1
|
George JL, Agbavor C, Cabo LF, Cahoon LA. Streptococcus pneumoniae secretion chaperones PrsA, SlrA, and HtrA are required for competence, antibiotic resistance, colonization, and invasive disease. Infect Immun 2024; 92:e0049023. [PMID: 38226817 PMCID: PMC10863415 DOI: 10.1128/iai.00490-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 12/19/2023] [Indexed: 01/17/2024] Open
Abstract
Streptococcus pneumoniae is a Gram-positive bacterium and a significant health threat with the populations most at risk being children, the elderly, and the immuno-compromised. To colonize and transition into an invasive infectious organism, S. pneumoniae secretes virulence factors that are translocated across the bacterial membrane and destined for surface exposure, attachment to the cell wall, or secretion into the host. The surface exposed protein chaperones PrsA, SlrA, and HtrA facilitate S. pneumoniae protein secretion; however, the distinct roles contributed by each of these secretion chaperones have not been well defined. Tandem Mass-Tagged Mass Spectrometry and virulence, adhesion, competence, and cell wall integrity assays were used to interrogate the individual and collective contributions of PrsA, SlrA, and HtrA to multiple aspects of S. pneumoniae physiology and virulence. PrsA, SlrA, and HtrA were found to play critical roles in S. pneumoniae host cell infection and competence, and the absence of each of these secretion chaperones significantly altered the S. pneumoniae secretome in distinct ways. PrsA and SlrA were additionally found to contribute to cell wall assembly and resistance to cell wall-active antimicrobials and were important for enabling S. pneumoniae host cell adhesion during colonization and invasive infection. These findings serve to further illustrate the pivotal contributions of PrsA, SlrA, and HtrA to S. pneumoniae protein secretion and virulence.
Collapse
Affiliation(s)
- Jada L. George
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Charles Agbavor
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Leah F. Cabo
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Laty A. Cahoon
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
2
|
Wahlenmayer ER, Hammers DE. Streptococcal peptides and their roles in host-microbe interactions. Front Cell Infect Microbiol 2023; 13:1282622. [PMID: 37915845 PMCID: PMC10617681 DOI: 10.3389/fcimb.2023.1282622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 10/02/2023] [Indexed: 11/03/2023] Open
Abstract
The genus Streptococcus encompasses many bacterial species that are associated with hosts, ranging from asymptomatic colonizers and commensals to pathogens with a significant global health burden. Streptococci produce numerous factors that enable them to occupy their host-associated niches, many of which alter their host environment to the benefit of the bacteria. The ability to manipulate host immune systems to either evade detection and clearance or induce a hyperinflammatory state influences whether bacteria are able to survive and persist in a given environment, while also influencing the propensity of the bacteria to cause disease. Several bacterial factors that contribute to this inter-species interaction have been identified. Recently, small peptides have become increasingly appreciated as factors that contribute to Streptococcal relationships with their hosts. Peptides are utilized by streptococci to modulate their host environment in several ways, including by directly interacting with host factors to disrupt immune system function and signaling to other bacteria to control the expression of genes that contribute to immune modulation. In this review, we discuss the many contributions of Streptococcal peptides in terms of their ability to contribute to pathogenesis and disruption of host immunity. This discussion will highlight the importance of continuing to elucidate the functions of these Streptococcal peptides and pursuing the identification of new peptides that contribute to modulation of host environments. Developing a greater understanding of how bacteria interact with their hosts has the potential to enable the development of techniques to inhibit these peptides as therapeutic approaches against Streptococcal infections.
Collapse
Affiliation(s)
| | - Daniel E. Hammers
- Biology Department, Houghton University, Houghton, NY, United States
| |
Collapse
|
3
|
Echlin H, Iverson A, Sardo U, Rosch JW. Airway proteolytic control of pneumococcal competence. PLoS Pathog 2023; 19:e1011421. [PMID: 37256908 PMCID: PMC10259803 DOI: 10.1371/journal.ppat.1011421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 06/12/2023] [Accepted: 05/11/2023] [Indexed: 06/02/2023] Open
Abstract
Streptococcus pneumoniae is an opportunistic pathogen that colonizes the upper respiratory tract asymptomatically and, upon invasion, can lead to severe diseases including otitis media, sinusitis, meningitis, bacteremia, and pneumonia. One of the first lines of defense against pneumococcal invasive disease is inflammation, including the recruitment of neutrophils to the site of infection. The invasive pneumococcus can be cleared through the action of serine proteases generated by neutrophils. It is less clear how serine proteases impact non-invasive pneumococcal colonization, which is the key first step to invasion and transmission. One significant aspect of pneumococcal biology and adaptation in the respiratory tract is its natural competence, which is triggered by a small peptide CSP. In this study, we investigate if serine proteases are capable of degrading CSP and the impact this has on pneumococcal competence. We found that CSP has several potential sites for trypsin-like serine protease degradation and that there were preferential cleavage sites recognized by the proteases. Digestion of CSP with two different trypsin-like serine proteases dramatically reduced competence in a dose-dependent manner. Incubation of CSP with mouse lung homogenate also reduced recombination frequency of the pneumococcus. These ex vivo experiments suggested that serine proteases in the lower respiratory tract reduce pneumococcal competence. This was subsequently confirmed measuring in vivo recombination frequencies after induction of protease production via poly (I:C) stimulation and via co-infection with influenza A virus, which dramatically lowered recombination events. These data shed light on a new mechanism by which the host can modulate pneumococcal behavior and genetic exchange via direct degradation of the competence signaling peptide.
Collapse
Affiliation(s)
- Haley Echlin
- Department of Infectious Diseases, St Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Amy Iverson
- Department of Infectious Diseases, St Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Ugo Sardo
- Department of Infectious Diseases, St Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Jason W. Rosch
- Department of Infectious Diseases, St Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| |
Collapse
|
4
|
Oh MW, Lella M, Kuo SH, Tal-Gan Y, Lau GW. Pharmacological Evaluation of Synthetic Dominant-Negative Peptides Derived from the Competence-Stimulating Peptide of Streptococcus pneumoniae. ACS Pharmacol Transl Sci 2022; 5:299-305. [PMID: 35592433 PMCID: PMC9112410 DOI: 10.1021/acsptsci.2c00037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Indexed: 11/28/2022]
Abstract
The competence regulon of Streptococcus pneumoniae (pneumococcus) is a quorum-sensing circuitry that regulates the ability of this pathogen to acquire antibiotic resistance or perform serotype switching, leading to vaccine-escape serotypes, via horizontal gene transfer, as well as initiate virulence. Induction of the competence regulon is centered on binding of the competence-stimulating peptide (CSP) to its cognate receptor, ComD. We have recently synthesized multiple dominant-negative peptide analogs capable of inhibiting competence induction and virulence in S. pneumoniae. However, the pharmacodynamics and safety profiles of these peptide drug leads have not been characterized. Therefore, in this study, we compared the biostability of cyanine-7.5-labeled wild-type CSPs versus dominant-negative peptide analogs (dnCSPs) spatiotemporally by using an IVIS Spectrum in vivo imaging system. Moreover, in vitro cytotoxicity and in vivo toxicity were evaluated. We conclude that our best peptide analog, CSP1-E1A-cyc(Dap6E10), is an attractive therapeutic agent against pneumococcal infection with superior safety and pharmacokinetics profiles.
Collapse
Affiliation(s)
- Myung Whan Oh
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61802, United States
| | - Muralikrishna Lella
- Department of Chemistry, University of Nevada, Reno, 1664 North Virginia Street, Reno, Nevada 89557, United States
| | - Shanny Hsuan Kuo
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61802, United States
| | - Yftah Tal-Gan
- Department of Chemistry, University of Nevada, Reno, 1664 North Virginia Street, Reno, Nevada 89557, United States
| | - Gee W Lau
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61802, United States
| |
Collapse
|
5
|
Lella M, Oh MW, Kuo SH, Lau GW, Tal-Gan Y. Attenuating the Streptococcus pneumoniae Competence Regulon Using Urea-Bridged Cyclic Dominant-Negative Competence-Stimulating Peptide Analogs. J Med Chem 2022; 65:6826-6839. [PMID: 35452241 PMCID: PMC9106926 DOI: 10.1021/acs.jmedchem.2c00148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Streptococcus pneumoniae (pneumococcus) is a prevalent human pathogen that utilizes the competence regulon quorum sensing circuitry to acquire antibiotic resistance and initiate its attack on the human host. Therefore, targeting the competence regulon can be applied as an anti-infective approach with minimal pressure for resistance development. Herein, we report the construction of a library of urea-bridged cyclic dominant-negative competence-stimulating peptide (dnCSP) derivatives and their evaluation as competitive inhibitors of the competence regulon. Our results reveal the first pneumococcus dual-action CSPs that inhibit the group 1 pneumococcus competence regulon while activating the group 2 pneumococcus competence regulon. Structural analysis indicates that the urea-bridge cyclization stabilizes the bioactive α-helix conformation, while in vivo studies using a mouse model of infection exhibit that the lead dual-action dnCSP, CSP1-E1A-cyc(Dab6Dab10), attenuates group 1-mediated mortality without significantly reducing the bacterial burden. Overall, our results pave the way for developing novel therapeutics against this notorious pathogen.
Collapse
Affiliation(s)
- Muralikrishna Lella
- Department of Chemistry, University of Nevada, Reno, 1664 North Virginia Street, Reno, Nevada 89557, United States
| | - Myung Whan Oh
- Department of Pathobiology, University of Illinois at Urbana-Champaign, 2001 South Lincoln Avenue, Urbana, Illinois 61802, United States
| | - Shanny Hsuan Kuo
- Department of Pathobiology, University of Illinois at Urbana-Champaign, 2001 South Lincoln Avenue, Urbana, Illinois 61802, United States
| | - Gee W Lau
- Department of Pathobiology, University of Illinois at Urbana-Champaign, 2001 South Lincoln Avenue, Urbana, Illinois 61802, United States
| | - Yftah Tal-Gan
- Department of Chemistry, University of Nevada, Reno, 1664 North Virginia Street, Reno, Nevada 89557, United States
| |
Collapse
|
6
|
Lella M, Tal-Gan Y. Strategies to Attenuate the Competence Regulon in Streptococcus pneumoniae. Pept Sci (Hoboken) 2021; 113:e24222. [PMID: 34337308 PMCID: PMC8323945 DOI: 10.1002/pep2.24222] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 01/19/2021] [Indexed: 12/18/2022]
Abstract
Streptococcus pneumoniae is an opportunistic respiratory human pathogen that poses a continuing threat to human health. Natural competence for genetic transformation in S. pneumoniae plays an important role in aiding pathogenicity and it is the best-characterized feature to acquire antimicrobial resistance genes by a frequent process of recombination. In S. pneumoniae, competence, along with virulence factor production, is controlled by a cell-density communication mechanism termed the competence regulon. In this review, we present the recent advances in the development of alternative methods to attenuate the pathogenicity of S. pneumoniae by targeting the various stages of the non-essential competence regulon communication system. We mainly focus on new developments related to competitively intercepting the competence regulon signaling through the introduction of promising dominant-negative Competence Stimulating Peptide (dnCSP) scaffolds. We also discuss recent reports on antibiotics that can block CSP export by disturbing the proton motive force (PMF) across the membrane and various ways to control the pneumococcal pathogenicity by activating the counter signaling circuit and targeting the pneumococcal proteome.
Collapse
Affiliation(s)
- Muralikrishna Lella
- Department of Chemistry, University of Nevada, Reno, 1664 North Virginia Street, Reno, NV 89557 (USA)
| | - Yftah Tal-Gan
- Department of Chemistry, University of Nevada, Reno, 1664 North Virginia Street, Reno, NV 89557 (USA)
| |
Collapse
|
7
|
Streptococcus pneumoniae Elaborates Persistent and Prolonged Competent State during Pneumonia-Derived Sepsis. Infect Immun 2020; 88:IAI.00919-19. [PMID: 31988172 DOI: 10.1128/iai.00919-19] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 01/21/2020] [Indexed: 01/18/2023] Open
Abstract
The competence regulon of pneumococcus regulates both genetic transformation and virulence. However, competence induction during host infection has not been examined. By using the serotype 2 strain D39, we transcriptionally fused the firefly luciferase (luc) to competence-specific genes and spatiotemporally monitored the competence development in a mouse model of pneumonia-derived sepsis. In contrast to the universally reported short transient burst of competent state in vitro, the naturally developed competent state was prolonged and persistent during pneumonia-derived sepsis. The competent state began at approximately 20 h postinfection (hpi) and facilitated systemic invasion and sepsis development and progressed in different manners. In some mice, acute pneumonia quickly led to sepsis and death, accompanied by increasing intensity of the competence signal. In the remaining mice, pneumonia lasted longer, with the competence signal decreasing at first but increasing as the infection became septic. The concentration of pneumococcal inoculum (1 × 106 to 1 × 108 CFU/mouse) and postinfection lung bacterial burden did not appreciably impact the kinetics of competence induction. Exogenously provided competence stimulating peptide 1 (CSP1) failed to modulate the onset kinetics of competence development in vivo The competence shutoff regulator DprA was highly expressed during pneumonia-derived sepsis but failed to turn off the competent state in mice. Competent D39 bacteria propagated the competence signal through cell-to-cell contact rather than the classically described quorum-sensing mechanism. Finally, clinical pneumococcal strains of different serotypes were also able to develop natural competence during pneumonia-derived sepsis.
Collapse
|
8
|
Inniss NL, Prehna G, Morrison DA. The pneumococcal σ X activator, ComW, is a DNA-binding protein critical for natural transformation. J Biol Chem 2019; 294:11101-11118. [PMID: 31160340 DOI: 10.1074/jbc.ra119.007571] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 05/19/2019] [Indexed: 11/06/2022] Open
Abstract
Natural genetic transformation via horizontal gene transfer enables rapid adaptation to dynamic environments and contributes to both antibiotic resistance and vaccine evasion among bacterial populations. In Streptococcus pneumoniae (pneumococcus), transformation occurs when cells enter competence, a transient state in which cells express the competence master regulator, SigX (σΧ), an alternative σ factor (σ), and a competence co-regulator, ComW. Together, ComW and σX facilitate expression of the genes required for DNA uptake and genetic recombination. SigX activity depends on ComW, as ΔcomW cells transcribe late genes and transform at levels 10- and 10,000-fold below that of WT cells, respectively. Previous findings suggest that ComW functions during assembly of the RNA polymerase-σX holoenzyme to help promote transcription from σX-targeted promoters. However, it remains unknown how ComW facilitates holoenzyme assembly. As ComW seems to be unique to Gram-positive cocci and has no sequence similarity with known transcriptional activators, here we used Rosetta to generate an ab initio model of pneumococcal ComW's 3D-structure. Using this model as a basis for further biochemical, biophysical, and genetic investigations into the molecular features important for its function, we report that ComW is a predicted globular protein and that it interacts with DNA, independently of DNA sequence. We also identified conserved motifs in ComW and show that key residues in these motifs contribute to DNA binding. Lastly, we provide evidence that ComW's DNA-binding activity is important for transformation in pneumococcus. Our findings begin to fill the gaps in understanding how ComW regulates σΧ activity during bacterial natural transformation.
Collapse
Affiliation(s)
- Nicole L Inniss
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois 60607
| | - Gerd Prehna
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - Donald A Morrison
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois 60607
| |
Collapse
|
9
|
Glanville DG, Han L, Maule AF, Woodacre A, Thanki D, Abdullah IT, Morrissey JA, Clarke TB, Yesilkaya H, Silvaggi NR, Ulijasz AT. RitR is an archetype for a novel family of redox sensors in the streptococci that has evolved from two-component response regulators and is required for pneumococcal colonization. PLoS Pathog 2018; 14:e1007052. [PMID: 29750817 PMCID: PMC5965902 DOI: 10.1371/journal.ppat.1007052] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 05/23/2018] [Accepted: 04/23/2018] [Indexed: 01/07/2023] Open
Abstract
To survive diverse host environments, the human pathogen Streptococcus pneumoniae must prevent its self-produced, extremely high levels of peroxide from reacting with intracellular iron. However, the regulatory mechanism(s) by which the pneumococcus accomplishes this balance remains largely enigmatic, as this pathogen and other related streptococci lack all known redox-sensing transcription factors. Here we describe a two-component-derived response regulator, RitR, as the archetype for a novel family of redox sensors in a subset of streptococcal species. We show that RitR works to both repress iron transport and enable nasopharyngeal colonization through a mechanism that exploits a single cysteine (Cys128) redox switch located within its linker domain. Biochemical experiments and phylogenetics reveal that RitR has diverged from the canonical two-component virulence regulator CovR to instead dimerize and bind DNA only upon Cys128 oxidation in air-rich environments. Atomic structures show that Cys128 oxidation initiates a "helical unravelling" of the RitR linker region, suggesting a mechanism by which the DNA-binding domain is then released to interact with its cognate regulatory DNA. Expanded computational studies indicate this mechanism could be shared by many microbial species outside the streptococcus genus.
Collapse
Affiliation(s)
- David G. Glanville
- Department of Microbiology and Immunology, Loyola University Chicago; Maywood, IL, United States of America
- MRC Centre for Molecular Bacteriology and Infection (CMBI), Imperial College London, London, United Kingdom
| | - Lanlan Han
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, United States of America
| | - Andrew F. Maule
- Department of Horticulture, University of Wisconsin–Madison, Linden Drive, Madison, Wisconsin, United States of America
| | - Alexandra Woodacre
- Department of Genetics, University of Leicester, Leicester, United Kingdom
| | - Devsaagar Thanki
- Department of Genetics, University of Leicester, Leicester, United Kingdom
| | - Iman Tajer Abdullah
- Department of Infection and Immunity, University of Leicester, Leicester, United Kingdom
| | - Julie A. Morrissey
- Department of Genetics, University of Leicester, Leicester, United Kingdom
| | - Thomas B. Clarke
- MRC Centre for Molecular Bacteriology and Infection (CMBI), Imperial College London, London, United Kingdom
| | - Hasan Yesilkaya
- Department of Infection and Immunity, University of Leicester, Leicester, United Kingdom
| | - Nicholas R. Silvaggi
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, United States of America
| | - Andrew T. Ulijasz
- Department of Microbiology and Immunology, Loyola University Chicago; Maywood, IL, United States of America
- MRC Centre for Molecular Bacteriology and Infection (CMBI), Imperial College London, London, United Kingdom
- * E-mail:
| |
Collapse
|
10
|
Bustos-Jaimes I, Soto-Román RA, Gutiérrez-Landa IA, Valadez-García J, Segovia-Trinidad CL. Construction of protein-functionalized virus-like particles of parvovirus B19. J Biotechnol 2017; 263:55-63. [PMID: 28935566 DOI: 10.1016/j.jbiotec.2017.09.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 08/25/2017] [Accepted: 09/17/2017] [Indexed: 11/17/2022]
Abstract
Decoration of virus-like particles (VLPs) expands the repertory of functions these particles can display. In the last years, VLPs have successfully been used as scaffolds to present different molecules, frequently through the specific reaction of chemical groups on the surface of the particles, or by protein engineering when the presentation of peptides or proteins is the primary goal. VLPs of parvovirus B19 (B19V), have been previously produced in vitro and its stability and ability to assemble into hybrid particles composed of wild-type and chimeric proteins evidenced their potential as research tools. Herein, we report the presentation of functional proteins on the surface of B19V VLPs, through the fusion of the gene coding for the heterologous protein within the gene coding for the structural protein VP2. Two model proteins were used for the construction of chimeras, a lipase from Bacillus pumilus (BplA) and the enhanced green fluorescent protein (EGFP). Both chimeras were folded and successfully assembled in vitro into VLPs. While the BplA chimera exhibited esterase activity, the chimera of EGFP showed no fluorescence. We replaced the EGFP by its fast-folding derivative "super folder GFP" (sfGFP) flanked by larger linkers to increase its movement freedom, which resulted in fluorescent protein able to assemble fluorescent VLPs. These results expand the toolbox for VLP decoration as well as for the construction of new nanobiomaterials.
Collapse
Affiliation(s)
- Ismael Bustos-Jaimes
- Department of Biochemistry, Faculty of Medicine, National Autonomous University of Mexico, Mexico City 04510, Mexico.
| | - Ricardo Arturo Soto-Román
- Department of Biochemistry, Faculty of Medicine, National Autonomous University of Mexico, Mexico City 04510, Mexico
| | | | - Josefina Valadez-García
- Department of Biochemistry, Faculty of Medicine, National Autonomous University of Mexico, Mexico City 04510, Mexico
| | | |
Collapse
|
11
|
Yu Y, Chang D, Xu H, Zhang X, Pan L, Xu C, Huang B, Zhou H, Li J, Guo J, Liu C. The virulence of Streptococcus pneumoniae partially depends on dprA. Braz J Microbiol 2016; 48:225-231. [PMID: 28011228 PMCID: PMC5470456 DOI: 10.1016/j.bjm.2016.10.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Revised: 09/28/2016] [Accepted: 10/05/2016] [Indexed: 11/29/2022] Open
Abstract
Streptococcus pneumoniae is one of the most frequent opportunistic pathogens worldwide. DNA processing protein A (DprA) is an important factor involved in bacterial uptake and DNA integration into bacterial genome, but its role in S. pneumoniae virulence remains unclear. The aim of this study was to characterize the effects of the pneumococcal dprA gene on the pathogenesis of S. pneumoniae. To construct a dprA-deficient pneumococcal strain, the dprA gene of the S. pneumoniae strain D39 was inactivated. The virulence of this dprA-deficient strain, designated ΔD39, was compared with that of the wild-type strain by evaluating their respective capabilities to adhere to human pulmonary epithelial cells (PEC-A549) and by analyzing their choline-binding protein expression levels. In addition, the expression profiles of genes associated with virulence and host survival assays were also conducted with the mutant and the wild-type strain. Our results indicate that the capability of ΔD39 to adhere to the PEC-A549 airway cells was significantly lower (p < 0.01) compared with D39. Additionally, the 100-KD choline-binding protein was not detected in ΔD39. The addition of competence-stimulating peptide (CSP) lead to a significantly reduction of psaA mRNA expression in the dprA-deficient mutant and an increased level of psaA transcripts in the wild-type strain (p < 0.01). The median survival time of mice intraperitoneally infected with ΔD39 was significantly higher (p < 0.01) than that of mice infected with D39. The results of this study suggest that DprA has a significant effect on virulence characteristics of S. pneumoniae by influencing the expression of choline-binding protein and PsaA.
Collapse
Affiliation(s)
- Yi Yu
- Chinese PLA General Hospital, Nanlou Respiratory Diseases Department, Beijing, China
| | - De Chang
- Chinese PLA General Hospital, Nanlou Respiratory Diseases Department, Beijing, China; General Hospital of Chinese People's Armed Police Forces, Department of Respiratory Medicine, Beijing, China
| | - Huiwen Xu
- National Institute for Food and Drug Control, Institute for Medical Device Standardization Administration, Beijing, China
| | - Xuelin Zhang
- Chinese PLA General Hospital, Nanlou Respiratory Diseases Department, Beijing, China
| | - Lei Pan
- Chinese PLA General Hospital, Nanlou Respiratory Diseases Department, Beijing, China
| | - Chou Xu
- Chinese PLA General Hospital, Nanlou Respiratory Diseases Department, Beijing, China
| | - Bing Huang
- Chinese PLA General Hospital, Nanlou Respiratory Diseases Department, Beijing, China
| | - Hong Zhou
- Chinese PLA General Hospital, Nanlou Respiratory Diseases Department, Beijing, China
| | - Jia Li
- Chinese PLA General Hospital, Nanlou Respiratory Diseases Department, Beijing, China
| | - Jun Guo
- Chinese PLA General Hospital, Nanlou Respiratory Diseases Department, Beijing, China
| | - Changting Liu
- Chinese PLA General Hospital, Nanlou Respiratory Diseases Department, Beijing, China.
| |
Collapse
|
12
|
Competence for Genetic Transformation in Streptococcus pneumoniae: Mutations in σA Bypass the ComW Requirement for Late Gene Expression. J Bacteriol 2016; 198:2370-8. [PMID: 27353650 DOI: 10.1128/jb.00354-16] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 06/20/2016] [Indexed: 01/23/2023] Open
Abstract
UNLABELLED Streptococcus pneumoniae is able to integrate exogenous DNA into its genome by natural genetic transformation. Transient accumulation of high levels of the only S. pneumoniae alternative σ factor is insufficient for development of full competence without expression of a second competence-specific protein, ComW. The ΔcomW mutant is 10(4)-fold deficient in the yield of recombinants, 10-fold deficient in the amount of σ(X) activity, and 10-fold deficient in the amount of σ(X) protein. The critical role of ComW during transformation can be partially obviated by σ(A) mutations clustered on surfaces controlling affinity for core RNA polymerase (RNAP). While strains harboring σ(A) mutations in the comW mutant background were transforming at higher rates, the mechanism of transformation restoration was not clear. To investigate the mechanism of transformation restoration, we measured late gene expression in σ(A)* suppressor strains. Restoration of late gene expression was observed in ΔcomW σ(A)* mutants, indicating that a consequence of the σ(A)* mutations is, at least, to restore σ(X) activity. Competence kinetics were normal in ΔcomW σ(A)* strains, indicating that strains with restored competence exhibit the same pattern of transience as wild-type (WT) strains. We also identified a direct interaction between ComW and σ(X) using the yeast two-hybrid (Y2H) assay. Taken together, these data are consistent with the idea that ComW increases σ(X) access to core RNAP, pointing to a direct role of ComW in σ factor exchange during genetic transformation. However, the lack of late gene shutoff in ΔcomW mutants also points to a potential new role for ComW in competence shutoff. IMPORTANCE The sole alternative sigma factor of the streptococci, SigX, regulates development of competence for genetic transformation, a widespread mechanism of adaptation by horizontal gene transfer in this genus. The transient appearance of this sigma factor is strictly controlled at the levels of transcription and stability. This report shows that it is also controlled at the point of its substitution for SigA by a second transient competence-specific protein, ComW.
Collapse
|
13
|
Zhu L, Lin J, Kuang Z, Vidal JE, Lau GW. Deletion analysis of Streptococcus pneumoniae late competence genes distinguishes virulence determinants that are dependent or independent of competence induction. Mol Microbiol 2015; 97:151-65. [PMID: 25846124 DOI: 10.1111/mmi.13016] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/31/2015] [Indexed: 01/30/2023]
Abstract
The competence regulon of Streptococcus pneumoniae (pneumococcus) is crucial for genetic transformation. During competence development, the alternative sigma factor ComX is activated, which in turn, initiates transcription of 80 'late' competence genes. Interestingly, only 16 late genes are essential for genetic transformation. We hypothesized that these late genes that are dispensable for competence are beneficial to pneumococcal fitness during infection. These late genes were systematically deleted, and the resulting mutants were examined for their fitness during mouse models of bacteremia and acute pneumonia. Among these, 14 late genes were important for fitness in mice. Significantly, deletion of some late genes attenuated pneumococcal fitness to the same level in both wild-type and ComX-null genetic backgrounds, suggesting that the constitutive baseline expression of these genes was important for bacterial fitness. In contrast, some mutants were attenuated only in the wild-type genetic background but not in the ComX-null background, suggesting that specific expression of these genes during competence state contributed to pneumococcal fitness. Increased virulence during competence state was partially caused by the induction of allolytic enzymes that enhanced pneumolysin release. These results distinguish the role of basal expression versus competence induction in virulence functions encoded by ComX-regulated late competence genes.
Collapse
Affiliation(s)
- Luchang Zhu
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Jingjun Lin
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Zhizhou Kuang
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Jorge E Vidal
- Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Gee W Lau
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
14
|
Quorum-sensing systems LuxS/autoinducer 2 and Com regulate Streptococcus pneumoniae biofilms in a bioreactor with living cultures of human respiratory cells. Infect Immun 2013; 81:1341-53. [PMID: 23403556 DOI: 10.1128/iai.01096-12] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Streptococcus pneumoniae forms organized biofilms in the human upper respiratory tract that may play an essential role in both persistence and acute respiratory infection. However, the production and regulation of biofilms on human cells is not yet fully understood. In this work, we developed a bioreactor with living cultures of human respiratory epithelial cells (HREC) and a continuous flow of nutrients, mimicking the microenvironment of the human respiratory epithelium, to study the production and regulation of S. pneumoniae biofilms (SPB). SPB were also produced under static conditions on immobilized HREC. Our experiments demonstrated that the biomass of SPB increased significantly when grown on HREC compared to the amount on abiotic surfaces. Additionally, pneumococcal strains produced more early biofilms on lung cells than on pharyngeal cells. Utilizing the bioreactor or immobilized human cells, the production of early SPB was found to be regulated by two quorum-sensing systems, Com and LuxS/AI-2, since a mutation in either comC or luxS rendered the pneumococcus unable to produce early biofilms on HREC. Interestingly, while LuxS/autoinducer 2 (AI-2) regulated biofilms on both HREC and abiotic surfaces, Com control was specific for those structures produced on HREC. The biofilm phenotypes of strain D39-derivative ΔcomC and ΔluxS QS mutants were reversed by genetic complementation. Of note, SPB formed on immobilized HREC and incubated under static conditions were completely lysed 24 h postinoculation. Biofilm lysis was also regulated by the Com and LuxS/AI-2 quorum-sensing systems.
Collapse
|
15
|
PspK of Streptococcus pneumoniae increases adherence to epithelial cells and enhances nasopharyngeal colonization. Infect Immun 2012; 81:173-81. [PMID: 23115034 DOI: 10.1128/iai.00755-12] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Streptococcus pneumoniae (the pneumococcus) colonizes the human nasopharynx and can cause invasive disease aided by the pneumococcal capsule. Group II nontypeable S. pneumoniae (NTSp) lacks a polysaccharide capsule, and a subgroup of NTSp carriage isolates has been found to have a novel gene, pneumococcal surface protein K (pspK), which replaces the capsule locus. A recent rise in the number of NTSp isolates colonizing the human nasopharynx has been observed, but the colonization factors of NTSp have not been well studied. PspK has been shown to play a role in mouse colonization. We therefore examined PspK-mediated immune evasion along with adherence to host cells and colonization. PspK bound human secretory immunoglobulin A (sIgA) but not the complement regulator factor H and did not decrease C3b deposition on the pneumococcal surface. PspK increased binding of pneumococci to epithelial cells and enhanced pneumococcal colonization independently of the genetic background. Understanding how NTSp colonizes and survives within the nasopharynx is important due to the increase in NTSp carriage. Our data suggest that PspK may aid in the persistence of NTSp within the nasopharynx but is not involved in invasion.
Collapse
|
16
|
Cassone M, Gagne AL, Spruce LA, Seeholzer SH, Sebert ME. The HtrA protease from Streptococcus pneumoniae digests both denatured proteins and the competence-stimulating peptide. J Biol Chem 2012; 287:38449-59. [PMID: 23012372 DOI: 10.1074/jbc.m112.391482] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The HtrA protease of Streptococcus pneumoniae functions both in a general stress response role and as an error sensor that specifically represses genetic competence when the overall level of biosynthetic errors in cellular proteins is low. However, the mechanism through which HtrA inhibits development of competence has been unknown. We found that HtrA digested the pneumococcal competence-stimulating peptide (CSP) and constituted the primary extracytoplasmic CSP-degrading activity in cultures of S. pneumoniae. Mass spectrometry demonstrated that cleavage predominantly followed residue Phe-8 of the CSP-1 isoform of the peptide within its central hydrophobic patch, and in competition assays, both CSP-1 and CSP-2 interacted with HtrA with similar efficiencies. More generally, analysis of β-casein digestion and of digestion within HtrA itself revealed a preference for substrates with non-polar residues at the P1 site. Consistent with a specificity for exposed hydrophobic residues, competition from native BSA only weakly inhibited digestion of CSP, but denaturation converted BSA into a strong competitive inhibitor of such proteolysis. Together these findings support a model in which digestion of CSP by HtrA is reduced in the presence of other unfolded proteins that serve as alternative targets for degradation. Such competition may provide a mechanism by which HtrA functions in a quality control capacity to monitor the frequency of biosynthetic errors that result in protein misfolding.
Collapse
Affiliation(s)
- Marco Cassone
- Division of Infectious Diseases, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | |
Collapse
|
17
|
Duan C, Zhu L, Xu Y, Lau GW. Saturated alanine scanning mutagenesis of the pneumococcus competence stimulating peptide identifies analogs that inhibit genetic transformation. PLoS One 2012; 7:e44710. [PMID: 23028586 PMCID: PMC3441458 DOI: 10.1371/journal.pone.0044710] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Accepted: 08/07/2012] [Indexed: 11/29/2022] Open
Abstract
Antibiotic resistance is a major challenge to modern medicine. Intraspecies and interspecies dissemination of antibiotic resistance genes among bacteria can occur through horizontal gene transfer. Competence-mediated gene transfer has been reported to contribute to the spread of antibiotic resistance genes in Streptococcus pneumoniae. Induction of the competence regulon is mediated by a 17-amino acid peptide pheromone called the competence stimulating peptide (CSP). Thus, synthetic analogs that competitively inhibit CSPs may reduce horizontal gene transfer. We performed saturated alanine scanning mutagenesis and other amino acid substitutions on CSP1 to screen for analogs that disable genetic transformation in S. pneumoniae. Substitution of the glutamate residue at the first position created analogs that could competitively inhibit CSP1-mediated competence development in a concentration-dependent manner. Additional substitutions of the negatively-charged glutamate residue with amino acids of different charge, acidity and hydrophobicity, as well as enantiomeric D-glutamate, generated analogs that efficiently outcompeted CSP1, suggesting the importance of negative charge and enantiomericity of the first glutamate residue for the function of CSP1. Collectively, these results indicate that glutamate residue at the first position is important for the ability of CSP1 to induce ComD, but is dispensable for the peptide to bind the receptor. Furthermore, these results demonstrate the potential applicability of competitive CSP analogs to control horizontal transfer of antibiotic resistance genes in S. pneumoniae.
Collapse
Affiliation(s)
- Chaohui Duan
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- Laboratory of Clinical Immunology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, People’s Republic of China
| | - Luchang Zhu
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Ying Xu
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- Laboratory of Clinical Immunology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, People’s Republic of China
| | - Gee W. Lau
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- * E-mail:
| |
Collapse
|
18
|
Identification of genes that contribute to the pathogenesis of invasive pneumococcal disease by in vivo transcriptomic analysis. Infect Immun 2012; 80:3268-78. [PMID: 22778095 DOI: 10.1128/iai.00295-12] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Streptococcus pneumoniae (the pneumococcus) continues to be responsible for a high level of global morbidity and mortality resulting from pneumonia, bacteremia, meningitis, and otitis media. Here we have used a novel technique involving niche-specific, genome-wide in vivo transcriptomic analyses to identify genes upregulated in distinct niches during pathogenesis after intranasal infection of mice with serotype 4 or 6A pneumococci. The analyses yielded 28 common, significantly upregulated genes in the lungs relative to those in the nasopharynx and 25 significantly upregulated genes in the blood relative to those in the lungs in both strains, some of which were previously unrecognized. The role of five upregulated genes from either the lungs or the blood in pneumococcal pathogenesis and virulence was then evaluated by targeted mutagenesis. One of the mutants (ΔmalX) was significantly attenuated for virulence in the lungs, two (ΔaliA and ΔilvH) were significantly attenuated for virulence in the blood relative to the wild type, and two others (ΔcbiO and ΔpiuA) were completely avirulent in a mouse intranasal challenge model. We also show that the products of aliA, malX, and piuA are promising candidates for incorporation into multicomponent protein-based pneumococcal vaccines currently under development. Importantly, we suggest that this new approach is a viable complement to existing strategies for the discovery of genes critical to the distinct stages of invasive pneumococcal disease and potentially has broad application for novel protein antigen discovery in other pathogens such as S. pyogenes, Haemophilus influenzae type b, and Neisseria meningitidis.
Collapse
|
19
|
Mahdi LK, Wang H, Van der Hoek MB, Paton JC, Ogunniyi AD. Identification of a novel pneumococcal vaccine antigen preferentially expressed during meningitis in mice. J Clin Invest 2012; 122:2208-20. [PMID: 22622042 PMCID: PMC3366392 DOI: 10.1172/jci45850] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Accepted: 03/21/2012] [Indexed: 01/06/2023] Open
Abstract
Streptococcus pneumoniae is the most common cause of severe bacterial meningitis in children, the elderly, and immunocompromised individuals. To identify virulence factors preferentially expressed during meningitis, we conducted niche-specific genome-wide in vivo transcriptomic analysis after intranasal infection of mice with serotype 4 or 6A pneumococci. The expression of 34 bacterial genes was substantially altered in brain tissue of mice infected with either of the 2 strains. Ten upregulated genes were common to both strains, 7 of which were evaluated for their role in the development of meningitis. One previously uncharacterized protein, α-glycerophosphate oxidase (GlpO), was cytotoxic for human brain microvascular endothelial cells (HBMECs) via generation of H(2)O(2). A glpO deletion mutant was defective in adherence to HBMECs in vitro as well as in progression from the blood to the brain in vivo. Mutant bacteria also induced markedly reduced meningeal inflammation and brain pathology compared with wild type, despite similar levels of bacteremia. Immunization of mice with GlpO protected against invasive pneumococcal disease and provided additive protection when formulated with pneumolysin toxoid. Our results provide the basis of a strategy that can be adapted to identify genes that contribute to the development of meningitis caused by other pathogens.
Collapse
MESH Headings
- Animals
- Antigens, Bacterial/biosynthesis
- Antigens, Bacterial/genetics
- Antigens, Bacterial/immunology
- Bacterial Proteins/immunology
- Bacterial Proteins/pharmacology
- Cells, Cultured
- Female
- Gene Expression Regulation, Bacterial/immunology
- Gene Expression Regulation, Enzymologic/immunology
- Glycerolphosphate Dehydrogenase/biosynthesis
- Glycerolphosphate Dehydrogenase/genetics
- Glycerolphosphate Dehydrogenase/immunology
- Humans
- Meningitis, Pneumococcal/enzymology
- Meningitis, Pneumococcal/genetics
- Meningitis, Pneumococcal/immunology
- Meningitis, Pneumococcal/prevention & control
- Mice
- Mutation
- Pneumococcal Vaccines/immunology
- Pneumococcal Vaccines/metabolism
- Streptococcus pneumoniae/enzymology
- Streptococcus pneumoniae/genetics
- Streptococcus pneumoniae/immunology
- Streptolysins/immunology
- Streptolysins/pharmacology
- Toxoids/immunology
- Toxoids/pharmacology
Collapse
Affiliation(s)
- Layla K Mahdi
- Research Centre for Infectious Diseases, School of Molecular and Biomedical Science, University of Adelaide, Adelaide, South Australia, Australia
| | | | | | | | | |
Collapse
|
20
|
Lo Sapio M, Hilleringmann M, Barocchi MA, Moschioni M. A novel strategy to over-express and purify homologous proteins from Streptococcus pneumoniae. J Biotechnol 2012; 157:279-86. [DOI: 10.1016/j.jbiotec.2011.11.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Revised: 11/11/2011] [Accepted: 11/16/2011] [Indexed: 01/09/2023]
|
21
|
Callahan JE, Munro CL, Kitten T. The Streptococcus sanguinis competence regulon is not required for infective endocarditis virulence in a rabbit model. PLoS One 2011; 6:e26403. [PMID: 22039480 PMCID: PMC3198404 DOI: 10.1371/journal.pone.0026403] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Accepted: 09/26/2011] [Indexed: 11/18/2022] Open
Abstract
Streptococcus sanguinis is an important component of dental plaque and a leading cause of infective endocarditis. Genetic competence in S. sanguinis requires a quorum sensing system encoded by the early comCDE genes, as well as late genes controlled by the alternative sigma factor, ComX. Previous studies of Streptococcus pneumoniae and Streptococcus mutans have identified functions for the >100-gene com regulon in addition to DNA uptake, including virulence. We investigated this possibility in S. sanguinis. Strains deleted for the comCDE or comX master regulatory genes were created. Using a rabbit endocarditis model in conjunction with a variety of virulence assays, we determined that both mutants possessed infectivity equivalent to that of a virulent control strain, and that measures of disease were similar in rabbits infected with each strain. These results suggest that the com regulon is not required for S. sanguinis infective endocarditis virulence in this model. We propose that the different roles of the S. sanguinis, S. pneumoniae, and S. mutans com regulons in virulence can be understood in relation to the pathogenic mechanisms employed by each species.
Collapse
Affiliation(s)
- Jill E. Callahan
- VCU Philips Institute of Oral and Craniofacial Molecular Biology, Virginia Commonwealth University, Richmond, Virginia, United States of America
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Cindy L. Munro
- Department of Adult Health Nursing, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Todd Kitten
- VCU Philips Institute of Oral and Craniofacial Molecular Biology, Virginia Commonwealth University, Richmond, Virginia, United States of America
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, Virginia, United States of America
- Center for the Study of Biological Complexity of Virginia Commonwealth University, Richmond, Virginia, United States of America
- * E-mail:
| |
Collapse
|
22
|
Shivshankar P, Sanchez C, Rose LF, Orihuela CJ. The Streptococcus pneumoniae adhesin PsrP binds to Keratin 10 on lung cells. Mol Microbiol 2009; 73:663-79. [PMID: 19627498 DOI: 10.1111/j.1365-2958.2009.06796.x] [Citation(s) in RCA: 121] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Pneumococcal serine-rich repeat protein (PsrP) is a pathogenicity island-encoded adhesin that mediates attachment to lung cells. It is a member of the serine-rich repeat protein family and the largest bacterial protein known. PsrP production by S. pneumoniae was confirmed by immunoblotting and a truncated version of the protein was determined to be glycosylated. Using isogenic psrP mutants complemented with various PsrP constructs and competitive inhibition assays with recombinant proteins, we determined that PsrP requires an extended SRR2 domain for function and that adhesion is mediated through amino acids 273-341 of its basic region (BR) domain. Affinity chromatography, immunoprecipitation, enzyme-linked immunosorbent assay (ELISA), fluorescent-activated cell sorting (FACS) and immunofluorescent colocalization studies determined that PsrP binds to Keratin 10 (K10) on the surface of lung but not nasopharyngeal epithelial cells. Unglycosylated K10 bound to wild type but not psrP deficient pneumococci; suggesting that unlike other serine-rich repeat proteins, PsrP-mediated adhesion is independent of lectin activity. Finally, mice immunized with recombinant (r)PsrP(BR) had significantly less bacteria in their blood and improved survival versus controls following intranasal challenge. We conclude that the BR domain of PsrP binds to K10 in a lectin-independent manner, that K10 is expressed on lung cells and that vaccination with rPsrP(BR) is protective against pneumococcal disease.
Collapse
Affiliation(s)
- Pooja Shivshankar
- Department of Microbiology and Immunology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229-3900, USA
| | | | | | | |
Collapse
|
23
|
Abstract
The use of luxABCDE (lux) offers certain advantages over other reporters, such as: lacZ and xylE. It is real time and its signal generation is produced without the requirement for any additional substrates. In some bacteria such as Staphylococcus spp, light production by luciferase is restricted because of a limited availability of endogenous substrates such as fatty acid aldehyde. We describe the construction of promoterless-lux cloning vectors, pGYlux and pAmilux. S. aureus carrying B. subtilis xyl/tetO promoter fused to the lux genes of pGYlux gave up to a 2.5-fold enhancement of luminescence over S. aureus carrying the xyl/tetO promoter fused to lux genes of the previously published parent vector pAL2. Furthermore, pAmilux showed a 6-fold enhancement of lux expression when compared to pGYlux in S. aureus. This was achieved by cloning the constitutive ami promoter upstream of the luxCDE genes to increase endogenous fatty acid aldehyde production while maintaining its reporter functionality by fusing promoters to the luxAB genes.
Collapse
Affiliation(s)
- Lili Rosana Mesak
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, 2350 Health Science Mall, Vancouver, Canada BC V6T 1Z3.
| | | | | |
Collapse
|
24
|
Miao H, Ratnasingam S, Pu CS, Desai MM, Sze CC. Dual fluorescence system for flow cytometric analysis of Escherichia coli transcriptional response in multi-species context. J Microbiol Methods 2009; 76:109-19. [PMID: 18926860 DOI: 10.1016/j.mimet.2008.09.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2008] [Revised: 09/18/2008] [Accepted: 09/18/2008] [Indexed: 11/25/2022]
Abstract
When studying interspecies interactions in a bacterial consortium, it may be desirable to analyze one species' transcriptional response as influenced by the other species. We developed a dual fluorescence system of Escherichia coli for Fluorescence-Activated Cell Sorter (FACS)-based analysis for such a purpose. First, we generated E. coli SCC1 strain, which constitutively expresses green fluorescent protein (GFP), but otherwise showed no observable difference from the parent strain MG1655 with respect to morphology, growth, and FACS-analyzed side- and forward-scatter profiles. Next, to analyze transcriptional response, plasmids carrying promoters of interest fused to a red fluorescent protein (AsRed2) reporter, were introduced into strain SCC1. Quantification of promoter activities of araB, lacZ, fadB and rpoE via AsRed2 reporter verified that the induction levels are similar between MG1655 and SCC1 strains. In mixtures and co-cultures, GFP expression of E. coli SCC1 allowed it to be separated from non-E. coli species by FACS to purity levels of 96.7-100.0%. When a mixture of E. coli SCC1 carrying promoter-AsRed2 fusion and a non-E. coli strain was analyzed by FACS, it enabled (i) distinction of E. coli SCC1 from the non-E. coli strain, (ii) analysis of the E. coli promoter activity via AsRed2 expression and (iii) identification of transcriptional heterogeneity within the E. coli population. Co-cultures of E. coli SCC1 with Klebsiella pneumoniae and/or Enterococcus faecalis analyzed by FACS showed that E. coli fadB and rpoE transcription were differentially influenced by partner species.
Collapse
Affiliation(s)
- Huang Miao
- School of Biological Sciences, Nanyang Technological University, Singapore
| | | | | | | | | |
Collapse
|
25
|
van der Ploeg JR. Characterization of Streptococcus gordonii prophage PH15: complete genome sequence and functional analysis of phage-encoded integrase and endolysin. Microbiology (Reading) 2008; 154:2970-2978. [DOI: 10.1099/mic.0.2008/018739-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Jan R. van der Ploeg
- Institute of Oral Biology, University of Zürich, Plattenstrasse 11, 8032 Zürich, Switzerland
| |
Collapse
|
26
|
The Streptococcus pneumoniae competence regulatory system influences respiratory tract colonization. Infect Immun 2008; 76:3131-40. [PMID: 18443092 DOI: 10.1128/iai.01696-07] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The Streptococcus pneumoniae ComDE two-component signaling system controls the development of genetic competence in the bacterium and affects virulence in models of pneumonia and bacteremia. We have investigated the impact of the competence pathway during colonization of the nasopharynx, the principal ecological niche of the pneumococcus. Previous work showed that deletion of the pneumococcal CiaRH signaling system inhibited colonization and increased expression of genes required for competence. We anticipated that signaling by the competence pathway might similarly reduce carriage. Consistent with this expectation, a comE deletion that blocked transformation increased colonization fitness such that the mutant outcompeted the wild type in an infant rat model of asymptomatic carriage. Deletion of comD-immediately upstream of comE and likewise required for competence-similarly increased colonization fitness if the orientation of the antibiotic resistance cassette inserted into the comD locus was such that it reduced transcription of comE. However, an alternative comD deletion mutation that caused an increase in comE transcription impaired colonization instead. Activation of the competence system through a comE(D143Y) mutation did not affect colonization, but an inability to secrete the competence-stimulating peptide due to deletion of comAB produced a density-dependent reduction in colonization fitness. These results suggest a model in which signaling by the unactivated form of ComE reduces colonization fitness compared to that of bacteria in which it is either activated or absent entirely, with the most substantial fitness gain accompanying deletion of comE. This observation demonstrates that the pneumococcus incurs a substantial fitness cost in order to retain a functional competence regulatory system.
Collapse
|
27
|
Deficiency of the Rgg regulator promotes H2O2 resistance, AhpCF-mediated H2O2 decomposition, and virulence in Streptococcus pyogenes. J Bacteriol 2008; 190:3225-35. [PMID: 18310340 DOI: 10.1128/jb.01843-07] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Streptococcus pyogenes (group A streptococcus [GAS]), a catalase-negative gram-positive bacterium, is aerotolerant and survives H2O2 exposures that kill many catalase-positive bacteria. The molecular basis of the H2O2 resistance is poorly known. Here, we demonstrate that serotype M49 GAS lacking the Rgg regulator is more resistant to H2O2 and also decomposes more H2O2 than the parental strain. Subgenomic transcriptional profiling and genome-integrated green fluorescent protein reporters showed that a bicistronic operon, a homolog of the Streptococcus mutans ahpCF operon, is transcriptionally up-regulated in the absence of Rgg. Phenotypic assays with ahpCF operon knockouts demonstrated that the gene products decompose H2O2 and protect GAS against peroxide stress. In a murine intraperitoneal-infection model, Rgg deficiency increased the virulence of GAS, although in an ahpCF-independent manner. Rgg-mediated repression of H2O2 resistance is divergent from the previously characterized peroxide resistance repressor PerR. Moreover, Rgg-mediated repression of H2O2 resistance is inducible by cellular stresses of diverse natures--ethanol, organic hydroperoxide, and H2O2. Rgg is thus identified as a novel sensoregulator of streptococcal H2O2 resistance with potential implications for the virulence of the catalase-negative GAS.
Collapse
|
28
|
Tinh NTN, Dierckens K, Sorgeloos P, Bossier P. A review of the functionality of probiotics in the larviculture food chain. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2008; 10:1-12. [PMID: 18040740 DOI: 10.1007/s10126-007-9054-9] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2007] [Revised: 08/20/2007] [Accepted: 09/19/2007] [Indexed: 05/25/2023]
Abstract
During the past two decades, the use of probiotics as an alternative to the use of antibiotics has shown to be promising in aquaculture, particularly in fish and shellfish larviculture. This article reviews the studies on probiotics in larviculture, focusing on the current knowledge of their in vivo mechanisms of action. The article highlights that the in vivo mechanisms of action largely remain to be unravelled. Several methodologies are suggested for further in vivo research, including studies on gut microbiota composition, the use of gnotobiotic animals as test models, and the application of molecular techniques to study host-microbe and microbe-microbe interactions.
Collapse
Affiliation(s)
- Nguyen Thi Ngoc Tinh
- Laboratory of Aquaculture and Artemia Reference Center, Ghent University, Rozier 44, Gent, Belgium
| | | | | | | |
Collapse
|
29
|
Burghout P, Bootsma HJ, Kloosterman TG, Bijlsma JJE, de Jongh CE, Kuipers OP, Hermans PWM. Search for genes essential for pneumococcal transformation: the RADA DNA repair protein plays a role in genomic recombination of donor DNA. J Bacteriol 2007; 189:6540-50. [PMID: 17631629 PMCID: PMC2045161 DOI: 10.1128/jb.00573-07] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
We applied a novel negative selection strategy called genomic array footprinting (GAF) to identify genes required for genetic transformation of the gram-positive bacterium Streptococcus pneumoniae. Genome-wide mariner transposon mutant libraries in S. pneumoniae strain R6 were challenged by transformation with an antibiotic resistance cassette and growth in the presence of the corresponding antibiotic. The GAF screen identified the enrichment of mutants in two genes, i.e., hexA and hexB, and the counterselection of mutants in 21 different genes during the challenge. Eight of the counterselected genes were known to be essential for pneumococcal transformation. Four other genes, i.e., radA, comGF, parB, and spr2011, have previously been linked to the competence regulon, and one, spr2014, was located adjacent to the essential competence gene comFA. Directed mutants of seven of the eight remaining genes, i.e., spr0459-spr0460, spr0777, spr0838, spr1259-spr1260, and spr1357, resulted in reduced, albeit modest, transformation rates. No connection to pneumococcal transformation could be made for the eighth gene, which encodes the response regulator RR03. We further demonstrated that the gene encoding the putative DNA repair protein RadA is required for efficient transformation with chromosomal markers, whereas transformation with replicating plasmid DNA was not significantly affected. The radA mutant also displayed an increased sensitivity to treatment with the DNA-damaging agent methyl methanesulfonate. Hence, RadA is considered to have a role in recombination of donor DNA and in DNA damage repair in S. pneumoniae.
Collapse
Affiliation(s)
- Peter Burghout
- Laboratory of Pediatric Infectious Diseases, Radboud University Nijmegen Medical Centre, P.O. Box 9101 (Route 224), 6500 HB Nijmegen, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
30
|
Karlsson D, Karlsson S, Gustafsson E, Normark BH, Nilsson P. Modeling the regulation of the competence-evoking quorum sensing network in Streptococcus pneumoniae. Biosystems 2007; 90:211-23. [PMID: 17011700 DOI: 10.1016/j.biosystems.2006.08.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2006] [Revised: 08/15/2006] [Accepted: 08/16/2006] [Indexed: 12/01/2022]
Abstract
Competence for genetic transformation seems to play a fundamental role in the biology of Streptococcus pneumoniae and is believed to account for serotype switching, evolution of virulence factors, and rapid emergence of antibiotic resistance. The initiation of competence is regulated by the quorum sensing system referred as the ComABCDE pathway. Experimental studies reveal that competence is down-regulated a short time after its induction and several hypotheses about the mechanism(s) responsible for this shut-down have been presented. Possibly, a ComX-dependent gene product, such as a repressor or a phosphatase, is involved. To better understand the down-regulation of the competence-evoking system in S. pneumoniae, a mathematical model was set up. By analyzing the model, we suggest that shut-down of competence possibly occurs at the transcriptional level on the comCDE operon. As a result of introducing a putative comX-dependent repressor, which inhibits expression of comCDE and comX, in the mathematical model, competence is demonstrated to appear in waves. This is supported by experimental studies showing the appearance of successive competence cycles in pneumococcal batch cultures.
Collapse
Affiliation(s)
- Diana Karlsson
- Molecular Biology, School of Life Sciences, University of Skövde, SE-541 28 Skövde, Sweden.
| | | | | | | | | |
Collapse
|
31
|
Webb AJ, Homer KA, Hosie AHF. A phosphoenolpyruvate-dependent phosphotransferase system is the principal maltose transporter in Streptococcus mutans. J Bacteriol 2007; 189:3322-7. [PMID: 17277067 PMCID: PMC1855833 DOI: 10.1128/jb.01633-06] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We report that a phosphoenolpyruvate-dependent phosphotransferase system, MalT, is the principal maltose transporter for Streptococcus mutans. MalT also contributes to maltotriose uptake. Since maltose and maltodextrins are products of starch degradation found in saliva, the ability to take up and ferment these carbohydrates may contribute to dental caries.
Collapse
Affiliation(s)
- Alexander J Webb
- Microbiology, King's College London Dental Institute, Floor 28, Guy's Tower, King's College London, Guy's Campus, London SE1 9RT, United Kingdom
| | | | | |
Collapse
|
32
|
Ma Z, Zhang JR. RR06 activates transcription of spr1996 and cbpA in Streptococcus pneumoniae. J Bacteriol 2007; 189:2497-509. [PMID: 17220227 PMCID: PMC1899362 DOI: 10.1128/jb.01429-06] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Streptococcus pneumoniae colonizes at the nasopharynx of humans and is able to disseminate and cause various infections. The hallmark of pneumococcal disease is rapid bacterial replication in different tissue sites leading to intense inflammation. The genetic basis of pneumococcal adaptation to different host niches remains sketchy. In this study, we investigated the regulatory effect of RR06, a response regulator protein, on gene expression of S. pneumoniae. Microarray and Northern blot analyses showed that RR06 is specifically required for transcription of spr1996 and cbpA. While the function of Spr1996 is unknown, CbpA has been well characterized as a surface-exposed protective antigen and a virulence factor of S. pneumoniae. A recombinant form of RR06 was able to bind to a 19-bp conserved sequence shared by the spr1996 and cbpA promoter regions. Furthermore, inactivation of rr06 resulted in loss of CbpA expression as detected by antibody staining and bacterial adhesion. CbpA expression was restored in trans by the intact rr06 gene. However, a mutant, RR06(D51A), with a point mutation in the aspartate residue at position 51 (a predicted major phosphorylation site) of RR06, completely abolished the CbpA expression, suggesting that RR06 phosphorylation is required for transcriptional activation of spr1996 and cbpA. Finally, inactivation of rr06 in additional pneumococcal strains also led to the loss of CbpA expression. These data implicate that RR06 activates the expression of spr1996 and cbpA in many other pneumococcal strains.
Collapse
Affiliation(s)
- Zhuo Ma
- Center for Immunology and Microbial Disease, Albany Medical College, M/C 151, Room MS453, 47 New Scotland Avenue, Albany, NY 12208, USA
| | | |
Collapse
|
33
|
Waters CM, Bassler BL. The Vibrio harveyi quorum-sensing system uses shared regulatory components to discriminate between multiple autoinducers. Genes Dev 2007; 20:2754-67. [PMID: 17015436 PMCID: PMC1578700 DOI: 10.1101/gad.1466506] [Citation(s) in RCA: 185] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The quorum-sensing bacterium Vibrio harveyi produces and responds to three autoinducers (AIs), and this sensory information converges to control the expression of bioluminescence, biofilm formation, type III secretion (TTS), and protease production. The AIs are detected by cognate sensor histidine kinases that all relay phosphate to the shared response regulator LuxO. LuxO indirectly represses the master regulator of quorum sensing, LuxR, through the activation of multiple genes encoding small regulatory RNAs (called qrr genes for Quorum Regulatory RNA). Here we use differential fluorescence induction to identify 50 quorum-sensing-controlled promoters. Some promoters only showed significant responses in the simultaneous presence of all three AIs, while others displayed substantial responses to the individual AIs. A differential response to each AI input state was also observed for qrr and luxR expression and LuxR protein production. Individual cell analyses revealed that, in each case, all the bacteria in the population respond in unison to the various AI inputs. We propose that the V. harveyi quorum-sensing transition is not switch-like but rather operates in a graded manner, and that this signaling arrangement, which uses shared regulatory proteins, nonetheless provides V. harveyi a mechanism to respond uniquely to different AI input states.
Collapse
Affiliation(s)
- Christopher M Waters
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
| | | |
Collapse
|
34
|
Desai BV, Morrison DA. Transformation inStreptococcus pneumoniae: formation of eclipse complex in acoiAmutant implicates CoiA in genetic recombination. Mol Microbiol 2006; 63:1107-17. [PMID: 17233830 DOI: 10.1111/j.1365-2958.2006.05558.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
CoiA is a transient protein expressed specifically during competence and required for genetic transformation in Streptococcus pneumoniae, but not for DNA uptake. It is widely conserved among Gram-positive bacteria but its function is unknown. Here we report that although the rate of DNA uptake was not affected in a coiA mutant, the internalized donor DNA did not recombine into the host chromosome to form a physical and genetic heteroduplex. Instead, DNA taken up by a coiA mutant accumulated in the form of a single-stranded (ss) DNA-protein complex indistinguishable from the eclipse complex formed as a recombination intermediate in wild-type competent cells. Internalized donor DNA in a dprA mutant did not accumulate either as ss DNA or as an eclipse complex. Together, these results establish that a coiA mutant exhibits a phenotype different from that of dprA or recA mutants, and that CoiA functions at a later step in promoting recombination during genetic transformation in Streptococcus pneumoniae.
Collapse
Affiliation(s)
- Bhushan V Desai
- Laboratory for Molecular Biology, Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
| | | |
Collapse
|
35
|
Oggioni MR, Trappetti C, Kadioglu A, Cassone M, Iannelli F, Ricci S, Andrew PW, Pozzi G. Switch from planktonic to sessile life: a major event in pneumococcal pathogenesis. Mol Microbiol 2006; 61:1196-210. [PMID: 16925554 PMCID: PMC1618759 DOI: 10.1111/j.1365-2958.2006.05310.x] [Citation(s) in RCA: 195] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Two main patterns of gene expression of Streptococcus pneumoniae were observed during infection in the host by quantitative real time RT-PCR; one was characteristic of bacteria in blood and one of bacteria in tissue, such as brain and lung. Gene expression in blood was characterized by increased expression of pneumolysin, pspA and hrcA, while pneumococci in tissue infection showed increased expression of neuraminidases, metalloproteinases, oxidative stress and competence genes. In vitro situations with similar expression patterns were detected in liquid culture and in a newly developed pneumococcal model of biofilm respectively. The biofilm model was dependent on addition of synthetic competence stimulating peptide (CSP) and no biofilm was formed by CSP receptor mutants. As one of the differentially expressed gene sets in vivo were the competence genes, we exploited competence-specific tools to intervene on pneumococcal virulence during infection. Induction of the competence system by the quorum-sensing peptide, CSP, not only induced biofilm formation in vitro, but also increased virulence in pneumonia in vivo. In contrast, a mutant for the ComD receptor, which did not form biofilm, also showed reduced virulence in pneumonia. These results were opposite to those found in a bacteraemic sepsis model of infection, where the competence system was downregulated. When pneumococci in the different physiological states were used directly for challenge, sessile cells grown in a biofilm were more effective in inducing meningitis and pneumonia, while planktonic cells from liquid culture were more effective in inducing sepsis. Our data enable us, using in vivo gene expression and in vivo modulation of virulence, to postulate the distinction – from the pneumococcal point of view – between two main types of disease. During bacteraemic sepsis pneumococci resemble planktonic growth, while during tissue infection, such as pneumonia or meningitis, pneumococci are in a biofilm-like state.
Collapse
Affiliation(s)
- Marco R Oggioni
- Laboratorio di Microbiologia Molecolare e Biotecnologia, Dipartimento di Biologia Molecolare, Università di Siena, Siena, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Hsieh YC, Wang JT, Lee WS, Hsueh PR, Shao PL, Chang LY, Lu CY, Lee CY, Huang FY, Huang LM. Serotype competence and penicillin resistance in Streptococcus pneumoniae. Emerg Infect Dis 2006; 12:1709-14. [PMID: 17283621 PMCID: PMC3372340 DOI: 10.3201/eid1211.060414] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
From 2003 to 2005, we prospectively collected 118 isolates of pneumococci belonging to 7 serotypes to investigate their competence under the influence of the synthetic competence-stimulating peptides. The degree of competence of the various serotypes differed significantly. Serotype 6B had the highest competence, followed by serotypes 14, 19F, 9V, 23F, 3, and 18C. Isolates belonging to serotype 6B had greater genetic diversity than isolates belonging to serotype 3, which has high genetic clustering. Isolates belonging to serotypes 3 and 18C that were 100% sensitive to penicillin were significantly less competent than isolates belonging to serotypes 6B, 14, 19F, 9V, and 23F, which were frequently resistant to penicillin. Under the 7-valent pneumococcal conjugate vaccine program, enhanced molecular surveillance of virulent clones with higher competence to detect serotype switching will become more important.
Collapse
Affiliation(s)
- Yu-Chia Hsieh
- Taipei Medical University-WanFang Hospital, Taipei, Taiwan
| | | | - Wen-Sen Lee
- Taipei Medical University-WanFang Hospital, Taipei, Taiwan
| | - Po-Ren Hsueh
- National Taiwan University Hospital, Taipei, Taiwan
| | - Pei-Lan Shao
- National Taiwan University Hospital, Taipei, Taiwan
| | | | - Chun-Yi Lu
- National Taiwan University Hospital, Taipei, Taiwan
| | - Chin-Yun Lee
- National Taiwan University Hospital, Taipei, Taiwan
| | | | - Li-Min Huang
- National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
37
|
Webb AJ, Hosie AHF. A member of the second carbohydrate uptake subfamily of ATP-binding cassette transporters is responsible for ribonucleoside uptake in Streptococcus mutans. J Bacteriol 2006; 188:8005-12. [PMID: 16997965 PMCID: PMC1698198 DOI: 10.1128/jb.01101-06] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Streptococcus mutans has a significant number of transporters of the ATP-binding cassette (ABC) superfamily. Members of this superfamily are involved in the translocation of a diverse range of molecules across membranes. However, the functions of many of these members remain unknown. We have investigated the role of the single S. mutans representative of the second subfamily of carbohydrate uptake transporters (CUT2) of the ABC superfamily. The genetic context of genes encoding this transporter indicates that it may have a role in ribonucleoside scavenging. Inactivation of rnsA (ATPase) or rnsB (solute binding protein) resulted in strains resistant to 5-fluorocytidine and 5-fluorouridine (toxic ribonucleoside analogues). As other ribonucleosides including cytidine, uridine, adenosine, 2-deoxyuridine, and 2-deoxycytidine protected S. mutans from 5-fluorocytidine and 5-fluorouridine toxicity, it is likely that this transporter is involved in the uptake of these molecules. Indeed, the rnsA and rnsB mutants were unable to transport [2-(14)C]cytidine or [2-(14)C]uridine and had significantly reduced [8-(14)C]adenosine uptake rates. Characterization of this transporter in wild-type S. mutans indicates that it is a high-affinity (K(m) = 1 to 2 muM) transporter of cytidine, uridine, and adenosine. The inhibition of [(14)C]cytidine uptake by a range of structurally related molecules indicates that the CUT2 transporter is involved in the uptake of most ribonucleosides, including 2-deoxyribonucleosides, but not ribose or nucleobases. The characterization of this permease has directly shown for the first time that an ABC transporter is involved in the uptake of ribonucleosides and extends the range of substrates known to be transported by members of the ABC transporter superfamily.
Collapse
Affiliation(s)
- Alexander J Webb
- Microbiology, King's College London Dental Institute, London, United Kingdom
| | | |
Collapse
|
38
|
Desai BV, Morrison DA. An unstable competence-induced protein, CoiA, promotes processing of donor DNA after uptake during genetic transformation in Streptococcus pneumoniae. J Bacteriol 2006; 188:5177-86. [PMID: 16816189 PMCID: PMC1539964 DOI: 10.1128/jb.00103-06] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Natural genetic transformation in Streptococcus pneumoniae entails transcriptional activation of at least two sets of genes. One set of genes, activated by the competence-specific response regulator ComE, is involved in initiating competence, whereas a second set is activated by the competence-specific alternative sigma factor ComX and functions in DNA uptake and recombination. Here we report an initial characterization of CoiA, a ComX-dependent gene product that is induced during competence and is required for transformation. CoiA is widely conserved among gram-positive bacteria, and in streptococci, the entire coiA locus composed of four genes is conserved. By use of immunoblot assay, we show that, similar to its message, CoiA protein is transient, appearing at 10 min and largely disappearing by 30 min post-competence induction. Using complementation analysis, we establish that coiA is the only gene of this induced locus needed for transformability. We find no indication of CoiA having a role in regulating competence. Finally, using 32P- and 3H-labeled donor DNA, we demonstrate that a coiA mutant can internalize normal amounts of donor DNA compared to the wild-type strain but is unable to process it into viable transformants, suggesting a role for CoiA after DNA uptake, either in DNA processing or recombination.
Collapse
Affiliation(s)
- Bhushan V Desai
- Laboratory for Molecular Biology, Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
| | | |
Collapse
|
39
|
Kloosterman TG, Bijlsma JJE, Kok J, Kuipers OP. To have neighbour's fare: extending the molecular toolbox for Streptococcus pneumoniae. MICROBIOLOGY-SGM 2006; 152:351-359. [PMID: 16436423 DOI: 10.1099/mic.0.28521-0] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In past years, several useful genetic tools have been developed to study the molecular biology of Streptococcus pneumoniae. In order to extend the existing spectrum of tools, advantage was taken of the toolbox originally developed for the closely related bacterium Lactococcus lactis, which was adapted for the manipulation of S. pneumoniae. The modified tools are as follows. (i) An improved nisin-inducible (over)expression system (NICE). The nisRK genes, encoding a two-component system essential for transcriptional activation in response to nisin, were integrated into the bgaA locus of S. pneumoniae D39. In this strain, D39nisRK, addition of nisin resulted in the overexpression of several genes placed under the control of the nisin-inducible promoter, while no detectable expression was observed in the absence of nisin. (ii) A lacZ reporter system. Using strain D39nisRK, which lacks endogenous beta-galactosidase activity, the usefulness of the lacZ reporter vector pORI13 for the generation of chromosomal transcriptional fusions was demonstrated. In addition, the repA gene, necessary for the replication of pORI13, was introduced into the bgaA locus, thereby generating a background for plasmid-based promoter expression studies. (iii) A simplified chemically defined medium, which supports growth of all sequenced S. pneumoniae strains to a level comparable to that in complex medium. (iv) A system for the introduction of unmarked deletions and mutations into the chromosome, which is independent of the genotype of the target strain. Most of these systems were successfully applied in strains R6 and TIGR4 as well. In addition, the tools offer several improvements and advantages compared to existing ones. Thus, the molecular toolbox for S. pneumoniae has been successfully extended.
Collapse
Affiliation(s)
- Tomas G Kloosterman
- Department of Molecular Genetics, University of Groningen, Groningen Biomolecular Sciences and Biotechnology Institute, PO Box 14, 9750 AA Haren, the Netherlands
| | - Jetta J E Bijlsma
- Department of Molecular Genetics, University of Groningen, Groningen Biomolecular Sciences and Biotechnology Institute, PO Box 14, 9750 AA Haren, the Netherlands
| | - Jan Kok
- Department of Molecular Genetics, University of Groningen, Groningen Biomolecular Sciences and Biotechnology Institute, PO Box 14, 9750 AA Haren, the Netherlands
| | - Oscar P Kuipers
- Department of Molecular Genetics, University of Groningen, Groningen Biomolecular Sciences and Biotechnology Institute, PO Box 14, 9750 AA Haren, the Netherlands
| |
Collapse
|
40
|
Abstract
The transcriptional regulation of membrane fatty acid composition in the human pathogen Streptococcus pneumoniae is distinct from the systems utilized in the model organisms Escherichia coli and Bacillus subtilis. The genes encoding the components of type II fatty acid biosynthesis cluster at a single location within the S. pneumoniae genome, and the second gene in this cluster (SPR0376) encodes a transcription factor (FabT) that belongs to the MarR superfamily. Derivatives of S. pneumoniae strain D39 were constructed that lacked functional FabT. This strain had significantly elevated levels of saturated fatty acids and longer chain lengths than the control strain, was unable to grow at pH 5.5 and had increased sensitivity to detergent. Eliminating FabT function increased the expression levels of all of fab genes with the notable exception of fabM. FabT was purified and bound to the DNA palindrome located within the promoter regions of the fabT and fabK genes within the cluster. The analysis of cells with increased expression of individual genes leads to a model where the physical properties of the S. pneumoniae membrane is controlled primarily by the activity of FabK, the enoyl reductase, which diverts intermediates to saturated fatty acid formation, in contrast to E. coli where FabB, an elongation condensing enzyme, pulls the pathway in the direction of unsaturated acid synthesis.
Collapse
Affiliation(s)
- Ying-Jie Lu
- Department of Infectious Diseases, St. Jude Children's Hospital, Memphis, TN 38105-2794, USA
| | | |
Collapse
|
41
|
Paterson GK, Blue CE, Mitchell TJ. Role of two-component systems in the virulence of Streptococcus pneumoniae. J Med Microbiol 2006; 55:355-363. [PMID: 16533981 DOI: 10.1099/jmm.0.46423-0] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Understanding of how the human pathogen Streptococcus pneumoniae perceives and responds to its environment in the host offers insight into the pathogenesis of disease caused by this important bacterium and the potential for improved interventions. A central role in this environmental response is played by two-component systems (TCSs), which both sense the environment and drive the cellular response. Molecular advances in the form of genome sequencing, signature-tagged mutagenesis, differential fluorescence induction and microarray analysis have yielded considerable progress in the study of these systems in S. pneumoniae. These recent advances are discussed here, focusing in particular on the role of TCSs in the virulence of S. pneumoniae.
Collapse
Affiliation(s)
- G K Paterson
- Division of Infection and Immunity, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - C E Blue
- Division of Infection and Immunity, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - T J Mitchell
- Division of Infection and Immunity, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| |
Collapse
|
42
|
Johnsborg O, Kristiansen PE, Blomqvist T, Håvarstein LS. A hydrophobic patch in the competence-stimulating Peptide, a pneumococcal competence pheromone, is essential for specificity and biological activity. J Bacteriol 2006; 188:1744-9. [PMID: 16484185 PMCID: PMC1426553 DOI: 10.1128/jb.188.5.1744-1749.2006] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Induction of competence for natural genetic transformation in Streptococcus pneumoniae depends on pheromone-mediated cell-cell communication and a signaling pathway consisting of the competence-stimulating peptide (CSP), its membrane-embedded histidine kinase receptor ComD, and the cognate response regulator ComE. Extensive screening of pneumococcal isolates has revealed that two major CSP variants, CSP1 and CSP2, are found in members of this species. Even though the primary structures of CSP1 and CSP2 are about 50% identical, they are highly specific for their respective receptors, ComD1 and ComD2. In the present work, we have investigated the structural basis of this specificity by determining the three-dimensional structure of CSP1 from nuclear magnetic resonance data and comparing the agonist activity of a number of CSP1/CSP2 hybrid peptides toward the ComD1 and ComD2 receptors. Our results show that upon exposure to membrane-mimicking environments, the 17-amino-acid CSP1 pheromone adopts an amphiphilic alpha-helical configuration stretching from residue 6 to residue 12. Furthermore, the pattern of agonist activity displayed by the various hybrid peptides revealed that hydrophobic amino acids, some of which are situated on the nonpolar side of the alpha-helix, strongly contribute to CSP specificity. Together, these data indicate that the identified alpha-helix is an important structural feature of CSP1 which is essential for effective receptor recognition under natural conditions.
Collapse
Affiliation(s)
- Ola Johnsborg
- Department of Chemistry, Biotechnology, and Food Science, Biotechnology Building, Norwegian University of Life Sciences, P.O. Box 5003, N-1432 As, Norway
| | | | | | | |
Collapse
|
43
|
Ng WL, Tsui HCT, Winkler ME. Regulation of the pspA virulence factor and essential pcsB murein biosynthetic genes by the phosphorylated VicR (YycF) response regulator in Streptococcus pneumoniae. J Bacteriol 2005; 187:7444-59. [PMID: 16237028 PMCID: PMC1272996 DOI: 10.1128/jb.187.21.7444-7459.2005] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2005] [Accepted: 08/08/2005] [Indexed: 02/06/2023] Open
Abstract
The VicRK (YycFG) two-component regulatory system (TCS) is required for virulence of the human respiratory pathogen Streptococcus pneumoniae (pneumococcus). The VicR (YycF) response regulator (RR) is essential through its positive regulation of pcsB, which encodes an extracellular protein that mediates murein biosynthesis. To determine other genes that are regulated by VicR, we performed microarray analyses on a unique DeltavicR deletion mutant, which was constructed by uncoupling regulation of pcsB. Results from these microarray experiments support the idea that the VicR RR exerts strong positive regulation on the transcription of a set of genes encoding important surface proteins, including the PspA virulence factor, two proteins (Spr0096 and Spr1875) containing LysM peptidoglycan-binding domains, and a putative membrane protein (Spr0709) of unknown function. To demonstrate direct regulation, we performed band shift and footprinting experiments using purified unphosphorylated VicR and phosphorylated VicR-P, which was prepared by reaction with acetyl phosphate. VicR and VicR-P bound to regions upstream of pcsB, pspA, spr0096, spr1875, and spr0709. Phosphorylation of VicR to VicR-P increased the apparent strength and changed the nature of binding to these regions. DNase I footprinting of VicR and VicR-P bound to regions upstream of pcsB, pspA, spr0096, and spr1875 showed protection of extended regions containing a degenerate sequence related to a previously proposed consensus. These combined approaches did not support autoregulation of the vicRKX operon or substantive direct regulation of fatty acid biosynthesis by VicR or VicR-P. However, the DeltavicR mutant required fatty acids in some conditions, which supports the notion that the VicRK TCS may mediate membrane integrity as well as murein biosynthesis and virulence factor expression in S. pneumoniae.
Collapse
Affiliation(s)
- Wai-Leung Ng
- Department of Biology, Indiana University, Jordan Hall 142, Bloomington, IN 47405, USA
| | | | | |
Collapse
|
44
|
Abstract
Bacteria in their natural ecosystems preferentially grow as polysaccharide-encased biofilms attached to surfaces. Although quorum-sensing (QS) systems directing the 'biofilm phenotype' have been extensively described in Gram-negative bacteria, there is little understanding of the importance of these systems in Gram-positive biofilm formation. Streptococci are a diverse group of Gram-positive bacteria that colonize epithelial, mucosal and tooth surfaces of humans. In several streptococci, competence-stimulating peptide (CSP)-mediated QS has been connected with competence development for genetic transformation. Recent work, especially with bacteria that inhabit the biofilm of dental plaque, has linked CSP stimuli to other cell-density adaptations, such as biofilm formation.
Collapse
|
45
|
Sung CK, Morrison DA. Two distinct functions of ComW in stabilization and activation of the alternative sigma factor ComX in Streptococcus pneumoniae. J Bacteriol 2005; 187:3052-61. [PMID: 15838032 PMCID: PMC1082825 DOI: 10.1128/jb.187.9.3052-3061.2005] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Natural genetic transformation in Streptococcus pneumoniae is controlled by a quorum-sensing system, which acts through the competence-stimulating peptide (CSP) for transient activation of genes required for competence. More than 100 genes have been identified as CSP regulated by use of DNA microarray analysis. One of the CSP-induced genes required for genetic competence is comW. As the expression of this gene depended on the regulator ComE, but not on the competence sigma factor ComX (sigma(X)), and as expression of several genes required for DNA processing was affected in a comW mutant, comW appears to be a new regulatory gene. Immunoblotting analysis showed that the amount of the sigma(X) protein is dependent on ComW, suggesting that ComW may be directly or indirectly involved in the accumulation of sigma(X). As sigma(X) is stabilized in clpP mutants, a comW mutation was introduced into the clpP background to ask whether the synthesis of sigma(X) depends on ComW. The clpP comW double mutant accumulated an amount of sigma(X) higher (threefold) than that seen in the wild type but was not transformable, suggesting that while comW is not needed for sigma(X) synthesis, it acts both in stabilization of sigma(X) and in its activation. Modification of ComW with a histidine tag at its C or N terminus revealed that both amino and carboxyl termini are important for increasing the stability of sigma(X), but only the N terminus is important for stimulating its activity.
Collapse
Affiliation(s)
- Chang Kyoo Sung
- Laboratory for Molecular Biology, University of Illinois at Chicago, IL 60607, USA
| | | |
Collapse
|
46
|
Rediers H, Rainey PB, Vanderleyden J, De Mot R. Unraveling the secret lives of bacteria: use of in vivo expression technology and differential fluorescence induction promoter traps as tools for exploring niche-specific gene expression. Microbiol Mol Biol Rev 2005; 69:217-61. [PMID: 15944455 PMCID: PMC1197422 DOI: 10.1128/mmbr.69.2.217-261.2005] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A major challenge for microbiologists is to elucidate the strategies deployed by microorganisms to adapt to and thrive in highly complex and dynamic environments. In vitro studies, including those monitoring genomewide changes, have proven their value, but they can, at best, mimic only a subset of the ensemble of abiotic and biotic stimuli that microorganisms experience in their natural habitats. The widely used gene-to-phenotype approach involves the identification of altered niche-related phenotypes on the basis of gene inactivation. However, many traits contributing to ecological performance that, upon inactivation, result in only subtle or difficult to score phenotypic changes are likely to be overlooked by this otherwise powerful approach. Based on the premise that many, if not most, of the corresponding genes will be induced or upregulated in the environment under study, ecologically significant genes can alternatively be traced using the promoter trap techniques differential fluorescence induction and in vivo expression technology (IVET). The potential and limitations are discussed for the different IVET selection strategies and system-specific variants thereof. Based on a compendium of genes that have emerged from these promoter-trapping studies, several functional groups have been distinguished, and their physiological relevance is illustrated with follow-up studies of selected genes. In addition to confirming results from largely complementary approaches such as signature-tagged mutagenesis, some unexpected parallels as well as distinguishing features of microbial phenotypic acclimation in diverse environmental niches have surfaced. On the other hand, by the identification of a large proportion of genes with unknown function, these promoter-trapping studies underscore how little we know about the secret lives of bacteria and other microorganisms.
Collapse
Affiliation(s)
- Hans Rediers
- Centre of Microbial and Plant Genetics, Heverlee, Belgium
| | | | | | | |
Collapse
|
47
|
Guiral S, Mitchell TJ, Martin B, Claverys JP. Competence-programmed predation of noncompetent cells in the human pathogen Streptococcus pneumoniae: genetic requirements. Proc Natl Acad Sci U S A 2005; 102:8710-5. [PMID: 15928084 PMCID: PMC1150823 DOI: 10.1073/pnas.0500879102] [Citation(s) in RCA: 227] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Natural competence for genetic transformation is the best-characterized feature of the major human pathogen Streptococcus pneumoniae. Recent studies have shown the virulence of competence-deficient mutants to be attenuated, but the nature of the connection between competence and virulence remained unknown. Here we document the release, triggered by competent cells, of virulence factors (e.g., the cytolytic toxin pneumolysin) from noncompetent cells. This phenomenon, which we name allolysis, involves a previously undescribed bacteriocin system consisting of a two-peptide bacteriocin, CibAB, and its immunity factor, CibC; the major autolysin, LytA, and lysozyme, LytC; and a proposed new amidase, CbpD. We show that CibAB are absolutely required for allolysis, whereas LytA and LytC can be supplied either by the competent cells or by the targeted cells. We propose that allolysis constitutes a competence-programmed mechanism of predation of noncompetent cells, which benefits to the competent cells and contributes to virulence by coordinating the release of virulence factors.
Collapse
Affiliation(s)
- Sébastien Guiral
- Laboratoire de Microbiologie et Génétique Moléculaires, Unité Mixte de Recherche 5100, Centre National de la Recherche Scientifique, Université Paul Sabatier, 118 Route de Narbonne, 31062 Toulouse Cedex, France; and Division of Infection and Immunity, Institute of Biomedical Life Sciences, University of Glasgow, Glasgow G12, United Kingdom
| | - Tim J. Mitchell
- Laboratoire de Microbiologie et Génétique Moléculaires, Unité Mixte de Recherche 5100, Centre National de la Recherche Scientifique, Université Paul Sabatier, 118 Route de Narbonne, 31062 Toulouse Cedex, France; and Division of Infection and Immunity, Institute of Biomedical Life Sciences, University of Glasgow, Glasgow G12, United Kingdom
| | - Bernard Martin
- Laboratoire de Microbiologie et Génétique Moléculaires, Unité Mixte de Recherche 5100, Centre National de la Recherche Scientifique, Université Paul Sabatier, 118 Route de Narbonne, 31062 Toulouse Cedex, France; and Division of Infection and Immunity, Institute of Biomedical Life Sciences, University of Glasgow, Glasgow G12, United Kingdom
| | - Jean-Pierre Claverys
- Laboratoire de Microbiologie et Génétique Moléculaires, Unité Mixte de Recherche 5100, Centre National de la Recherche Scientifique, Université Paul Sabatier, 118 Route de Narbonne, 31062 Toulouse Cedex, France; and Division of Infection and Immunity, Institute of Biomedical Life Sciences, University of Glasgow, Glasgow G12, United Kingdom
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
48
|
López R, García E. Recent trends on the molecular biology of pneumococcal capsules, lytic enzymes, and bacteriophage. FEMS Microbiol Rev 2005; 28:553-80. [PMID: 15539074 DOI: 10.1016/j.femsre.2004.05.002] [Citation(s) in RCA: 139] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2004] [Revised: 05/19/2004] [Accepted: 05/25/2004] [Indexed: 11/23/2022] Open
Abstract
Streptococcus pneumoniae has re-emerged as a major cause of morbidity and mortality throughout the world and its continuous increase in antimicrobial resistance is rapidly becoming a leading cause of concern for public health. This review is focussed on the analysis of recent insights on the study of capsular polysaccharide biosynthesis, and cell wall (murein) hydrolases, two fundamental pneumococcal virulence factors. Besides, we have also re-evaluated the molecular biology of the pneumococcal phage, their possible role in pathogenicity and in the shaping of natural populations of S. pneumoniae. Precise knowledge of the topics reviewed here should facilitate the rationale to move towards the design of alternative ways to combat pneumococcal disease.
Collapse
Affiliation(s)
- Rubens López
- Departamento de Microbiología Molecular, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu, 9, 28040 Madrid, Spain.
| | | |
Collapse
|
49
|
Oggioni MR, Iannelli F, Ricci S, Chiavolini D, Parigi R, Trappetti C, Claverys JP, Pozzi G. Antibacterial activity of a competence-stimulating peptide in experimental sepsis caused by Streptococcus pneumoniae. Antimicrob Agents Chemother 2005; 48:4725-32. [PMID: 15561850 PMCID: PMC529211 DOI: 10.1128/aac.48.12.4725-4732.2004] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Streptococcus pneumoniae, a major cause of human disease, produces a 17-mer autoinducer peptide pheromone (competence-stimulating peptide [CSP]) for the control of competence for genetic transformation. Due to previous work linking CSP to stress phenotypes, we set up an in vivo sepsis model to assay its effect on virulence. Our data demonstrate a significant increase in the rates of survival of mice, reductions of blood S. pneumoniae counts, and prolonged times to death for mice treated with CSP. In vitro the dose of CSP used in the animal model produced a transitory inhibition of growth. When a mutant with a mutation in the CSP sensor histidine kinase was assayed, no bacteriostatic phenotype was detected in vitro and no change in disease outcome was observed in vivo. The data demonstrate that CSP, which induces in vitro a temporary growth arrest through stimulation of its cognate histidine kinase receptor, is able to block systemic disease in mice. This therapeutic effect is novel, in that the drug-like effect is obtained by stimulation, rather than inhibition, of a bacterial drug target.
Collapse
Affiliation(s)
- Marco R Oggioni
- Laboratorio di Microbiologia Molecolare e Biotecnologia, Dipartimento di Biologia Molecolare, Università di Siena, Siena, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Luo P, Li H, Morrison DA. Identification of ComW as a new component in the regulation of genetic transformation in Streptococcus pneumoniae. Mol Microbiol 2004; 54:172-83. [PMID: 15458414 DOI: 10.1111/j.1365-2958.2004.04254.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Regulation of competence for genetic transformation in Streptococcus pneumoniae depends on a quorum-sensing system, genes involved in DNA uptake and recombination and a link between these two gene sets. The alternative sigma factor ComX provides this link. ComE, the response regulator of the quorum-sensing system, is required for expression of ComX and other early genes. However, an unknown ComE-dependent regulator is also required for competence when comX is expressed under control of the raffinose-responsive promoter of the aga operon. The gene comW (SP0018) is required for a high level of competence and is regulated by the quorum-sensing system, but its function is unknown. To explore its role further, comW was cloned into the multicopy plasmid pMSP3535, under the control of a nisin-inducible promoter (P(N)), and transformed into pneumococcal strains containing a raffinose-inducible comX gene (P(R)::comX). Further introduction of a comE deletion blocked the endogenous CSP signal transduction pathway. In the resulting strain, competence was independent of CSP but depended on treatment with both nisin and raffinose, showing that coexpression of comW and comX complemented the comE deficiency. ComX protein accumulation and expression of a late competence gene in the above strain support the conclusion that ComW is a new positive factor involved in competence regulation.
Collapse
Affiliation(s)
- Ping Luo
- Laboratory for Molecular Biology, Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
| | | | | |
Collapse
|