 years after the discovery of catalase, these findings reveal a new non-enzymatic protective mechanism of action for the ubiquitous enzyme.
Collapse
Affiliation(s)
- Stéphane L Benoit
- From the Department of Microbiology, University of Georgia, Athens, Georgia 30602
| | - Robert J Maier
- From the Department of Microbiology, University of Georgia, Athens, Georgia 30602
| |
Collapse
|
19
|
Pelliciari S, Vannini A, Roncarati D, Danielli A. The allosteric behavior of Fur mediates oxidative stress signal transduction in Helicobacter pylori. Front Microbiol 2015; 6:840. [PMID: 26347726 PMCID: PMC4541418 DOI: 10.3389/fmicb.2015.00840] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 07/31/2015] [Indexed: 12/19/2022] Open
Abstract
The microaerophilic gastric pathogen Helicobacter pylori is exposed to oxidative stress originating from the aerobic environment, the oxidative burst of phagocytes and the formation of reactive oxygen species, catalyzed by iron excess. Accordingly, the expression of genes involved in oxidative stress defense have been repeatedly linked to the ferric uptake regulator Fur. Moreover, mutations in the Fur protein affect the resistance to metronidazole, likely due to loss-of-function in the regulation of genes involved in redox control. Although many advances in the molecular understanding of HpFur function were made, little is known about the mechanisms that enable Fur to mediate the responses to oxidative stress. Here we show that iron-inducible, apo-Fur repressed genes, such as pfr and hydA, are induced shortly after oxidative stress, while their oxidative induction is lost in a fur knockout strain. On the contrary, holo-Fur repressed genes, such as frpB1 and fecA1, vary modestly in response to oxidative stress. This indicates that the oxidative stress signal specifically targets apo-Fur repressed genes, rather than impairing indiscriminately the regulatory function of Fur. Footprinting analyses showed that the oxidative signal strongly impairs the binding affinity of Fur toward apo-operators, while the binding toward holo-operators is less affected. Further evidence is presented that a reduced state of Fur is needed to maintain apo-repression, while oxidative conditions shift the preferred binding architecture of Fur toward the holo-operator binding conformation, even in the absence of iron. Together the results demonstrate that the allosteric regulation of Fur enables transduction of oxidative stress signals in H. pylori, supporting the concept that apo-Fur repressed genes can be considered oxidation inducible Fur regulatory targets. These findings may have important implications in the study of H. pylori treatment and resistance to antibiotics.
Collapse
Affiliation(s)
- Simone Pelliciari
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna , Bologna, Italy
| | - Andrea Vannini
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna , Bologna, Italy
| | - Davide Roncarati
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna , Bologna, Italy
| | - Alberto Danielli
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna , Bologna, Italy
| |
Collapse
|
20
|
Aconitase Functions as a Pleiotropic Posttranscriptional Regulator in Helicobacter pylori. J Bacteriol 2015; 197:3076-86. [PMID: 26170414 DOI: 10.1128/jb.00529-15] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 07/08/2015] [Indexed: 01/19/2023] Open
Abstract
UNLABELLED Posttranscriptional regulation in bacteria has increasingly become recognized as playing a major role in response to environmental stimuli. Aconitase is a bifunctional protein that not only acts enzymatically but also can be a posttranscriptional regulator. To investigate protein expression regulated by Helicobacter pylori AcnB in response to oxidative stress, a global proteomics study was conducted wherein the ΔacnB strain was compared to the parent strain when both strains were O2 stressed. Many proteins, including some involved in urease activity, in combating oxidative stress, and in motility, were expressed at a significantly lower level in the ΔacnB strain. A bioinformatics prediction tool was used to identify putative targets for aconitase-mediated regulation, and electrophoretic mobility shift assays demonstrated that apo-AcnB is able to bind to RNA transcripts of hpn (encoding a nickel-sequestering protein), ahpC (encoding alkyl hydroperoxide reductase), and flgR (encoding flagellum response regulator). Compared to the wild type (WT), the ΔacnB strain had decreased activities of the nickel-containing enzymes urease and hydrogenase, and this could be correlated with lower total nickel levels within ΔacnB cells. Binding of apo-AcnB to the hpn 5' untranslated region (UTR) may inhibit the expression of Hpn. In agreement with the finding that AcnB regulates the expression of antioxidant proteins such as AhpC, ΔacnB cells displayed oxidative-stress-sensitive phenotypes. The ΔacnB strain has a lesser motility ability than the WT strain, which can likely be explained by the functions of AcnB on the FlgRS-RpoN-FlgE regulatory cascade. Collectively, our results suggest a global role for aconitase as a posttranscriptional regulator in this gastric pathogen. IMPORTANCE Bacterial survival depends on the ability of the cell to sense and respond to a variety of environmental changes. For Helicobacter pylori, responding to environmental stimuli within the gastric niche is essential for persistence and host colonization. However, there is much to be learned about the regulatory mechanisms that H. pylori employs to orchestrate its response to different stimuli. In this study, we explore the role of aconitase, a bifunctional protein that has been found to act as a posttranscriptional regulator in several other bacteria. Our results shed light on the magnitude of aconitase-mediated regulation in H. pylori, and we propose that aconitase acts as a global regulator of key genes involved in virulence.
Collapse
|
21
|
Comparative Roles of the Two Helicobacter pylori Thioredoxins in Preventing Macromolecule Damage. Infect Immun 2015; 83:2935-43. [PMID: 25964471 DOI: 10.1128/iai.00232-15] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 04/30/2015] [Indexed: 12/29/2022] Open
Abstract
Thioredoxins are highly conserved throughout a wide range of organisms, and they are essential for the isurvival of oxygen-sensitive cells. The gastric pathogen Helicobacter pylori uses the thioredoxin system to maintain its thiol/disulfide balance. There are two thioredoxins present in H. pylori, Trx1 and Trx2 (herein referred to as TrxA and TrxC). TrxA has been shown to be important as an electron donor for some antioxidant enzymes, but the function of TrxC remains unknown (L. M. Baker, A. Raudonikiene, P. S. Hoffman, and L. B. Poole, J Bacteriol 183:1961-1973, 2001; P. Alamuri and R. J. Maier, J Bacteriol 188:5839-5850, 2006). We demonstrate that both TrxA and TrxC are important in protecting H. pylori from oxidative stress. Individual ΔtrxA and ΔtrxC deletion mutant strains each show a greater abundance of lipid peroxides and suffer more DNA damage and more protein carbonylation than the parent. Both deletion mutants were much more sensitive to O2-mediated viability loss than the parent. Unexpectedly, the oxidative DNA damage and protein carbonylation was more severe in the ΔtrxC mutant than in the ΔtrxA mutant; it had 20-fold- and 4-fold-more carbonylated protein content than the wild type and the ΔtrxA strain, respectively, after 4 h of atmospheric O2 stress. trx transcript abundance was altered by the deletion of the heterologous trx gene. The ΔtrxC mutant lacked mouse colonization ability, while the ability to colonize mouse stomachs was significantly reduced in the ΔtrxA mutant.
Collapse
|
22
|
A novel DNA-binding protein plays an important role in Helicobacter pylori stress tolerance and survival in the host. J Bacteriol 2014; 197:973-82. [PMID: 25535274 DOI: 10.1128/jb.02489-14] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The gastric pathogen Helicobacter pylori must combat chronic acid and oxidative stress. It does so via many mechanisms, including macromolecule repair and gene regulation. Mitomycin C-sensitive clones from a transposon mutagenesis library were screened. One sensitive strain contained the insertion element at the locus of hp119, a hypothetical gene. No homologous gene exists in any (non-H. pylori) organism. Nevertheless, the predicted protein has some features characteristic of histone-like proteins, and we showed that purified HP119 protein is a DNA-binding protein. A Δhp119 strain was markedly more sensitive (viability loss) to acid or to air exposure, and these phenotypes were restored to wild-type (WT) attributes upon complementation of the mutant with the wild-type version of hp119 at a separate chromosomal locus. The mutant strain was approximately 10-fold more sensitive to macrophage-mediated killing than the parent or the complemented strain. Of 12 mice inoculated with the wild type, all contained H. pylori, whereas 5 of 12 mice contained the mutant strain; the mean colonization numbers were 158-fold less for the mutant strain. A proteomic (two-dimensional PAGE with mass spectrometric analysis) comparison between the Δhp119 mutant and the WT strain under oxidative stress conditions revealed a number of important antioxidant protein differences; SodB, Tpx, TrxR, and NapA, as well as the peptidoglycan deacetylase PgdA, were significantly less expressed in the Δhp119 mutant than in the WT strain. This study identified HP119 as a putative histone-like DNA-binding protein and showed that it plays an important role in Helicobacter pylori stress tolerance and survival in the host.
Collapse
|
23
|
Hardbower DM, Peek RM, Wilson KT. At the Bench: Helicobacter pylori, dysregulated host responses, DNA damage, and gastric cancer. J Leukoc Biol 2014; 96:201-12. [PMID: 24868089 DOI: 10.1189/jlb.4bt0214-099r] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Helicobacter pylori infection is the strongest known risk factor for the development of gastric cancer. Given that ∼50% of the global population is infected with this pathogen, there is great impetus to elucidate underlying causes that mediate progression from infection to cancer. Recent evidence suggests that H. pylori-induced chronic inflammation and oxidative stress create an environment conducive to DNA damage and tissue injury. DNA damage leads to genetic instability and eventually, neoplastic transformation. Pathogen-encoded virulence factors induce a robust but futile immune response and alter host pathways that lower the threshold for carcinogenesis, including DNA damage repair, polyamine synthesis and catabolism, antioxidant responses, and cytokine production. Collectively, such dysregulation creates a protumorigenic microenvironment within the stomach. This review seeks to address each of these aspects of H. pylori infection and to call attention to areas of particular interest within this field of research. This review also seeks to prioritize areas of translational research related to H. pylori-induced gastric cancer based on insights garnered from basic research in this field. See related review by Dalal and Moss, At the Bedside: H. pylori, dysregulated host responses, DNA damage, and gastric cancer.
Collapse
Affiliation(s)
- Dana M Hardbower
- Departments of Pathology, Microbiology, and Immunology and Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA; and
| | - Richard M Peek
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA; and Cancer Biology, and
| | - Keith T Wilson
- Departments of Pathology, Microbiology, and Immunology and Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA; and Cancer Biology, and Veterans Affairs, Tennessee Valley Healthcare System, Nashville, Tennessee, USA
| |
Collapse
|
24
|
Moyat M, Velin D. Immune responses to Helicobacter pylori infection. World J Gastroenterol 2014; 20:5583-5593. [PMID: 24914318 PMCID: PMC4024767 DOI: 10.3748/wjg.v20.i19.5583] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Revised: 12/13/2013] [Accepted: 02/20/2014] [Indexed: 02/06/2023] Open
Abstract
Helicobacter pylori (H. pylori) infection is one of the most common infections in human beings worldwide. H. pylori express lipopolysaccharides and flagellin that do not activate efficiently Toll-like receptors and express dedicated effectors, such as γ-glutamyl transpeptidase, vacuolating cytotoxin (vacA), arginase, that actively induce tolerogenic signals. In this perspective, H. pylori can be considered as a commensal bacteria belonging to the stomach microbiota. However, when present in the stomach, H. pylori reduce the overall diversity of the gastric microbiota and promote gastric inflammation by inducing Nod1-dependent pro-inflammatory program and by activating neutrophils through the production of a neutrophil activating protein. The maintenance of a chronic inflammation in the gastric mucosa and the direct action of virulence factors (vacA and cytotoxin-associated gene A) confer pro-carcinogenic activities to H. pylori. Hence, H. pylori cannot be considered as symbiotic bacteria but rather as part of the pathobiont. The development of a H. pylori vaccine will bring health benefits for individuals infected with antibiotic resistant H. pylori strains and population of underdeveloped countries.
Collapse
|
25
|
Ma Y, Zhang L, Rong S, Qu H, Zhang Y, Chang D, Pan H, Wang W. Relation between gastric cancer and protein oxidation, DNA damage, and lipid peroxidation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2013; 2013:543760. [PMID: 24454985 PMCID: PMC3886607 DOI: 10.1155/2013/543760] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 10/29/2013] [Accepted: 12/01/2013] [Indexed: 12/19/2022]
Abstract
OBJECTS The aim of this study is to evaluate protein oxidation, DNA damage, and lipid peroxidation in patients with gastric cancer and to investigate the relationship between oxidative stress and gastric cancer. METHODS We investigated changes in serum protein carbonyl (PC), advanced oxidation protein products (AOPP), and 3-nitrotyrosine (3-NT) levels, as indicators of protein oxidation, serum 8-hydroxydeoxyguanosine (8-OHdG), as a biomarker of DNA damage, and malondialdehyde (MDA), conjugated diene (CD), 4-hydroxynonenal (4-HNE), and 8-ISO-prostaglandin F2α (8-PGF) in serum, as lipid peroxidation markers in gastric cancer (GC) patients and healthy control. RESULTS Compared with control, a statistically significant higher values of 8-OHdG, PC, AOPP, and 3-NT were observed in the GC patients (P < 0.05). The products of lipid peroxidation, MDA, CD, 4-HNE, and 8-PGF, were significantly lower in the GC patients compared to those of control (P < 0.05). In addition, the products of oxidative stress were similar between the Helicobacter pylori positive and the negative subgroups of GC patients. CONCLUSIONS GC patients were characterized by increased protein oxidation and DNA damage, and decreased lipid peroxidation. Assessment of oxidative stress and augmentation of the antioxidant defense system may be important for the treatment and prevention of gastric carcinogenesis.
Collapse
Affiliation(s)
- Yongsheng Ma
- The First Affiliated Hospital of Harbin Medical University, No. 199 Dongdazhi Street, Nangang District, Harbin, Heilongjiang 150001, China
| | - Lin Zhang
- The First Affiliated Hospital of Harbin Medical University, No. 199 Dongdazhi Street, Nangang District, Harbin, Heilongjiang 150001, China
| | - Shengzhong Rong
- Public Health School, Mudanjiang Medical College, No. 3 Tongxiang Street, Aimin District, Mudanjiang, Heilongjiang 157011, China
| | - Hongyan Qu
- The Third Affiliated Hospital of Harbin Medical University, No. 150 Haping Road, Nangang District, Harbin, Heilongjiang 150081, China
| | - Yannan Zhang
- Public Health School, Harbin Medical University, No. 157 Baojian Road, Nangang District, Harbin, Heilongjiang 150081, China
| | - Dong Chang
- The First Affiliated Hospital of Harbin Medical University, No. 199 Dongdazhi Street, Nangang District, Harbin, Heilongjiang 150001, China
| | - Hongzhi Pan
- Public Health School, Harbin Medical University, No. 157 Baojian Road, Nangang District, Harbin, Heilongjiang 150081, China
| | - Wenbo Wang
- The First Affiliated Hospital of Harbin Medical University, No. 199 Dongdazhi Street, Nangang District, Harbin, Heilongjiang 150001, China
| |
Collapse
|
26
|
Hardbower DM, de Sablet T, Chaturvedi R, Wilson KT. Chronic inflammation and oxidative stress: the smoking gun for Helicobacter pylori-induced gastric cancer? Gut Microbes 2013; 4:475-81. [PMID: 23811829 PMCID: PMC3928159 DOI: 10.4161/gmic.25583] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Revised: 06/27/2013] [Accepted: 06/28/2013] [Indexed: 02/03/2023] Open
Abstract
Helicobacter pylori is the leading risk factor associated with gastric carcinogenesis. H. pylori leads to chronic inflammation because of the failure of the host to eradicate the infection. Chronic inflammation leads to oxidative stress, deriving from immune cells and from within gastric epithelial cells. This is a main contributor to DNA damage, apoptosis and neoplastic transformation. Both pathogen and host factors directly contribute to oxidative stress, including H. pylori virulence factors, and pathways involving DNA damage and repair, polyamine synthesis and metabolism, and oxidative stress response. Our laboratory has recently uncovered a mechanism by which polyamine oxidation by spermine oxidase causes H 2O 2 release, DNA damage and apoptosis. Our studies indicate novel targets for therapeutic intervention and risk assessment in H. pylori-induced gastric cancer. More studies addressing the many potential contributors to oxidative stress, chronic inflammation, and gastric carcinogenesis are essential for development of therapeutics and identification of gastric cancer biomarkers.
Collapse
Affiliation(s)
- Dana M Hardbower
- Department of Pathology, Microbiology and Immunology; Vanderbilt University Medical Center; Nashville, TN USA
- Division of Gastroenterology, Hepatology and Nutrition; Department of Medicine; Vanderbilt University Medical Center; Nashville, TN USA
| | - Thibaut de Sablet
- Division of Gastroenterology, Hepatology and Nutrition; Department of Medicine; Vanderbilt University Medical Center; Nashville, TN USA
| | - Rupesh Chaturvedi
- Division of Gastroenterology, Hepatology and Nutrition; Department of Medicine; Vanderbilt University Medical Center; Nashville, TN USA
| | - Keith T Wilson
- Department of Pathology, Microbiology and Immunology; Vanderbilt University Medical Center; Nashville, TN USA
- Division of Gastroenterology, Hepatology and Nutrition; Department of Medicine; Vanderbilt University Medical Center; Nashville, TN USA
- Veterans Affairs Tennessee Valley Healthcare System; Nashville, TN USA
- Department of Cancer Biology; Vanderbilt University Medical Center; Nashville, TN USA
| |
Collapse
|
27
|
Alkyl hydroperoxide reductase repair by Helicobacter pylori methionine sulfoxide reductase. J Bacteriol 2013; 195:5396-401. [PMID: 24097943 DOI: 10.1128/jb.01001-13] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Protein exposure to oxidants such as HOCl leads to formation of methionine sulfoxide (MetSO) residues, which can be repaired by methionine sulfoxide reductase (Msr). A Helicobacter pylori msr strain was more sensitive to HOCl-mediated killing than the parent. Because of its abundance in H. pylori and its high methionine content, alkyl hydroperoxide reductase C (AhpC) was hypothesized to be prone to methionine oxidation. AhpC was expressed as a recombinant protein in Escherichia coli. AhpC activity was abolished by HOCl, while all six methionine residues of the enzyme were fully to partially oxidized. Upon incubation with a Msr repair mixture, AhpC activity was restored to nonoxidized levels and the MetSO residues were repaired to methionine, albeit to different degrees. The two most highly oxidized and then Msr-repaired methionine residues in AhpC, Met101 and Met133, were replaced with isoleucine residues by site-directed mutagenesis, either individually or together. E. coli cells expressing variant versions were more sensitive to t-butyl hydroperoxide than cells expressing native protein, and purified AhpC variant proteins had 5% to 39% of the native enzyme activity. Variant proteins were still able to oligomerize like the native version, and circular dichroism (CD) spectra of variant proteins revealed no significant change in AhpC conformation, indicating that the loss of activity in these variants was not related to major structural alterations. Our results suggest that both Met101 and Met133 residues are important for AhpC catalytic activity and that their integrity relies on the presence of a functional Msr.
Collapse
|
28
|
Kuhns LG, Mahawar M, Sharp JS, Benoit S, Maier RJ. Role of Helicobacter pylori methionine sulfoxide reductase in urease maturation. Biochem J 2013; 450:141-8. [PMID: 23181726 PMCID: PMC3935233 DOI: 10.1042/bj20121434] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The persistence of the gastric pathogen Helicobacter pylori is due in part to urease and Msr (methionine sulfoxide reductase). Upon exposure to relatively mild (21% partial pressure of O2) oxidative stress, a Δmsr mutant showed both decreased urease specific activity in cell-free extracts and decreased nickel associated with the partially purified urease fraction as compared with the parent strain, yet urease apoprotein levels were the same for the Δmsr and wild-type extracts. Urease activity of the Δmsr mutant was not significantly different from the wild-type upon non-stress microaerobic incubation of strains. Urease maturation occurs through nickel mobilization via a suite of known accessory proteins, one being the GTPase UreG. Treatment of UreG with H2O2 resulted in oxidation of MS-identified methionine residues and loss of up to 70% of its GTPase activity. Incubation of pure H2O2-treated UreG with Msr led to reductive repair of nine methionine residues and recovery of up to full enzyme activity. Binding of Msr to both oxidized and non-oxidized UreG was observed by cross-linking. Therefore we conclude Msr aids the survival of H. pylori in part by ensuring continual UreG-mediated urease maturation under stress conditions.
Collapse
Affiliation(s)
- Lisa G. Kuhns
- Department of Microbiology, University of Georgia, Athens, GA 30602, U.S.A
| | - Manish Mahawar
- Department of Microbiology, University of Georgia, Athens, GA 30602, U.S.A
| | - Joshua S. Sharp
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, U.S.A
| | - Stéphane Benoit
- Department of Microbiology, University of Georgia, Athens, GA 30602, U.S.A
| | - Robert J. Maier
- Department of Microbiology, University of Georgia, Athens, GA 30602, U.S.A
| |
Collapse
|
29
|
A histone-like protein of Helicobacter pylori protects DNA from stress damage and aids host colonization. DNA Repair (Amst) 2012; 11:733-40. [PMID: 22776439 DOI: 10.1016/j.dnarep.2012.06.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Revised: 05/16/2012] [Accepted: 06/18/2012] [Indexed: 02/06/2023]
Abstract
Genomic DNA in a bacterial cell is folded into a compact structure called a nucleoid, and nucleoid-associated proteins are responsible for proper assembly of active higher-order genome structures. The human gastric pathogen Helicobacter pylori express a nucleoid-associated protein encoded by the hup gene, which is the homolog to the Escherichia coli histone-like protein HU. An H. pylori hup mutant strain (X47 hup:cat) showed a defect in stationary phase survival. The X47 hup:cat mutant was more sensitive to the DNA damaging agent mitomycin C, and displayed a decreased frequency of DNA recombination, indicating Hup plays a significant role in facilitating DNA recombinational repair. The X47 hup:cat mutant was also sensitive to both oxidative and acid stress, conditions that H. pylori commonly encounters in the host. The hup mutant cells survived significantly (7-fold) less upon exposure to macrophages than the wild type strain. In a mouse infection model, the hup mutant strain displayed a greatly reduced ability to colonize host stomachs. The geometric means of colonization number for the wild type and hup mutant were 6×10(5) and 1.5×10(4)CFU/g stomachs, respectively. Complementation of the hup strain by chromosomal insertion of a functional hup gene restored oxidative stress resistance, DNA transformation frequency, and mouse colonization ability to the wild type level. We directly demonstrated that the purified His-tagged H. pylori Hup protein can protect (in vitro) an H. pylori-derived DNA fragment from oxidative damage.
Collapse
|
30
|
Stent A, Every AL, Sutton P. Helicobacter pylori defense against oxidative attack. Am J Physiol Gastrointest Liver Physiol 2012; 302:G579-87. [PMID: 22194421 DOI: 10.1152/ajpgi.00495.2011] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Helicobacter pylori is a microaerophilic, gram-negative pathogen of the human stomach. Despite the chronic active gastritis that develops following colonization, H. pylori is able to persist unharmed in the stomach for decades. Much of the damage caused by gastric inflammation results from the accumulation of reactive oxygen/nitrogen species within the stomach environment, which can induce oxidative damage in a wide range of biological molecules. Without appropriate defenses, this oxidative damage would be able to rapidly kill nearby H. pylori, but the organism employs a range of measures, including antioxidant enzymes, biological repair systems, and inhibitors of oxidant generation, to counter the attack. Despite the variety of measures employed to defend against oxidative injury, these processes are intimately interdependent, and any deficiency within the antioxidant system is generally sufficient to cause substantial impairment of H. pylori viability and persistence. This review provides an overview of the development of oxidative stress during H. pylori gastritis and examines the methods the organism uses to survive the resultant damage.
Collapse
Affiliation(s)
- Andrew Stent
- Centre for Animal Biotechnology, School of Veterinary Science, University of Melbourne, Parkville, Victoria, Australia
| | | | | |
Collapse
|
31
|
In vivo expression of Helicobacter pylori virulence genes in patients with gastritis, ulcer, and gastric cancer. Infect Immun 2011; 80:594-601. [PMID: 22124657 DOI: 10.1128/iai.05845-11] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The best-studied Helicobacter pylori virulence factor associated with development of peptic ulcer disease or gastric cancer (GC) rather than asymptomatic nonatrophic gastritis (NAG) is the cag pathogenicity island (cagPAI), which encodes a type IV secretion system (T4SS) that injects the CagA oncoprotein into host epithelial cells. Here we used real-time reverse transcription-PCR (RT-PCR) to measure the in vivo expression of genes on the cagPAI and of other virulence genes in patients with NAG, duodenal ulcer (DU), or GC. In vivo expression of H. pylori virulence genes was greater overall in gastric biopsy specimens of patients with GC than in those of patients with NAG or DU. However, since in vitro expression of cagA was not greater in H. pylori strains from patients with GC than in those from patients with NAG or DU, increased expression in GC in vivo is likely a result of environmental conditions in the gastric mucosa, though it may in turn cause more severe pathology. Increased expression of virulence genes in GC may represent a stress response to elevated pH or other environmental conditions in the stomach of patients with GC, which may be less hospitable to H. pylori colonization than the acidic environment in patients with NAG or DU.
Collapse
|
32
|
Mahawar M, Tran V, Sharp JS, Maier RJ. Synergistic roles of Helicobacter pylori methionine sulfoxide reductase and GroEL in repairing oxidant-damaged catalase. J Biol Chem 2011; 286:19159-69. [PMID: 21460217 DOI: 10.1074/jbc.m111.223677] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Hypochlorous acid (HOCl) produced via the enzyme myeloperoxidase is a major antibacterial oxidant produced by neutrophils, and Met residues are considered primary amino acid targets of HOCl damage via conversion to Met sulfoxide. Met sulfoxide can be repaired back to Met by methionine sulfoxide reductase (Msr). Catalase is an important antioxidant enzyme; we show it constitutes 4-5% of the total Helicobacter pylori protein levels. msr and katA strains were about 14- and 4-fold, respectively, more susceptible than the parent to killing by the neutrophil cell line HL-60 cells. Catalase activity of an msr strain was much more reduced by HOCl exposure than for the parental strain. Treatment of pure catalase with HOCl caused oxidation of specific MS-identified Met residues, as well as structural changes and activity loss depending on the oxidant dose. Treatment of catalase with HOCl at a level to limit structural perturbation (at a catalase/HOCl molar ratio of 1:60) resulted in oxidation of six identified Met residues. Msr repaired these residues in an in vitro reconstituted system, but no enzyme activity could be recovered. However, addition of GroEL to the Msr repair mixture significantly enhanced catalase activity recovery. Neutrophils produce large amounts of HOCl at inflammation sites, and bacterial catalase may be a prime target of the host inflammatory response; at high concentrations of HOCl (1:100), we observed loss of catalase secondary structure, oligomerization, and carbonylation. The same HOCl-sensitive Met residue oxidation targets in catalase were detected using chloramine-T as a milder oxidant.
Collapse
Affiliation(s)
- Manish Mahawar
- Department of Microbiology, University of Georgia, Athens, Georgia 30602, USA
| | | | | | | |
Collapse
|
33
|
Every AL, Stent A, Moloney MB, Ng GZ, Skene CD, Edwards SJ, Sutton P. Evaluation of superoxide dismutase from Helicobacter pylori as a protective vaccine antigen. Vaccine 2010; 29:1514-8. [PMID: 21172379 DOI: 10.1016/j.vaccine.2010.12.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2010] [Revised: 12/02/2010] [Accepted: 12/03/2010] [Indexed: 12/17/2022]
Abstract
Helicobacter pylori, the major cause of gastric cancer, have mechanisms that allow colonization of the inhospitable gastric mucosa, including enzymes such as superoxide dismutase (SOD) which protect against reactive oxygen species. As SOD is essential for in vivo colonization, we theorized it might constitute a viable vaccine target. H. pylori SOD was expressed in E. coli and a purified recombinant protein used to vaccinate mice, prior to live H. pylori challenge. Partial protective immunity was induced, similar to that commonly observed with other antigens tested previously. This suggests SOD may have utility in a combination vaccine comprising several protective antigens.
Collapse
Affiliation(s)
- Alison L Every
- Centre for Animal Biotechnology, School of Veterinary Science, University of Melbourne, Parkville, VIC 3010, Australia
| | | | | | | | | | | | | |
Collapse
|
34
|
Porta C, Riboldi E, Sica A. Mechanisms linking pathogens-associated inflammation and cancer. Cancer Lett 2010; 305:250-62. [PMID: 21093147 DOI: 10.1016/j.canlet.2010.10.012] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2010] [Revised: 09/29/2010] [Accepted: 10/14/2010] [Indexed: 02/07/2023]
Abstract
It has been estimated that chronic infections with viruses, bacteria and parasites are the causative agents of 8-17% of global cancers burden. Carcinogenesis associated with infections is a complex process, often mediated by chronic inflammatory conditions and accumulating evidence indicate that a smouldering inflammation is a component of the tumor microenvironment and represents the 7th hallmark of cancer. Selected infectious agents promote a cascade of events culminating in chronic inflammatory responses, thus predisposing target tissues to increased cancer susceptibility. A causal link also exists between an inflammatory microenvironment, consisting of inflammatory cells and mediators, and tumor progression. Tumor-Associated Macrophages (TAM) represent the major inflammatory population present in tumors, orchestrating various aspects of cancer, including: diversion and skewing of adaptive responses; cell growth; angiogenesis; matrix deposition and remodelling; construction of a metastatic niche and actual metastasis; response to hormones and chemotherapeutic agents. Recent studies on human and murine tumors indicate that TAM show a remarkable degree of plasticity and functional heterogeneity, during tumour development. In established tumors, TAM acquire an M2 polarized phenotype are engaged in immunosuppression and the promotion of tumor angiogenesis and metastasis. Being a first line of the innate defence mechanisms, macrophages are also equipped with pathogen-recognition receptors, to sense the presence of danger signals, including onco-pathogens. Here we discuss the evidence suggesting a causal relationship between selected infectious agents and the pro-tumoral reprogramming of inflammatory cells, as well as its significance in tumor development. Finally, we discuss the implications of this phenomenon for both cancer prevention and therapy.
Collapse
Affiliation(s)
- Chiara Porta
- DISCAFF, University of Piemonte Orientale A. Avogadro, via Bovio 6, Novara, Italy
| | | | | |
Collapse
|
35
|
Peptidoglycan deacetylation in Helicobacter pylori contributes to bacterial survival by mitigating host immune responses. Infect Immun 2010; 78:4660-6. [PMID: 20805339 DOI: 10.1128/iai.00307-10] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
An oxidative stress-induced enzyme, peptidoglycan deacetylase (PgdA), in the human gastric pathogen Helicobacter pylori was previously identified and characterized. In this study, we constructed H. pylori pgdA mutants in two mouse-adapted strains, X47 and B128, to investigate the role of PgdA in vivo (to determine the mutants' abilities to colonize mice and to induce an immune response). H. pylori pgdA mutant cells showed increased sensitivity to lysozyme compared to the sensitivities of the parent strains. We demonstrated that the expression of PgdA was significantly induced (3.5-fold) when H. pylori cells were in contact with macrophages, similar to the effect observed with oxidative stress as the environmental inducer. Using a mouse infection model, we first examined the mouse colonization ability of an H. pylori pgdA mutant in X47, a strain deficient in the major pathway (cag pathogenicity island [PAI] encoded) for delivery of peptidoglycan into host cells. No animal colonization difference between the wild type and the mutant was observed 3 weeks after inoculation. However, the pgdA mutant showed a significantly attenuated ability to colonize mouse stomachs (9-fold-lower bacterial load) at 9 weeks postinoculation. With the cag PAI-positive strain B128, a significant colonization difference between the wild type and the pgdA mutant was observed at 3 weeks postinoculation (1.32 × 10(4) versus 1.85 × 10(3) CFU/gram of stomach). To monitor the immune responses elicited by H. pylori in the mouse infection model, we determined the concentrations of cytokines present in mouse sera. In the mice infected with the pgdA mutant strain, we observed a highly significant increase in the level of MIP-2. In addition, significant increases in interleukin-10 and tumor necrosis factor alpha in the pgdA mutant-infected mice compared to the levels in the wild-type H. pylori-infected mice were also observed. These results indicated that H. pylori peptidoglycan deacetylation is an important mechanism for mitigating host immune detection; this likely contributes to pathogen persistence.
Collapse
|
36
|
Nguyen HTM, Nam KH, Saleem Y, Kim KS. Characterization of Helicobacter pylori adhesin thiol peroxidase (HP0390) purified from Escherichia coli. J Biosci 2010; 35:241-8. [DOI: 10.1007/s12038-010-0028-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
37
|
Noyan T, Guducuoglu H, Ilhan M. A study of oxidative stress parameters in anti-helicobacter pylorus immunoglobulin g positive and negative gastric cancer patients. Yonsei Med J 2009; 50:677-82. [PMID: 19881972 PMCID: PMC2768243 DOI: 10.3349/ymj.2009.50.5.677] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2007] [Revised: 11/20/2007] [Accepted: 11/20/2007] [Indexed: 12/19/2022] Open
Abstract
PURPOSE Helicobacter pylorus (HP) is a Gram-negative spiral-shaped microaerophilic bacterium, which colonizes in the gastric mucosa of humans. The gastric human pathogen HP causes chronic gastritis and ulcers, and has a strong relationship with gastric cancer. The aim of this study was to determine advanced oxidation protein products (AOPP) levels, activities of myeloperoxidase (MPO) and catalase (CAT) in two groups. MATERIALS AND METHODS For this aim, one group included 30 patients with gastric cancer (Group 1) and the other included 30 subjects with non-gastric cancer and Anti-HP immunoglobulin (Ig) G antibody positive (group 2). Anti-HP IgG antibody test values were found as positive in fifty percent of group 1 and all of the group 2 patients. RESULTS Significantly increased AOOP levels were found in group 1 (p < 0.05) compared to group 2. There were no significant differences between the groups in regard to activities of MPO and CAT. In addition, AOPP level, MPO and CAT activities were similar among the Anti-HP IgG positive and negative subgroups of group 1 patients. CONCLUSION The result of this study indicated that gastric cancer patients were characterized by increased protein oxidation, whereas there was no significant difference in oxidative stress parameters and antioxidant enzyme activity between the Anti-HP IgG positive and negative gastric cancer patients.
Collapse
Affiliation(s)
- Tevfik Noyan
- Department of Biochemistry, Yuzuncu Yil University, Medical Faculty, Van, Turkey.
| | | | | |
Collapse
|
38
|
Wang G, Conover RC, Olczak AA, Alamuri P, Johnson MK, Maier RJ. Oxidative stress defense mechanisms to counter iron-promoted DNA damage inHelicobacter pylori. Free Radic Res 2009; 39:1183-91. [PMID: 16298744 DOI: 10.1080/10715760500194018] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Iron, a key element in Fenton chemistry, causes oxygen-related toxicity to cells of most living organisms. Helicobacter pylori is a microaerophilic bacterium that infects human gastric mucosa and causes a series of gastric diseases. Exposure of H. pylori cells to air for 2 h elevated the level of free iron by about 4-fold as measured by electron paramagnetic resonance spectroscopy. H. pylori cells accumulated more free iron as they approached stationary phase growth, and they concomitantly suffered more DNA damage as indicated by DNA fragmentation analysis. Relationships between the intracellular free iron level, specific oxidative stress enzymes, and DNA damage were identified, and new roles for three oxidative stress-combating enzymes in H. pylori are proposed. Mutant cells defective in either catalase (KatA), in superoxide dismutase (SodB) or in alkyl hydroperoxide reductase (AhpC) were more sensitive to oxidative stress conditions; and they accumulated more free (toxic) iron; and they suffered more DNA fragmentation compared to wild type cells. A significant proportion of cells of sodB, ahpC, or katA mutant strains developed into the stress-induced coccoid form or lysed; they also contained significantly higher amounts of 8-oxo-guanine associated with their DNA, compared to wild type cells.
Collapse
Affiliation(s)
- Ge Wang
- Department of Microbiology, University of Georgia, Athens, 30602, USA
| | | | | | | | | | | |
Collapse
|
39
|
Olczak AA, Wang G, Maier RJ. Up-expression of NapA and other oxidative stress proteins is a compensatory response to loss of majorHelicobacter pyloristress resistance factors. Free Radic Res 2009; 39:1173-82. [PMID: 16298743 DOI: 10.1080/10715760500306729] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Twenty-six Helicobacter pylori targeted mutant strains with deficiencies in oxidative stress combating proteins, including 12 double mutant strains were analyzed via physiological and proteomic approaches to distinguish the major expression changes caused by the mutations. Mutations were introduced into both a Mtz(S) and a Mtz(R) strain background. Most of the mutations caused increased growth sensitivity of the strains to oxygen, and they all exhibited clear compensatory up-expression of oxidative stress resistance proteins enabling survival of the bacterium. The most frequent up-expressed oxidative stress resistance factor (observed in 16 of the mutants) was the iron-sequestering protein NapA, linking iron sequestration with oxidative stress resistance. The up-expression of individual proteins in mutants ranged from 2 to 10 fold that of the wild type strain, even when incubated in a low O(2) environment. For example, a considerably higher level of catalase expression (4 fold of that in the wild-type strain) was observed in ahpC napA and ahpC sodB double mutants. A Fur mutant up-expressed ferritin (Pfr) protein 20-fold. In some mutant strains the bacterial DNA is protected from oxidative stress damage apparently via overexpression of oxidative stress-combating proteins such as NapA, catalase or MdaB (an NADPH quinone reductase). Our results show that H. pylori has a variety of ways to compensate for loss of major oxidative stress combating factors.
Collapse
Affiliation(s)
- Adriana A Olczak
- Department of Microbiology, University of Georgia, Athens, 30602, USA
| | | | | |
Collapse
|
40
|
Bartchewsky W, Martini MR, Masiero M, Squassoni AC, Alvarez MC, Ladeira MS, Salvatore D, Trevisan M, Pedrazzoli J, Ribeiro ML. Effect of Helicobacter pylori infection on IL-8, IL-1beta and COX-2 expression in patients with chronic gastritis and gastric cancer. Scand J Gastroenterol 2009; 44:153-61. [PMID: 18985541 DOI: 10.1080/00365520802530853] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
OBJECTIVE Helicobacter pylori infection is related to gastric cancer development, and chronic inflammation is presumed to be the main cause. The aim of the present study was to evaluate the influence of H. pylori cagA, vacA, iceA, and babA genotypes on COX-2, IL-1beta, and IL-8 expression. MATERIAL AND METHODS Of the 217 patients included in the study, 26 were uninfected, 127 had chronic gastritis and were H. pylori-positive, and 64 had gastric cancer. Bacterial genotypes were evaluated by polymerase chain reaction (PCR), and the expression values were determined by quantitative real-time PCR and immunohistochemistry. RESULTS An association was found between the infection with cagA, vacA s1m1 strains and gastric cancer development. Regarding the 3' region of the cagA gene, we also found an association between the infection with cagA EPIYA-ABCCC strains and clinical outcome. Higher levels of IL-8, IL-1beta, and COX-2 were detected in gastric mucosa from infected patients with chronic gastritis, and they were also associated with the infection by cagA, vacA s1m1 strains. The IL-8 and IL-1beta levels decrease significantly from chronic gastritis to gastric cancer, while the relative expression remained unaltered when COX-2 expression was analyzed among patients with gastritis and cancer. CONCLUSIONS Since inflammatory response to H. pylori infection plays an important role in cellular proliferation and gastric mucosal damage, the up-regulation of IL-1beta, IL-8, and COX-2 in patients with chronic gastritis has an important clinical implication in gastric carcinogenesis.
Collapse
Affiliation(s)
- Waldemar Bartchewsky
- Unidade Integrada de Farmacologia e Gastroenterologia, Universidade São Francisco, Braganca Paulista-SP, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Selective upregulation of endothelial E-selectin in response to Helicobacter pylori-induced gastritis. Infect Immun 2009; 77:3109-16. [PMID: 19414551 DOI: 10.1128/iai.01460-08] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Helicobacter pylori is one of the most common bacterial pathogens, infecting up to 50% of the world's population. The host is not able to clear the infection, leading to life-long chronic inflammation with continuous infiltration of lymphocytes and granulocytes. The migration of leukocytes from the blood into inflamed tissue is dependent on adhesion molecules expressed on the vascular endothelium. The aim of this study was to characterize the effect of H. pylori-induced gastritis with regard to the expression of endothelial adhesion molecules in the gastric mucosa and compare this to other types of chronic mucosal inflammations. Our results demonstrate an increased level of expression of the adhesion molecule E-selectin, but not of intracellular adhesion molecule 1, vascular adhesion molecule 1, or vascular adhesion protein 1, in H. pylori-induced gastritis but not in gastritis induced by acetylsalicylic acid or pouchitis. The upregulated E-selectin expression was determined to be localized to the gastric mucosa rather than being a systemic response to the infection. Moreover, the H. pylori type IV secretion system encoded by the cag pathogenicity island (cagPAI) was found to be an important determinant for the upregulation of human endothelial E-selectin expression in vitro, and this process is probably dependent on the CagL protein, mediating binding to alpha5beta1 integrins. Thus, endothelial E-selectin expression induced by H. pylori probably contributes to the large influx of neutrophils and macrophages seen in infected individuals, and our results suggest that this process may be more pronounced in patients infected with cagPAI-positive H. pylori strains and may thereby contribute to tissue damage in these individuals.
Collapse
|
42
|
Huang ZG, Duan GC, Fan QT, Zhang WD, Song CH, Huang XY, Zhang RG. Mutation of cytotoxin-associated gene A affects expressions of antioxidant proteins of Helicobacter pylori. World J Gastroenterol 2009; 15:599-606. [PMID: 19195063 PMCID: PMC2653352 DOI: 10.3748/wjg.15.599] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To determine if disruption of the cagA gene of Helicobacter pylori (H pylori) has an effect on the expression of other proteins at proteome level.
METHODS: Construction of a cagA knock out mutant Hp27_ΔcagA (cagA-) via homologous recombination with the wild-type strain Hp27 (cagA+) as a recipient was performed. The method of sonication-urea-CHAPS-DTT was employed to extract bacterial proteins from both strains. Soluble proteins were analyzed by two-dimensional electrophoresis (2-DE). Images of 2-DE gels were digitalized and analyzed. Only spots that had a statistical significance in differential expression were selected and analyzed by matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF-MS). Biological information was used to search protein database and identify the biological function of proteins.
RESULTS: The proteome expressions between wild-type strain and isogenic mutant with the cagA gene knocked-out were compared. Five protein spots with high abundance in bacteria proteins of wild-type strains, down-regulated or absently expressed in bacteria proteins of mutants, were identified and analyzed. From a quantitative point of view, the identified proteins are related to the cagA gene and important antioxidant proteins of H pylori, including alkyl hydroperoxide reductase (Ahp), superoxide dismutase (SOD) and modulator of drug activity (Mda66), respectively, suggesting that cagA is important to maintain the normal activity of antioxidative stress and ensure H pylori persistent colonization in the host.
CONCLUSION: cagA gene is relevant to the expressions of antioxidant proteins of H pylori, which may be a novel mechanism involved in H pylori cagA pathogenesis.
Collapse
|
43
|
Borlace GN, Butler RN, Brooks DA. Monocyte and macrophage killing of helicobacter pylori: relationship to bacterial virulence factors. Helicobacter 2008; 13:380-7. [PMID: 19250513 DOI: 10.1111/j.1523-5378.2008.00625.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND Helicobacter pylori infection is an important health problem, as it involves approximately 50% of the world's population, causes chronic inflammatory disease and increases the risk of gastric cancer development. H. pylori infection elicits a vigorous immune response, but this does not usually result in bacterial clearance. We have investigated whether the persistence of H. pylori in the host could be partly due to an inability of macrophages to kill this bacterium. MATERIALS AND METHODS Monocytes and macrophages isolated from the peripheral blood of normal human controls were infected in vitro with five H. pylori isolates. The isolates were characterized for known H. pylori virulence factors; vacuolating cytotoxin (VacA), the cag pathogenicity island (cagPAI), urease, and catalase by Western blot and polymerase chain reaction analysis. The ability of primary human monocytes and macrophages to kill each of these H. pylori strains was then defined at various time points after cellular infection. RESULTS The five H. pylori strains showed contrasting patterns of the virulence factors. There were different rates of killing for the bacterial strains. Macrophages had less capacity than monocytes to kill three H. pylori strains. There appeared to be no correlation between the virulence factors studied and differential killing in monocytes. CONCLUSIONS Primary human monocytes had a higher capacity to kill certain strains of H. pylori when compared to macrophages. The VacA, cagPAI, urease, and catalase virulence factors were not predictive of the capacity to avoid monocyte and macrophage killing, suggesting that other factors may be important in H. pylori intracellular pathogenicity.
Collapse
Affiliation(s)
- Glenn N Borlace
- Sansom Institute, University of South Australia, South Australia, Australia
| | | | | |
Collapse
|
44
|
Nox enzymes and oxidative stress in the immunopathology of the gastrointestinal tract. Semin Immunopathol 2008; 30:315-27. [PMID: 18521607 DOI: 10.1007/s00281-008-0124-5] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2008] [Accepted: 05/08/2008] [Indexed: 02/07/2023]
Abstract
Chronic inflammation caused by Helicobacter pylori infection or inflammatory bowel disease (IBD) is closely linked to cancer development. Innate immune abnormalities and enhanced production of reactive oxygen species through a phagocyte NADPH oxidase (Nox2) are key issues in understanding the pathogenesis of inflammation-dependent carcinogenesis. Besides Nox2, functionally distinct homologues (Nox1, Nox3, Nox4, Nox5, Duox1, and Duox2) have been identified. Nox1 and Duox2 are highly expressed in the gastrointestinal tract. Although the functional roles of Nox/Duox in the gastrointestinal tract are still unclear, we will review their potential roles in the gastrointestinal immunopathology, particularly in H. pylori-induced inflammation, IBD, and malignancy.
Collapse
|
45
|
Lin YF, Chen CY, Tsai MH, Wu MS, Wang YC, Chuang EY, Lin JT, Yang PC, Chow LP. Duodenal ulcer-related antigens from Helicobacter pylori: immunoproteome and protein microarray approaches. Mol Cell Proteomics 2007; 6:1018-26. [PMID: 17317659 DOI: 10.1074/mcp.m700009-mcp200] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Helicobacter pylori is an important risk factor of duodenal ulcer (DU). Although many virulence factors of H. pylori have been identified, few have been reported to show an association with the pathogenesis of DU. The aims of this study were to identify H. pylori antigens showing a high seropositivity in DU and to develop a platform for rapid and easy diagnosis for DU. Because DU and gastric cancer (GC) are considered clinical divergent gastroduodenal diseases, we compared two-dimensional immunoblots of an acid-glycine extract of an H. pylori strain from a patient with DU probed with serum samples from 10 patients with DU and 10 with GC to identify DU-related antigens. Of the 11 proteins that were strongly recognized by serum IgG from DU patients, translation elongation factor EF-G (FusA), catalase (KatA), and urease alpha subunit (UreA) were identified as DU-related antigens, showing a higher seropositivity in DU samples (n = 124) than in GC samples (n = 95) (FusA, 70.2 versus 45.3%; KatA, 50.8 versus 41.1%; UreA, 44.4 versus 27.4%). In addition, we found that the use of multiple antigens improved the discrimination between patients with DU and those with GC as the odds ratios increased from 1.82 (95% confidence interval (CI), 0.79-4.21; p = 0.1607) for seropositivity for FusA, KatA, or UreA alone to 4.95 (95% CI, 2.05-12.0; p = 0.0004) for two of the three antigens and to 5.71 (95% CI, 1.86-17.6; p = 0.0024) for all three antigens. Moreover a protein array containing the three DU-related antigens was developed to test the idea of using multiple biomarkers in diagnosis. We conclude that FusA, KatA, and UreA are DU-related antigens of H. pylori, and the combination of these on a protein array provided a rapid and convenient method for detecting serum antibody patterns of DU patients.
Collapse
Affiliation(s)
- Yu-Fen Lin
- Graduate Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Robinson K, Argent RH, Atherton JC. The inflammatory and immune response to Helicobacter pylori infection. Best Pract Res Clin Gastroenterol 2007; 21:237-59. [PMID: 17382275 DOI: 10.1016/j.bpg.2007.01.001] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Lifelong Helicobacter pylori infection and its associated gastric inflammation underlie peptic ulceration and gastric carcinogenesis. The immune and inflammatory responses to H. pylori are doubly responsible: gastric inflammation is the main mediator of pathology, and the immune and inflammatory response is ineffective, allowing lifelong bacterial persistence. However, despite inducing gastric inflammation, most infections do not cause disease, and bacterial, host and environmental factors determine individual disease risk. Although H. pylori avoids many innate immune receptors, specific virulence factors (including those encoded on the cag pathogenicity island) stimulate innate immunity to increase gastric inflammation and increase disease risk. An acquired T helper 1 response upregulates local immune effectors. The extent to which environmental factors (including parasite infection), host factors and H. pylori itself influence T-helper differentiation and regulatory T-cell responses remains controversial. Finally, effective vaccines have still not been developed: a better understanding of the immune response to H. pylori may help.
Collapse
Affiliation(s)
- Karen Robinson
- Wolfson Digestive Diseases Centre, University of Nottingham, C Floor, South Block, Queen's Medical Centre Campus, Nottingham University Hospital NHS Trust, Nottingham NG7 2UH, UK.
| | | | | |
Collapse
|
47
|
Berg K, Chatterjee A, Yasmin T, Shara M, Bagchi D. Cytokine expression due to Helicobacter pylori in a tissue culture model. Mol Cell Biochem 2006; 300:171-5. [PMID: 17160356 DOI: 10.1007/s11010-006-9380-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2005] [Accepted: 11/07/2006] [Indexed: 01/25/2023]
Abstract
Helicobacter pylori, in recent years, has been recognized as the major causative agent in chronic gastritis and peptic ulcer disease in humans. H. pylori is a ubiquitous organism, with at least half of the world's population infected. Of those individuals with peptic ulcer disease, it is estimated that 90% of cases are caused by H. pylori. Currently, the efficacy of therapies is starting to decline due to increasing resistance rates, especially towards clarithromycin. Due to this, new therapies are needed to combat this bacterium. It is hypothesized that cytokine release (especially interleukin-1beta, -6, -8, and TNF-alpha) due to H. pylori infection and the subsequent influx of inflammatory cells causes a massive release of reactive oxygen species (ROS) during the inflammatory reaction. The ROS then cause the pathologic changes seen in the infected tissues. In this study, human gastric adenocarcinoma cell line ATCC 1739 (a cell line not previously evaluated) was examined for its production of interleukin-1beta, -6, -8, and TNF-alpha when cocultured in a ratio of 10:1 H. pylori to adenocarcinoma cells, to determine its value as a model to demonstrate the inflammatory response. Results from this study indicated that ATCC 1739 cells only reliably produced IL-8 when cocultured with H. pylori and stimulated with TNF-alpha. The production of IL-1beta, IL-6, and TNF-alpha by the ATCC 1739 cells was no different in H. pylori-exposed cells than non-exposed cells. It was concluded that the ATCC 1739 cell line is not suitable to study the effects of coculture with H. pylori on cytokine production.
Collapse
Affiliation(s)
- Kristin Berg
- School of Medicine, Creighton University Medical Center, 601 N. 30th Street, Omaha, NE 68131, USA
| | | | | | | | | |
Collapse
|
48
|
Algood HMS, Cover TL. Helicobacter pylori persistence: an overview of interactions between H. pylori and host immune defenses. Clin Microbiol Rev 2006; 19:597-613. [PMID: 17041136 PMCID: PMC1592695 DOI: 10.1128/cmr.00006-06] [Citation(s) in RCA: 179] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Helicobacter pylori is a gram-negative bacterium that persistently colonizes more than half of the global human population. In order to successfully colonize the human stomach, H. pylori must initially overcome multiple innate host defenses. Remarkably, H. pylori can persistently colonize the stomach for decades or an entire lifetime despite development of an acquired immune response. This review focuses on the immune response to H. pylori and the mechanisms by which H. pylori resists immune clearance. Three main sections of the review are devoted to (i) analysis of the immune response to H. pylori in humans, (ii) analysis of interactions of H. pylori with host immune defenses in animal models, and (iii) interactions of H. pylori with immune cells in vitro. The topics addressed in this review are important for understanding how H. pylori resists immune clearance and also are relevant for understanding the pathogenesis of diseases caused by H. pylori (peptic ulcer disease, gastric adenocarcinoma, and gastric lymphoma).
Collapse
Affiliation(s)
- Holly M Scott Algood
- Division of Infectious Diseases, A2200 Medical Center North, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | | |
Collapse
|
49
|
Wang G, Hong Y, Olczak A, Maier SE, Maier RJ. Dual Roles of Helicobacter pylori NapA in inducing and combating oxidative stress. Infect Immun 2006; 74:6839-46. [PMID: 17030577 PMCID: PMC1698064 DOI: 10.1128/iai.00991-06] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Neutrophil-activating protein (NapA) has been well documented to play roles in human neutrophil recruitment and in stimulating host cell production of reactive oxygen intermediates (ROI). A separate role for NapA in combating oxidative stress within H. pylori was implied by studies of various H. pylori mutant strains. Here, physiological analysis of a napA strain was the approach used to assess the iron-sequestering and stress resistance roles of NapA, its role in preventing oxidative DNA damage, and its importance to mouse colonization. The napA strain was more sensitive to oxidative stress reagents and to oxygen, and it contained fourfold more intracellular free iron and more damaged DNA than the parent strain. Pure, iron-loaded NapA bound to DNA, but native NapA did not, presumably linking iron levels sensed by NapA to DNA damage protection. Despite its in vitro phenotype of sensitivity to oxidative stress, the napA strain showed normal (like that of the wild type) mouse colonization efficiency in the conventional in vivo assay. By use of a modified mouse inoculation protocol whereby nonviable H. pylori is first inoculated into mice, followed by (live) bacterial strain administration, an in vivo role for NapA in colonization efficiency could be demonstrated. NapA is the critical component responsible for inducing host-mediated ROI production, thus inhibiting colonization by the napA strain. An animal colonization experiment with a mixed-strain infection protocol further demonstrated that the napA strain has significantly decreased ability to survive when competing with the wild type. H. pylori NapA has unique and separate roles in gastric pathogenesis.
Collapse
Affiliation(s)
- Ge Wang
- Department of Microbiology, 815 Biological Sciences Building, University of Georgia, Athens, GA 30602, USA
| | | | | | | | | |
Collapse
|
50
|
Abstract
The gastric pathogen Helicobacter pylori induces a strong inflammatory host response, yet the bacterium maintains long-term persistence in the host. H. pylori combats oxidative stress via a battery of diverse activities, some of which are unique or newly described. In addition to using the well-studied bacterial oxidative stress resistance enzymes superoxide dismutase and catalase, H. pylori depends on a family of peroxiredoxins (alkylhydroperoxide reductase, bacterioferritin co-migratory protein and a thiol-peroxidase) that function to detoxify organic peroxides. Newly described antioxidant proteins include a soluble NADPH quinone reductase (MdaB) and an iron sequestering protein (NapA) that has dual roles - host inflammation stimulation and minimizing reactive oxygen species production within H. pylori. An H. pylori arginase attenuates host inflammation, a thioredoxin required as a reductant for many oxidative stress enzymes is also a chaperon, and some novel properties of KatA and AhpC were discovered. To repair oxidative DNA damage, H. pylori uses an endonuclease (Nth), DNA recombination pathways and a newly described type of bacterial MutS2 that specifically recognizes 8-oxoguanine. A methionine sulphoxide reductase (Msr) plays a role in reducing the overall oxidized protein content of the cell, although it specifically targets oxidized Met residues. H. pylori possess few stress regulator proteins, but the key roles of a ferric uptake regulator (Fur) and a post-transcriptional regulator CsrA in antioxidant protein expression are described. The roles of all of these antioxidant systems have been addressed by a targeted mutant analysis approach and almost all are shown to be important in host colonization. The described antioxidant systems in H. pylori are expected to be relevant to many bacterial-associated diseases, as genes for most of the enzymes carrying out the newly described roles are present in a number of pathogenic bacteria.
Collapse
Affiliation(s)
- Ge Wang
- Department of Microbiology, University of Georgia, Athens, GA 30602, USA
| | | | | |
Collapse
|